WorldWideScience

Sample records for cold temperature conditions

  1. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    Science.gov (United States)

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Kinetics of Quality Changes of Pangasius Fillets at Stable and Dynamic Temperatures, Simulating Downstream Cold Chain Conditions

    Directory of Open Access Journals (Sweden)

    Nga Mai

    2017-01-01

    Full Text Available This study was about the quality changes of Pangasius fillets during storage under simulated temperature conditions of downstream cold chain. Sensory, chemical, and microbiological analyses were conducted over storage time and bacterial growth was modelled. Sensory quality index (QI, at five stable (1, 4, 9, 15, and 19 ± 1°C and three dynamic temperatures, progressed faster at higher temperatures, especially with sooner temperature abuses. Total volatile basic nitrogen remained under the acceptable limit throughout all the storage conditions. Total viable psychrotrophic counts (TVC were around 5.68 ± 0.24 log CFU g−1 at the beginning and exceeded the limit of 6 log CFU g−1 after 216, 96, 36, 16, and 7 h at 1, 4, 9, 15, and 19 ± 1°C, respectively. Meanwhile, Pseudomonas counts started at 3.81 ± 0.53 log CFU g−1 and reached 4.60–6.36 log CFU g−1 by the time of TVC rejection. Since lower shelf lives were given by TVC rather than QI, it should be appropriate to base the product shelf life on the TVC acceptable limit. Kinetics models based on the Baranyi and Roberts and square root models, developed for TVC and Pseudomonas spp., gave acceptable bacterial estimations at dynamic temperatures, with over 80% of observed counts within the acceptable simulation zone, revealing promising model applicability as a supporting tool for cold chain management. However, further improvement and validation of the models are needed.

  3. Body temperature and cold sensation during and following exercise under temperate room conditions in cold‐sensitive young trained females

    OpenAIRE

    Fujii, Naoto; Aoki‐Murakami, Erii; Tsuji, Bun; Kenny, Glen P.; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-01-01

    Abstract We evaluated cold sensation at rest and in response to exercise‐induced changes in core and skin temperatures in cold‐sensitive exercise trained females. Fifty‐eight trained young females were screened by a questionnaire, selecting cold‐sensitive (Cold‐sensitive, n = 7) and non‐cold‐sensitive (Control, n = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then...

  4. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  5. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.

    Science.gov (United States)

    Moyes, Andrew B; Germino, Matthew J; Kueppers, Lara M

    2015-09-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict. We measured response functions linking carbon (C) assimilation and temperature- and moisture-related microclimatic factors for limber pine (Pinus flexilis) seedlings growing in a heating × watering experiment within and above the alpine treeline. We then extrapolated these response functions using observed microclimate conditions to estimate the net effects of warming and associated soil drying on C assimilation across an entire growing season. Moisture and temperature limitations were each estimated to reduce potential growing season C gain from a theoretical upper limit by 15-30% (c. 50% combined). Warming above current treeline conditions provided relatively little benefit to modeled net assimilation, whereas assimilation was sensitive to either wetter or drier conditions. Summer precipitation may be at least as important as temperature in constraining C gain by establishing subalpine trees at and above current alpine treelines as seasonally dry subalpine and alpine ecosystems continue to warm. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Perception of foot temperature in young women with cold constitution: analysis of skin temperature and warm and cold sensation thresholds.

    Science.gov (United States)

    Sadakata, Mieko; Yamada, Yoshiaki

    2007-06-01

    To examine the disease state of cold constitution, physiological measurements of the foot were conducted by investigating thermal sensations under an environmental condition of 25 degrees C-26 degrees C (neutral temperature) in 29 young women with and without cold constitution. The subjects were classified into 3 groups according to their experiences with cold constitution: cold constitution, intermediate, and normal groups. Foot skin temperature was measured by thermography. Thermal sensations were measured on the dorsum of the left foot using a thermal stimulator. Cold and warm spots on the dorsum of the right foot were ascertained. Thermal stimulation was delivered by a copper probe. No significant differences in foot skin temperature among these 3 groups were identified as measured in a laboratory under neutral temperature conditions. However, the mean warm sensation threshold was +6.3+/-1.09 degrees C (mean+/-SEM) for the cold constitution group (n=14), +3.4+/-2.10 degrees C (mean+/-SEM) for the intermediate group (n=7), and -0.25+/-1.96 degrees C (mean+/-SEM) for the normal group (n=6). The difference was significant between the cold constitution and normal groups. No significant differences among the 3 groups were found in the cold sensation threshold. This may be attributable to the distribution of thermal receptors and to chronically reduced blood flow in subcutaneous tissues, where the skin temperature receptors responsible for temperature sensation are located.

  7. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions

    Science.gov (United States)

    Moyes, Andrew B.; Germino, Matthew J.; Kueppers, Lara M.

    2015-01-01

    Climate change is altering plant species distributions globally, and warming is expected to promote uphill shifts in mountain trees. However, at many cold-edge range limits, such as alpine treelines in the western United States, tree establishment may be colimited by low temperature and low moisture, making recruitment patterns with warming difficult to predict.

  8. Phosphoproteome profiling for cold temperature perception.

    Science.gov (United States)

    Park, Seyeon; Jang, Mi

    2011-02-01

    Temperature sensation initiates from the activation of cellular receptors when the cell is exposed to a decrease in temperature. Here, we applied a phosphoproteome profiling approach to the human lung epithelial cell line BEAS-2B to elucidate cellular cold-responsive processes. The primary aim of this study was to determine which intracellular changes of phosphorylation are accompanied by cold sensation. Eighteen protein spots that exhibited differentially phosphorylated changes in cells were identified. Most of the proteins that were phosphorylated after 5 or 10 min were returned to control levels after 30 or 60 min. Identified proteins were mainly RNA-related (i.e., they were involved in RNA binding and splicing). Temperature (18 and 10°C) stimuli showed homologies that were detected for time course changes in phosphoproteome. The data indicated a time-shift between two temperatures. The phosphorylation of putative cold responsive markers, such as ribosomal protein large P0 and heterochromatin-associated proteins 1, were verified by Western blotting in cells transfected with TRPM8 or TRPA1. Copyright © 2010 Wiley-Liss, Inc.

  9. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  10. Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.

    Science.gov (United States)

    Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K

    1998-09-01

    This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.

  11. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  12. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Impact of the thermal scattering law of H in H_2O on the isothermal temperatures reactivity coefficients for UOX and MOX fuel lattices in cold operating conditions

    International Nuclear Information System (INIS)

    Scotta, J.P.; Noguere, G.; Bernard, D.; Santamarina, A.; Damian, J.I.M.

    2016-01-01

    The contribution of the thermal scattering law of hydrogen in light water to isothermal temperature reactivity coefficients for UOX and MOX lattices was studied in the frame of the MISTRAL critical experiments carried out in the zero power reactor EOLE of CEA Cadarache (France). The interpretation of the core residual reactivity measured between 6 to 80 C. degrees (by step of 5 C. degrees) was performed with the Monte-Carlo code TRIPOLI-4"R. The nuclear data from the JEFF-3.1.1 library were used in the calculations. 3 different thermal scattering laws of hydrogen in light water were tested in order to evaluate their impact on the MISTRAL calculations. The thermal scattering laws of interest were firstly those recommended in JEFF-3.1.1 and ENDF/BVII.1 and also that recently produced at the atomic center of Bariloche (CAB, Argentina) with molecular dynamic simulations. The present work indicates that the calculation-to-experimental bias is (0.4 ± 0.3) pcm/C. degree in the UOX core and (1.0 ± 0.3) pcm/C. degree in the MOX cores, when the JEFF-3.1.1 library is used. An improvement is observed over the whole temperature range with the CAB model. The calculation-to-experimental bias vanishes for the UOX core (0.02 pcm/C. degree) and becomes close to 0.7 pcm/C. degree for the MOX cores. The magnitude of these bias have to be connected to the typical value of the temperature reactivity coefficient that ranges from 5 pcm/C. degree at Beginning Of Cycle (BOC) up to 50 pcm/C. degrees at End Of Cycle (EOC), in PWR conditions. (authors)

  14. Intrinsic bioremediation of BTEX in a cold temperature environment

    International Nuclear Information System (INIS)

    Johns, C.; Biggar, K.; Foght, J.; Mullick, A.

    1999-01-01

    Investigation of Intrinsic bioremediation technology at cold temperature sites contaminated with BTEX (benzene, toluene, ethyl benzene, xylene) is discussed. Site investigation at each of the sites was carried out to delineate stratigraphy, hydrogeology, microbiological setting, level of contamination and geochemical conditions. Preferred conditions for viable sites were found to include minimal risk of contaminants coming into contact with receptors, low hydraulic gradient, and the presence of adequate nutrients and terminal electron acceptors (TEAs). Enumeration of contaminant degrading microorganisms was completed through the Most Probable Number (MPN) technique indicating viable populations of aerobic petroleum degrading, nitrogen reducing and iron reducing bacteria. The effects of cold temperatures on the rate and extent of substrate utilization was studied in the laboratory, Results to date indicate that the sites under consideration are suitable candidates for intrinsic bioremediation and that significant rates of biodegradation are possible at low temperatures. If risk analysis proves to be favorable, the intrinsic bioremediation methodology is likely to provide an effective and affordable solution. 16 refs., 3 tabs., 3 figs

  15. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  16. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  17. Critical temperature: A quantitative method of assessing cold tolerance

    Science.gov (United States)

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  18. Impaired reproduction in Japanese Black cattle under cold environmental conditions.

    Science.gov (United States)

    Nabenishi, H; Yamazaki, A

    2017-06-01

    Environmental factors such as the temperature-humidity index (THI) are known to affect reproductive parameters in cattle. Therefore, here, we examined whether there was any correlation between the THI and the reproductive performance of Japanese Black cattle by analysing the first-service conception rates of 178,492 artificially inseminated cows across 9,833 herds in south-western Japan over a 3-year period. The daily mean (±SD) THI over the study period was 63.6 ± 11.3 (range: 41.4-81.5). The calving to first artificial insemination (AI) interval was significantly negatively correlated with THI in the month of AI (r = -.75, p reproductive performance in Japanese Black cattle and that the impact of the cold environment on the conception rate is attributable to a carryover effect from the cold season before AI rather than conditions at the time of AI. © 2017 Blackwell Verlag GmbH.

  19. Temperature dependence of creep properties of cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Yuji; Nakajima, Hajime

    1995-01-01

    The creep properties of Hastelloy XR, in a solution treated, 10% or 20% cold-worked condition, were investigated at temperatures from 800 to 1,000degC for the duration of creep tests up to about 2,500 ks. At 800 and 850degC, the steady-state creep rate and rupture ductility decreased and the rupture life increased after cold work of 10% or 20%. Although the rupture life of the 10% cold-worked alloy was longer at 900degC than that of the solution treated one, the rupture lives of the 10% cold-worked and solution treated alloys were almost equal at 950degC, which is the highest helium temperature in an intermediate heat exchanger of the High Temperature Engineering Test Reactor (HTTR). The beneficial effect of 10% cold work on the rupture life and the steady-state creep rate disappeared at 1,000degC. The beneficial effect of 20% cold work disappeared at 950degC because significant dynamic recrystallization occurred during creep. While rupture ductility of this alloy decreased after cold work of 10% or 20%, it recovered to a considerable extend at 1,000degC. It is emphasized that these cold work effects should be taken into consideration in design, operation and residual life estimation of high temperature components of the HTTR. (author)

  20. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  1. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  2. Impact of cold temperature on Euro 6 passenger car emissions.

    Science.gov (United States)

    Suarez-Bertoa, Ricardo; Astorga, Covadonga

    2018-03-01

    Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  4. Hydrogen-Antihydrogen Collisions at Cold Temperatures

    Science.gov (United States)

    Zygelman, Bernard

    2001-05-01

    With the CERN anti-proton de-accelerator now on line, it is anticipated that antihydrogen ( \\overline H) atoms will be created, cooled, and stored in large numbers (M. H. Holzscheitner and M. Charlton, Rep. Prog. Phys. 62),1 (1999). It has recently been proposed that the introduction of cold, spin-polarized, hydrogen atoms into a gas of trapped anti-hydrogen could allow the sympathetic cooling of the anti-hydrogen into the sub-Kelvin regime (P. Froelich, S. Jonsell, A.Saenz, B. Zygelman, and A. Dalgarno, Phys. Rev. Lett. 84), 4577 (2000). In this talk we will present the results of calculations that estimate the rate of elastic scattering of H with \\overline H, and compare that to the rate in which the fragmentation reaction, H + \\overline H arrow p \\overline p + e^+ e^- occurs and limits the utility of sympathetic cooling. Unlike the ground state of the H2 system, the H \\overline H system possesses a non-vanishing electric dipole moment (B. Zygelman, A. Saenz, P. Froelich, S. Jonsell and A. Dalgarno, Phys. Rev. A, in Press (2001).) that allows for the additional inelastic reaction H + \\overline H arrow H\\overline H^* + h ν , where H \\overline H^* is a quasi-bound state of the hydrogen-antihydrogen complex. The rate for radiative association into quasi-bound states of the H \\overline H^* complex will be presented and we will explore the viability for the spectroscopic study of this novel four-body matter-antimatter system. Collaborators in this study include, A. Dalgarno, P. Froelich, A. Saenz and S. Jonsell. I wish to thank the Institute for Theoretical Atomic and Molecular Physics (ITAMP) for their hospitality and support during sabbatical leave where part of this work was done. Partial support was provided by NSF grants to the Smithsonian Institution and Harvard University for ITAMP.

  5. Neurosensory and vascular function after 14 months of military training comprising cold winter conditions.

    Science.gov (United States)

    Carlsson, Daniel; Pettersson, Hans; Burström, Lage; Nilsson, Tohr; Wahlström, Jens

    2016-01-01

    This study aimed to examine the effects of 14 months of military training comprising cold winter conditions on neurosensory and vascular function in the hands and feet. Military conscripts (N=54) were assessed with quantitative sensory testing comprising touch, temperature, and vibration perception thresholds and finger systolic blood pressure (FSBP) after local cooling and a questionnaire on neurosensory and vascular symptoms at both baseline and follow-up. Ambient air temperature was recorded with body worn temperature loggers. The subjects showed reduced sensitivity to perception of touch, warmth, cold and vibrations in both the hands and feet except from vibrotactile perception in digit two of the right hand (right dig 2). Cold sensations, white fingers, and pain/discomfort when exposed to cold as well as pain increased in both prevalence and severity. There were no statistically significant changes in FSBP after local cooling. Fourteen months of winter military training comprising cold winter conditions reduced sensation from touch, warmth, cold, and vibrotactile stimulus in both hands and feet and increased the severity and prevalence of symptoms and pain. The vascular function in the hands, measured by FSBP after local cooling, was not affected.

  6. On the conditions of existence of cold-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-12-01

    An extende analysis of the partially ionized boundary layer of a magnetized plasma has been performed, leading to the following results: (i) In a first approximation the ion density at the inner ''edge'' of the layer becomes related to the wall-near neutral gas density, in a way being independent of the spatial distribution of the ionization rate. (ii) The particle and momentum balance equations, and the associated impermeability condition of the plasma with respect to neutral gas penetration, are not sufficient to specify a cold-blanket state, but have to be combined with considerations of the heat blance. This leads to lower and upper power input limits, thus defining conditions for the existence of a cold-blanket state. At decreasing beta values , or increasing radiation losses, there are situations where such a state cannot exist at all. (iii) It should become possible to fulfill the cold-blanket conditions in full-scale reactors as well as in certain model experiments. Probably these conditions can also be satisfied in large tokamaks like JET, and by fast gas injection in devices such as Alcator, but not in medium-size tokamaks being operated at moderately high ion densities. (iv) A strong ''boundary layer stabilization'' mechanism due to the joint viscosity-resistivity-pressure effects is available under cold-blanket conditions. (author)

  7. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  8. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold

  9. Spirometry Changes in Cold Climatic Conditions of Antarctica.

    Science.gov (United States)

    Udaya, Iyamanda B; Laxmi, Chettangada C; Abhishekh, Hulegar A; Raju, Trichur R; Sathyaprabha, Talakad N

    2015-01-01

    Pulmonary function is one of the important physiological measures that is known to be affected during the changes in the altitude. There is dearth of literature on changes in the pulmonary function variables in the cold climate conditions of Antarctica. We carried out spirometry before, during and after one year stay at Antarctica in members of the Indian expedition. Spirometry was carried out on 23 members of the XXVI Indian Scientific Expedition to Antarctica at baseline, after six months of expedition and at the end of one year, using standard guidelines. The tests were carried out indoor in temperature controlled laboratory. The pulmonary function test parameters did not vary across the period. Although, both forced vital capacity (FVC) and forced expiratory volume in first second (FEV1) showed a decreasing trend but did not attain any statistical significance. However, peak expiratory flow (PEFR) rate was reduced significantly. Our study did not show consistently significant change in the pulmonary function parameters in the members of the Indian Antarctic expedition.

  10. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  11. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  12. A study of ideal conditions for sodium purification in diffusion type cold trap

    International Nuclear Information System (INIS)

    Walsh, L.M.

    1993-08-01

    The ideal conditions for sodium purification in diffusion type cold traps are studied. It is known that the temperature profile along axial direction (x) of the trap must follow the condition (∂ T/∂ x) 2 ≤ 0 , in order to avoid crystals deposition on the wall and the consequent premature plugging. In the present work it is showed that (∂ T/∂ x) 2 ≤ 0 condition is necessary but not sufficient. A temperature profile which satisfies both conditions is found and its practical obtention is presented. (L.C.J.A.)

  13. Haze heats Pluto's atmosphere yet explains its cold temperature.

    Science.gov (United States)

    Zhang, Xi; Strobel, Darrell F; Imanaka, Hiroshi

    2017-11-15

    Pluto's atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto's thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto's temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto's atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought-a brightness that could be detected by future telescopes.

  14. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S.

    2003-01-01

    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  15. Temperature dependence of the dynamic fracture toughness of the alloy Incoloy 800 after cold work

    International Nuclear Information System (INIS)

    Krompholz, K.; Ullrich, G.

    1991-02-01

    Precracked charpy-V-notch specimens of the iron-nickel base alloy Incoloy 800 in the as-received condition and after cold work have been tested using an instrumented impact tester (hammer) in the temperature range 293 ≤ T/K ≤ 1223. The specific impact energies were determined by dial readings, from the integration of the load versus time and the load versus load point displacement diagrams; in all cases the agreement was excellent. The specific impact energies and the impulses are correlated with the test temperature and with the degree of cold work, respectively. The dynamic fracture toughness values were determined following the equivalent energy approach. In all cases a distinct decrease of the mechanical properties in the range between the as-received state and after 5 % cold work was found. The temperature behaviour of the impact energies clearly reveals an increase of its value between room temperature and 673 K. This increase is distinctly reduced after cold work. The dynamic fracture toughness decreases with increasing temperature. The fracture surfaces clearly show elasto-plastic fracture behaviour of the material in the temperature regime investigated. (author) 19 figs., 3 tabs., 7 refs

  16. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires......, the thermal behaviour is of interest. This has been studied by annealing the wires for 1h at temperatures from ambient temperature to 300 ℃ (573 K). It is expected that a raising temperature may lead to structural changes and a reduction in strength. The change in strength is however not expected to be large....... For this reason we have applied a very precise technique to measure the tensile properties of the wires from a strain of 10-4 to the maximum strain of about 1-2%. The structural changes have also been followed to estimate and relate strength changes to changes in structural parameters and morphology....

  17. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden.

    Science.gov (United States)

    Lim, Youn-Hee; Park, Min-Seon; Kim, Yoonhee; Kim, Ho; Hong, Yun-Chul

    2015-08-01

    The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995-2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions.

  18. Temperature studies with the Asian citrus psyllid, Diaphorina citri: cold hardiness and temperature thresholds for oviposition.

    Science.gov (United States)

    Hall, David G; Wenninger, Erik J; Hentz, Matthew G

    2011-01-01

    This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6 °C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8 °C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6 °C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6 °C.

  19. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions.

    Science.gov (United States)

    Dhanaraj, Anik L; Alkharouf, Nadim W; Beard, Hunter S; Chouikha, Imed B; Matthews, Benjamin F; Wei, Hui; Arora, Rajeev; Rowland, Lisa J

    2007-02-01

    Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.

  20. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  1. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    Science.gov (United States)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  2. Finite element analysis for temperature distributions in a cold forging

    International Nuclear Information System (INIS)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong; Kim, Sung Wook; Song, In Chul; Jeon, Byung Cheol

    2013-01-01

    In this research, the finite element method is utilized to predict the temperature distributions in a cold-forging process for a cambolt. The cambolt is mainly used as a part of a suspension system of a vehicle. The cambolt has an off-centered lobe that manipulates the vertical position of the knuckle and wheel to a slight degree. The cambolt requires certain mechanical properties, such as strength and endurance limits. Moreover, temperature is also an important factor to realize mass production and improve efficiency. However, direct measurement of temperature in a forging process is infeasible with existing technology; therefore, there is a critical need for a new technique. Accordingly, in this study, a thermo-coupled finite element method is developed for predicting the temperature distribution. The rate of energy conversion to heat for the workpiece material is determined, and the temperature distribution is analyzed throughout the forging process for a cambolt. The temperatures associated with different punch speeds are also studied, as well as the relationships between load, temperature, and punch speed. Experimental verification of the technique is presented.

  3. Finite element analysis for temperature distributions in a cold forging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Sung Wook [Yanbian National University, Yanbian (China); Song, In Chul; Jeon, Byung Cheol [Sunil dyfas, Jincheon (Korea, Republic of)

    2013-10-15

    In this research, the finite element method is utilized to predict the temperature distributions in a cold-forging process for a cambolt. The cambolt is mainly used as a part of a suspension system of a vehicle. The cambolt has an off-centered lobe that manipulates the vertical position of the knuckle and wheel to a slight degree. The cambolt requires certain mechanical properties, such as strength and endurance limits. Moreover, temperature is also an important factor to realize mass production and improve efficiency. However, direct measurement of temperature in a forging process is infeasible with existing technology; therefore, there is a critical need for a new technique. Accordingly, in this study, a thermo-coupled finite element method is developed for predicting the temperature distribution. The rate of energy conversion to heat for the workpiece material is determined, and the temperature distribution is analyzed throughout the forging process for a cambolt. The temperatures associated with different punch speeds are also studied, as well as the relationships between load, temperature, and punch speed. Experimental verification of the technique is presented.

  4. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

    Science.gov (United States)

    Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong

    2017-03-01

    Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield ( F v/ F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

  5. Murder or not? Cold temperature makes criminals appear to be cold-blooded and warm temperature to be hot-headed.

    Directory of Open Access Journals (Sweden)

    Christine Gockel

    Full Text Available Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.

  6. Murder or Not? Cold Temperature Makes Criminals Appear to Be Cold-Blooded and Warm Temperature to Be Hot-Headed

    Science.gov (United States)

    Gockel, Christine; Kolb, Peter M.; Werth, Lioba

    2014-01-01

    Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725

  7. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    Science.gov (United States)

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature

  8. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  9. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    Science.gov (United States)

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Are glendonites reliable indicators of cold conditions? Evidence from the Lower Cretaceous of Spitsbergen

    Science.gov (United States)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; Jerrett, Rhodri

    2017-04-01

    Glendonites are pseudomorphs after the mineral ikaite, and have been found in marine sediments throughout geological time. Ikaite is a metastable, hydrated form of calcium carbonate, which is only stable under specific conditions: between -2 and +5 °C, and with high alkalinity and phosphate concentrations. Glendonites are often associated with cold climates due to the strong temperature control on ikaite growth, and the coincidence in the geological record with episodes of global cooling. Glendonites are found in the Lower Cretaceous succession in Spitsbergen. During the Early Cretaceous, Spitsbergen was at a palaeolatitude of 60°N, and was part of a shallow epicontinental sea that formed during the Mesozoic as Atlantic rifting propagated northwards. Though the Early Cretaceous was generally characterised by greenhouse climate conditions, episodic cold snaps occurred during the Valanginian (the "Weissert Event") and during Aptian-Albian. Using high resolution carbon-isotope stratigraphy, we show that the first occurrences of glendonites are in the upper Lower Hauterivian and in the very upper Upper Hauterivian, stratigraphically higher than the Valanginian cooling event. Glendonites are also found in horizons in the Upper Aptian, coincident with the Aptian-Albian cold snap. Petrological analysis of the glendonite structure reveals differences between the Hauterivian and Aptian glendonites, with evidence for multiple diagenetic phases of growth in the Hauterivian glendonites, suggesting oscillating chemical conditions. This evidence suggests that local environmental conditions may have a stronger control on glendonite formation and preservation than global climate. We present a new model for ikaite growth and slow transformation to glendonite in marine sediments, which points to a more complex suite of diagenetic transformations than previously modelled. Furthermore, we critically assess whether such pseudomorphs after marine sedimentary ikaite may be indicators

  11. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  12. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    Science.gov (United States)

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  13. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Ignacio M Larrayoz

    Full Text Available Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP, including RNA-binding motif protein 3 (RBM3 and cold inducible RNA-binding protein (CIRP, but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C. Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina.

  14. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.

  15. Failure of PWR-RHRS under cold shutdown conditions: Experimental results from the PKL test facility

    International Nuclear Information System (INIS)

    Mandl, R.M.; Umminger, K.J.; Logt, J.V.D.

    1991-01-01

    The Residual Heat Removal System (RHRS) of a PWR is designed to transfer thermal energy from the core after plant shutdown and maintain the plant in cold shutdown or refuelling conditions for extended periods of time. Initial reactor cooling after shutdown is achieved by dissipating heat through the steam generators (SGs) and discharging steam to the condenser by means of the Turbine Bypass System (TBS). When the reactor coolant temperature has dropped to about 160C and pressure has been reduced to 30 bar the RHRS is placed into operation. it reduces the coolant temperature to 50C within 20 hours after shutdown. The time margin for establishing alternate methods of heat removal following a failure of the RHRS depends on the Reactor Coolant System (RCS) temperature, the decay heat rate and the amount of RCS inventory. During some shutdown operations the RCS may be partially drained (e. g. to perform SG inspections). Decreased primary system inventory can significantly reduce the time available to recover the RHRS's function prior to bulk boiling and possible core uncovery. In the PKL test facility, which simulates a 1,300 MWe 4-loop PWR on a scale 1:145, a failure of RHRS under cold shutdown conditions was performed. This presentation gives a brief description of the test facility followed by the test objectives and results of this experiment

  16. Case study: Investigating the causes of temperature breaks in South African summer fruit export cold chains

    CSIR Research Space (South Africa)

    Goedhals-Gerber, LL

    2016-08-01

    Full Text Available This study investigated the causes and extent of temperature breaks in the South African summer fruit export cold chain from the pack house to the vessel. Numerous causes of temperature breaks throughout the cold chain were found, resulting in many...

  17. Mild cold effects on hunger, food intake, satiety and skin temperature in humans

    Directory of Open Access Journals (Sweden)

    M Langeveld

    2016-04-01

    Full Text Available Background Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. Methods We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold or 24°C (thermoneutrality for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. Results We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. Conclusions It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure.

  18. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  19. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  20. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  1. Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain

    International Nuclear Information System (INIS)

    Li, Yu-Chu M.; Chen, Yen-Hong A.

    2016-01-01

    Development a novel inorganic salt eutectic solution for cold energy storage material (ESM) have succeeded conducted in this study. The eutectic solutions shows a low melting temperature and high latent heat of fusion value as effect of addition nano copper powder into the eutectic solution. We report a new simulation technique of thermal property as well as test results of three inorganic salts. The thermal property of three inorganic salts were simulated using the differential scanning calorimetry (DSC) method with the help of three binary phase diagrams. The simulation shows the liquidus temperature of each binary phase diagram conforming nicely to the theoretical prediction of the Gibbs-Duhem equation. In order to predict cold storage keeping time, we derived a heat transfer model based on energy conservation law. Three ESMs were tested for their cold energy storage performance and thermal properties aging for durability. The empirical results indicate that, for food cold chain, the melting point rule is superior with less deviation. With this information, one can pre-estimate the basic design parameters with great accuracy; the cost of design and development for a new cold storage logistics system can be dramatically reduced. - Highlights: • For these three ESMs, their modified values of melting point and latent heat are presented in Table 2. • But, TC is usually not a constant like TE. • The freezing time underwent a drop ∼10% in the binary eutectic region.

  2. Effect of cold conditions on manual performance while wearing petroleum industry protective clothing.

    Science.gov (United States)

    Wiggen, Øystein Nordrum; Heen, Sigri; Færevik, Hilde; Reinertsen, Randi Eidsmo

    2011-01-01

    The purpose of this study was to investigate manual performance and thermal responses during low work intensity in persons wearing standard protective clothing in the petroleum industry when they were exposed to a range of temperatures (5, -5, -15 and -25℃) that are relevant to environmental conditions for petroleum industry personnel in northern regions. Twelve men participated in the study. Protective clothing was adjusted for the given cold exposure according to current practices. The subjects performed manual tests five times under each environmental condition. The manual performance test battery consisted of four different tests: tactile sensation (Semmes-Weinstein monofilaments), finger dexterity (Purdue Pegboard), hand dexterity (Complete Minnesota dexterity test) and grip strength (grip dynamometer). We found that exposure to -5℃ or colder lowered skin and body temperatures and reduced manual performance during low work intensity. In conclusion the current protective clothing at a given cold exposure is not adequate to maintain manual performance and thermal balance for petroleum workers in the high north.

  3. Review on the Strength Development Required for the Concrete Structure of Nuclear Power Plant under Cold Weather Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Ryu, Gum Sung; Kim, Do Gyeum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2011-10-15

    As a part of a Department of Energy-Nuclear According to the specifications for the construction execution for a nuclear power plant (NPP), the cold weather concrete should be facilitated that comply with the regulations of ACI-306R. Here, in terms of the standards applied to the cold weather concrete, such concrete should be applied in the case where the daily average temperature is 5 .deg. C or less. So, according to the analysis on the average temperature in winter over the last one year at each NPP construction area, it was found that such had lowered by about 0.5 - 2 .deg. C as compared to the temperature during the normal years (the last ten years) and the number of days applied to the cold weather concrete according to the ACI regulations was shown as 83, so as around 1/4 of year falls into the cold weather conditions and furthermore the recent weather is getting severe, it is necessary to perform the appropriate insulation curing for the cold weather concrete. On the other hand, according to the regulations with regards to the curing conditions for cold weather concrete, the insulation curing of such should be appropriately performed under an environment of 5 .deg. C or greater until the strength of 3.5 MPa (500 Psi) develops. Likewise, according to the regulations regarding the cold weather concrete in the domestic concrete specifications, the insulation curing should be performed until a strength development of 5 MPa (715 Psi) considering the safety factor indicated to the ACI regulation under the temperature of 5 .deg. C or greater. According to the above-mentioned regulations, the NPP structure is required to develop a minimum strength of 5 MPa or greater, and to maintain such important qualities, including strength development, early anti-freezing and duality under cold weather conditions. However, even though the early strength of 5 MPa or greater is secured under the recent abnormal weather conditions and cold weather conditions, if the structure is

  4. The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities

    Science.gov (United States)

    Antunes, Liliana; Silva, Susana Pereira; Marques, Jorge; Nunes, Baltazar; Antunes, Sílvia

    2017-01-01

    It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1-2-day delay, reaching maximum increased risk of death after 6-7 days and lasting up to 20-28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.

  5. Preference for safflower oil in rats exposed to a cold environment under free-feeding conditions.

    Science.gov (United States)

    Saitoh, Masaji; Ishii, Toshiaki; Takewaki, Tadashi; Nishimura, Masakazu

    2005-07-01

    There are several benefits to a high-fat diet for animals exposed to cold, including improved tolerance to severe cold conditions and increased survival rates in cold environments. It is therefore of interest to examine whether animals exposed to cold will selectively consume lipids. We examined the intake of safflower oil (SO) by rats exposed to cold (4 +/- 2 degrees C) under a feeding condition in which the rats were given free access to SO. Rats exposed to cold consumed more SO than those housed at 25 +/- 2 degrees C. This finding suggests that rats prefer SO in a cold environment. There was no significant difference in the ratio of calories of SO ingested to that of matter (standard laboratory chow plus SO) ingested between rats exposed to cold and those at 25 +/- 2 degrees C. The high SO intake also affected cold tolerance and metabolite kinetics in the rats. Factors that affected the SO intake of rats exposed to cold are also discussed.

  6. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  7. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    2017-02-01

    Full Text Available Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday. The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  8. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  9. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%

  10. Temperature limit values for cold touchable surfaces ' ColdSurf ' : final report

    NARCIS (Netherlands)

    Holmer, I.; Havenith, G.; Hartog, E.A. den; Rintamaki, H.; Malchaire, J.

    2000-01-01

    The aim of the project was to find and compile information on human responses to contact with cold surfaces. The work has covered 1) literature search and field survey; 2) experimental studies with human subjects; 3) simulation by modeling; 4) instrumentation (artificial finger), 5) establishment of

  11. Mild cold effects on hunger, food intake, satiety and skin temperature in humans

    NARCIS (Netherlands)

    Langeveld, M.; Tan, C. Y.; Soeters, M. R.; Virtue, S.; Ambler, G. K.; Watson, L. P. E.; Murgatroyd, P. R.; Chatterjee, V. K.; Vidal-Puig, A.

    2016-01-01

    Background: Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective: To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared

  12. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature.

    Science.gov (United States)

    Almeida, M Camila; Hew-Butler, Tamara; Soriano, Renato N; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L; Nucci, Tatiane B; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R; Romanovsky, Andrej A

    2012-02-08

    We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.

  13. Has dry/cold weather an impact on the skin condition of cleanroom workers?

    Science.gov (United States)

    Weistenhöfer, Wobbeke; Uter, Wolfgang; Drexler, Hans

    2016-01-01

    In previous epidemiological studies irritant skin changes were reported significantly more frequently under dry/cold ambient air conditions. The aim of this study was to assess whether a similar effect might be observed in cleanroom workers, occupationally exposed to strictly controlled ambient conditions. This investigation examined 690 employees of a semiconductor production company in Germany, one half in winter (n = 358) and the other half in spring (n = 332). In both waves, both cleanroom workers, who used occlusive gloves predominantly during the entire shift, and employees in the administration, serving as the control group, were included. Ambient outdoor temperature and relative humidity (RH) were measured and absolute humidity (AH) was calculated. Hands were dermatologically examined with quantitative clinical skin score HEROS, supplemented by transepidermal water loss (TEWL) and stratum corneum hydration measurements. Temperature ranged from -5.41 to 6.51°C in winter (RH 71.04-92.38%; AH 2.85-6.7 g/m 3 ) and from 6.35 to 10.26°C in spring (RH 76.17-82.79%; AH 5.66-7.92 g/m 3 ). Regarding HEROS, TEWL, and corneometry, no marked consistent pattern regarding an enhanced or decreased risk of irritant skin changes was found. Work in a strictly controlled environment with prolonged wearing of occlusive gloves, with clean hands and without exposure to additional hazardous substances, did not seem to negatively affect the skin. In this particular setting, meteorological conditions also did not appear to adversely affect the skin. It is conceivable that wearing of gloves and air conditioning in the plant protect skin of the hands from adverse effects due to dry and cold air encountered when not working.

  14. Recovery benefits of using a heat and moisture exchange mask during sprint exercise in cold temperatures.

    Science.gov (United States)

    Seifert, John G; Frost, Jeremy; St Cyr, John A

    2017-01-01

    Breathing cold air can lead to bronchoconstriction and peripheral vasoconstriction, both of which could impact muscular performance by affecting metabolic demands during exercise. Successful solutions dealing with these physiological changes during exercise in the cold has been lacking; therefore, we investigated the influence of a heat and moisture exchange mask during exercise in the cold. There were three trial arms within this study: wearing the heat and moisture exchange mask during the rest periods in the cold, no-mask application during the rest periods in the cold, and a trial at room temperature (22°C). Eight subjects cycled in four 35 kJ sprint sessions with each session separated by 20 min rest period. Workload was 4% of body mass. Mean sprint times were faster with heat and moisture exchange mask and room temperature trial than cold, no-mask trial (133.8 ± 8.6, 134.9 ± 8.8, and 138.0 ± 8.4 s (p = 0.001)). Systolic blood pressure and mean arterial pressure were greater during the cold trial with no mask (15% and 13%, respectively), and heart rate was 10 bpm less during the third rest or recovery period during cold, no mask compared to the heat and moisture exchange mask and room temperature trials. Subjects demonstrated significant decreases in vital capacity and peak expiratory flow rate during the cold with no mask applied during the rest periods. These negative responses to cold exposure were alleviated by the use of a heat and moisture exchange mask worn during the rest intervals by minimizing cold-induced temperature stress on the respiratory system with subsequent maintenance of cardiovascular function.

  15. Redefining reproductive dormancy in Drosophila as a general stress response to cold temperatures.

    Science.gov (United States)

    Lirakis, Manolis; Dolezal, Marlies; Schlötterer, Christian

    2018-04-09

    Organisms regularly encounter unfavorable conditions and the genetic adaptations facilitating survival have been of long-standing interest to evolutionary biologists. Winter is one particularly stressful condition for insects, during which they encounter low temperatures and scarcity of food. Despite dormancy being a well-studied adaptation to facilitate overwintering, there is still considerable controversy about the distribution of dormancy among natural populations and between species in Drosophila. The current definition of dormancy as developmental arrest of oogenesis at the previtellogenic stage (stage 7) distinguishes dormancy from general stress related block of oogenesis at early vitellogenic stages (stages 8 - 9). In an attempt to resolve this, we scrutinized reproductive dormancy in D. melanogaster and D. simulans. We show that dormancy shows the same hallmarks of arrest of oogenesis at stage 9, as described for other stressors and propose a new classification for dormancy. Applying this modified classification, we show that both species express dormancy in cosmopolitan and African populations, further supporting that dormancy uses an ancestral pathway induced by environmental stress. While we found significant differences between individuals and the two Drosophila species in their sensitivity to cold temperature stress, we also noted that extreme temperature stress (8 °C) resulted in very strong dormancy incidence, which strongly reduced the differences seen at less extreme temperatures. We conclude that dormancy in Drosophila should not be considered a special trait, but is better understood as a generic stress response occurring at low temperatures. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Ti-based bulk metallic glass with high cold workability at room temperature

    International Nuclear Information System (INIS)

    Park, J.M.; Park, J.S.; Kim, J.H.; Lee, M.H.; Kim, D.H.; Kim, W.T.

    2005-01-01

    The cold workability of Ti-based bulk metallic glasses (BMGs) have been investigated. Ti 45 Zr 16 Be 20 Cu 10 Ni 9 BMG with a large compressive plastic strain of 4.7% shows a high cold workability, i.e. total reduction ratio of 50% by cold rolling at room temperature. The multiple shear bands formed during rolling are effective in enhancing the plasticity. The cold rolled Ti 45 Zr 16 Be 20 Cu 10 Ni 9 BMG (reduction ratio: 30%) exhibits a large plastic strain of ∝14%. (orig.)

  17. Mechanical properties of superelastic Cu–Al–Be wires at cold temperatures for the seismic protection of bridges

    International Nuclear Information System (INIS)

    Zhang Yunfeng; Zhu Songye; Camilleri, Joseph A

    2008-01-01

    This paper examines the suitability of superelastic copper–aluminum–beryllium (Cu–Al–Be) alloy wires for the seismic protection of bridges in cold regions. Experimental results for the mechanical properties of superelastic Cu–Al–Be alloy wires at a variety of temperatures and loading rates are presented. This research is motivated by the recent use of shape memory alloys for bridge restrainers subject to harsh winter conditions, especially in cold regions. Bridge restrainers made of superelastic Cu–Al–Be wire strands are expected to be used for protecting bridge decks from excessive displacement when subjected to strong earthquakes. Using a temperature chamber, superelastic Cu–Al–Be wires with a diameter of 1.4 mm were tested under uniaxial cyclic loading at various loading rates and cold temperatures. The test results from 23 to −50 °C demonstrate that Cu–Al–Be exhibits superelastic behavior at cold temperatures down to −85 °C. It is also found that with decreasing temperature the transformation plateau stress is reduced while its fatigue life increases under cyclic testing

  18. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations...

  19. Estrous cycle fluctuations in sex and ingestive behavior are accentuated by exercise or cold ambient temperatures.

    Science.gov (United States)

    Abdulhay, Amir; Benton, Noah A; Klingerman, Candice M; Krishnamoorthy, Kaila; Brozek, Jeremy M; Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". In female Syrian hamsters (Mesocricetus auratus), low circulating levels of ovarian steroids are associated with increased food hoarding and decreased sexual motivation, but these effects are exaggerated in food-restricted females. To determine whether cold ambient temperature has the same effects as food restriction, groups of hamsters were fed ad libitum while they were housed at either 5 °C or 22 °C, and then tested for behavior for 90 min on each day of the estrous cycle. In females housed at 22 °C, high levels of sexual motivation and low levels of food hoarding were seen every day of the estrous cycle. In females housed at 5 °C, high levels of sexual motivation were restricted to the periovulatory day. On the three nonestrous days, these females showed high levels of food hoarding, but not food intake. A separate cohort of females were provided with access to running wheels and housed at 22 °C. They showed high levels of sexual motivation restricted to the periovulatory day, similar to the pattern of sexual motivation seen in cold-housed females. Unlike cold-housed females, those with running wheels showed low levels of food hoarding and high levels of food intake. Food restriction, cold housing, and access to wheels had no significant effect on plasma estradiol or progesterone concentrations, but significantly decreased plasma leptin concentrations. All three energetic challenges unmask estrous cycle fluctuations in sexual motivation that are obscured in laboratory conditions, i.e., isolation in a small cage with an overabundance of food. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China.

    Science.gov (United States)

    Ma, Wenjuan; Chen, Renjie; Kan, Haidong

    2014-10-01

    Few multicity studies have been conducted to investigate the acute health effects of cold and hot temperatures in China. We aimed to examine the relationship between temperature and daily mortality in 17 large Chinese cities. We first calculated city-specific effect of temperature using time-series regression models combined with distributed lag nonlinear models; then we pooled the city-specific estimates with the Bayesian hierarchical models. The cold effects lasted longer than the hot effects. For the cold effects, a 1 °C decrease from the 25th to 1st percentiles of temperature over lags 0-14 days was associated with increases of 1.69% [95% posterior intervals (PI): 1.01%, 2.36%], 2.49% (95% PI: 1.53%, 3.46%) and 1.60% (95% PI: 0.32%, 2.87%) in total, cardiovascular and respiratory mortality, respectively. For the hot effects, a 1 °C increase from the 75th to 99th percentiles of temperature was associated with corresponding increases of 2.83% (95% PI: 1.42%, 4.24%), 3.02% (95% PI: 1.33%, 4.71%) and 4.64% (95% PI: 1.96%, 7.31%). The latitudes, number of air conditioning per household and disposable income per capita were significant modifiers for cold effects; the proportion of the elderly was a significant modifier for hot effects. This largest epidemiological study of temperature to date in China suggested that both cold and hot temperatures were associated with increased mortality. Our findings may have important implications for the public health policies in China. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Improvement on Temperature Measurement of Cold Atoms in a Rubidium Fountain

    International Nuclear Information System (INIS)

    Lü De-Sheng; Qu Qiu-Zhi; Wang Bin; Zhao Jian-Bo; Liu Liang; Wang Yu-Zhu

    2011-01-01

    The time-of-flight (TOF) method is one of the most common ways to measure the temperature of cold atoms. In the cold atomic fountain setup, the geometry of the probe beam will introduce the measurement errors to the spatial distribution of cold atomic cloud, which will lead to the measurement errors on atomic temperature. Using deconvolution, we recover the atomic cloud profile from the TOF signal. Then, we use the recovered signals other than the TOF signals to obtain a more accurate atomic temperature. This will be important in estimating the effects of cold atom collision shift and the shift due to transverse cavity phase distribution on an atomic fountain clock. (atomic and molecular physics)

  2. Numerical experiments on the atmospheric response to cold Equatorial Pacific conditions ('La Nina') during northern summer

    International Nuclear Information System (INIS)

    Storch, H. von; Schriever, D.; Arpe, K.; Branstator, G.W.; Legnani, R.; Ulbrich, U.

    1993-01-01

    The effect of cold conditions in the central and eastern Equatorial Pacific during Northern Summer is examined in a series of numerical experiments with the low resolution (T21) atmospheric general circulation model ECHAM2. Anomalous sea surface temperatures (SST) as observed in June 1988 were prescribed and the effect on the global circulation is examined. In the model atmosphere, the anomalous cold water in the Equatorial Pacific excites a strong and stable response over the tropical Central and East Pacific. From here stationary Rossby waves radiate into both hemispheres. The Northern Hemisphere wave train is weak and affects only the Northeast Pacific area; the Southern Hemisphere wave train arches from the Central Pacific over the southern tip of South America to the South Atlantic. This response is not only present in the basic anomaly experiment with the T21 GCM but also in experiments with SST anomalies confined to the tropics and with an envelope-formulation of the SST anomalies, in experiments with a linear model, and in high resolution (T42) model experiments. The model output is also compared to the actually observed atmospheric state in June 1988. (orig./KW)

  3. The Low Temperature Induced Physiological Responses of Avena nuda L., a Cold-Tolerant Plant Species

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2013-01-01

    Full Text Available The paperaim of the was to study the effect of low temperature stress on Avena nuda L. seedlings. Cold stress leads to many changes of physiological indices, such as membrane permeability, free proline content, malondialdehyde (MDA content, and chlorophyll content. Cold stress also leads to changes of some protected enzymes such as peroxidase (POD, superoxide dismutase (SOD, and catalase (CAT. We have measured and compared these indices of seedling leaves under low temperature and normal temperature. The proline and MDA contents were increased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. The activities of SOD, POD, and CAT were increased under low temperature. The study was designated to explore the physiological mechanism of cold tolerance in naked oats for the first time and also provided theoretical basis for cultivation and antibiotic breeding in Avena nuda L.

  4. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance.

    Science.gov (United States)

    Vergara, Rodrigo C; Moënne-Loccoz, Cristóbal; Maldonado, Pedro E

    2017-01-01

    Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple linear regression models, we evaluated which variable(s) were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  5. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Vergara

    2017-09-01

    Full Text Available Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT, a flanker task (FT and a counting task (CT. Using multiple linear regression models, we evaluated which variable(s were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  6. Effect of cold compress application on tissue temperature in healthy dogs.

    Science.gov (United States)

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of cold compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 (superficial), 1.0 (middle), and 1.5 (deep) cm into a shaved, lumbar, epaxial region to measure tissue temperature. Cold (-16.8°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no cold compress. Mean temperature associated with 5 minutes of application at the superficial depth was significantly decreased, compared with control temperatures. Application for 10 and 20 minutes significantly reduced the temperature at all depths, compared with controls and 5 minutes of application. Twenty minutes of application significantly decreased temperature at only the middle depth, compared with 10 minutes of application. With this method of cold treatment, increasing application time from 10 to 20 minutes caused a further significant temperature change at only the middle tissue depth; however, for maximal cooling, the minimum time of application should be 20 minutes. Possible changes in tissue temperature and adverse effects of application > 20 minutes require further evaluation.

  7. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Science.gov (United States)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  8. A detailed view of Listeria monocytogenes’ adaptation and survival under cold temperature stress

    DEFF Research Database (Denmark)

    Hingston, P.; Hansen, Lisbeth Truelstrup; Wang, S.

    The human pathogen Listeria monocytogenes (Lm) continues to be a challenge for the food industry where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. In order to gain increased control of Lm in the food-supply-chain, an improved understanding of low temperature...... expression occured in Lm cells during late SP at 4°C, the most relevant physiological state to Lm’s survival in chilled food products. Common among all time points was the upregulation of nine genes required for branched-chain fatty acid (BCFA) synthesis, which was supported by an increase in membrane BCFAs...... from 77% at T1-4°C to 93%at T5-4°C. Putative cold stress regulatory mechanisms could be observed through negatively correlated expression levels of sense and antisense RNA. This research highlights Lm’s response to cold stress and provides deeper insight into how refrigerated storage conditions...

  9. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications.

    Science.gov (United States)

    Perfumo, Amedea; Banat, Ibrahim M; Marchant, Roger

    2018-03-01

    Approximately 80% of the Earth's biosphere is cold, at an average temperature of 5°C, and is populated by a diversity of microorganisms that are a precious source of molecules with high biotechnological potential. Biosurfactants from cold-adapted organisms can interact with multiple physical phases - water, ice, hydrophobic compounds, and gases - at low and freezing temperatures and be used in sustainable (green) and low-energy-impact (cold) products and processes. We review the biodiversity of microbial biosurfactants produced in cold habitats and provide a perspective on the most promising future applications in environmental and industrial technologies. Finally, we encourage exploring the cryosphere for novel types of biosurfactants via both culture screening and functional metagenomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigating temperature breaks in the summer fruit export cold chain: A case study

    Directory of Open Access Journals (Sweden)

    Heinri W. Freiboth

    2013-11-01

    Full Text Available There is concern in the South African fruit industry that a large amount of fruit and money is lost every season due to breaks in the fruit export cold chain. The possibility of a large percentage of losses in a significant sector of the economy warranted further investigation. This article attempted to highlight some of the possible problem areas in the cold chain, from the cold store to the port, by analysing historic temperature data from different fruit export supply chains of apples, pears and grapes. In addition, a trial shipment of apples was used to investigate temperature variation between different pallets in the same container. This research has added value to the South African fruit industry by identifying the need to improve operational procedures in the cold chain.

  11. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.

    Science.gov (United States)

    Costello, J T; Donnelly, A E; Karki, A; Selfe, J

    2014-01-01

    This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Cold-drawing sheet molybdenum at room temperature

    International Nuclear Information System (INIS)

    Shepherd, L.W.

    1975-11-01

    When sheet molybdenum is cold-drawn and annealed, the microstructure recrystallizes, and may cause the metal to become brittle, with loss of ductility and strength. Ten to twenty percent recrystallization can occur to destroy optimum drawing quality of the metal. A recrystallization of 4 to 5 percent is ideal. It is shown that special tooling and controlled annealing can hold recrystallization to optimum levels. Special tooling includes an automatic cycling press that closely controls the rate of draw and gives maximum pressure. A draw sleeve of high carbon steel is used. The draw sleeve can be highly polished to minimize friction and provides an intensifying effect of the ram force over the entire part. Four draw steps are used, with each step followed by an annealing at 925 0 C for 20 minutes. Results of recrystallization analysis show that the ideal five percent recrystallization is achieved with this process

  13. Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold

    Science.gov (United States)

    Postnikov, Eugene B.

    2016-01-01

    This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.

  14. Effects of temperature, light, desiccation and cold storage on ...

    African Journals Online (AJOL)

    In the present experiments, germination characteristics, desiccation, and low temperature tolerance of seeds of Sophora tonkinensis was studied; a traditional Chinese medicine on the edge of extinction, were investigated for the first time in attempt to interpret their storage behaviour. The results indicate that the temperature ...

  15. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature

    Science.gov (United States)

    Askwith, Candice C.; Benson, Christopher J.; Welsh, Michael J.; Snyder, Peter M.

    2001-01-01

    Several DEG/ENaC cation channel subunits are expressed in the tongue and in cutaneous sensory neurons, where they are postulated to function as receptors for salt and sour taste and for touch. Because these tissues are exposed to large temperature variations, we examined how temperature affects DEG/ENaC channel function. We found that cold temperature markedly increased the constitutively active Na+ currents generated by epithelial Na+ channels (ENaC). Half-maximal stimulation occurred at 25°C. Cold temperature did not induce current from other DEG/ENaC family members (BNC1, ASIC, and DRASIC). However, when these channels were activated by acid, cold temperature potentiated the currents by slowing the rate of desensitization. Potentiation was abolished by a “Deg” mutation that alters channel gating. Temperature changes in the physiologic range had prominent effects on current in cells heterologously expressing acid-gated DEG/ENaC channels, as well as in dorsal root ganglion sensory neurons. The finding that cold temperature modulates DEG/ENaC channel function may provide a molecular explanation for the widely recognized ability of temperature to modify taste sensation and mechanosensation. PMID:11353858

  16. Effects of whole body cryotherapy and cold water immersion on knee skin temperature

    OpenAIRE

    Costello, J. T.; Donnelly, A. E.; Karki, A.; Selfe, J.

    2014-01-01

    This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of −110°C whole body cryotherapy and 8°C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature (

  17. Tensile deformation behavior of AA5083-H111 at cold and warm temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahrettin; Toros, Serkan; Kilic, Suleyman [Nidge Univ. (Turkey). Dept. of Mechanical Engineering

    2010-09-15

    The effects of strain rate and temperature on the deformation behavior of hardened 5083-H111 aluminum magnesium alloy sheet were investigated by performing uniaxial tensile tests at various strain rates from 0.0083 to 0.16 s{sup -1} and temperatures from -100 to 300 C. Results from the prescribed test ranges indicate that the formability of this material at cold and warm temperatures is better than at room temperature. The improvement in formability at cold temperatures is principally due to the strain hardening of the material. However, the improvement at warm temperature and low strain rate is specifically due to the high strain rate sensitivity characteristic of the material. Results indicate that this alloy should be formed at temperatures higher than 200 C and at low strain rates. (orig.)

  18. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine[OPEN

    Science.gov (United States)

    2016-01-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature

  19. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Science.gov (United States)

    Portner, H.; Wolf, A.; Bugmann, H.

    2009-04-01

    function of Lloyd&Taylor therefore is an adequate choice to model the temperature dependency of soil organic matter decomposition. The Ticino catchment (300-2300m) in Southern Switzerland was used to study the sensitivity of long-term changes (100 years) in the prediction of carbon storage. The uncertainty in temperature response introduced into the model lead to high uncertainties in long-term soil carbon stocks. Interestingly, the uncertainty increased with decreasing temperature and increasing elevation. The carbon pools in lower elevations (mean annual temperature > 15 °C) turned over faster and little carbon accumulated in the soil. The carbon pools in higher elevations and hence in higher latitudes experiencing colder temperature (mean annual temperature < 15 °C) turned over slower and therefore accumulated more carbon over the simulation period. Therefore, the high elevation soils stored more carbon, but the prediction of the carbon pool size had a much higher uncertainty than the low elevation soils. We concluded that with our model, the predictions of the potential loss of soil carbon in cold temperature regimes is more uncertain than the carbon loss in warmer regions, both due to the higher soil carbon pools, but also due to the higher uncertainty found in our simulations.

  20. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  1. Cold start dynamics and temperature sliding observer design of an automotive SOFC APU

    Science.gov (United States)

    Lin, Po-Hsu; Hong, Che-Wun

    This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.

  2. Behavior of crushed rock aggregates used in road construction exposed to cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena; Pérez Fortes, Ana Patricia; Anastasio, Sara; Willy Danielsen, Svein

    2016-04-01

    Presently, about 90% of the aggregate production in Europe comes from naturally occurring resources: quarries and pits. Due to the increased demand for sand and gravel for construction purposes, not only in building but also in road construction, the last decade has seen a significant trend towards the use of more crushed rock aggregates. This resource has been more and more preferred to sand and gravel thanks to the significant technological development of its process and use phase. The performance of the aggregates is generally evaluated depending on three main factors: the geological origin (mineral composition, texture, structure, degree of weathering), the aggregate processing (crushing, sieving, washing, storing) and the user technology for a specific area of use (e.g. road construction, asphalt binders). Nevertheless climatic conditions should carefully be taken into account in application such as road construction. Large temperature gradients and high levels of humidity are known to significantly affect the performance of the material. Although the problem is, at least in the asphalt field, considered mostly from the binder point of view, this article aims to investigate the effect of aggregate properties on road performance in cold climatic conditions. Two different climatic areas will be taken into account: Norway and Spain. While both these countries are listed among the main European producers of aggregates, they represent significantly different climatic regions. While Norwegian weather is characterized by humid cold winters and relatively mild summers, Spain has temperate climate with cold regions in mountainous and internal areas. Both countries have been significantly affected by climate change with increasing temperature variations and instability. At the same time, similar winter maintenance measures, including the use of a considerable amount of solid and liquid chemicals to avoid ice formation (e.g. NaCl) and/or to provide better friction, are

  3. Clinical studies of the vibration syndrome using a cold stress test measuring finger temperature.

    Science.gov (United States)

    Gautherie, M

    1995-01-01

    Since nine years multicentre, transversal and longitudinal clinical studies on hand-arm, vibration-exposed patients are being performed in cooperation with French occupational medicine centers and social security institutions. These studies are based upon current clinical assessment and standardized, temperature-measuring cooling tests. Data acquisition uses a portable, 10-channel, micro-processor-based temperature recorder and miniature thermal sensors. Temperature is monitored at the ten finger tips continuously, before, during and after a cold stress performed in strictly controlled conditions. Data from examinations performed at outlying sites are transferred through the telephonic network to a central processing unit. Data analysis uses a specific, expert-type software procedure based upon previous clinical studies on (i) 238 "normal" subjects, and (ii) 3,046 patients with vascular disturbances of the upper extremities of various etiologies. This procedure includes a staging process which assigns each finger a class representing the degree of severity of the abnormalities of response to cold ("dysthermia") related to vascular disorders. All data processing is fully automatic and results in a printed examination report. To date, over 1,623 vibration-exposed forestry, building and mechanical workers were examined. Sixty-three per cent of patients had received high dose of vibration (daily use of chain saws, air hammers, ballast tampers over many years). Typical white finger attacks or only neurological symptoms were found in 36% and 23% of patients respectively. The rate of sever dysthermia was much higher in patients with white finger attacks (83%) than in patients without (32%). In 90% of the vibration-exposed patients, the severity of dysthermia has differed greatly from one finger to another and between hands, while in non-exposed patients with primary Raynaud syndrome the dysthermia are generally similar for all fingers but the thumbs. Of 208 forestry

  4. The study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 steel under hot and cold wall conditions

    International Nuclear Information System (INIS)

    Maniee, A.; Mahboubi, F.; Soleimani, R.

    2014-01-01

    Highlights: • 34CrNiMo6 steel was plasma nitrided under hot and cold wall conditions. • The amount of ε phase in hot wall condition was more than that of cold wall condition. • Wear resistance of hot wall nitrided samples was more than cold wall treated ones. • Hot wall nitriding provides better corrosion behavior than cold wall nitriding. - Abstract: This paper reports on a comparative study of tribological and corrosion behavior of plasma nitrided 34CrNiMo6 low alloy steel under modern hot wall condition and conventional cold wall condition. Plasma nitriding was carried out at 500 °C and 550 °C with a 25% N 2 + 75% H 2 gas mixture for 8 h. The wall temperature of the chamber in hot wall condition was set to 400 °C. The treated specimens were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness and surface roughness techniques. The wear test was performed by pin-on-disc method. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were also used to evaluate the corrosion resistance of the samples. The results demonstrated that in both nitriding conditions, wear and corrosion resistance of the treated samples decrease with increasing temperature from 500 °C to 550 °C. Moreover, nitriding under hot wall condition at the same temperature provided slightly better tribological and corrosion behavior in comparison with cold wall condition. In consequence, the lowest friction coefficient, and highest wear and corrosion resistance were found on the sample treated under hot wall condition at 500 °C, which had the maximum surface hardness and ε-Fe 2–3 N phase

  5. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  6. Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin.

    Science.gov (United States)

    Eisenblätter, Anneka; Lewis, Richard; Dörfler, Arnd; Forster, Clemens; Zimmermann, Katharina

    2017-01-01

    Cold allodynia occurs as a major symptom of neuropathic pain states. It remains poorly treated with current analgesics. Ciguatoxins (CTXs), ichthyosarcotoxins that cause ciguatera, produce a large peripheral sensitization to dynamic cold stimuli in Aδ-fibers by activating sodium channels without producing heat or mechanical allodynia. We used CTXs as a surrogate model of cold allodynia to dissect the framework of cold allodynia-activated central pain pathways. Reversible cold allodynia was induced in healthy male volunteers by shallow intracutaneous injection of low millimolar concentrations of CTX into the dorsal skin of the forefoot. Cold and warm stimuli were delivered to the treated and the control site using a Peltier-driven thermotest device. Functional magnetic resonance imaging (fMRI) scans were acquired with a 3T MRI scanner using a blood oxygen level-dependent (BOLD) protocol. The CTX-induced substantial peripheral sensitization to cooling stimuli in Aδ-fibers is particularly retrieved in BOLD changes due to dynamic temperature changes and less during constant cooling. Brain areas that responded during cold allodynia were almost always located bilaterally and appeared in the medial insula, medial cingulate cortex, secondary somatosensory cortex, frontal areas, and cerebellum. Whereas these areas also produced changes in BOLD signal during the dynamic warming stimulus on the control site, they remained silent during the warming stimuli on the injected site. We describe the defining feature of the cold allodynia pain percept in the human brain and illustrate why ciguatera sufferers often report a perceptual temperature reversal. ANN NEUROL 2017;81:104-116. © 2016 American Neurological Association.

  7. Physical plausibility of cold star models satisfying Karmarkar conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fuloria, Pratibha [Kumaun University, Physics Dept., Almora (India); Pant, Neeraj [N.D.A., Maths Dept., Khadakwasla, Pune (India)

    2017-11-15

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  8. Potential of Natural Ventilation in Cold Conditions Countries

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to investigate the energy performance of natural ventilation as a passive cooling method of buildings within houses located in temperate countries using Denmark as a case study. The method consists in running simulations with a thermal-airflow program of a household...... the simulations are validated with measured data, and by applying a new assessment method presented in this article as the cooling rate due to natural ventilation instead of a constant mechanical ventilation rate in the thermal balance within the dwelling, the energy saving is calculated. Results show...... ventilation rather mechanical one on large-scale scenarios located in temperate conditions. Finally, as a practical implication example, an assessment for Denmark is carried out....

  9. Physical plausibility of cold star models satisfying Karmarkar conditions

    International Nuclear Information System (INIS)

    Fuloria, Pratibha; Pant, Neeraj

    2017-01-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9. The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models. (orig.)

  10. Physical plausibility of cold star models satisfying Karmarkar conditions

    Science.gov (United States)

    Fuloria, Pratibha; Pant, Neeraj

    2017-11-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

  11. Urine temperature as an index for the core temperature of industrial workers in hot or cold environments

    Science.gov (United States)

    Kawanami, Shoko; Horie, Seichi; Inoue, Jinro; Yamashita, Makiko

    2012-11-01

    Workers working in hot or cold environments are at risk for heat stroke and hypothermia. In Japan, 1718 people including 47 workers died of heat stroke in 2010 (Ministry of Health Labour and Welfare, Japan 2011). While the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation lists the abnormal core temperature of workers as a criterion for halting work, no method has been established for reliably measuring core temperatures at workplaces. ISO 9886 (Ergonomics-evaluation of thermal strain by physiological measurements. ISO copyright office, Geneva, pp 3-14; 2004) recognizes urine temperature as an index of core temperature only at normal temperature. In this study we ascertained whether or not urine temperature could serve as an index for core temperature at temperatures above and below the ISO range. We measured urine temperature of 31 subjects (29.8 ± 11.9 years) using a thermocouple sensor placed in the toilet bowl at ambient temperature settings of 40, 20, and 5˚C, and compared them with rectal temperature. At all ambient temperature settings, urine temperature correlated closely with rectal temperature exhibiting small mean bias. Urine temperature changed in a synchronized manner with rectal temperature at 40˚C. A Bland and Altman analysis showed that the limits of agreement (mean bias ± 2SD) between rectal and urine temperatures were -0.39 to +0.15˚C at 40˚C (95%CI -0.44 to +0.20˚C) and -0.79 to +0.29˚C at 5˚C (-0.89 to +0.39˚C). Hence, urine temperature as measured by the present method is a practical surrogate index for rectal temperature and represents a highly reliable biological monitoring index for assessing hot and cold stresses of workers at actual workplaces.

  12. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    Science.gov (United States)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  13. The effects of corrosion conditions and cold work on the nodular corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    You, Gil Sung

    1992-02-01

    The nodular corrosion of Zircaloy-4 was investigated on the effects of corrosion conditions and cold work. Variation of steam pressures, heat-up environments and prefilms were considered and cold work effects were also studied. The corrosion rate of Zircaloy-4 was dependent on pressure between 1 and 100 atm and it followed the cubic law as W=16.85 x P 0.31 for plate specimens and W=12.69 x P 0.27 for tube specimens, where W is weight gain (mg/dm 2 ) and P is the steam pressure (atm). The environment variation in autoclave during heat-up period did not affect the early stage of nodular corrosion. The prefilm, which was formed at 500 .deg. C under 1 atm steam for 4 hours, restrained the formation of the initial small nodules. The oxide film formed under 1 atm steam showed no difference of electrical resistivity from the oxides formed under 100 atm steam pressure. Cold work specimens showed the higher resistivity against nodular corrosion than as-received specimens. The corrosion resistance arising from cold work seems to be due to the texture changes by the cold work. The results showed that cold work can affect the later stage of uniform corrosion and the early stage of nodular corrosion, namely, the nodule initiation stage

  14. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  15. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  16. Temperature dependent RNA metabolism in Xylella fastidiosa during cold stress and grapevine infection

    Science.gov (United States)

    Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...

  17. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  18. An improved Peltier effect-based instrument for critical temperature threshold measurement in cold- and heat-induced urticaria.

    Science.gov (United States)

    Magerl, M; Abajian, M; Krause, K; Altrichter, S; Siebenhaar, F; Church, M K

    2015-10-01

    Cold- and heat-induced urticaria are chronic physical urticaria conditions in which wheals, angioedema or both are evoked by skin exposure to cold and heat respectively. The diagnostic work up of both conditions should include skin provocation tests and accurate determination of critical temperature thresholds (CTT) for producing symptoms in order to be able to predict the potential risk that each individual patient faces and how this may be ameliorated by therapy. To develop and validate TempTest(®) 4, a simple and relatively inexpensive instrument for the accurate determination of CTT which may be used in clinical practice. TempTest(®) 4 has a single 2 mm wide 350 mm U-shaped Peltier element generating a temperature gradient from 4 °C to 44 °C along its length. Using a clear plastic guide placed over the skin after provocation, CTT values may be determined with an accuracy of ±1 °C. Here, TempTest(®) 4 was compared with its much more expensive predecessor, TempTest(®) 3, in inducing wheals in 30 cold urticaria patients. Both TempTest(®) 4 and TempTest(®) 3 induced wheals in all 30 patients between 8 ° and 28 °C. There was a highly significant (P < 0.0001) correlation between the instruments in the CTT values in individual patients. The TempTest(®) 4 is a simple, easy to use, licensed, commercially available and affordable instrument for the determination of CTTs in both cold- and heat-induced urticaria. © 2014 European Academy of Dermatology and Venereology.

  19. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  20. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    Science.gov (United States)

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  1. Individual differences in temperature perception: evidence of common processing of sensation intensity of warmth and cold.

    Science.gov (United States)

    Green, Barry G; Akirav, Carol

    2007-01-01

    The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.

  2. Mean and variance evolutions of the hot and cold temperatures in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Parey, Sylvie [EDF/R and D, Chatou Cedex (France); Dacunha-Castelle, D. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); Hoang, T.T.H. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); EDF/R and D, Chatou Cedex (France)

    2010-02-15

    In this paper, we examine the trends of temperature series in Europe, for the mean as well as for the variance in hot and cold seasons. To do so, we use as long and homogenous series as possible, provided by the European Climate Assessment and Dataset project for different locations in Europe, as well as the European ENSEMBLES project gridded dataset and the ERA40 reanalysis. We provide a definition of trends that we keep as intrinsic as possible and apply non-parametric statistical methods to analyse them. Obtained results show a clear link between trends in mean and variance of the whole series of hot or cold temperatures: in general, variance increases when the absolute value of temperature increases, i.e. with increasing summer temperature and decreasing winter temperature. This link is reinforced in locations where winter and summer climate has more variability. In very cold or very warm climates, the variability is lower and the link between the trends is weaker. We performed the same analysis on outputs of six climate models proposed by European teams for the 1961-2000 period (1950-2000 for one model), available through the PCMDI portal for the IPCC fourth assessment climate model simulations. The models generally perform poorly and have difficulties in capturing the relation between the two trends, especially in summer. (orig.)

  3. [Optimization of fermentation conditions for cold-adapted amylase production by Micrococcus antarcticus and its enzymatic properties].

    Science.gov (United States)

    Fan, Hong-xi; Liu, Ying; Liu, Zhi-pei

    2009-08-15

    By single factor experiments, the fermentation conditions for cold-adapted amylase production from Micrococcus antarcticus were determined as follows(medium g/L): Na2 HPO4 2.0, KH2PO4 1.0, MgSO4 x 7H2O 0.1, NaCl 5.0, (NH4)2SO4 2.5, maltose 5.0, trace element solution 5.0 mL, pH 8.0, 100 mL/Erlenmeyer flask (500 mL); cultivation was in a rotating shaker at 12 degrees C and 160 r/min for 64 h.Under those conditions,the highest total enzyme activity (2.6 U/mL) was obtained and increased by 10.8 fold compared with the original value of 0.24 U/mL before optimization. This amylase was purified by concentration with ultrafiltration membrane module, Hitrap Q anion exchange chromatography and Superdex 200 gel filtration chromatography. The optimal temperature and pH for the purified amylase were 30 degrees C and 6.0, respectively.It still showed high activity at low temperature 10-15 degrees C. It was sensitive to high temperature but was stable at pH 6.0-10.0 with at least 70% activity remained. These results indicated that it was a typical cold-adapted enzyme. The enzyme activity was stimulated by Ca2+, Mn2+, Co2+ and Mg2+; but inhibited by Zn2+, Ba2+, Ag+, Cu2+, Al3+, Fe2, Fe3+, Hg2+, EDTA and citrate. This cold-adapted amylase showed resistance to inactivation of 0.1% nonionic surfactants such as Tween 80, TrintonX-100, etc. Its Km was 0.90 mg/mL.

  4. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  5. Impact of cold temperatures on the shear strength of Norway spruce joints glued with different adhesives

    DEFF Research Database (Denmark)

    Wang, Xiaodong; Hagman, Olle; Sundqvist, Bror

    2015-01-01

    As wood construction increasingly uses engineered wood products worldwide, concerns arise about the integrity of the wood and adhesives used. Bondline strength is a crucial issue for engineered wood applications, especially in cold climates. In this study, Norway spruce (Picea abies) joints (150 mm...... adhesive was tested at six temperatures: 20, −20, −30, −40, −50 and −60 °C. Generally, within the temperature test range, temperature changes significantly affected the shear strength of solid wood and wood joints. As the temperature decreased, the shear strength decreased. PUR adhesive in most cases...... resulted in the strongest shear strength and MUF adhesive resulted in the weakest. MF and PRF adhesives responded to temperature changes in a similar manner to that of the PUR adhesive. The shear strengths of wood joints with PVAc and EPI adhesives were more sensitive to temperature change. At low...

  6. Effects of pressure, cold and gloves on hand skin temperature and manual performance of divers.

    Science.gov (United States)

    Zander, Joanna; Morrison, James

    2008-09-01

    Cold water immersion and protective gloves are associated with decreased manual performance. Although neoprene gloves slow hand cooling, there is little information on whether they provide sufficient protection when diving in cold water. Nine divers wearing three-fingered neoprene gloves and dry suits were immersed in water at 25 and 4 degrees C, at depths of 0.4 msw (101 kPa altitude adjusted) and 40 msw (497 kPa) in a hyperbaric chamber. Skin temperatures were measured at the fingers, hand, forearm, chest and head. Grip strength, tactile sensitivity and manual dexterity were measured at three time intervals. There was an exponential decay in finger and back of hand skin temperatures with exposure time in 4 degrees C water. Finger and back of hand skin temperatures were lower at 40 msw than at 0.4 msw (P effect of pressure or temperature on grip strength. Tactile sensitivity decreased linearly with finger skin temperature at both pressures. Manual dexterity was not affected by finger skin temperature at 0.4 msw, but decreased with fall in finger skin temperature at 40 msw. Results show that neoprene gloves do not provide adequate thermal protection in 4 degrees C water and that impairment of manual performance is dependent on the type of task, depth and exposure time.

  7. Kinetics of cellular viability in warm versus cold ischemia conditions of kidney preservation. A biometric study.

    Science.gov (United States)

    Savioz, D; Bolle, J F; Graf, J D; Jeanjacquot, A; Savioz, M; Dietler, G; Favre, H; Leski, M; Morel, D; Morel, P

    1996-08-15

    We have determined the kinetics of the cellular viability ratio (CVR), defined as the number of living cells over the total cell count, in pig kidneys using propidium iodide and fluorescein diacetate staining, as a function of time and preservation conditions. The kidneys were preserved in warm or cold ischemia in order to mimic the conditions of transplantation from non-heart-beating donors or multiple removal with optimal preservation of the graft, respectively. To determine the CVR, the cells were obtained by a fine-needle aspiration biopsy, which minimizes the damage to the graft. A biometric analysis by regression enabled the determination of the time dependence for warm ischemia (CVR(t) = 80.0 x e(-0.733-t)(+2.7/-0.36)) and for cold ischemia (CVR(t) = 80.0 x e(-0.022-t)(+1.57/-0.64)) with a confidence interval of 95%. These master curves allow us to predict, under the described conditions, the CVR after a given ischemia time. The half-life of the cells can be deduced from the time-dependent CVR(t), and is 0.64 hr (38 min) for warm ischemia and 21.4 hr for cold ischemia. Further, the CVR for a given kidney can be used to assess its condition at removal: if the CVR is below 48% at 2 hr after removal, one can conclude that the organ has suffered a period of warm ischemia.

  8. Effect of grain size and cold working on high temperature strength of Hastelloy X

    International Nuclear Information System (INIS)

    Fujioka, J.; Murase, H.; Matsuda, S.

    1980-01-01

    Effect of grain size and cold working on creep, creep rupture, low cycle fatigue and tensile strengths of Hastelloy X were studied at temperatures ranging from 800 to 1000 0 C. In order to apply these data to design, the allowable design stresses were estimated by expanding the criteria of ASME Code Case 1592 to such a high temperature range. The allowable design stress increased, on the other hand, the low cycle fatigue life decreased with increasing grain size. Cold working up to a ratio of 5 per cent may not be a serious problem in design, because the allowable design stress and the fatigue life were little affected. The cause of these variations in strength was discussed by examining the initiation and growth of cracks, and the microstructures. (author)

  9. On the significance of a subsequent ageing after cold working of Incoloy 800 at operational temperatures

    International Nuclear Information System (INIS)

    Ullrich, G.; Krompholz, K.

    1993-01-01

    The influence of cold working and subsequent ageing at operational temperatures on the long-term and short-term mechanical properties of components made from the iron-nickel-chromium base alloy Incoloy 800 are discussed. Long-term properties are time-to-rupture strengths, which are included in the design code, over a lifetime of 300,000 hours. For LWR operating temperatures of 350 o C, this is of minor importance. An operating temperature of 550 o C is possible for Incoloy 800 with up to 25% cold working and a subsequent solution annealing at 950 o C, without loss of time-to-rupture strength compared with the 'as received' state. The short-term mechanical properties are strongly influenced by cold working, in the form of increasing yield strength and rupture strength, and decreasing ductility and consequently loss in impact energies. A subsequent ageing at 550 o C leads to a decrease of the yield strength and rupture strength, and an increase of ductility as well as the impact energies. The environmental influence are discussed. (author) 3 figs., 1 tab., 8 refs

  10. HEAT TRANSFER IN EXHAUST SYSTEM OF A COLD START ENGINE AT LOW ENVIRONMENTAL TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Snežana D Petković

    2010-01-01

    Full Text Available During the engine cold start, there is a significantly increased emission of harmful engine exhaust gases, particularly at very low environmental temperatures. Therefore, reducing of emission during that period is of great importance for the reduction of entire engine emission. This study was conducted to test the activating speed of the catalyst at low environmental temperatures. The research was conducted by use of mathematical model and developed computer programme for calculation of non-stationary heat transfer in engine exhaust system. During the research, some of constructional parameters of exhaust system were adopted and optimized at environmental temperature of 22 C. The combination of design parameters giving best results at low environmental temperatures was observed. The results showed that the temperature in the environment did not have any significant influence on pre-catalyst light-off time.

  11. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Mirasari [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Syamsunarno, Mas Rizky A.A. [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Department of Biochemistry, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java 45363 (Indonesia); Iso, Tatsuya, E-mail: isot@gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamaguchi, Aiko; Hanaoka, Hirofumi [Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Sunaga, Hiroaki [Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Koitabashi, Norimichi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Matsui, Hiroki [Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamazaki, Chiho; Kameo, Satomi [Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Tsushima, Yoshito [Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); and others

    2015-02-20

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36{sup −/−} mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36{sup −/−} mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue {sup 125}I-BMIPP and the glucose analogue {sup 18}F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36{sup −/−} mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36{sup −/−} mice after cold exposure. These findings strongly suggest that CD36{sup −/−} mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36{sup −/−} mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is

  12. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress

    International Nuclear Information System (INIS)

    Putri, Mirasari; Syamsunarno, Mas Rizky A.A.; Iso, Tatsuya; Yamaguchi, Aiko; Hanaoka, Hirofumi; Sunaga, Hiroaki; Koitabashi, Norimichi; Matsui, Hiroki; Yamazaki, Chiho; Kameo, Satomi; Tsushima, Yoshito

    2015-01-01

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36 −/− mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36 −/− mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue 125 I-BMIPP and the glucose analogue 18 F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36 −/− mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36 −/− mice after cold exposure. These findings strongly suggest that CD36 −/− mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36 −/− mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is reduced in thermogenic tissues during

  13. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance.

    Science.gov (United States)

    Fortunato, Ana S; Lidon, Fernando C; Batista-Santos, Paula; Leitão, António Eduardo; Pais, Isabel P; Ribeiro, Ana I; Ramalho, José Cochicho

    2010-03-15

    Low positive temperature (chilling) is frequently linked to the promotion of oxidative stress conditions, and is of particular importance in the coffee plant due to its severe impact on growth, development, photosynthesis and production. Nevertheless, some acclimation ability has been reported within the Coffea genus, and is possibly related to oxidative stress control. Using an integrated biochemical and molecular approach, the characterization of the antioxidative system of genotypes with different cold acclimation abilities was performed. Experiments were carried out using 1.5-year-old coffee seedlings of Coffea canephora cv. Apoatã, C. arabica cv. Catuaí, C. dewevrei and 2 hybrids, Icatu (C. arabicaxC. canephora) and Piatã (C. dewevreixC. arabica) subjected to a gradual cold treatment and a recovery period. Icatu showed the greatest ability to control oxidative stress, as reflected by the enhancement of several antioxidative components (Cu,Zn-SOD and APX activities; ascorbate, alpha-tocopherol and chlorogenic acids (CGAs) contents) and lower reactive oxygen species contents (H(2)O(2) and OH). Gene expression studies show that GRed, DHAR and class III and IV chitinases might also be involved in the cold acclimation ability of Icatu. Catuaí showed intermediate acclimation ability through the reinforcement of some antioxidative molecules, usually to a lesser extent than that observed in Icatu. On the other hand, C. dewevrei showed the poorest response in terms of antioxidant accumulation, and also showed the greatest increase in OH values. The difference in the triggering of antioxidative traits supports the hypothesis of its importance to cold (and photoinhibition) tolerance in Coffea sp. and could provide a useful probe to identify tolerant genotypes. Copyright 2009 Elsevier GmbH. All rights reserved.

  14. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  15. Tail position affects the body temperature of rats during cold exposure in a low-energy state.

    Science.gov (United States)

    Uchida, Yuki; Tokizawa, Ken; Nakamura, Mayumi; Lin, Cheng-Hsien; Nagashima, Kei

    2012-02-01

    Rats place their tails underneath their body trunks when cold (tail-hiding behavior). The aim of the present study was to determine whether this behavior is necessary to maintain body temperature. Male Wistar rats were divided into 'fed' and '42-h fasting' groups. A one-piece tail holder (8.4 cm in length) that prevented the tail-hiding behavior or a three-piece tail holder (2.8 cm in length) that allowed for the tail-hiding behavior was attached to the tails of the rats. The rats were exposed to 27°C for 180 min or to 20°C for 90 min followed by 15°C for 90 min with continuous body temperature and oxygen consumption measurements. Body temperature decreased by -1.0 ± 0.1°C at 15°C only in the rats that prevented tail-hiding behavior of the 42-h fasting group, and oxygen consumption increased at 15°C in all animals. Oxygen consumption was not different between the rats that prevented tail-hiding behavior and the rats that allowed the behavior in the fed and 42-h fasting groups under ambient conditions. These results show that the tail-hiding behavior is involved in thermoregulation in the cold in fasting rats.

  16. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  17. On the influence of cold work on the oxidation behavior of some austenitic stainless steels: High temperature oxidation

    NARCIS (Netherlands)

    Langevoort, J.C.; Fransen, T.; Gellings, P.J.

    1984-01-01

    AISI 304, 314, 321, and Incoloy 800H have been subjected to several pretreatments: polishing, milling, grinding, and cold drawing. In the temperature range 800–1400 K, cold work improves the oxidation resistance of AISI 304 and 321 slightly, but has a relatively small negative effect on the

  18. Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer.

    Science.gov (United States)

    Vu, Henry M; Duman, John G

    2017-08-01

    Upper lethal temperatures (ULTs) of cold-adapted insect species in winter have not been previously examined. We anticipated that as the lower lethal temperatures (LLTs) decreased (by 20-30°C) with the onset of winter, the ULTs would also decrease accordingly. Consequently, given the recent increases in winter freeze-thaw cycles and warmer winters due to climate change, it became of interest to determine whether ambient temperatures during thaws were approaching ULTs during the cold seasons. However, beetle Dendroides canadensis (Coleoptera: Pyrochroidae) larvae had higher 24 and 48 h ULT 50 (the temperature at which 50% mortality occurred) in winter than in summer. The 24 and 48 h ULT 50 for D. canadensis in winter were 40.9 and 38.7°C, respectively. For D. canadensis in summer, the 24 and 48 h ULT 50 were 36.7 and 36.4°C. During the transition periods of spring and autumn, the 24 h ULT 50 was 37.3 and 38.5°C, respectively. While D. canadensis in winter had a 24 h LT 50 range between LLT and ULT of 64°C, the summer range was only 41°C. Additionally, larvae of the beetle Cucujus clavipes clavipes (Coleoptera: Cucujidae) and the cranefly Tipula trivittata (Diptera: Tipulidae) also had higher ULTs in winter than in summer. This unexpected phenomenon of increased temperature survivorship at both lower and higher temperatures in the winter compared with that in the summer has not been previously documented. With the decreased high temperature tolerance as the season progresses from winter to summer, it was observed that environmental temperatures are closest to upper lethal temperatures in spring. © 2017. Published by The Company of Biologists Ltd.

  19. Temperature prediction model of asphalt pavement in cold regions based on an improved BP neural network

    International Nuclear Information System (INIS)

    Xu, Bo; Dan, Han-Cheng; Li, Liang

    2017-01-01

    Highlights: • Pavement temperature prediction model is presented with improved BP neural network. • Dynamic and static methods are presented to predict pavement temperature. • Pavement temperature can be excellently predicted in next 3 h. - Abstract: Ice cover on pavement threatens traffic safety, and pavement temperature is the main factor used to determine whether the wet pavement is icy or not. In this paper, a temperature prediction model of the pavement in winter is established by introducing an improved Back Propagation (BP) neural network model. Before the application of the BP neural network model, many efforts were made to eliminate chaos and determine the regularity of temperature on the pavement surface (e.g., analyze the regularity of diurnal and monthly variations of pavement temperature). New dynamic and static prediction methods are presented by improving the algorithms to intelligently overcome the prediction inaccuracy at the change point of daily temperature. Furthermore, some scenarios have been compared for different dates and road sections to verify the reliability of the prediction model. According to the analysis results, the daily pavement temperatures can be accurately predicted for the next 3 h from the time of prediction by combining the dynamic and static prediction methods. The presented method in this paper can provide technical references for temperature prediction of the pavement and the development of an early-warning system for icy pavements in cold regions.

  20. Design of capacitance measurement module for determining critical cold temperature of tea leaves

    Directory of Open Access Journals (Sweden)

    Yongzong Lu

    2016-12-01

    Full Text Available Critical cold temperature is one of the most crucial control factors for crop frost protection. Tea leaf's capacitance has a significant response to cold injury and appears as a peak response to a typical low temperature which is the critical temperature. However, the testing system is complex and inconvenient. In view of these, a tea leaf's critical temperature detector based on capacitance measurement module was designed and developed to measure accurately and conveniently the capacitance. Software was also designed to measure parameters, record data, query data as well as data deletion module. The detector utilized the MSP430F149 MCU as the control core and ILI9320TFT as the display module, and its software was compiled by IAR5.3. Capacitance measurement module was the crucial part in the overall design which was based on the principle of oscillator. Based on hardware debugging and stability analysis of capacitance measurement module, it was found that the output voltage of the capacitance measurement circuit is stable with 0.36% average deviation. The relationship between capacitance and 1/Uc2 was found to be linear distribution with the determination coefficient above 0.99. The result indicated that the output voltage of capacitance measurement module well corresponded to the change in value of the capacitance. The measurement error of the circuit was also within the required range of 0 to 100 pF which meets the requirement of tea leaf's capacitance. Keywords: Tea leaves, Critical cold temperature, Capacitance peak response, Frost protection, Detector

  1. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    International Nuclear Information System (INIS)

    Brandefelt, Jenny; Naeslund, Jens-Ove; Zhang, Qiong; Hartikainen, Juha

    2013-05-01

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next ∼60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO 2 concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO 2 concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO 2 concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO 2 concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on simulations with an Earth system model

  2. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Energy Technology Data Exchange (ETDEWEB)

    Brandefelt, Jenny; Naeslund, Jens-Ove [Svensk Kaernbraenslehantering, Stockholm (Sweden); Zhang, Qiong [Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden); Hartikainen, Juha [School of Engineering, Aalto Univ., Aalto (Finland)

    2013-05-15

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next {approx}60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO{sub 2} concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO{sub 2} concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO{sub 2} concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO{sub 2} concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on

  3. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  4. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  5. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  6. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  7. Rapid restoration of electric vehicle battery performance while driving at cold temperatures

    Science.gov (United States)

    Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang

    2017-12-01

    Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.

  8. Utilization of mathematical models to manage risk of holding cold food without temperature control.

    Science.gov (United States)

    Schaffner, Donald W

    2013-06-01

    This document describes the development of a tool to manage the risk of the transportation of cold food without temperature control. The tool uses predictions from ComBase predictor and builds on the 2009 U.S. Food and Drug Administration Model Food Code and supporting scientific data in the Food Code annex. I selected Salmonella spp. and Listeria monocytogenes as the organisms for risk management. Salmonella spp. were selected because they are associated with a wide variety of foods and grow rapidly at temperatures >17°C. L. monocytogenes was selected because it is frequently present in the food processing environment, it was used in the original analysis contained in the Food Code Annex, and it grows relatively rapidly at temperatures supplier collected as part of this project. The resulting model-based tool will be a useful aid to risk managers and customers of wholesale cash and carry food service suppliers, as well as to anyone interested in assessing and managing the risks posed by holding cold foods out of temperature control in supermarkets, delis, restaurants, cafeterias, and homes.

  9. QTL mapping of inbreeding-related cold sensitivity and conditional lethality in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Bijlsma, R.; Loeschcke, Volker

    2008-01-01

    of inbreeding-related and conditionally expressed lethality in Drosophila melanogaster. The lethal effect was triggered by exposure to a cold shock. We used a North Carolina crossing Design 3 to establish the mapping population, as well as to estimate the average dominance ratio and heritability. We found two......Inbreeding depression is a central theme within genetics, and is of specific interest for researchers within evolutionary and conservation genetics and animal and plant breeding. Inbreeding effects are thought to be caused by the joint expression of conditional and unconditional deleterious alleles....... Whenever the expression of deleterious alleles is conditional, this can result in extreme environmental sensitivity in certain inbred lineages. Analysis of conditional lethal effects can reveal some of the loci that are sensitive to inbreeding. We performed a QTL (quantitative trait locus) mapping study...

  10. Effect of farm and simulated laboratory cold environmental conditions on the performance and physiological responses of lactating dairy cows supplemented with bovine somatotropin (BST)

    Science.gov (United States)

    Becker, B. A.; Johnson, H. D.; Li, R.; Collier, R. J.

    1990-09-01

    A study was conducted to evaluate the effect of bovine somatotropin (BST) supplementation in twelve lactating dairy cows maintained in cold environmental conditions. Six cows were injected daily with 25 mg of BST; the other six were injected with a control vehicle. Cows were maintained under standard dairy management during mid-winter for 30 days. Milk production was recorded twice daily, and blood samples were taken weekly. Animals were then transferred to environmentally controlled chambers and exposed to cycling thermoneutral (15° to 20° C) and cycling cold (-5° to +5° C) temperatures for 10 days in a split-reversal design. Milk production, feed and water intake, body weights and rectal temperatures were monitored. Blood samples were taken on days 1, 3, 5, 8 and 10 of each period and analyzed for plasma triiodothyronine (T3), thyroxine (T4), cortisol, insulin and prolactin. Under farm conditions, BST-treated cows produced 11% more milk than control-treated cows and in environmentally controlled chambers produced 17.4% more milk. No differences due to BST in feed or water intake, body weights or rectal temperatures were found under laboratory conditions. Plasma T3 and insulin increased due to BST treatment while no effect was found on cortisol, prolactin or T4. The results showed that the benefits of BST supplementation in lactating dairy cows were achieved under cold environmental conditions.

  11. A study of some temperature effects on the phonons in aluminium by use of cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, K E; Dahlborg, U; Holmryd, S

    1960-04-15

    Using the cold neutron scattering technique about 300 phonons have been determined in a single aluminium crystal at room temperature to define 10 pairs of dispersion curves, Investigations have been made of the variation of frequencies, phonon line widths and multi-phonon spectra in the temperature range 293 < T < 932 K. For a particular direction in the crystal lattice it is shown that the frequencies vary about 15 % over this temperature range The line widths are of such a magnitude that the derived phonon mean free paths vary from about 5 phonon wave lengths at 600 K to about 1.5 phonon wave lengths at 930 K. The observed multiphonon spectra are found to agree with calculated differential cross sections in the incoherent approximation.

  12. Study on biodiesel heat transfer through self-temperature limit injector during vehicle cold start

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2015-01-01

    Full Text Available A type of Self-Temperature Limit-Injector (STL- injector is proposed to reduce the biodiesel consumption and emission in vehicle cold start process. The STL-injector is capable of fast raising fuel temperature, which helps improve the quality of diesel spray and its combustion efficiency. A STL-injector model is established with consideration of electro-mechanic coupling and fluid-structure interaction. A transient simulation is conducted using dynamic grid technology. The results show that STL-injector can effectively raise biodiesel temperature to 350K from 300K in 32 seconds. That is to say, adding STL-injector to existing biodiesel combustion system is an environment-friendly solution due to improving atomization and spray quality quickly.

  13. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  14. Pricing Weather Index Insurance Based on Artificial Controlled Experiment - A Case Study of Cold Temperature for Early Rice in Jiangxi, China

    Science.gov (United States)

    SUN, Q.; Yang, Z.

    2017-12-01

    The growth of early rice is often threated by a phenomenon known as Grain Buds Cold, a period of anomalously cold temperature that occurs during the booting and flowering stage. Therefore, quantifying the impact of weather on crop yield is a core issue in design of weather index insurance. A high yield loss will lead to an increasing premium rate. In this paper, we explored a new way to investigate the relationship between yield loss rate and cold temperature durations. A two-year artificial controlled experiment was used to build logarithm and linear yield loss model. Moreover, an information diffusion model was applied to calculate the probability of different durations which lasting for 3-20 days. The results show that pure premium rates of logarithm yield loss model had better premium rates performance than that of linear yield loss model. The premium rates of Grain Buds Cold Weather Index Insurance fluctuated between 7.085% and 10.151% in Jiangxi Province. Compared with common statistical methods, the artificial controlled experiment provides an easier and more robust way to determine the relationship between yield and single meteorological factor. Meanwhile, this experiment would be very important for some regions where were lacking in historical yield data and climate data and could help farmers cope with extreme cold weather risks under varying weather conditions.

  15. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    Science.gov (United States)

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  16. Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast

    Science.gov (United States)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.

    2011-12-01

    Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in

  17. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  18. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil.

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A; de Freitas, Clarice Umbelino; Bell, Michelle L

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1% (95% confidence interval 4.7, 7.6%) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6% (6.2, 11.1%) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  19. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    Science.gov (United States)

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  20. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes

    International Nuclear Information System (INIS)

    Jiao Kui; Alaefour, Ibrahim E.; Karimi, Gholamreza; Li Xianguo

    2011-01-01

    Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.

  1. Sr/Ca ratios in cold-water corals - a 'low-resolution' temperature archive?

    Science.gov (United States)

    Rüggeberg, Andres; Riethdorf, Jan-Rainer; Raddatz, Jacek; López Correa, Matthias; Montagna, Paolo; Dullo, Wolf-Christian; Freiwald, André

    2010-05-01

    One of the basic data to understand global change and past global changes is the measurement and the reconstruction of temperature of marine water masses. E.g. seawater temperature controls the density of seawater and in combination with salinity is the major driving force for the oceans circulation system. Geochemical investigations on cold-water corals Lophelia pertusa and Desmophyllum cristagalli indicated the potential of these organisms as high-resolution archives of environmental parameters from intermediate and deeper water masses (Adkins and Boyle 1997). Some studies tried to use cold-water corals as a high-resolution archive of temperature and salinity (Smith et al. 2000, 2002; Blamart et al. 2005; Lutringer et al. 2005). However, the fractionation of stable isotopes (delta18O and delta13C) and element ratios (Sr/Ca, Mg/Ca, U/Ca) are strongly influenced by vital effects (Shirai et al. 2005; Cohen et al. 2006), and difficult to interpret. Nevertheless, ongoing studies indicate the potential of a predominant temperature dependent fractionation of distinct isotopes and elements (e.g. Li/Ca, Montagna et al. 2008; U/Ca, Mg/Ca, delta18O, Lòpez Correa et al. 2008; delta88/86Sr, Rüggeberg et al. 2008). Within the frame of DFG-Project TRISTAN and Paläo-TRISTAN (Du 129/37-2 and 37-3) we investigated live-collected specimens of cold-water coral L. pertusa from all along the European continental margin (Northern and mid Norwegian shelves, Skagerrak, Rockall and Porcupine Bank, Galicia Bank, Gulf of Cadiz, Mediterranean Sea). These coral samples grew in waters characterized by temperatures between 6°C and 14°C. Electron Microprobe investigations along the growth direction of individual coral polyps were applied to determine the relationship between the incorporation of distinct elements (Sr, Ca, Mg, S). Cohen et al. (2006) showed for L. pertusa from the Kosterfjord, Skagerrak, that ~25% of the coral's Sr/Ca ratio is related to temperature, while 75% are influenced

  2. Why get big in the cold? Size-fecundity relationships explain the temperature-size rule in a pulmonate snail (Physa).

    Science.gov (United States)

    Arendt, J

    2015-01-01

    Most ectotherms follow a pattern of size plasticity known as the temperature-size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size-dependent mortality or size-dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size-fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night-time temperature of 22 °C, under a 12L:12D light cycle). Eight of the nine families followed the temperature-size rule indicating genetic variation for this plasticity. As predicted, the size-fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature-size rule is adaptive for this species. Although rarely measured under multiple conditions, size-fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life-history theory. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  4. Assessing the cold temperature effect on hospital visit by allergic rhinitis in Seoul, Korea.

    Science.gov (United States)

    Kim, Hyomi; Kim, Honghyok; Lee, Jong-Tae

    2018-08-15

    The association between temperature and health outcome has been studied in worldwide. However, studies for mild diseases such as AR, with high prevalence and considerable economic burden, are lacking compared to other relatively severe respiratory diseases. We aimed to assess the trend of hospital visit by AR and estimate the cold temperature effect on hospital visit by allergic rhinitis in Seoul, Korea, 2003-2011. We fitted generalized additive model with quasi-poisson distribution, controlling for humidity, long-term trend, day of week, national holiday, and influenza epidemic. We estimated the cumulative cold temperature effect (10%, -1.7°C) referent to 7.9°C for the considered lag periods using distributed lag non-linear model: vary from the day of hospital visit to 10days before. Stratified analysis by season was also conducted. To adjust for possible confounding effect of air pollutants, we additionally adjusted for PM 10 , O 3 and NO 2 respectively. Hospital visit counts and rates per 1,000,000 show increasing trend especially in elderly population (over 65years). Hospital visit rate is higher in children population (ageeffects were found in the total (1.094(95%CI: 1.037, 1.153)), male (1.100 (95%CI: 1.010, 1.163)), female (1.088 (95%CI: 1.059, 1.170)) and adult (1.113 (95%CI: 1.059, 1.170)) population with consideration of 3-day lag period. In the stratified analysis by the season, the strongest effect was shown in the autumn (Sep-Nov) season. Confounding effects by air pollutants were not found. In this study, we found significant increasing trend of hospital visit by AR. This study provides suggestive evidence of cold temperature effect on hospital visit by AR. To reduce the growing burden of AR, it is important to find possible related environmental risk factors. More studies should be conducted for better understanding of temperature effect on AR. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Excess winter mortality and cold temperatures in a subtropical city, Guangzhou, China.

    Directory of Open Access Journals (Sweden)

    Chun-Quan Ou

    Full Text Available BACKGROUND: A significant increase in mortality was observed during cold winters in many temperate regions. However, there is a lack of evidence from tropical and subtropical regions, and the influence of ambient temperatures on seasonal variation of mortality was not well documented. METHODS: This study included 213,737 registered deaths from January 2003 to December 2011 in Guangzhou, a subtropical city in Southern China. Excess winter mortality was calculated by the excess percentage of monthly mortality in winters over that of non-winter months. A generalized linear model with a quasi-Poisson distribution was applied to analyze the association between monthly mean temperature and mortality, after controlling for other meteorological measures and air pollution. RESULTS: The mortality rate in the winter was 26% higher than the average rate in other seasons. On average, there were 1,848 excess winter deaths annually, with around half (52% from cardiovascular diseases and a quarter (24% from respiratory diseases. Excess winter mortality was higher in the elderly, females and those with low education level than the young, males and those with high education level, respectively. A much larger winter increase was observed in out-of-hospital mortality compared to in-hospital mortality (45% vs. 17%. We found a significant negative correlation of annual excess winter mortality with average winter temperature (rs=-0.738, P=0.037, but not with air pollution levels. A 1 °C decrease in monthly mean temperature was associated with an increase of 1.38% (95% CI:0.34%-2.40% and 0.88% (95% CI:0.11%-1.64% in monthly mortality at lags of 0-1 month, respectively. CONCLUSION: Similar to temperate regions, a subtropical city Guangzhou showed a clear seasonal pattern in mortality, with a sharper spike in winter. Our results highlight the role of cold temperature on the winter mortality even in warm climate. Precautionary measures should be strengthened to mitigate

  6. The influence of sour taste and cold temperature in pharyngeal transit duration in patients with stroke

    Directory of Open Access Journals (Sweden)

    Paula Cristina Cola

    2010-03-01

    Full Text Available CONTEXT: The effect of sour taste and food temperature variations in dysphagic patients has not been entirely clarified. OBJECTIVE: To determine the effect of sour and cold food in the pharyngeal transit times of patients with stroke. METHODS: Patients participating in this study were 30 right-handed adults, 16 of which were male and 14 were female, aged 41 to 88 (average age 62.3 years with ictus varying from 1 to 30 days (median of 6 days. To analyze the pharyngeal transit time a videofluoroscopy swallow test was performed. Each patient was observed during swallow of a 5 mL paste bolus given by spoon, totaling four different stimuli (natural, cold, sour and cold sour, one at a time, room temperature (22ºC and cold (8ºC were used. Later, the tests were analyzed using specific software to measure bolus transit time during the pharyngeal phase. RESULTS: The results showed that the pharyngeal transit time was significantly shorter during swallow of cold sour bolus when compared with other stimuli. Conclusion - Sour taste stimuli associated to cold temperature cause significant change in swallowing patterns, by shortening the pharyngeal transit time, which may lead to positive effects in patients with oropharyngeal dysphagia.CONTEXTO: O efeito do sabor azedo e as variações da temperatura dos alimentos em indivíduos disfágicos, ainda não foi totalmente esclarecidos. OBJETIVO: Verificar o efeito do sabor azedo e da temperatura fria no tempo de trânsito faríngeo da deglutição em indivíduos após acidente vascular encefálico hemisférico isquêmico. MÉTODOS: Participaram deste estudo 30 indivíduos adultos, sendo 16 do gênero masculino e 14 do feminino, destros, com faixa etária variando de 41 a 88 anos (média de 62,3 anos e ictus que variou de 1 a 30 dias (mediana de 6 dias. Para analisar o tempo de trânsito faríngeo da deglutição foi realizado o exame de videofluoroscopia da deglutição. Cada indivíduo foi observado durante a

  7. Research on frost formation in air source heat pump at cold-moist conditions in central-south China

    International Nuclear Information System (INIS)

    Gong, Guangcai; Tang, Jinchen; Lv, Dongyan; Wang, Hongjin

    2013-01-01

    Highlights: ►A dynamic evaporator model is built up. ► The model involves the ratio of the latent heat to sensible heat of wet air. ►A correlation considering d eq is shown below to predict frost accumulation: (M fr v 3 )/(Ψd eq 2 ) =((T a )/(T w ) ) 0.1 ((vτ)/(d eq ) ) 0.7 (l/(d eq ) ) 1.378 X a 1.228 . ►The changing ratio can characterize the early development of system performance. ►The changing ratio can characterize the early development of frost accumulation. -- Abstract: A dynamic evaporator model of air source heat pump (ASHP), considering the ratio of the latent heat to sensible heat of wet air, is presented to analyze the performance of ASHP under frosting. The performance parameters, such as the heating capacity, COP and the outlet temperature of compressor, are simulated with CYCLEPAD. Then a semi-empirical correlation that predicts frost accumulation on the air-side of fin-tube heat exchanger is developed with dimensionless analysis and also modified by a test conducted under cold-moist conditions in winter. In addition, eight influence factors are considered involving the ambient conditions and structures of heat exchanger, whose effects are analyzed as well. Among them, the equivalent diameter of air flow cross-section in fin-tube d eq is especially proposed. Lastly, the relationships between the ratio, the performance parameters and the frost accumulation are discussed in this paper, followed by an evaluation of an optimal defrosting time interval to improve the ASHP’s energy efficiency and operational reliability at cold-moist conditions in central-south China.

  8. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    Science.gov (United States)

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  9. Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines

    International Nuclear Information System (INIS)

    Broatch, A.; Ruiz, S.; Margot, X.; Gil, A.

    2010-01-01

    Cold startability of automotive direct injection (DI) Diesel engines is frequently one of the negative features when these are compared to their closest competitor, the gasoline engine. This situation worsens with the current design trends (engine downsizing) and the emerging new Diesel combustion concepts, such as HCCI, PCCI, etc., which require low compression ratio engines. To mitigate this difficulty, pre-heating systems (glow plugs, air heating, etc.) are frequently used and their technologies have been continuously developed. For the optimum design of these systems, the determination of the threshold temperature that the gas should have in the cylinder in order to provoke the self-ignition of the fuel injected during cold starting is crucial. In this paper, a novel methodology for estimating the threshold temperature is presented. In this methodology, experimental and computational procedures are adequately combined to get a good compromise between accuracy and effort. The measurements have been used as input data and boundary conditions in 3D and 0D calculations in order to obtain the thermodynamic conditions of the gas in the cylinder during cold starting. The results obtained from the study of two engine configurations -low and high compression ratio- indicate that the threshold in-cylinder temperature is a single temperature of about 415 o C.

  10. Behaviour of aqueous sulfamethizole solution and temperature effects in cold plasma oxidation treatment.

    Science.gov (United States)

    Sokolov, Alexander; Louhi-Kultanen, Marjatta

    2018-06-07

    The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.

  11. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    Science.gov (United States)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  12. Delimitation of the warm and cold period of the year based on the variation of the Aegean sea surface temperature

    Directory of Open Access Journals (Sweden)

    A. MAVRAKIS

    2004-06-01

    Full Text Available Knowledge of the warm and cold season onset is important for the living conditions and the occupational activities of the inhabitants of a given area, and especially for agriculture and tourism. This paper presents a way to estimate the onset/end of the cold and warm period of the year, based on the sinusoidal annual variation of the Sea Surface Temperature. The method was applied on data from 8 stations of the Hellenic Navy Hydrographic Service, covering the period from 1965-1995. The results showed that the warm period starts sometime between April 28th and May 21st while it ends between October 27th and November 19th in accordance with the findings of other studies. Characteristic of the nature of the parameter used is the very low variance per station – 15 days at maximum. The average date of warm period onset is statistically the same for the largest part of the Aegean, with only one differentiation, that between Kavala and the southern stations ( Thira and Heraklion.

  13. Decline in temperature and humidity increases the occurrence of influenza in cold climate

    Science.gov (United States)

    2014-01-01

    Background Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. Methods We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. Results The average temperature preceding the influenza onset was −6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Conclusion Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate. PMID:24678699

  14. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    Science.gov (United States)

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  15. Effect of cryotherapy on the ankle temperature in athletes: ice pack and cold water immersion

    Directory of Open Access Journals (Sweden)

    Vanessa Batista da Costa Santos

    Full Text Available Introduction Cryotherapy is often used for rehabilitation of injured athletes. Objective To compare the effectiveness of ice pack (IP and cold water immersion (CWI on lowering the ankle skin surface temperature in athletes. Materials and methods Thirteen athletes (seven women and six men, age 19.53 (± 2.9 years. IP and CWI were applied on the anterior talofibular ligament (ATFL of the dominant leg for 30 minutes. The skin surface temperature was measured with an infrared digital thermometer prior to the application and during cryotherapy (10, 15, 20, 25 and 30 minutes and up to two hours of rewarming. During rewarming, the athletes remained at rest and the temperature was measured every 1 minute until 10 minutes, every 5 minutes for up to an hour and every 15 minutes until 2 hours. Results The two types of cold application were effective in lowering the skin surface temperature after the 30-minute procedure. Significant differences were observed among the following temperatures: pre-application (IP = 29.8 ± 2.4 °C and CWI = 27.5 ± 3 °C – P < 0.05; after 30 minutes (IP = 5 ± 2.4 °C and CWI = 7.8 ± 3 °C – P < 0.01. For rewarming, after 25 minutes (IP = 20.8 ± 3.3 °C and CWI = 18.2 ± 2.7 °C – P < 0.04; after 45 minutes (IP = 24.5 ± 2.3 °C and IP = 22.1 ± 3.5 °C – P < 0.05; after 75 minutes (IP = 26.4 ± 2.2 °C and CWI = 24 ± 2.7 °C – P < 0.02. Conclusion After the 30-minute application, both IP and CWI produced the appropriate temperature; however the application of CWI produced the lowest temperature during rewarming.

  16. Residual stresses evolution in hardening, cold drawn or shot-peening carbon steel as a function of the heating temperature

    International Nuclear Information System (INIS)

    Vannes, A.-B.; Parisot, Alain; Fougeres, Roger; Theolier, Maurice

    1977-01-01

    Residual stress variations are studied in hardening, cold-drawn, shot-peening carbon steel samples as a function of heating temperature or the tempering one. For temperatures between 100 0 C and 250 0 C, a relative maximum is observed for the mean level of the residual stresses. These results are explained on the basis of two antagonistic mechanisms: restoration and ageing [fr

  17. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures

    International Nuclear Information System (INIS)

    Jaguemont, J.; Boulon, L.; Dubé, Y.

    2016-01-01

    Highlights: • We present a comprehensive review on lithium ion batteries used in hybrid and electric vehicles under cold temperatures. • The weak performances of lithium-ion batteries in cold weather are explained. • The influence of low temperatures on the aging mechanisms of lithium ion batteries is discussed. • The different uses of thermal strategies in an automotive application are proposed. - Abstract: Because of their numerous advantages, lithium-ion (Li-ion) batteries have recently become a focus of research interest for vehicle applications. Li-ion batteries are suitable for electric vehicles (EVs) and hybrid electric vehicles (HEVs) because of advantages such as their high specific energy, high energy density, and low self-discharge rate in comparison with other secondary batteries. Nevertheless, the commercial availability of Li-ion batteries for vehicle applications has been hindered by issues of safety, cost, charging time, and recycling. One principal limitation of this technology resides in its poor low-temperature performance. Indeed, the effects of low temperature reduce the battery’s available energy and increase its internal impedance. In addition, performance-hampering cell degradation also occurs at low temperatures and throughout the entire life of a Li-ion battery. All of these issues pose major difficulties for cold-climate countries. This paper reviews the effects of cold temperatures on the capacity/power fade of Li-ion battery technology. Extensive attention is paid to the aging mechanisms of Li-ion batteries at cold temperatures. This paper also reviews several battery models found in the literature. Finally, thermal strategies are detailed, along with a discussion of the ideal approach to cold-temperature operation.

  18. Thermographic Evaluation of the Hands of Pig Slaughterhouse Workers Exposed to Cold Temperatures.

    Science.gov (United States)

    Tirloni, Adriana Seára; Reis, Diogo Cunha Dos; Ramos, Eliane; Moro, Antônio Renato Pereira

    2017-07-26

    Brazil was rated the fourth leading producer and exporter of pork meat in the world. The aim of this study was to evaluate the temperature of the hands of pig slaughterhouse workers and its relation to the thermal sensation of the hands and the use of a cutting tool. The study included 106 workers in a pig slaughterhouse. An infrared camera FlirThermaCAM E320 (Flir Systems, Wilsonville, OR, USA) was used to collect the images of the dorsal and palmar surfaces of both hands. A numerical scale was used to obtain the thermal sensation. Chi-square test, Pearson correlation and Student's t test or Wilcoxon were used ( p ≤ 0.05). The majority of workers felt cold in the hands (66%) and workers who used the knife felt the coldest. There was an association between the thermal sensation and the use of knife ( p = 0.001). Workers who used the tool showed correlation between the thermal sensation and the temperatures of the left fingers, with a difference between the temperatures of the right and left hands of those who used the knife ( p ≤ 0.05). The hands (left) that manipulated the products presented the lowest temperatures. Findings indicate that employers of pig slaughterhouses should provide gloves with adequate thermal insulation to preserve the health of workers' hands.

  19. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2014-03-01

    Full Text Available Background: Ambient temperatures can cause an increase in mortality. A better understanding is needed of how health status and other factors modify the risk associated with high and low temperatures, to improve the basis of preventive measures. Differences in susceptibility to temperature and to heat and cold wave duration are relatively unexplored. Objectives: We studied the associations between mortality and temperature and heat and cold wave duration, stratified by age and individual and medical factors. Methods: Deaths among all residents of Stockholm County between 1990 and 2002 were linked to discharge diagnosis data from hospital admissions, and associations were examined using the time stratified case-crossover design. Analyses were stratified by gender, age, pre-existing disease, country of origin, and municipality level wealth, and adjusted for potential confounding factors. Results: The effect on mortality by heat wave duration was higher for lower ages, in areas with lower wealth, for hospitalized patients younger than age 65. Odds were elevated among females younger than age 65, in groups with a previous hospital admission for mental disorders, and in persons with previous cardiovascular disease. Gradual increases in summer temperatures were associated with mortality in people older than 80 years, and with mortality in groups with a previous myocardial infarction and with chronic obstructive pulmonary disease (COPD in the population younger than 65 years. During winter, mortality was associated with a decrease in temperature particularly in men and with the duration of cold spells for the population older than 80. A history of hospitalization for myocardial infarction increased the odds associated with cold temperatures among the population older than 65. Previous mental disease or substance abuse increased the odds of death among the population younger than 65. Conclusion: To increase effectiveness, we suggest preventive efforts

  20. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    Science.gov (United States)

    Elwell, Caleb

    biodiesel, only two of the additives had any significant effect on TME CP. The additive formulated by Meat & Livestock Australia (MLA) outperformed Evonik's Viscoplex 10-530. The MLA additive was investigated further and its effect on CP was characterized in pure TME and in CME/TME blends. When mixed in CME/TME blends, the MLA additive had a synergistic effect and produced lower CPs than the addition of mixing MLA in TME and blending CME with TME. To evalulate the cold temperature properties of TME blended with petroleum diesel, CPs of TME/diesel blends from 0 to 100% were measured. The TME/diesel blends were treated with the MLA additives to determine the effects of the additives under these blend conditions. The MLA additive also had a synergistic effect when mixed in TME/diesel blends. Finally, all three of the TME CP reduction methods were evaluated in an economic model to determine the conditions under which each method would be economically viable. Each of the CP reduction methods were compared using a common metric based on the cost of reducing the CP of 1 gallon of finished biodiesel by 1°C (i.e. $/gal/°C). Since the cost of each method is dependent on varying commodity prices, further development of the economic model (which was developed and tested with 2012 prices) to account for stochastic variation in commodity prices is recommended.

  1. Air temperature optimisation for humidity-controlled cold storage of the predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Ghazy, Noureldin Abuelfadl; Suzuki, Takeshi; Amano, Hiroshi; Ohyama, Katsumi

    2014-03-01

    Humidity-controlled cold storage, in which the water vapour pressure is saturated, can prolong the survival of the predatory mites Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). However, information on the optimum air temperature for long-term storage by this method is limited. The authors evaluated the survival of mated adult females of N. californicus and P. persimilis at 5.0, 7.5, 10.0 and 12.5 °C under saturated water vapour condition (vapour pressure deficit 0.0 kPa). N. californicus showed a longer survival time than P. persimilis at all the air temperatures. The longest mean survival time of N. californicus was 11 weeks at 7.5 °C, whereas that of P. persimilis was 8 weeks at 5.0 °C. After storage at 7.5 °C for 8 weeks, no negative effect on post-storage oviposition was observed in N. californicus, whereas the oviposition of P. persimilis stored at 5.0 °C for 8 weeks was significantly reduced. The interspecific variation in the response of these predators to low air temperature might be attributed to their natural habitat and energy requirements. These results may be useful for the long-term storage of these predators, which is required for cost-effective biological control. © 2013 Society of Chemical Industry.

  2. Punchless Drawing of Magnesium Alloy Sheet under Cold Condition and its Computation

    International Nuclear Information System (INIS)

    Yamashita, Minoru; Hattori, Toshio; Sato, Joji

    2011-01-01

    The punchless drawing with Maslennikov's technique was applied to the circular cup drawing of magnesium alloy AZ31B sheet under cold condition. The elastic rubber ring was used instead of the 'hard' punch, where the compressed ring dragged the sheet inward the die cavity. Attainable circumferential strain of the blank was increased by this technique with repetitive drawing operation. Thickness of the rubber pad affected little the attainable strain. The shape appearance became better when a harder rubber was used. The cup forming by single drawing operation was also tested using a small die shoulder radius. The LDR of 1.250 was obtained with the straight cup wall. Further, the computation of the punchless drawing was also conducted for the single drawing operation. The computed deformation pattern was well consistent with the corresponding experimental result.

  3. The Effects Of Different Environmental Conditions (Cold, Heat and Altitude On Soccer Players' Performance And Health

    Directory of Open Access Journals (Sweden)

    Cem Sinan ASLAN

    2016-06-01

    Full Text Available Sports are divided into sub-headings according to structural characteristics as team sports and individual sports; according to the physiological characteristics as aerobic- and anaerobic-based sports. In addition, they may be described as "in-door" and "out-door", as well. While basketball, handball, volleyball are classified as "in-door" sports; cross country, mountaineering, skiing are classified as "out-door" sports. Football is one of the outdoor sports, and is highly influenced by external factors. Indeed, beyond affecting players’ performance, sometimes these factors may lead to unwanted consequences regarding the athlete’s health. In this review, it is targeted to examine the effects of different environmental conditions such as cold, heat and altitude on soccer players' performance and health, through referring to the results of previous studies.

  4. The influence of cold temperature on cellular excitability of hippocampal networks.

    Science.gov (United States)

    de la Peña, Elvira; Mälkiä, Annika; Vara, Hugo; Caires, Rebeca; Ballesta, Juan J; Belmonte, Carlos; Viana, Felix

    2012-01-01

    The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K(2P)), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K(2P) channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.

  5. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  6. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    Science.gov (United States)

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  7. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  8. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    Science.gov (United States)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  9. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    Science.gov (United States)

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  10. Temperature anisotropy instabilities in a plasma containing cold and hot species in the magnetosphere

    International Nuclear Information System (INIS)

    Renuka, G.; Viswanathan, K.S.

    1980-01-01

    The nature of convective instability has been investigated for an electromagnetic wave, either right circularly polarised or left circularly polarised, propagating along a magnetic line of force in a plasma whose distribution function exhibits a temperature anisotropy in the hot species, a loss cone structure and a beam of cold electrons or ions travelling along the line of force with velocity V 1 . Detailed numerical calculations have been made using a computer for the growth and decay of the wave for different values of the anisotropy ratio Tsub(perpendicular to)/Tsub(parallel to) delta of the perpendicular and parallel temperatures, the McIlwain parameter L, the loss cone index j, velocity V 1 of the streaming particle and the particle density ratio epsilon. The ranges of the values of epsilon and delta for which the waves becomes unstable have been studied in detail. It is found that wave propagation shows no dependence on the loss cone index but shows very strong dependence on the temperature anisotropy delta. (author)

  11. Measurements of temperature fluctuations in the mixing of hot and cold air jets

    International Nuclear Information System (INIS)

    Sumner, V.W.

    1977-03-01

    In order to assess the effect of the mixing of 'hot' and 'cold' jets of sodium on structures in the above-core region of the fast reactor, temperature fluctuations have been measured in an experiment consisting of a heated jet of air surrounded by six unheated jets. Temperature spectra obtained from the experiment showed no strong peaks or bands. In considering the effect of thermal cycling of the above-core structures, it is the higher strain values at low frequencies which will be more limiting than the smaller values at high frequencies, due to the nature of strain-lifetime curves. Thus the spectra have been summarised using a low-frequency level and a cut-off frequency at which this level has fallen by an order of magnitude. Attenuation of temperature fluctuations due to the high thermal conductivity of sodium or by boundary layer effects has been considered; however, in the low-frequency, high-energy region of the spectra, little attenuation can be expected. (author)

  12. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  13. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    Science.gov (United States)

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  15. Exposure to hot and cold environmental conditions does not affect the decision making ability of soccer referees following an intermittent sprint protocol.

    Directory of Open Access Journals (Sweden)

    Lee eTaylor

    2014-05-01

    Full Text Available Soccer referees enforce the laws of the game and the decisions they make can directly affect match results. Fixtures within European competitions take place in climatic conditions that are often challenging (e.g. Moscow ~ -5oC, Madrid ~30oC. Effects of these temperatures on player performance are well documented; however, little is known how this environmental stress may impair cognitive performance of soccer referees and if so, whether exercise exasperates this. The present study aims to investigate the effect of cold (COLD; 5oC, 40% relative humidity (RH, hot (HOT; 30oC, 40% RH and temperate (CONT; 18oC, 40% RH conditions on decision making during soccer specific exercise. On separate occasions within each condition, thirteen physically active males; either semi-professional referees or semi-professional soccer players completed three 90 min intermittent treadmill protocols that simulated match play, interspersed with 4 computer delivered cognitive tests to measure vigilance and dual task capacity. Core and skin temperature, heart rate, rating of perceived exertion and thermal sensation were recorded throughout the protocol. There was no significant difference between conditions for decision making (p > 0.05 despite significant differences in measured physiological variables (skin temperature = HOT 34.5 ± 5.1°C; CONT 31.2 ± 0.1°C and COLD 26.7 ± 0.5°C; p < 0.05. It is hypothesised that the lack of difference observed in decision making ability between conditions was due to the exercise protocol used, as it may not have elicited an appropriate and valid soccer specific internal load to alter cognitive functioning.

  16. Continuous cooling and low temperature sensitization of AISI types 316 SS and 304 SS with different degrees of cold work

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N.; Dayal, R.K.; Gnanamoorthy, J.B. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Programme); Seshadri, S.K. (Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering)

    This paper presents the results of investigations carried out to study the sensitization behaviour of AISI Types 316 SS and 304 SS with various degrees of cold work ranging from 0 to 25%. Initially Time-Temperature-Sensitization (TTS) diagrams were established using ASTM standard A262 Practice A and E tests. From these diagrams it was found that the rate of sensitization and overall susceptibility to intergranular corrosion increases up to 15% cold work and above that starts decreasing. Desensitization was observed to be faster for higher levels of cold work, especially in the higher sensitization temperature range. From the TTS diagrams, the critical linear cooling rate below which sensitization occurs was calculated. From these data, Continuous Cooling Sensitization (CCS) diagrams were established. The results show that as the degree of cold work increases up to 15%, time needed for sensitization decreases and hence faster cooling rates must be used in order to avoid sensitization. At temperatures sufficiently below the nose temperature of the TTS diagram, log t versus 1/T plots follow a linear relationship where t is the time needed for the onset of sensitization at temperature T. From the slope, the apparent activation energy for sensitization was estimated. The validity of extrapolating these linear plots to lower temperatures (725 to 775 K) (which lie in the operating temperature regime of fast reactors) has been verified by experiment. The effect of heat treatment and microstructure on the Low Temperature Sensitization (LTS) behaviour was investigated. The results indicate that carbides of optimum size and distribution are the essential pre-requisites for LTS and cold work enhances susceptibility of stainless steels to LTS. (orig.).

  17. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  18. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae

    Directory of Open Access Journals (Sweden)

    Bascuñán-Godoy Luisa

    2012-07-01

    Full Text Available Abstract Background Ecotypes of Colobanthus quitensis Kunt Bartl (Cariophyllaceae from Andes Mountains and Maritime Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting recovery under cold. Therefore, the Antarctic ecotype (cold hardiest should be less photoinhibited and have better recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to cold induced photoinhibitory treatment (PhT. Photoinhibition and recovery of photosystem II (PSII was followed by fluorescence, CO2 exchange, and immunoblotting analyses. Results The same reduction (25% in maximum PSII efficiency (Fv/Fm was observed in both cold-acclimated (CA and non-acclimated (NA plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark conditions, but CA Antarctic plants recover faster than the Andean ecotype. Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for Andean and Antarctic plants respectively. Cold acclimation induced the maintenance of PsaA and Cyt b6/f and reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT. NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions. Conclusions Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold acclimation determined the

  19. Effects of peripheral cold application on core body temperature and haemodynamic parameters in febrile patients.

    Science.gov (United States)

    Asgar Pour, Hossein; Yavuz, Meryem

    2014-04-01

    This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate. © 2013 Wiley Publishing Asia Pty Ltd.

  20. Lignocellulosic Composites Prepared Utilizing Aqueous Alkaline/Urea Solutions with Cold Temperatures

    Directory of Open Access Journals (Sweden)

    Brent Tisserat

    2018-01-01

    Full Text Available Lignocellulosic composites (LCs were fabricated by partially dissolving cotton to create a matrix that was reinforced with osage orange wood (OOW particles and/or blue agave fibers (AF. LCs were composed of 15–35% cotton matrix and 65–85% OWW/AF reinforcement. The matrix was produced by soaking cotton wool in a cold aqueous alkaline/urea solvent and was stirred for 15 minutes at 350 rpm to create a viscous gel. The gel was then reinforced with lignocellulosic components, mixed, and then pressed into a panel mold. LC panels were soaked in water to remove the aqueous solvent and then oven dried to obtain the final LC product. Several factors involved in the preparation of these LCs were examined including reaction temperatures (−5 to −15°C, matrix concentration (15–35% cotton, aqueous solvent volume (45–105 ml/panel, and the effectiveness of employing various aqueous solvent formulations. The mechanical properties of LCs were determined and reported. Conversion of the cotton into a suitable viscous gel was critical in order to obtain LCs that exhibited high mechanical properties. LCs with the highest mechanical properties were obtained when the cotton wools were subjected to a 4.6% LiOH/15% urea solvent at −12.5°C using an aqueous solvent volume of 60 ml/panel. Cotton wool subjected to excessive cold alkaline solvents volumes resulted in irreversible cellulose breakdown and a resultant LC that exhibited poor mechanical properties.

  1. The effect of cold water endurance swimming on core temperature in aspiring English Channel swimmers.

    Science.gov (United States)

    Diversi, Tara; Franks-Kardum, Vanessa; Climstein, Mike

    2016-01-01

    The purpose of this study was to determine if cold water swimmers (CWS) developed hypothermia over a 6-h cold water endurance swim and whether body composition, stroke rate (SR) or personal characteristics correlated with core temperature (TC) change. Nine experienced male and female CWS who were aspiring English Channel (EC) swimmers volunteered to participate. Subjects aimed to complete their 6-h EC qualifying swim (water 15-15.8 °C/air 15-25 °C) while researchers intermittently monitored TC and SR. Data obtained included anthropometry (height, mass, segmental body composition), training volume and EC completion. Of the nine swimmers who volunteered, all successfully completed their EC qualifying swim. Six CWS had complete data included in analysis. One CWS demonstrated hypothermia (34.8 °C) at 6-h. TC rate of decline was slower in the first 3 h (-0.06 °C/hr) compared to the last 3 h (-0.36 °C/hr) of the swim. Older age was significantly correlated to TC change (r = -0.901, p swim was 57.8 spm (range 48-73 spm), and a significant (p pool and open water (OW); however, they swam significantly [t (7) = -2.433, p swim (CWES) of 6-h duration at 15-16 °C resulted in TC reduction in the majority of swimmers regardless of anthropometry. More research is required to determine why some CWS are able to maintain their TC throughout a CWES. Our results indicate that older swimmers are at greater risk of developing hypothermia, and that SR decline is an indicator of TC decline. Our results also suggest that OW swimming training combined with pool training is important for EC swim success.

  2. Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions

    Directory of Open Access Journals (Sweden)

    Juancho Movilla

    2013-12-01

    Full Text Available Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA, these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.

  3. A simplified heat transfer model for predicting temperature change inside food package kept in cold room.

    Science.gov (United States)

    Raval, A H; Solanki, S C; Yadav, Rajvir

    2013-04-01

    A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.

  4. A generalized conditional heteroscedastic model for temperature downscaling

    Science.gov (United States)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  5. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  6. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  7. The Effects of In-Hospital Intravenous Cold Saline in Postcardiac Arrest Patients Treated with Targeted Temperature Management.

    Science.gov (United States)

    Suppogu, Nissi; Panza, Gregory A; Kilic, Sena; Gowdar, Shreyas; Kallur, Kamala R; Jayaraman, Ramya; Lundbye, Justin; Fernandez, Antonio B

    2018-03-01

    Recent data suggest that rapid infusion of intravenous (IV) cold saline for Targeted Temperature Management (TTM) after cardiac arrest is associated with higher rates of rearrest, pulmonary edema, and hypoxia, with no difference in neurologic outcomes or survival when administered by Emergency Medical Services. We sought to determine the effects of IV cold saline administration in the hospital setting in postcardiac arrest patients to achieve TTM and its effect on clinical parameters and neurologic outcomes. A cohort of 132 patients who completed TTM after cardiac arrest in a single institution was retrospectively studied. Patients who did not receive cold saline were matched by age, gender, Glasgow coma scale, downtime, and presenting rhythm to patients who received cold saline. Demographics, cardiac rearrest, diuretic use, time to target temperature, and Cerebral Performance Category (CPC) scores were recorded among other variables. Patients who received cold saline achieved target temperature sooner (280 vs. 345 minutes, p = 0.05), had lower lactate levels on day 1 (4.2 ± 3.5 mM vs. 6.0 ± 4.9 mM, p = 0.019) and day 2 (1.3 ± 2.2 mM vs. 2.2 ± 3.2 mM, p = 0.046), increased incidence of pulmonary edema (51.5% vs. 31.8%, p = 0.006), and increased diuretic utilization (63.6% vs. 42.4%, p = 0.014). There was no significant difference in cardiac rearrest, arterial oxygenation, and CPC scores (ps > 0.05). Infusion of IV cold saline is associated with shorter time to target temperature, increased incidence of pulmonary edema, and diuretic use, with no difference in cardiac rearrest, survival, and neurologic outcomes.

  8. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    Science.gov (United States)

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  9. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures.

    Science.gov (United States)

    Paget, Caroline Mary; Schwartz, Jean-Marc; Delneri, Daniela

    2014-11-01

    Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  10. Optimal energy management for a mechanical-hybrid vehicle with cold start conditions

    NARCIS (Netherlands)

    Berkel, van K.; Klemm, W.P.A.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2013-01-01

    This paper presents the design of an optimal Energy Management Strategy (EMS) for a hybrid vehicle that starts with a cold powertrain. The cold start negatively affects the combustion and transmission efficiency of the powertrain, caused by the higher frictional losses due to increased hydrodynamic

  11. Thermographic skin temperature measurement compared with cold sensation in predicting the efficacy and distribution of epidural anesthesia.

    Science.gov (United States)

    Bruins, Arnoud A; Kistemaker, Kay R J; Boom, Annemieke; Klaessens, John H G M; Verdaasdonk, Rudolf M; Boer, Christa

    2018-04-01

    Due to the high rates of epidural failure (3-32%), novel techniques are required to objectively assess the successfulness of an epidural block. In this study we therefore investigated whether thermographic temperature measurements have a higher predictive value for a successful epidural block when compared to the cold sensation test as gold standard. Epidural anesthesia was induced in 61 patients undergoing elective abdominal, thoracic or orthopedic surgery. A thermographic picture was recorded at 5, 10 and 15 min following epidural anesthesia induction. After 15 min a cold sensation test was performed. Epidural anesthesia is associated with a decrease in skin temperature. Thermography predicts a successful epidural block with a sensitivity of 54% and a PPV of 92% and a specificity of 67% and a NPV of 17%. The cold sensation test shows a higher sensitivity and PPV than thermography (97 and 93%), but a lower specificity and NPV than thermography (25 and 50%). Thermographic temperature measurements can be used as an additional and objective method for the assessment of the effectiveness of an epidural block next to the cold sensation test, but have a low sensitivity and negative predictive value. The local decrease in temperature as observed in our study during epidural anesthesia is mainly attributed to a core-to-peripheral redistribution of body heat and vasodilation.

  12. Effect of cold work on decarburization of 2.25Cr-1Mo steel in high temperature sodium

    International Nuclear Information System (INIS)

    Aoki, Norichika; Yoshida, Eiichi; Wada, Yusaku.

    1994-01-01

    It is known that the mechanical properties of a 2.25Cr-1Mo steel deteriorated due to the decarburization during immersion in the melt sodium at high temperatures. In low-alloy steel as well as a 2.25Cr-1Mo steel, precipitation reactions of carbides are known to be accelerated by cold working and aging. Thus, it may be expected that cold working and aging effectively suppress the decarburization of the mechanical properties of a 2.25Cr-1Mo steel because the decarburization will be restrained owing to fixation of carbon as precipitates of the carbides. In the present article, effects of cold-working and heat treatments on the kinetics of the decarburization of a 2.25Cr-1Mo steel has been studied experimentally. The annealed, cold-rolled, and normalized and tempered specimens were immersed in the melt of sodium at 500, 600 and 700degC for 425, 437 and 432h, respectively. On the basis of the observations obtained from these specimens, the experiment was also carried out at 450, 500 and 550degC for 2270 and 5465h. The microstructures before and after the immersion were observed with optical and scanning electron microscopes. An average concentration of carbon in each specimen was analyzed by an inert gas fusion method. The carbides extracted from the specimens were identified by X-ray diffraction. At immersion temperatures of 450 and 500degC, a 10% reduction of the decarburization in thickness by cold-working is sufficiently effective for retardation of the decarburization at both 2270 and 5465h. Whereas, at 550degC, more than 30% reduction in thickness by cold-working is needed for it at 2270h but even 80% reduction in thickness by cold-working causes merely slight retardation of the decarburization at 5465h. (author)

  13. Dependence of irradiation creep on temperature and atom displacements in 20% cold worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Gilbert, E.R.

    1976-04-01

    Irradiation creep studies with pressurized tubes of 20 percent cold worked Type 316 stainless steel were conducted in EBR-2. Results showed that as atom displacements are extended above 5 dpa and temperatures are increased above 375 0 C, the irradiation induced creep rate increases with both increasing atom displacements and increasing temperature. The stress exponent for irradiation induced creep remained near unity. Irradiation-induced effective creep strains up to 1.8 percent were observed without specimen failure. 13 figures

  14. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline

    International Nuclear Information System (INIS)

    Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C.

    2013-01-01

    Highlights: ► Most of the pollutants studied were emitted during the cold start of the vehicle. ► More carbonyls were associated with oxygenated fuel (E85–E75) than with E5. ► Acetaldehyde emissions were found particularly enhanced at −7 °C with E75. ► Elevated methane and ozone precursor emissions were measured at −7 °C with E75. ► Ammonia and toluene emissions associated to E75–E85 were lower than with E5. -- Abstract: According to directives 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, since 2011 all fuels on the market used for transport purpose must contain a fraction of 5.75% renewable energy sources. Ethanol in gasoline is a promising solution to reach this objective. In addition to decrease the dependence on fossil fuel, ethanol contributes to reducing air pollutant emissions during combustion (carbon monoxide and total hydrocarbons), and has a positive effect on greenhouse gas emissions. These considerations rely on numerous emission studies performed in standard conditions (20–30 °C), however, very few emission data are available for cold ambient temperatures, as they prevail in winter times in e.g., Northern Europe. This paper presents a chassis dynamometer study examining the effect of ethanol (E75–E85) versus gasoline (E5) at standard and low ambient temperatures (22 °C and −7 °C, respectively). Emissions of modern passenger cars complying with the latest European standards (Euro4 and Euro5a) were recorded over the New European Driving Cycle (NEDC) and the Common Artemis Driving Cycle (CADC). Unregulated compounds such as methane, ammonia, and small chain hydrocarbons were monitored by an online Fourier Transformed Infra-Red spectrometer. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected and analyzed offline by liquid and gas chromatography in order to evaluate the ozone formation

  15. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    Science.gov (United States)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent

  16. On the appropriate definition of soil profile configuration and initial conditions for land surface–hydrology models in cold regions

    Directory of Open Access Journals (Sweden)

    G. Sapriza-Azuri

    2018-06-01

    Full Text Available Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs that represent the lower boundary condition of general circulation models (GCMs and regional climate models (RCMs, which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme, as embedded in the MESH (Modélisation Environmentale Communautaire – Surface and Hydrology modelling system, to (1 characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2 assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3 develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to

  17. Creep of concrete under various temperature, moisture, and loading conditions

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1976-01-01

    An investigation was conducted to obtain information on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). Variables included concrete strength, aggregate types, curing history, temperature, and types of loading (uniaxial, hydrostatic, biaxial, and triaxial). There were 66 test conditions for creep tests and 12 test conditions for unloaded or control specimens. Experimental results are presented and discussed. Comparisons are made concerning the effect of the various test conditions on the behavior of concrete, and general conclusions are formulated

  18. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress

    Directory of Open Access Journals (Sweden)

    An Dong

    2012-02-01

    Full Text Available Abstract Background Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. Results A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4, transcription factors (TFs, e.g., RAP2.11, and reactive oxygen species (ROS scavenging enzymes (e.g., catalase 2, as well as photosynthesis-related genes (e.g., PsaL. Seventeen major TF families including many well-studied members (e.g., AP2-EREBP were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase

  19. Effects of heating energy and heating position on the conversion characteristics of the catalyst of a four-stroke motorcycle engine in cold start conditions

    International Nuclear Information System (INIS)

    Horng, R.-F.; Chou, H.-M.; Hsu, T.-C.

    2004-01-01

    The effects of heating energy and heating position on the conversion efficiency of an electrically heated catalyst of a four stroke motorcycle engine under cold start conditions were investigated in this study. In general, during cold start, the operating temperatures of a four stroke motorcycle engine and its catalyst would not be optimized. It was found in this paper that by applying heat to the catalyst however, the reaction of the catalyst could be promoted, which, consequently, improved the conversion efficiency. The experimented parameters were heating energy, heating position, heating temperature and the carbon monoxide (CO) setting level. The heating temperatures included 100, 140 and 180 deg. C, while three different heating powers and six different heating positions were used. The CO levels were set as 1.0%, 1.8% and 2.3%. The best CO conversion efficiency was obtained by applying heating at the inlet of the catalyst. It was revealed that a high heating power induced a high temperature rising rate and, consequently, a high CO conversion efficiency. In terms of energy economy efficiency, however, heating at the mid-section of the catalyst gave the best results and through a relatively low heating power

  20. Residual limb skin temperature and thermal comfort in people with amputation during activity in a cold environment.

    Science.gov (United States)

    Segal, Ava D; Klute, Glenn K

    2016-01-01

    Thermal comfort remains a common problem for people with lower-limb amputation. Both donning a prosthesis and engaging in activity at room temperature can increase residual limb skin temperature; however, the effects of activity on skin temperature and comfort in more extreme environments remain unknown. We examined residual limb skin temperatures and perceived thermal comfort (PTC; 11-point Likert scale) of participants with unilateral transtibial amputation (n = 8) who were snowshoeing in a cold environment. Residual limb skin temperature increased by 3.9°C [3.0°C to 4.7°C] (mean difference [95% confidence interval (CI)], p < 0.001) after two 30 min exercise sessions separated by a 5 min rest session. Minimal cooling (-0.2°C [-1.1°C to 0.6°C]) occurred during the rest period. Similar changes in PTC were found for the residual limb, intact limb, and whole body, with a mean scale increase of 1.6 [1.1 to 2.1] and 1.3 [0.8 to 1.8] for the first and second exercise sessions, respectively (p < 0.001). Activity in a cold environment caused similar increases in residual limb skin temperature as those found in studies conducted at room temperature. Participants with amputation perceived warming as their skin temperature increased during exercise followed by the perception of cooling during rest, despite minimal associated decreases in skin temperature.

  1. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  2. [The Relationship Study between Expressions of P2X5 Receptor and Deficiency-cold Syndrome/Deficiency-heat Syndrome at Various Ambient Temperatures].

    Science.gov (United States)

    Yang, Li-ping; Yu, Hong-jie; Huang, Rui; Li, Xin-min; Zhan, Xiang-hong; Hou, Jun-lin

    2015-05-01

    To detect the expression of the peripheral blood P2X5 receptor at various ambient temperatures, and to explore its relationship with deficiency-cold syndrome and deficiency-heat syndrome. Subjects were selected by questionnaire and expert diagnosis, and assigned to the normal control group, the deficiency-cold syndrome group, and the deficiency-heat syndrome group, 20 in each group. 5 mL venous blood was collected at room temperature (25 °C) and cold temperature (-4-5 °C) respectively. Then the expression of P2X5 receptor was relatively quantified by real-time fluorescence quantitative PCR, and compared at room temperature and cold temperature respectively. The expression of P2X5 receptor in deficiency-cold syndrome and deficiency-heat syndrome groups was lower than that in the normal control group at room temperature (P cold temperature in the deficiency-cold syndrome group than in the normal control group (P receptor showed no difference in all groups at two different temperatures (P > 0.05). The expression of P2X5 receptor was different in different syndrome groups at various ambient temperatures. Ambient temperatures had insignificant effect on the expression of P2X5 receptor of the population with the same syndrome.

  3. Durability and smart condition assessment of ultra-high performance concrete in cold climates.

    Science.gov (United States)

    2016-12-31

    The goals of this study were to develop ecological ultra-high performance concrete (UHPC) with local materials and supplementary cementitious materials and to evaluate the long-term performance of UHPC in cold climates using effective mechanical test...

  4. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    Science.gov (United States)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  5. Reducing the loss of vaccines from accidental freezing in the cold chain: the experience of continuous temperature monitoring in Tunisia.

    Science.gov (United States)

    Lloyd, John; Lydon, Patrick; Ouhichi, Ramzi; Zaffran, Michel

    2015-02-11

    Accidental freezing of vaccines is a growing threat and a real risk for national immunization programs when the potency of many vaccines can be compromised if these are exposed to sub-zero temperatures in the cold chain. In Tunisia, this issue is compounded by using sub-standard domestic cold chain equipment instead of equipping the program with medical refrigerators designed specifically for storing vaccines and temperature sensitive pharmaceuticals. Against this backdrop, this paper presents the findings of a demonstration project conducted in Tunisia in 2012 that tested the impact of introducing several freeze prevention solutions to mitigate the risk of accidental freezing of vaccines. The main finding is that, despite the continued use of underperforming domestic refrigerators, continuous temperature monitoring using new technologies combined with other technological interventions significantly reduced the prevalence of accidental exposure to freezing temperatures. These improvements were noticed for cold chain storage at regional, district and health center levels, and during the transport legs that were part of the demonstration conducted in the regions of Kasserine in the South-Eastern part of Tunisia. Subsequent to introducing these freeze prevention solutions, the incidence of freeze alarms was reduced and the percent of time the temperatures dropped below the 2 °C recommended threshold. The incidence of freeze alarms at health center level was reduced by 40%. Lastly, the solutions implemented reduced risk of freezing during transport from 13.8% to 1.7%. Although the solution implemented is not optimal in the longer term because domestic refrigerators are used extensively in district stores and health centers, the risk of accidental freezing is significantly reduced by introducing the practice of continuous temperature monitoring as a standard. The management of the cold chain equipment was strengthened as a result which helps protect the potency of

  6. Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-05-01

    We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.

  7. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Zongyue Yu

    2014-01-01

    Full Text Available A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testing plan including both the high temperatures and low temperatures is designed, and a statistical analysis method is developed. The reliability function of the product with multiple failure modes under variable working conditions is given by the proposed statistical analysis method. Finally, a numerical example is studied to illustrate the proposed accelerated testing. The results show that the proposed accelerated testing is rather efficient.

  8. Comparison of high pressure and high temperature short time processing on quality of carambola juice during cold storage.

    Science.gov (United States)

    Huang, Hsiao-Wen; Chen, Bang-Yuan; Wang, Chung-Yi

    2018-05-01

    This study validated high hydrostatic pressure processing (HPP) for achieving greater than 5-log reductions of Escherichia coli O157:H7 in carambola juice and determined shelf life of processed juice stored at 4 °C. Carambola juice processed at 600 MPa for 150 s was identified capable of achieving greater than 5.15-log reductions of E. coli O157:H7, and the quality was compared with that of high temperature short time (HTST)-pasteurized juice at 110 °C for 8.6 s. Aerobic, psychrotrophic, E. coli /coliform, and yeasts and moulds in the juice were reduced by HPP or HTST to levels below the minimum detection limit (HTST juices. However, HTST treatment significantly changed the color of juice, while no significant difference was observed between the control and HPP samples. HPP and HTST treatments reduced the total soluble solids in the juice, but maintained higher sucrose, glucose, fructose, and total sugar contents than untreated juice. The total phenolic and ascorbic acid contents were higher in juice treated with HPP than untreated and HTST juice, but there was no significant difference in the flavonoid content. Aroma score analysis showed that HPP had no effect on aroma, maintaining the highest score during cold storage. The results of this study suggest that appropriate HPP conditions can achieve the same microbial safety as HTST, while maintaining the quality and extending the shelf life of carambola juice.

  9. Thermomechanical and hygroelastic properties of an epoxy system under humid and cold-warm cycling conditions

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Saghir, Shahid; Verdu, Jacques; Askari, Abe H.

    2014-01-01

    In this paper, we study the hygrothermal aging of an anhydride-cured epoxy under temperature and hygrometry conditions simulating those experienced by an aircraft in wet tropical or subtropical regions. Gravimetric and dimensional measurements were performed and they indicate that there are three stages in this aging process: the first one, corresponding to the early cycles can be called the "induction stage". The second stage of about 1000 cycles duration, could be named the "swelling stage", during which the volume increase is almost equal to the volume of the (liquid) water absorbed. Both the first and second stages are accompanied by modifications of the mechanical properties and the glass transition temperature. During the third ("equilibrium") stage, up to 3000 cycles, there is no significant change in the physical properties despite the continuous increase of water uptake. This can be explained by the fact that only physically sorbed water can influence physical properties. © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions.

    Science.gov (United States)

    Dunne, Alan; Crampton, David; Egaña, Mikel

    2013-09-01

    Despite the widespread use of cold water immersion (CWI) in normothermic conditions, little data is available on its effect on subsequent endurance performance. This study examined the effect of CWI as a recovery strategy on subsequent running performance in normothermic ambient conditions (∼22°C). Nine endurance-trained men completed two submaximal exhaustive running bouts on three separate occasions. The running bouts (Ex1 and Ex2) were separated by 15min of un-immersed seated rest (CON), hip-level CWI at 8°C (CWI-8) or hip-level CWI at 15°C (CWI-15). Intestinal temperature, blood lactate and heart rate were recorded throughout and V˙O2, running economy and exercise times were recorded during the running sessions. Running time to failure (min) during Ex2 was significantly (p<0.05, ES=0.7) longer following CWI-8 (27.7±6.3) than CON (23.3±5) but not different between CWI-15 (26.3±3.4) and CON (p=0.06, ES=0.7) or CWI-8 and CWI-15 (p=0.4, ES=0.2). Qualitative analyses showed a 95% and 89% likely beneficial effect of CWI-8 and CWI-15 during Ex2 compared with CON, respectively. Time to failure during Ex2 was significantly shorter than Ex1 only during the CON condition. Intestinal temperature and HR were significantly lower for most of Ex2 during CWI-8 and CWI-15 compared with CON but they were similar at failure for the three conditions. Blood lactate, running economy and V˙O2 were not altered by CWI. These data indicate that a 15min period of cold water immersion applied between repeated exhaustive exercise bouts significantly reduces intestinal temperature and enhances post-immersion running performance in normothermic conditions. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Muscle, Skin and Core Temperature after −110°C Cold Air and 8°C Water Treatment

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (Psporting setting. PMID:23139763

  12. Temperature field conduction solution by incomplete boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Petrasinovic, Lj; Djuric, M [Tehnoloski fakultet, Novi Sad (Yugoslavia); Perovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1977-01-01

    The problem of determination of one part boundary conditions temperatures for Fourier partial differential equation when the other part of boundary condition and derivates (heat fluxes) are known is a practical interest as it enables one to determine and accessible temperature by measuring temperatures on other side, of the wall. Method developed and applied here consist of transforming the Fourier partial differential equation by time discretisation in sets of pairs of ordinary differential equations for temperature and heat flux. Such pair of differential equations of first order was solved by Runge-Kutta method. The integration proceeds along space interval simultaneosly for all time intervals. It is interesting to note that this procedure does not require the initial condition.

  13. Exposure to hot and cold environmental conditions does not affect the decision making ability of soccer referees following an intermittent sprint protocol.

    Science.gov (United States)

    Taylor, Lee; Fitch, Natalie; Castle, Paul; Watkins, Samuel; Aldous, Jeffrey; Sculthorpe, Nicholas; Midgely, Adrian; Brewer, John; Mauger, Alexis

    2014-01-01

    Soccer referees enforce the laws of the game and the decisions they make can directly affect match results. Fixtures within European competitions take place in climatic conditions that are often challenging (e.g., Moscow ~ -5°C, Madrid ~30°C). Effects of these temperatures on player performance are well-documented; however, little is known how this environmental stress may impair cognitive performance of soccer referees and if so, whether exercise exasperates this. The present study aims to investigate the effect of cold [COLD; -5°C, 40% relative humidity (RH)], hot (HOT; 30°C, 40% RH) and temperate (CONT; 18°C, 40% RH) conditions on decision making during soccer specific exercise. On separate occasions within each condition, 13 physically active males; either semi-professional referees or semi-professional soccer players completed three 90 min intermittent treadmill protocols that simulated match play, interspersed with 4 computer delivered cognitive tests to measure vigilance and dual task capacity. Core and skin temperature, heart rate, rating of perceived exertion (RPE) and thermal sensation (TS) were recorded throughout the protocol. There was no significant difference between conditions for decision making in either the dual task (interaction effects: FALSE p = 0.46; MISSED p = 0.72; TRACKING p = 0.22) or vigilance assessments (interaction effects: FALSE p = 0.31; HIT p = 0.15; MISSED p = 0.17) despite significant differences in measured physiological variables (skin temperature: HOT vs. CONT 95% CI = 2.6 to 3.9, p decision making ability between conditions was due to the exercise protocol used, as it may not have elicited an appropriate and valid soccer specific internal load to alter cognitive functioning.

  14. Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles.

    Science.gov (United States)

    Suzuki, Shunsuke; Awai, Koichiro; Ishihara, Akinori; Yamauchi, Kiyoshi

    2016-01-01

    Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.

  15. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  16. Cold start-up condition model for heat recovery steam generators

    International Nuclear Information System (INIS)

    Sindareh-Esfahani, Peyman; Habibi-Siyahposh, Ehsan; Saffar-Avval, Majid; Ghaffari, Ali; Bakhtiari-Nejad, Firooz

    2014-01-01

    A dynamic modeling of Heat Recovery Steam Generator (HRSG) during cold start-up operation in Combined Cycle Power Plant (CCPP) is introduced. In order to characterize the essential dynamic behavior of the HRSG during cold start-up; Dynamic equations of all HRSG's components are developed based on energy and mass balances. To describe precisely the operation of HRSG; a method based on nonlinear estimated functions for thermodynamic properties is applied to estimate the model parameters. Model parameters are evaluated by a designed algorithm based on Genetic Algorithm (GA). A wide set of experimental data is used to validate HRSG model during cold start-up operation. The simulation results show the reliability and validity of the developed model for cold start-up operation. - Highlights: •Presenting a mathematical model for HRSGs cold start-up based on energy and mass balances. •A designed parameter identification algorithm based on GA is presented. •Application of experimental data in order to model and validate simulation results

  17. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  18. Role of the circadian clock gene Per2 in adaptation to cold temperature.

    Science.gov (United States)

    Chappuis, Sylvie; Ripperger, Jürgen Alexander; Schnell, Anna; Rando, Gianpaolo; Jud, Corinne; Wahli, Walter; Albrecht, Urs

    2013-01-01

    Adaptive thermogenesis allows mammals to resist to cold. For instance, in brown adipose tissue (BAT) the facultative uncoupling of the proton gradient from ATP synthesis in mitochondria is used to generate systemic heat. However, this system necessitates an increase of the Uncoupling protein 1 (Ucp1) and its activation by free fatty acids. Here we show that mice without functional Period2 (Per2) were cold sensitive because their adaptive thermogenesis system was less efficient. Upon cold-exposure, Heat shock factor 1 (HSF1) induced Per2 in the BAT. Subsequently, PER2 as a co-activator of PPARα increased expression of Ucp1. PER2 also increased Fatty acid binding protein 3 (Fabp3), a protein important to transport free fatty acids from the plasma to mitochondria to activate UCP1. Hence, in BAT PER2 is important for the coordination of the molecular response of mice exposed to cold by synchronizing UCP1 expression and its activation.

  19. Combustion aided by a glow plug in diesel engines under cold idling conditions

    OpenAIRE

    Li, Qile

    2016-01-01

    Glow plugs are widely used to promote the desired cold start and post-cold start combustion characteristics of light duty diesel engines. The importance of the glow plug becomes more apparent when the compression ratio is low. An experimental investigation of combustion initiation and development aided by the glow plug has been carried out on a single cylinder HPCR DI diesel engine with a low compression ratio of 15.5:1. High speed imaging of combustion initiated by the glow plug in a combust...

  20. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  1. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  2. Differences in cold adaptation of .i.Bacillus subtilis./i. under anaerobic and aerobic conditions

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Mansilla, M.C.; de Mendoza, D.; Elhottová, Dana; Konopásek, I.

    2010-01-01

    Roč. 192, č. 16 (2010), s. 4164-4171 ISSN 0021-9193 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : cold adaptation * Bacillus subtilis * anaerobiosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.726, year: 2010

  3. Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Celada-Casero, C., E-mail: c.celada@cenim.csic.es [MATERALIA group, Dpt. of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain); Huang, B.M. [National Taiwan University, Dpt. of Materials Science and Engineering, 1 Roosvelt Road, Section 4, 10617 Taipei, Taiwan, ROC (China); Aranda, M.M. [MATERALIA group, Dpt. of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain); Yang, J.-R. [National Taiwan University, Dpt. of Materials Science and Engineering, 1 Roosvelt Road, Section 4, 10617 Taipei, Taiwan, ROC (China); Martin, D. San [MATERALIA group, Dpt. of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-08-15

    The primary objective of this work is to obtain fundamental insights on phase transformations, with focus on the reaustenitization process (α′→γ transformation), of a cold-rolled (CR) semi-austenitic metastable stainless steel upon different isochronal conditions (0.1, 1, 10 and 100 °C/s). For this purpose, an exhaustive microstructural characterization has been performed by using complementary experimental such as scanning and transmission electron microscopy (SEM and TEM), electron backscattered diffraction (EBSD), electron probe microanalysis (EPMA), micro-hardness Vickers and magnetization measurements. It has been detected that all microstructural changes shift to higher temperatures as the heating rate increases. The reaustenitization occurs in two-steps for all heating rates, which is attributed to the chemical banding present in the CR state. The α′→γ transformation is controlled by the migration of substitutional alloying elements across the austenite/martensite (γ/α′) interface, which finally leads to ultrafine-grained reaustenitized microstructures (440–280 nm). The morphology of the martensite phase in the CR state has been found to be the responsible for such a grain refinement, along with the presence of χ-phase and nanometric Ni{sub 3}(Ti,Al) precipitates that pin the austenite grain growth, especially upon slowly heating at 0.1 °C/s. - Highlights: •Ultrafine-grained austenite structures are obtained isochronally at 0.1–100 °C/s •The α′→γ transformation occurs in two steps due to the initial chemical banding •A diffusional mechanism governs the α′→γ transformation for all heating rates •The dislocation-cell-type of martensite promotes a diffusional mechanism •Precipitates located at α′/γ interfaces hinder the austenite growth.

  4. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  5. Cultured Chinese hamster cells undergo apoptosis after exposure to cold but nonfreezing temperatures.

    Science.gov (United States)

    Nagle, W A; Soloff, B L; Moss, A J; Henle, K J

    1990-08-01

    Cultured Chinese hamster V79 fibroblast cells at the transition from logarithmic to stationary growth have been shown to undergo apoptosis (programmed cell death) after cold shock [B. L. Soloff, W. A. Nagle, A. J. Moss, Jr., K. J. Henle, and J. T. Crawford, Biochem. Biophys. Res. Commun. 145, 876-883 (1987)]. In this report, we show that about 95% of the cell population was susceptible to cold-induced apoptosis, and the amount of cell killing was dependent on the duration of hypothermia. Cells treated for 0-90 min at 0 degrees C exhibited an exponential survival curve with a D0 of 32 min; thus, even short exposures to the cold (e.g., 5 min) produced measurable cell killing. The cold-induced injury was not produced by freezing, because similar results were observed at 6 degrees C, and cell killing was not influenced by the cryoprotective agent dimethyl sulfoxide. Cold-induced apoptosis was inhibited by rewarming at 23 degrees C, compared to 37 degrees C, by inhibitors of macromolecular synthesis, such as cycloheximide, and by 0.8 mM zinc sulfate. The results suggest that apoptosis represents a new manifestation of cell injury after brief exposure to 0-6 degrees C hypothermia.

  6. Influence of temperature, cold deformation and a constant mechanical load on the microstructural stability of a nitrogen alloyed duplex stainless steel

    International Nuclear Information System (INIS)

    Weisbrodt-Reisch, A.; Brummer, M.; Hadler, B.; Wolbank, B.; Werner, E.A.

    2006-01-01

    The influence of temperature, cold deformation and constant mechanical load on the microstructural stability and the kinetics of phase decomposition of a nitrogen-alloyed duplex stainless steel (0.34 wt.% N) was investigated. Calculation of the phase equilibria was done with THERMOCALC using the steel database TCFE3 in order to predict the stability of the phases and to estimate the influence of temperature on the fraction and chemical composition of the phases. Various ageing treatments between 800 deg. C and 1300 deg. C were performed for different time intervals with controlled heating and cooling rates. In order to determine the influence of deformation, annealing at 800 deg. C after cold deformation as well as dilatometry experiments were performed under a constant mechanical compressive load at 800 deg. C and 900 deg. C. Microstructural characterization was carried out by means of light microscopy, electron microscopy and X-ray diffractometry. It was found that the microstructural evolution under a thermal load alone in the temperature range above 950 deg. C concerns mainly the transformation of austenite to ferrite, while below 950 deg. C ferrite decomposition and precipitation of nitrides occur. Since duplex stainless steels possess a microstructure consisting of paramagnetic austenite and ferromagnetic ferrite, the kinetics of ferrite decomposition can be determined easily by magnetic inductive measurements. The results of the microstructural investigations and the measurements of the saturation magnetization show that there is a satisfactory agreement with the theoretical predictions based on THERMOCALC. Ferrite decomposition is significantly accelerated by strain introduced during cold deformation. Furthermore, even under a small mechanical load the kinetics of phase decomposition behaviour at 900 deg. C is drastically changed. Whereas during short annealing times the microstructure remains nearly stable the same annealing conditions under a constant

  7. Low temperature conditioning of garlic (Allium sativum L. "seed" cloves induces alterations in sprouts proteome

    Directory of Open Access Journals (Sweden)

    Miguel David Dufoo-Hurtado

    2015-05-01

    Full Text Available Low-temperature conditioning of garlic seed cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that seed bulbs from ‘Coreano’ variety conditioned at 5 °C for five weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic seed cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23 °C, and the other was conditioned at low temperature (5 °C for five weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic seed cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous

  8. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions

    Science.gov (United States)

    Suess, Erwin

    2014-10-01

    Characteristics of cold seeps at different geologic settings are the subject of this review primarily based on results of the Research Consortium SFB 574. Criteria are drawn from examples on the erosive convergent margin off Costa Rica, the accretionary margin off Chile supplemented by examples from the transform margin of the Golf of Cadiz and the convergent Hikurangi margin off New Zealand. Others are from well-studied passive margins of the Black Sea, the Golf of Mexico, the eastern Mediterranean Sea and the South China Sea. Seeps at all settings transport water and dissolved compounds to the ocean through the seafloor by different forcing mechanism and from different depths of the submerged geosphere (10s of meters to 10s of km). The compounds sustain oasis-type ecosystems by providing bioactive reductants sulfide, methane and hydrogen. Hereby, the interaction between fluid composition, flux rates and biota results in a diagnostic hydrocarbon-metazoan-microbe-carbonate association; currently, well over 100 active sites are known. The single most important reaction is microbially mediated anaerobic oxidation of methane with secondary reactions involving S-biogeochemistry and carbonate mineral precipitation. Seep fluids and their seafloor manifestations provide clues as to source depth, fluid-sediment/rock interaction during ascent, lifetime and cyclicity of seepage events but less so on the magnitude of return flow. At erosive margins, Cl-depleted and B-enriched fluids from clay dehydration provide criteria for source depth and temperature. The upward material flow generates mud volcanoes at the seafloor above the projected location of dehydration at depth. At accretionary margins, fluids are derived from more shallow depths by compaction of sediments as they ride on the incoming oceanic plate; they are emitted through thrust faults. At highly sedimented margins, organic-rich and evaporite-containing strata (when present) determine the final fluid composition

  9. Simulation of temperature conditions on APT of HMA mixes

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2008-10-01

    Full Text Available between these APT data and practical application of the outcomes of the tests. The paper starts with general background on the effect of temperature on the loading conditions and response of HMA materials, methods to manage it during APT testing...

  10. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    Science.gov (United States)

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Performance of solar collectors under low temperature conditions

    DEFF Research Database (Denmark)

    Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine

    The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...

  12. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions

    OpenAIRE

    Fabri, Marie-claire; Bargain, Annaelle; Pairaud, Ivane; Pedel, Laura; Taupier-letage, I.

    2017-01-01

    The Cassidaigne canyon is one of the two canyons (together with Lacaze-Duthiers) of the French Mediterranean coast in which cold-water corals have settled and formed large colonies, providing a structural habitat for other species. Nevertheless, the communities settled in the Cassidaigne canyon are physically impacted by discharges of bauxite residues. New information on the distribution of the species Madrepora oculata and the associated species diversity in Cassidaigne canyon was provid...

  13. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  14. Dynamic displacements of the RHIC dipole cold mass with injection molded composite posts during quench conditions

    International Nuclear Information System (INIS)

    Sondericker, J.; Wolf, L.J.

    1991-02-01

    The new design of the RHIC dipole magnets incorporate helium containment bellows having a convolution diameter of only 7.63 inches. The present bellows are 12.80 inches in diameter. The smaller bellows present a substantially reduced pressure area which can be expected to reduce proportionately the end force on the cold mass during a quench. But, the objection was raised that the smaller bellows would present greater obstruction to the helium flow during a quench thereby producing higher pressure differentials. This analysis was undertaken to address these assertions by predicting the dynamic displacements of the cold mass using the latest test data on the stiffness of the IMC posts, pressure-time histories acquired from the recent full cell tests of RHIC magnets, and the dimensions of the new expansion joints. The analysis treated the cold mass as an elastic body having a saggittal curvature. The technique of normal mode expansion of a lumped-parameter system was used to obtain the results and conclusions reported herein

  15. Cold working room temperature increased moderate/severe qualitative work stressor risk in Air Traffic Controllers

    Directory of Open Access Journals (Sweden)

    Dewi Astuti

    2012-07-01

    work load stressor among the ATCs.Methods:  This  cross-sectional  study  was  conducted  in November  2008  at  Soekarno-Hatta  International Airport. Subjects consisted of active ATCs with a minimum of six months total working tenure. The study used standard diagnostic as well as home stressor questionnaire surveys. All questionnaires were filled in by the participants.Results: Subjects were aged 27–55 years, consisted of 112 ATCs who had moderate and 13 (9.6% ATCs who had slight QLWS. Those who felt than did not feel the working room temperature was not too cold had 11-fold moderate/severe QLWS [adjusted odds ratio (ORa = 10.63: 95% confidence interval (CI = 1.79-65.59]. Those who had than did not have moderate/severe role ambiguity stressor had 8.2-fold risk of moderate/severe QLWS (ORa = 8.23: 95% CI = 1.13-59.90. Those who had than did not have moderate/severe personal responsibility stressor had 6,6-fold risk for moderate/severe QLWS (ORa = 6.64: 95% CI = 1.13-38.85. In terms of the career development stressor, those who had it than did not have it had a 3.7-fold risk for moderate/severe QLWS (ORa = 3,67: 95% CI = 0.88-15.35; P = 0.075.Conclusion:  Those who felt the room temperature was too cold, moderate/severe role ambiguity, personal responsibility, as well as career development stressor were at increased risk for moderate/severe QLWS. (Health Science Indones 2011;2:58-65. 

  16. Viscosity of Dysphagia-Oriented Cold-Thickened Beverages: Effect of Setting Time at Refrigeration Temperature

    Science.gov (United States)

    Kim, Sung-Gun; Yoo, Byoungseung

    2015-01-01

    Background: Although extensive literature is available on the viscosity of thickened beverages with food thickeners, no attempt has been made to study the effect of setting time on the viscosity of pudding-like cold-thickened beverages with xanthan gum (XG)-based thickeners by using a rheometer. In particular, it is of considerable practical…

  17. Room-temperature cold-welding of gold nanoparticles for enhancing the electrooxidation of carbon monoxide.

    Science.gov (United States)

    Liu, Cai; Li, Yong-Jun; Sun, Shi-Gang; Yeung, Edward S

    2011-04-21

    A cold-welding strategy is proposed to rapidly join together Au nanoparticles (AuNPs) into two-dimensional continuous structures for enhancing the electrooxidation of carbon monoxide by injecting a mixture of ethanol and tolulene into the bottom of a AuNP solution. © The Royal Society of Chemistry 2011

  18. Manual performance deterioration in the cold estimated using the wind chill equivalent temperature

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2009-01-01

    Manual performance during work in cold and windy climates is severely hampered by decreased dexterity, but valid dexterity decrease predictors based on climatic factors are scarce. Therefore, this study investigated the decrease in finger- and hand dexterity and grip force for nine combinations of

  19. Investigating temperature breaks in the summer fruit export cold chain - a case study

    CSIR Research Space (South Africa)

    Freiboth, HW

    2013-11-01

    Full Text Available There is concern in the South African fruit industry that a large amount of fruit and money is lost every season due to breaks in the fruit export cold chain. The possibility of a large percentage of losses in a significant sector of the economy...

  20. Packhouse to port: Investigating temperature breaks in the South African summer fruit export cold chain

    CSIR Research Space (South Africa)

    Freiboth, H

    2014-10-01

    Full Text Available A large amount of fruit and money is lost every season due to breaks in the South African fruit export cold chain. With food security becoming an ever growing concern, especially in developing countries like South Africa, a high percentage of losses...

  1. Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity

    International Nuclear Information System (INIS)

    Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2015-01-01

    Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)

  2. Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-Related Genes and Improves Growth Performances in Young Chicks.

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen

    Full Text Available Low environmental temperatures are among the most challenging stressors in poultry industries. Although landmark studies using acute severe cold exposure have been conducted, still the molecular mechanisms underlying cold-stress responses in birds are not completely defined. In the present study we determine the effect of chronic mild cold conditioning (CMCC on growth performances and on the expression of key metabolic-related genes in three metabolically important tissues: brain (main site for feed intake control, liver (main site for lipogenesis and muscle (main site for thermogenesis.80 one-day old male broiler chicks were divided into two weight-matched groups and maintained in two different temperature floor pen rooms (40 birds/room. The temperature of control room was 32°C, while the cold room temperature started at 26.7°C and gradually reduced every day (1°C/day to reach 19.7°C at the seventh day of the experiment. At day 7, growth performances were recorded (from all birds and blood samples and tissues were collected (n = 10. The rest of birds were maintained at the same standard environmental condition for two more weeks and growth performances were measured.Although feed intake remained unchanged, body weight gain was significantly increased in CMCC compared to the control chicks resulting in a significant low feed conversion ratio (FCR. Circulating cholesterol and creatine kinase levels were higher in CMCC chicks compared to the control group (P<0.05. CMCC significantly decreased the expression of both the hypothalamic orexigenic neuropeptide Y (NPY and anorexigenic cocaine and amphetamine regulated transcript (CART in chick brain which may explain the similar feed intake between the two groups. Compared to the control condition, CMCC increased the mRNA abundance of AMPKα1/α2 and decreased mTOR gene expression (P<0.05, the master energy and nutrient sensors, respectively. It also significantly decreased the expression of fatty

  3. Occurrence of Shewanella algae in Danish coastal water and effects of water temperature and culture conditions on its survival

    DEFF Research Database (Denmark)

    Gram, Lone; Bundvad, Anemone; Melchiorsen, Jette

    1999-01-01

    increased to 10(5) to 10(7) CFU/ml at room temperature. Most probable number analysis showed this result to be due to regrowth rather than resuscitation. It was hypothesized that S. algae would survive cold exposure better if in the biofilm state; however, culturable counts from S. algae biofilms decreased......The marine bacterium Shewanella algae, which was identified as the cause of human cases of bacteremia and ear infections in Denmark in the summers of 1994 and 1995, was detected in seawater only during the months (July, August, September, and October) when the water temperature was above 13 degrees...... C. The bacterium is a typical mesophilic organism, and model experiments were conducted to elucidate the fate of the organism under cold and nutrient-limited conditions. The culturable count of S. algae decreased rapidly from 10(7) CFU/ml to 10(1) CFU/ml in approximately 1 month when cells grown...

  4. [Differences between cold and hot natures of processed Radix ginseng rubra and Panax quinquefolius L. based upon mice temperature tropism].

    Science.gov (United States)

    Zhang, Xue-Ru; Zhao, Yan-Ling; Wang, Jia-Bo; Zhou, Can-Ping; Liu, Ta-Si; Zhao, Hai-Ping; Ren, Yong-Shen; Yan, Dan; Xiao, Xiao-He

    2009-07-28

    To establish an objective method to estimate the disparity between the cold and hot natures on the basis of an intrinsic correlation between temperature tropism of mice and the cold and hot natures of Chinese medicines. Male KM mice were randomly divided into 7 groups of 6 each, namely the normal group (NM), the weak model group (WM), the strong model group (SM), the weak model plus Radix ginseng rubra group (WM + RG), the weak model plus Panax quinquefolius L. group (WM + PQ), the strong model plus Radix ginseng rubra group (SM + RG) and the strong model plus Panax quinquefolius L. group (SM +PQ). The specific herbal drugs were administered intragastricly. To induce the weak model, mice were fed with a limited supply of feed and forced to swim in cold water until almost drowning while the strong model induced by feeding a high-protein diet with an unlimited feed access. The doses of Radix ginseng rubra and Panax quinquefolius L. were 35 mg/g of body weight per day (counted by the quantity of crude material) and lasting for seven days. The NM and model groups without dosing were intragastricly administered with physiological saline of the same volume to the dosing groups. The percentage of the remaining time of mouse on a high temperature (40 degrees C) pad to the total monitoring time was recorded by a self-designed intelligent animal behavior monitoring system. Meanwhile, the drinking volume of mice in each group was measured. Immediately after experiment, the activities of Na(+)K(+)-ATPase and superoxide dismutase (SOD) in liver tissue were measured by assay kits of phosphorus and xanthine oxidase methods respectively. The features of deficient and cold symptom, such as fatigue, stagnant weight growth, decreased water intake, cold limbs and tail etc, were observed in WM group. And the features of heat symptom, such as increased weight and water intake, hyperactivity etc, were observed in SM group. The percentage of time that the mouse remained on 40 degrees C

  5. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    Science.gov (United States)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  6. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  7. Analysis of Natural Ventilation in a Passive House Located in Cold Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    in Vejle during cooling season, in the months of June, July and August. The dwelling belongs to a Danish project of passive houses denominated Komfort Husene, where its occupants claim there is no thermal comfort in summer time. The results show that the use of natural ventilation helps to reduce......This article shows the potential of using natural ventilation as a passive method of cooling buildings that are located in cold climate countries using Denmark as a case study. The energy saving potential of natural ventilation is found by performing thermal simulations of a household located...

  8. Influence of the coating process on the tribological conditions during cold forging with a MoS2 based lubricant

    Science.gov (United States)

    Lorenz, Robby; Hagenah, Hinnerk; Merklein, Marion

    2018-05-01

    Cold forging processes such as forward rod extrusion can be used to produce high quality components like connection rods, shafts and gears. The main advantages of these extruded components are sufficient surface quality, work hardening, compressive residual stresses and fatigue strength. Since one technical disadvantage of extruded components lies in the achievable tolerance classes, the improvement of these should be of crucial importance. For instance, the attainable workpiece accuracy and component quality can be influenced by adapting the tribological system in such a way that the resulting friction is specifically controlled in order to improve component forming. Lubricant modification is one practical way of adapting the tribological system to the requirements of the forming process. An industrial established and highly efficient lubricant system is the application of a zinc-phosphate conversion layer with a molybdenum disulfide-based lubricant. While offering many advantages, its tribological conditions seem to depend strongly on the layer weight and the application strategy. These parameters and the respective interdependencies have not been sufficiently investigated yet. In order to examine this, the tribological conditions depending on the layer weight are analyzed in greater detail using the Ring-Compression-Test (RCT). This tribometer provides a comparative representation of the forming conditions during cold forging. Furthermore, a potential dependency between the tribological conditions and two different coating techniques is analyzed. The latter are represented by the industrial standards dipping and dip-drumming.

  9. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Narinder [Semiconductor Materials and Device Laboratory, Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100715 (Korea, Republic of); Kumar, Manoj [School of Mechanical, Materials & Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab (India); Sharma, Sanjeev K.; Kim, Deuk Young [Semiconductor Materials and Device Laboratory, Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100715 (Korea, Republic of); Kumar, S.; Chavan, N.M.; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), Hyderabad 500005 (India); Singh, Narinder [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [School of Mechanical, Materials & Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab (India)

    2015-02-15

    Highlights: • A presynthesized Ni-20Cr nanocrystalline powder was successfully deposited on T22 and SA 516 boilers steels using cold spray process. • The coatings are observed to have more than 2-folds microhardness in comparison with the base steels. • The coating was successful in reducing the weight gain of T22 and SA 516 steel by 71% and 94%. - Abstract: In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nanostructured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 °C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 °C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness.

  10. Accounting for the temperature conditions during deep prospecting hole drilling

    Energy Technology Data Exchange (ETDEWEB)

    Shcherban, A N; Cheniak, V P; Zolotarenko, U P

    1977-01-01

    A methodology is described for calculating and controlling the temperature in inclined holes in order to establish a non-steady-state heat exchange between the medium circulating in the hole, and the construction components and rock. In order to verify the proposed methodology, the temperature of the drilling fluid is measured directly during the drilling process using a specially-designed automatic device which is lowered into the hole with the drilling string and turned on automatically at a given depth. This device makes it possible to record the drilling fluid temperature on magnetic tape, and convert the sensor signals arriving from the drilling string and the annular space. A comparison of calculation and experimental data confirmed the sufficiently high accuracy of the methods for predicting the thermal conditions in drilling deep prospecting holes.

  11. Effect of Temperature Variation on Modal Frequency of Reinforced Concrete Slab and Beam in Cold Regions

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2016-01-01

    Full Text Available Changes of modal frequencies induced by temperature variation can be more obvious than those caused by structural damage, which will lead to the false damage identification results. Therefore, quantifying the temperature effect on modal frequencies is a critical step to eliminate its interference in damage detection. Due to the nonuniform and time-dependent characteristics of temperature distribution, it is insufficient to obtain the reliable relationships between temperatures and modal frequencies using temperatures in air or at surface. In this paper, correlations between measured temperatures (air temperature, surface temperature, mean temperature, etc. and modal frequencies for the slab and beam are comparatively analyzed. And the quantitative models are constructed considering nonuniform temperature distribution. Firstly, the reinforced concrete slab and beam were constructed and placed outside the laboratory to be monitored. Secondly, the correlation coefficients between modal frequencies and three kinds of temperatures are calculated, respectively. Thirdly, simple linear regression models between mean temperature and modal frequencies are established for the slab and beam. Finally, five temperature variables are selected to construct the multiple linear regression models. Prediction results reveal that the proposed multiple linear regression models possess favorable accuracy to quantify the temperature effect on modal frequencies considering nonuniform temperature distribution.

  12. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Luís F.R.; Ribeiro, Guilherme B., E-mail: luisromano_91@hotmail.com, E-mail: gbribeiro@ieav.cta.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil). Pós-Graduação Ciências e Tecnologias Espaciais

    2017-07-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  13. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    International Nuclear Information System (INIS)

    Romano, Luís F.R.; Ribeiro, Guilherme B.

    2017-01-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  14. Validation of standard ASTM F2732 and comparison with ISO 11079 with respect to comfort temperature ratings for cold protective clothing.

    Science.gov (United States)

    Gao, Chuansi; Lin, Li-Yen; Halder, Amitava; Kuklane, Kalev; Holmér, Ingvar

    2015-01-01

    American standard ASTM F2732 estimates the lowest environmental temperature for thermal comfort for cold weather protective clothing. International standard ISO 11079 serves the same purpose but expresses cold stress in terms of required clothing insulation for a given cold climate. The objective of this study was to validate and compare the temperature ratings using human subject tests at two levels of metabolic rates (2 and 4 MET corresponding to 116.4 and 232.8 W/m(2)). Nine young and healthy male subjects participated in the cold exposure at 3.4 and -30.6 °C. The results showed that both standards predict similar temperature ratings for an intrinsic clothing insulation of 1.89 clo and for 2 MET activity. The predicted temperature rating for 2 MET activity is consistent with test subjects' thermophysiological responses, perceived thermal sensation and thermal comfort. For 4 MET activity, however, the whole body responses were on the cold side, particularly the responses of the extremities. ASTM F2732 is also limited due to its omission and simplification of three climatic variables (air velocity, radiant temperature and relative humidity) and exposure time in the cold which are of practical importance. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  16. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  17. An analysis of the influence of logistics activities on the export cold chain of temperature sensitive fruit through the Port of Cape Town

    Directory of Open Access Journals (Sweden)

    Leila L. Goedhals-Gerber

    2015-09-01

    Full Text Available Background: South Africa exports a large variety of different fruit types and cultivars worldwide. Yet, there is concern in the South African fruit industry that too much fruit and money is lost each year due to breaks along the fresh fruit export cold chain. Objective: The objective of this article was to identify the influence of logistics activities on breaks along the South African fruit export cold chain. The focus is specifically on temperature sensitive fruit, exported in refrigerated containers to Europe and the United Kingdom through the Port of Cape Town. This supply chain was selected as this was the most accessible supply chain in terms of retrieving the necessary temperature data. Method: The cold chain was investigated from the cold store, through all segments, until the Port of Cape Town. Temperature data collected with temperature monitoring devices from different fruit export supply chains of grapes, plums and pome fruit (apples and pears were analysed to identify the percentage of temperature breaks and the length of temperature breaks that occur at each segment of the cold chain. Results: The results show that a large number of breaks are experienced along South Africa’s fruit export cold chain, specifically at the interface between the cold store and the truck. In addition, the findings also show that there has been an improvement in the number of breaks experienced in the Port of Cape Town following the implementation of the NAVIS and Refcon systems. Conclusion: This article concludes by providing the fruit industry with areas that require addressing to improve operational procedures along the fruit export cold chain to help ensure that the fruit arrives at its final destination at optimal quality.

  18. Method and apparatus for scientific analysis under low temperature vacuum conditions

    Science.gov (United States)

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  19. Efficacy of keishibukuryogan, a traditional Japanese herbal medicine, in treating cold sensation and numbness after stroke: clinical improvement and skin temperature normalization in 22 stroke patients.

    Science.gov (United States)

    Fujita, Keishi; Yamamoto, Tetsuya; Kamezaki, Takao; Matsumura, Akira

    2010-01-01

    Cold sensation and numbness have been reported as post-stroke sensory sequelae attributable to distal axonopathy, which is caused by chronic ischemia of diseased limbs resulting from dysfunction of vasomotor regulatory systems. Keishibukuryogan is a traditional herbal medicine used to treat symptoms of peripheral ischemia such as cold extremities. This study investigated clinical improvement and skin temperature in peripheral ischemia patients to determine the efficacy of keishibukuryogan in alleviating post-stroke cold sensation and numbness. Twenty-two stroke patients with cold sensation and/or numbness were enrolled in this study. Subjective cold sensation and numbness, evaluated using the visual analogue scale, were found in 21 and 31 limbs, respectively. The skin temperature of diseased and healthy limbs was recorded. We observed all patients for 4 weeks and 17 patients for 8 weeks after administration of keishibukuryogan. The skin temperature of diseased limbs was significantly higher than baseline at 4 weeks and 8 weeks, whereas that of healthy limbs did not change significantly. Cold sensation and numbness were significantly improved at 4 weeks and 8 weeks compared to baseline. Keishibukuryogan administration resulted in warming of diseased limbs and improved cold sensation and numbness, probably by increasing peripheral blood flow.

  20. Data on the changes of the mussels׳ metabolic profile under different cold storage conditions

    Directory of Open Access Journals (Sweden)

    Violetta Aru

    2016-06-01

    Full Text Available One of the main problems of seafood marketing is the ease with which fish and shellfish undergo deterioration after death. 1H NMR spectroscopy and microbiological analysis were applied to get in depth insight into the effects of cold storage (4 °C and 0 °C on the spoilage of the mussel Mytilus galloprovincialis. This data article provides information on the average distribution of the microbial loads in mussels׳ specimens and on the acquisition, processing, and multivariate analysis of the 1H NMR spectra from the hydrosoluble phase of stored mussels. This data article is referred to the research article entitled “Metabolomics analysis of shucked mussels’ freshness” (Aru et al., 2016 [1].

  1. Expression of PDGF-beta receptor in broilers with pulmonary hypertension induced by cold temperature and its association with pulmonary vascular remodeling.

    Science.gov (United States)

    Li, Jin-Chun; Pan, Jia-Qiang; Huang, Guo-Qing; Tan, Xun; Sun, Wei-Dong; Liu, Yan-Juan; Wang, Xiao-Long

    2010-02-01

    The purpose of the present study was to characterize the relationship between platelet-derived growth factor beta receptor (PDGF-beta receptor) expression and pulmonary vascular remodeling found in broilers subjected to cold temperature beginning at 14 days of age. One hundred and sixty-one-day-old mixed-sex Avian-2000 commercial broilers were randomly divided into a normal temperature group (control) and a cold temperature group (cold). All the birds were brooded in normal temperature up to day 14, with the lighting schedule at 24 h per day. Starting at day 14, birds in the cold group were moved to a pen in the cold house and subjected to low temperature, while birds in the control group were still brooded at normal temperature. On days 14, 23, 30, 37 and 44, the right/total ventricle weight ratio (RV/TV), packed cell volume (PCV), the vessel wall area to vessel total area ratio (WA/TA), mean media thickness in pulmonary arterioles (mMTPA) and the expression of PDGF-beta receptor in pulmonary arterioles were measured, respectively. Cumulative pulmonary hypertension syndrome (PHS) morbidity was recorded in each group. Cool ambient temperature increased PHS morbidity of broilers. The values of WA/TA and mMTPA were also increased significantly compared with control group. PCV values in the cold temperature group were elevated from days 30 to 44, and RV/TV ratios were increased on days 37 and 44. Cold exposure enhanced PDGF-beta receptor expression in pulmonary arterioles, and the PDGF-beta receptor expression was significantly correlated with pulmonary vascular remodeling that was dedicated by increased WA/TA and mMTPA. The results indicated that PDGF-beta and its receptor were involved in the underlying mechanisms of pulmonary vascular remodeling in pulmonary hypertensive broilers. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Biofilm formation capacity of Salmonella serotypes at different temperature conditions

    Directory of Open Access Journals (Sweden)

    Karen A. Borges

    Full Text Available ABSTRACT: Salmonella spp. are one of the most important agents of foodborne disease in several countries, including Brazil. Poultry-derived products are the most common food products, including meat and eggs, involved in outbreaks of human salmonellosis. Salmonella has the capacity to form biofilms on both biotic and abiotic surfaces. The biofilm formation process depends on an interaction among bacterial cells, the attachment surface and environmental conditions. These structures favor bacterial survival in hostile environments, such as slaughterhouses and food processing plants. Biofilms are also a major problem for public health because breakage of these structures can cause the release of pathogenic microorganisms and, consequently, product contamination. The aim of this study was to determine the biofilm production capacity of Salmonella serotypes at four different temperatures of incubation. Salmonella strains belonging to 11 different serotypes, isolated from poultry or from food involved in salmonellosis outbreaks, were selected for this study. Biofilm formation was investigated under different temperature conditions (37°, 28°, 12° and 3°C using a microtiter plate assay. The tested temperatures are important for the Salmonella life cycle and to the poultry-products process. A total of 92.2% of the analyzed strains were able to produce biofilm on at least one of the tested temperatures. In the testing, 71.6% of the strains produced biofilm at 37°C, 63% at 28°C, 52.3% at 12°C and 39.5% at 3°C, regardless of the serotype. The results indicate that there is a strong influence of temperature on biofilm production, especially for some serotypes, such as S. Enteritidis, S. Hadar and S. Heidelberg. The production of these structures is partially associated with serotype. There were also significant differences within strains of the same serotype, indicating that biofilm production capacity may be strain-dependent.

  3. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Cai, Jian; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperatu......-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants.......Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperature......, viz., 10.0°C) at the Zadoks growth stage 28 (i.e.re-greening stage, starting on 20th of March) for 7d, and after 14d of recovery the plants were subsequently subjected to a 5d low temperature stress (8.4°C lower than the ambient temperature, viz., 14.1°C) at the Zadoks growth stage 31 (i...

  4. Experimental study for thermal striping phenomena of parallel triple-jet. Effects of the difference between hot jets and cold jet in discharged temperature and velocity on convective mixing

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Tokuhiro, A.; Miyakoshi, Hiroyuki

    1996-10-01

    Elucidation on thermal hydraulic behavior of Thermal Striping is of importance for a reactor safety, which is arisen form exit temperature difference of fuel subassemblies. Since its temperature fluctuation may cause thermal cycle fatigue on upper internal structure (UIS). A series of experiments was performed using the Thermal Striping water test facility in order to investigate the mixing phenomena on three vertical jets with exit velocity and temperature differences. The parameters were the velocity and temperature of the jets at discharge nozzles. The local velocities were measured by Ultrasound Velocity Profile (UVP) monitor and Laser Doppler Anemometry (LDA), and temperature distributions were measured by thermocouples. This report mainly examined the experimental results of temperature measurements. There is a typical region where the gradient of the temperature variation in the triple-jet: that is the Convective Mixing region. This region is independent of the discharged temperature difference, and spreads with larger velocity difference among the jets. For isovelocity discharge conditions, non-dimensional temperature fields are almost independent of discharged temperature differences within Convective Mixing region. Consequently, the effect of temperature difference is negligible compared to that of velocity difference on the flow field. There are remarkable frequencies of 2-5Hz in temperature fluctuation due to a oscillation of the central jet (cold jet) for this condition. While, for non-isovelocity discharge condition, there are no remarkable frequencies. Hence, it is clear that there is the region where a large thermal fatigue is imposed by Thermal Striping against structures of Fast Reactor. It is suggested that the structures have to be placed outside of Convective Mixing region. Also, it is considered that typical frequencies in temperature fluctuation are controlled by giving a discharge velocity difference between cold and hot jets. (J.P.N.)

  5. The impact of cold chain temperature abuses on the quality of frozen strawberries (Fragaria ×ananassa

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2013-04-01

    Full Text Available The quality of frozen foods can be negatively affected if improper storage and distribution temperatures are allowed. The objective of this study was to investigate the effect of freeze-thaw cycles, which may occur in the cold chain, on colour (Lab, Total Colour Differences (TCD, chroma and hue angle and vitamin C (ascorbic and dehydroascorbic acids content of frozen strawberries (Fragaria ×ananassa, Duschesne, cv. Selva. A plan of temperature abuses (TAs was established, based on a real situation, and applied to frozen strawberries during a four month frozen storage period. The results showed that the lightness (L was the only parameter that was not significantly affected by range of TAs studied. The colour showed some variation on the parameters a, b, TCD, chroma and hue angle. During TAs, ascorbic acid decreased about 75% and dehydroascorbic acid increased 73%. The non-abused strawberry samples showed better overall appearance than the abused samples. This work contributes to an understanding of the quality changes of frozen strawberries that might occur during frozen storage and cold chain distribution.

  6. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures.

    Science.gov (United States)

    Chen, Szu-Jung; Lin, Pei-Wen; Lin, Hsin-Ping; Huang, Shenq-Shyang; Lai, Feng-Jie; Sheu, Hamm-Ming; Hsu, Li-Jin; Chang, Nan-Shan

    2015-04-10

    When COS7 fibroblasts and other cells were exposed to UVC irradiation and cold shock at 4°C for 5 min, rapid upregulation and nuclear accumulation of NOS2, p53, WWOX, and TRAF2 occurred in 10-30 min. By time-lapse microscopy, an enlarging gas bubble containing nitric oxide (NO) was formed in the nucleus in each cell that finally popped out to cause "bubbling death". Bubbling occurred effectively at 4 and 22°C, whereas DNA fragmentation was markedly blocked at 4°C. When temperature was increased to 37°C, bubbling was retarded and DNA fragmentation occurred in 1 hr, suggesting that bubbling death is switched to apoptosis with increasing temperatures. Bubbling occurred prior to nuclear uptake of propidium iodide and DAPI stains. Arginine analog Nω-LAME inhibited NO synthase NOS2 and significantly suppressed the bubbling death. Unlike apoptosis, there were no caspase activation and flip-over of membrane phosphatidylserine (PS) during bubbling death. Bubbling death was significantly retarded in Wwox knockout MEF cells, as well as in cells overexpressing TRAF2 and dominant-negative p53. Together, UV/cold shock induces bubbling death at 4°C and the event is switched to apoptosis at 37°C. Presumably, proapoptotic WWOX and p53 block the protective TRAF2 to execute the bubbling death.

  7. The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico

    Science.gov (United States)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.; Seim, H.; Bane, J.; van Weering, T. C. E.

    2012-01-01

    Near-bed hydrodynamic conditions were recorded for almost one year in the Viosca Knoll area (lease block 826), one of the most well-developed cold-water coral habitats in the Gulf of Mexico. Here, a reef-like cold-water coral ecosystem, dominated by the coral Lophelia pertusa, resembles coral habitats found off the southeastern US coast and the North East Atlantic. Two landers were deployed in the vicinity and outside of the coral habitat and measured multiple near-bed parameters, including temperature, salinity, current speed and direction and optical and acoustic backscatter. Additionally, the lander deployed closest to the coral area was equipped with a sediment trap that collected settling particles over the period of deployment at 27 day intervals. Long-term monitoring showed, that in general, environmental parameters, such as temperature (6.5-11.6 °C), salinity (34.95-35.4) and current speed (average 8 cm s -1, peak current speed up to 38 cm s -1) largely resembled conditions previously recorded within North East Atlantic coral habitats. Major differences between site VK 826 and coral areas in the NE Atlantic were the much higher particle load, and the origin of the particulate matter. Several significant events occurred during the deployment period beginning with an increase in current speed followed by a gradual increase in temperature and salinity, followed by a rapid decrease in temperature and salinity. Simultaneously with the decrease in temperature and salinity, the direction of the current changed from west to east and cold and less turbid water was transported upslope. The most prominent event occurred in July, when a westward flow lasted over 21 days. These events are consistent with bottom boundary layer dynamics influenced by friction (bottom Ekman layer). The Mississippi River discharges large quantities of sediment and dominates sedimentation regimes in the area. Furthermore, the Mississippi River disperses large amounts of terrestrial organic

  8. Two-dimensional finite difference model to study temperature distribution in SST regions of human limbs immediately after physical exercise in cold climate

    Science.gov (United States)

    Kumari, Babita; Adlakha, Neeru

    2015-02-01

    Thermoregulation is a complex mechanism regulating heat production within the body (chemical thermoregulation) and heat exchange between the body and the environment (physical thermoregulation) in such a way that the heat exchange is balanced and deep body temperatures are relatively stable. The external heat transfer mechanisms are radiation, conduction, convection and evaporation. The physical activity causes thermal stress and poses challenges for this thermoregulation. In this paper, a model has been developed to study temperature distribution in SST regions of human limbs immediately after physical exercise under cold climate. It is assumed that the subject is doing exercise initially and comes to rest at time t = 0. The human limb is assumed to be of cylindrical shape. The peripheral region of limb is divided into three natural components namely epidermis, dermis and subdermal tissues (SST). Appropriate boundary conditions have been framed based on the physical conditions of the problem. Finite difference has been employed for time, radial and angular variables. The numerical results have been used to obtain temperature profiles in the SST region immediately after continuous exercise for a two-dimensional unsteady state case. The results have been used to analyze the thermal stress in relation to light, moderate and vigorous intensity exercise.

  9. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    Science.gov (United States)

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Environmental control of drilling mud discharge through dewatering in cold weather climates: effect of ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wojtanowicz, A. K. [Louisiana State Univ., Baton Rouge, LA (United States); Ye, Y. [Jianghan Petroleum Institute, Beijing, (China)

    1998-05-01

    Results of an experimental study of the effects of drilling mud temperature upon dewatering performance at various temperatures were presented. Three temperature ranges (from flowline temperature to room temperature, from room temperature to freezing point, and freeze/thaw, i.e. from -20 degrees C to 12 degrees C) were considered. Both unweighted and weighted fresh water muds and weighted salt water mud were tested using a sealed laboratory batch reactor, to prevent rapid vaporization of separated water at temperatures above 60 degrees C. Deep freezing was achieved by using ice or ice-salt baths. Net water removal was measured with a bench-top plate press under constant expression pressure of 270 kPa. Results showed that the freeze/thaw treatment process proved to be very effective, enhancing water removal by 34 to 39 per cent, and reducing waste mud volume by 64 to 72 per cent. No advantage to dewatering hot drilling mud from active systems was observed at temperatures above 21 degrees C. It was suggested that at temperatures under 21 degrees C, the waste drilling mud diverted from an active system should be dewatered when its temperature is still over 40 degrees C. to reduce the amount of chemicals needed for separation enhancement. 14 refs., 4 tabs., 4 figs.

  11. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    Science.gov (United States)

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Establishing Bedding Requirements during Transport and Monitoring Skin Temperature during Cold and Mild Seasons after Transport for Finishing Pigs

    Directory of Open Access Journals (Sweden)

    John McGlone

    2014-05-01

    Full Text Available The broad aim of this study was to determine whether bedding level in the transport trailer influenced pig performance and welfare. Specifically, the objective was to define the bedding requirements of pigs during transportation in commercial settings during cold and mild weather. Animals (n = 112,078 pigs on 572 trailers used were raised in commercial finishing sites and transported in trailers to commercial processing plants. Dead on arrival (DOA, non-ambulatory (NA, and total dead and down (D&D data were collected and skin surface temperatures of the pigs were measured by infrared thermography. Data were collected during winter (Experiment 1 and fall/spring (Experiment 2. Total D&D percent showed no interaction between bedding level and outside air temperature in any experiments. Average skin surface temperature during unloading increased with outside air temperature linearly in both experiments (P < 0.01. In conclusion, over-use of bedding may be economically inefficient. Pig skin surface temperature could be a useful measure of pig welfare during or after transport.

  13. The effect of cold priming on the fitness of Arabidopsis thaliana accessions under natural and controlled conditions

    DEFF Research Database (Denmark)

    Cvetkovic, Jelena; Müller, Klaus; Baier, Margarete

    2017-01-01

    Priming improves an organism's performance upon a future stress. To test whether cold priming supports protection in spring and how it is affected by cold acclimation, we compared seven Arabidopsis accessions with different cold acclimation potentials in the field and in the greenhouse for growth......, photosynthetic performance and reproductive fitness in March and May after a 14 day long cold-pretreatment at 4 °C. In the plants transferred to the field in May, the effect of the cold pretreatment on the seed yield correlated with the cold acclimation potential of the accessions. In the March transferred...

  14. Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures

    Directory of Open Access Journals (Sweden)

    Cowling Wallace A

    2011-06-01

    Full Text Available Abstract Background Unreduced gametes (gametes with the somatic chromosome number may provide a pathway for evolutionary speciation via allopolyploid formation. We evaluated the effect of genotype and temperature on male unreduced gamete formation in Brassica allotetraploids and their interspecific hybrids. The frequency of unreduced gametes post-meiosis was estimated in sporads from the frequency of dyads or giant tetrads, and in pollen from the frequency of viable giant pollen compared with viable normal pollen. Giant tetrads were twice the volume of normal tetrads, and presumably resulted from pre-meiotic doubling of chromosome number. Giant pollen was defined as pollen with more than 1.5 × normal diameter, under the assumption that the doubling of DNA content in unreduced gametes would approximately double the pollen cell volume. The effect of genotype was assessed in five B. napus, two B. carinata and one B. juncea parents and in 13 interspecific hybrid combinations. The effect of temperature was assessed in a subset of genotypes in hot (day/night 30°C/20°C, warm (25°C/15°C, cool (18°C/13°C and cold (10°C/5°C treatments. Results Based on estimates at the sporad stage, some interspecific hybrid genotypes produced unreduced gametes (range 0.06 to 3.29% at more than an order of magnitude higher frequency than in the parents (range 0.00% to 0.11%. In nine hybrids that produced viable mature pollen, the frequency of viable giant pollen (range 0.2% to 33.5% was much greater than in the parents (range 0.0% to 0.4%. Giant pollen, most likely formed from unreduced gametes, was more viable than normal pollen in hybrids. Two B. napus × B. carinata hybrids produced 9% and 23% unreduced gametes based on post-meiotic sporad observations in the cold temperature treatment, which was more than two orders of magnitude higher than in the parents. Conclusions These results demonstrate that sources of unreduced gametes, required for the triploid

  15. Effect of Annealing on Strain-Temperature Response under Constant Tensile Stress in Cold-Worked NiTi Thin Wire

    OpenAIRE

    Yan, Xiaojun; Van Humbeeck, Jan

    2011-01-01

    The present paper aims to understand the influence of annealing on the strain-temperature response of a cold-worked NiTi wire under constant tensile stress. It was found that transformation behavior, stress-strain relationship, and strain-temperature response of the cold-worked NiTi wire are strongly affected by the annealing temperature. Large martensitic strains can be reached even though the applied stress is below the plateau stress of the martensite phase. At all stress levels transforma...

  16. Evaluation of Workability on the Microstructure and Mechanical Property of Modified 9Cr-2W Steel for Fuel Cladding by Cold Drawing Process and Intermediate Heat Treatment Condition

    Directory of Open Access Journals (Sweden)

    Hyeong-Min Heo

    2018-03-01

    Full Text Available In this study, we evaluated the cold drawing workability of two kinds of modified 9Cr-2W steel containing different contents of boron and nitrogen depending on the temperature and time of normalizing and tempering treatments. Using ring compression tests at room temperature, the effect of intermediate heat treatment condition on workability was investigated. It was found that the prior austenite grain size can be changed by the austenite transformation and that the grain size increases with increasing temperature during normalizing heat treatment. Alloy B and Alloy N showed different patterns after normalizing heat treatment. Alloy N had higher stress than Alloy B, and the reduction in alloy N increased while the reduction in alloy B decreased. Alloy B showed a larger number of initially formed cracks and a larger average crack length than Alloy N. Crack length and number increased proportionally in Alloy B as the stress increased. Alloy B had lower crack resistance than Alloy N due to boron segregation.

  17. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    OpenAIRE

    Chepfer , H.; Minnis , P.; Dubuisson , P.; Chiriaco , Marjolaine; Sun-Mack , S.; Rivière , E.D.

    2007-01-01

    International audience; Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx...

  18. Costs and benefits of cold acclimation in field released Drosophila

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Hoffmann, Ary A; Overgaard, Johannes

    2008-01-01

    -acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefits were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold......One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test...... for costs and benefits of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefits at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold...

  19. Near-bed environmental conditions influencing cold-water coral growth on Viosca Knoll, Gulf of Mexico

    Science.gov (United States)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Weering, T. V.; Ross, S.; Roberts, M.; Seim, H.

    2010-12-01

    During recent decades research has shown that cold-water coral (CWC) ecosystems are widely distributed on the margins of the Atlantic Ocean, representing the most species rich ecosystems in the upper bathyal zone. On the European continental margin and the continental slope from North Carolina to Florida, CWCs have formed large reef and mound structures. Presently detailed studies on the environmental constraints in CWC areas are limited to the NE Atlantic. This is the first study showing long-term environmental variability in a CWC habitat in the West Atlantic. The most extensive CWC area known in the Gulf of Mexico is found on the Viosca Knoll (480 m), located in the vicinity of the Mississippi River. This source dominates sedimentation patterns, discharging large amounts of sediments and dispersing organic matter and nutrients. In the coral area, CTD transects were made and benthic landers were deployed for a period of 12 months to identify near-bed environmental conditions, seasonal variability and the forcing mechanisms of particle supply. The importance of studying the functioning of deep water ecosystems was underpinned by the recent Deepwater Horizon oil spill, which might pose a risk for the CWC ecosystems. CTD transects showed an oxygen minimum zone at the depth of the corals. Long term deployments of landers revealed intra-annual temperature (6.5-11.6 °C) and salinity fluctuations, which co-vary during the year. Food supply appears not to be driven by surface processes due to low fluorescence (except for two periods in April and June), but an indirect mechanism of transport may be a 24 hour diel vertical migration of zooplankton. The average current speed in the area varies at around 8 cms-1, whilst peak current speeds were recorded up to 38 cms-1. East-west currents are strongest in the area corresponding with flow along isobaths. During westward flow, the amount of particles in the water column increases, while during eastward flow clearer water is

  20. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  1. IMPACT OF THE COLD END OPERATING CONDITIONS ON ENERGY EFFICIENCY OF THE STEAM POWER PLANTS

    Directory of Open Access Journals (Sweden)

    Slobodan Laković

    2010-01-01

    Full Text Available The conventional steam power plant working under the Rankine Cycle and the steam condenser as a heat sink and the steam boiler as a heat source have the same importance for the power plant operating process. Energy efficiency of the coal fired power plant strongly depends on its turbine-condenser system operation mode. For the given thermal power plant configuration, cooling water temperature or/and flow rate change generate alterations in the condenser pressure. Those changes have great influence on the energy efficiency of the plant. This paper focuses on the influence of the cooling water temperature and flow rate on the condenser performance, and thus on the specific heat rate of the coal fired plant and its energy efficiency. Reference plant is working under turbine-follow mode with an open cycle cooling system. Analysis is done using thermodynamic theory, in order to define heat load dependence on the cooling water temperature and flow rate. Having these correlations, for given cooling water temperature it is possible to determine optimal flow rate of the cooling water in order to achieve an optimal condensing pressure, and thus, optimal energy efficiency of the plant. Obtained results could be used as useful guidelines in improving existing power plants performances and also in design of the new power plants.

  2. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  3. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Justifying a Set of Basic Characteristics of High Temperature Cold Accumulators in Their Designing for the Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    E. S. Khromov

    2015-01-01

    Full Text Available The ground-based systems use a wide variety of heat-emitting equipment. For temperature control of equipment and facilities, the thermal management systems (TMS are included in the ground-based systems. However, in operation, the off-nominal situations with increased heat emission are possible. To avoid overheating of equipment or environment in facilities, where equipment is placed, is possible through completing a set of TMS by high-temperature cold accumulators (CA.When filling CA by thermal accumulating materials (TAM with change in phase at the temperature level exceeding the ambient temperature, CA integration in TMS is simplified and the need to increase the cooling capacity of the sources of its cold is eliminated. Among the known multiple-cycle TAMs with change in phase "melting-solidification" in a set of characteristics, the most promising are crystal hydrates of salts and their systems, as well as paraffin, especially clean. However, advantages and disadvantages of these classes of TAM are different and disable us to develop a generic version of the CA design.The objective of this work is to identify a set of the main characteristics that significantly affect the CA efficiency. To achieve the goal is used a mathematical simulation of heat exchange and phase change processes, using CA with intermediate coolant as an example. Simulation is based on generation and solution of the system of equations of a thermal balance for the coolant circulating through the inner tube of CA container. The system of equations is solved using Excel tools.Varying values of studied characteristics and generalization of results allowed to us define a following set: TAM thermal conductivity, temperature difference in the coolant – TAM system, TAM container dimensions. The results can be applied when developing a CA, as a part of the "TMS-CA heat generation facility" of the ground-based systems with a specified heat absorption capacity at given temperature

  5. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  6. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  7. Indo-Pacific Warm Pool Area Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature Variations

    Science.gov (United States)

    Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan

    2014-01-01

    The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481

  8. Tests on wall temperatures of the moderator cell of the D2 cold source in equilibrium and transient regimes

    International Nuclear Information System (INIS)

    Hoffmann, H.

    1989-01-01

    A second cold source is planned in the high flux reactor inside an available horizontal channel. A volume exceeding 5 liters of liquid D 2 at a temperature of 25 K is required for good moderation. The moderator is near the core in the glove finger 23 cm in diameter and 5 m long. Thermal insulation of the cold structures from the environment is assured by a vacuum (Fig. 1). A facility near the core means a high heat liberation (3000 W) in the moderating cell, two-thirds of which is liberated in the material (aluminum) and one-third in the moderator itself. The moderator must handle the heat transfer. This can only be achieved with cooling by boiling the moderator in the cell which is in a state of saturation (25 K; 1.5 bars). It evaporates under the effect of the power liberated. The vapor is eliminated from the source in a monophase form, or in a diphase form as a mixture of fluid and vapor and then liquefied outside the glove finger in a condenser in a high position, cooled with helium. The condensed fluid then returns into the cell. This D 2 circuit is supposed to operate without pumps according to the principle of a thermisiphon. That is, the density differences in the input and outlet tubes give rise to circulation of the fluid. 6 refs., 24 figs

  9. Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions.

    Science.gov (United States)

    Jaworski, Artur; Kuszewski, Hubert; Ustrzycki, Adam; Balawender, Krzysztof; Lejda, Kazimierz; Woś, Paweł

    2018-04-20

    Measurement of car engines exhaust pollutants emissions is very important because of their harmful effects on the environment. This article presents the assessment of repeatability of the passenger car engine exhaust pollutants emission research results obtained in the conditions of a chassis dynamometer. The research was conducted in a climate chamber, enabling the temperature conditions to be determined from - 20 to + 30 °C. The emission of CO, CH 4 , CO 2 , NO X , THC, and NMHC was subjected to the analysis. The aim of the research is to draw attention to the accuracy of the pollutant emission research results in driving cycles, and the comparison of pollutant emission results and their repeatability obtained in successive NEDC cycles under cold and hot start conditions. The results of the analysis show that, in the case of a small number of measurements, the results repeatability analysis is necessary for a proper interpretation of the pollutant emission results on the basis of the mean value. According to the authors' judgment, it is beneficial to determine the coefficient of variation for a more complete assessment of exhaust emission result repeatability obtained from a small number of measurements. This parameter is rarely presented by the authors of papers on exhaust components emission research.

  10. Analysis of injection sprays by means of large high-speed engines under cold and evaporating conditions; Analyse von Einspritzsprays mittelschnelllaufender Grossmotoren unter kalten und verdampfenden Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Christian; Pinkert, Fabian; Harndorf, Horst [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Frobenius, Moritz [AVL Deutschland GmbH, Haimhausen (Germany)

    2011-07-01

    The introduction of future emission limits for marine diesel engines requires an improved understanding of the fuel injection process and mixture formation as well as the development of robust and powerful tools to calculate the emission generation. This publication presents research results of the project partners AVI Deutschland GmbH and Rostock University obtained in the associated project EMI-MINI II. Objective of the experimental part of the work is the fundamental investigation of the mixture formation at cold and evaporative conditions in a high-pressure and high-temperature chamber by means of optical methods. For the measurements, a modem, heavy fuel capable single circuit common-rail injector of a medium speed diesel engine is applied. Based on the experimental results a calibration and validation of spray break-up and evaporation models is done. The models are applied in a specific simulation approach in order to predict engine emissions. Characteristic feature of the chosen approach is the consideration of specific nozzle internal flow conditions as boundary conditions for the spray break-up models and thus for the ignition, combustion and emission generation. The presented results demonstrate that the applied models are very sufficient to calculate injection and mixture formation processes. By comparing calculated engine emissions to experimental results obtained by WTZ Rosslau gGmbH it is shown that the presented simulation approach is capable to predict the impact of varying engine parameters on NO{sub x}- and soot emissions effectively. (orig.)

  11. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions

    International Nuclear Information System (INIS)

    Richard, F.; Delobelle, P.; Leclercq, S.; Bouffioux, P.; Rousselier, G.

    2003-01-01

    This paper proposes a damaged viscoplastic model to simulate, for different isotherms (320, 350, 380, 400 and 420 degC), the out-of-flux anisotropic mechanical behavior of cold work stress relieved Zircaloy-4 cladding tubes over the fluence range 0-85.1024 nm -2 (E > 1 MeV). The model, identified from uni and biaxial tests conducted at 350 and 400 degC, is validated from tests performed at 320, 380 and 420 degC. This model is able to simulate strain hardening under internal pressure followed by a stress relaxation period (thermal creep), which is representative of a pellet cladding mechanical interaction occurring during a power transient (class 2 incidental condition). Both the integration of a scalar state variable, characterizing the damage caused by a bombardment with neutrons, and the modification of the static recovery law allowed us to simulate the fast neutron flux effect (irradiation creep). (author)

  12. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China.

    Science.gov (United States)

    Cui, Yan; Yin, Fei; Deng, Ying; Volinn, Ernest; Chen, Fei; Ji, Kui; Zeng, Jing; Zhao, Xing; Li, Xiaosong

    2016-12-10

    Background : Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China); Methods : We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM) with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an "optimum temperature" that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results : The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%-13.65%). Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%-12.81%), while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%-2.35%). The attributable risk (AR) of respiratory diseases was higher (19.69%, 95%CI: 14.45%-24.24%) than that of cardiovascular diseases (11.40%, 95%CI: 6.29%-16.01%); Conclusions : In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the impact of ambient

  13. Temperature conditions in an LMFBR power plant from primary sodium to steam circuits

    International Nuclear Information System (INIS)

    Aubert, M.; Chaumont, J.M.; Mougniot, J.C.; Recolin, J.; Acket.

    1977-01-01

    The optimization analysis which is presented is based on an evaluation of the tender prior to contracting Super Phenix. Process constraints are reviewed: fuel limitations, turbine, steam generators; parameter selection involves major temperatures (primary ΔT 0 , steam generator water inlet temperature, turbine steam inlet temperature) or minor temperature (secondary sodium); countervailing mechanisms include upward and downward tendencies. The optimum values obtained by the method represent a coherent balanced set of parameters. So, the most significant tendency revealed by an optimization of investment costs involves the advantages of a hot system with a steam temperature above 515 0 C, but the hot temperature range is very limited (3 0 C between the hot primary sodium temperature and the steam temperature) while the cold temperatures cover a much wide range. The tolerance range within which each critical temperature may be selected without exceeding a certain cost margin per KWh is given

  14. Inbreeding effects on standard metabolic rate investigated at cold, benign and hot temperatures in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Jensen, Palle; Overgaard, Johannes; Loeschcke, Volker

    2014-01-01

    in replicated lines of inbred and outbred Drosophila melanogaster at stressful low, benign and stressful high temperatures. The lowest measurements of metabolic rate in our study are always associated with the low activity period of the diurnal cycle and these measurements therefore serve as good estimates...... of standard metabolic rate. Due to the potentially added costs of genetic stress in inbred lines we hypothesized that inbred individuals have increased metabolic rate compared to outbred controls and that this is more pronounced at stressful temperatures due to synergistic inbreeding by environment...... interactions. Contrary to our hypothesis we found no significant difference in metabolic rate between inbred and outbred lines and no interaction between inbreeding and temperature. Inbreeding however effected the variance; the variance in metabolic rate was higher between the inbred lines compared...

  15. Unusual spontaneous cold auto-hemagglutination phenomenon in blood units stored under blood bank condition: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Sanmukh R Joshi

    2015-01-01

    Full Text Available Background: Cold agglutinins (CA are benign naturally occurring low titer autoantibodies present in most individuals. Those with moderate strength are found in infections, malignancies or autoimmune conditions with diagnostic importance. Aim: Present report deals with CA that brought spontaneous hemagglutination in blood units stored at 2-6°C. Study design: Over 32 months period between July 1993 and December 1995, blood units were inspected for spontaneous cold auto-hemagglutination (SpCA phenomenon. The plasma from these units was separated and investigated for serological specificity using in house red cell panel and standard serological methods. Results: Among 51,671 blood units, 112 units showed SpCA phenomenon. A rising trend seen in first half of study period significantly fell in remaining half. Specificities of the antibodies detected include anti-I (27, anti-i (53, anti-Pr (21 with remaining few being undetermined specificity. Absorption of serum using enzyme-treated red cells revealed a presence of anti-Pr among the cases, the two of which with new specificities that reacted preferentially with red cells from either new-born or adults and were tentatively named as anti-Pr Fetal and anti-Pr adult , respectively. While 9 cases showed optimum reaction at neutral pH of 7, 68 (62% cases reacted at pH 5.8 through 8.0, 28 (26% cases preferred an acidic pH 5.8 and 4 cases opted an alkaline pH 8. Of 28 cases with antibodies preferentially reacting in acidic medium, 17 (60% cases were anti-i and 7 (25% cases were anti-Pr. Conclusion: Unique SpCA phenomenon observed in blood units stored under blood bank conditions seems to be due to CA developed in response to vector-borne infectious agents. Majority of the cases displayed their specificities, otherwise are rare to be encountered.

  16. Hydrothermal carbonization of biomass waste under low temperature condition

    Directory of Open Access Journals (Sweden)

    Putra Herlian Eriska

    2018-01-01

    Full Text Available In this paper, the use of banana peel for energy purposes was investigated. Banana peel is a lignocellulosic waste since it is the most widely produced and consumed fruit in Indonesia. Among the others, hydrothermal carbonization (HTC was chosen as alternative themochemical process, suitable for high moisture biomass. Through a 1 L stirred reactor, hydrothermal treatments were performed under low temperature condition (190, 210 and 230 °C, residence times (30 and 60 min, and biomass to water ratio (1:3, 1:5, and 1:10. Three of product were collected from the process with primary material balance. Solid phase (hydrochar was evaluated in terms of calorific value, proximate and ultimate analysis. The results suggested that the hydrothermal carbonization of banana peel gave high heating value (HHV of 20.09 MJ/kg for its char after dried naturally.

  17. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  18. PHYSIOLOGICAL AND LEUKOCYTE SUBSET RESPONSES TO EXERCISE AND COLD EXPOSURE IN COLD-ACCLIMATIZED SKATERS

    Directory of Open Access Journals (Sweden)

    K. Kim

    2014-07-01

    Full Text Available We investigated physiological responses and changes in circulating immune cells following exercise in cold and thermoneutral conditions. Participants were short track skaters (n=9 who were acclimatized to cold conditions, and inline skaters (n=10 who were not acclimatized. All skaters were young, and skating at a recreational level three days per week for at least one year. Using a cross-over design, study variables were measured during 60 min of submaximal cycling (65% ·VO2max in cold (ambient temperature: 5±1°C, relative humidity: 41±9% and thermoneutral conditions (ambient temperature: 21±1°C, relative humidity: 35±5%. Heart rate, blood lactate and tympanic temperature were measured at rest, during exercise and recovery. Plasma cortisol, calprotectin and circulating blood cell numbers were measured before and after 60 min of cold or thermoneutral conditions, and during recovery from exercise. Heart rate was lower in both groups during exercise in cold versus thermoneutral conditions (P<0.05. The increase in total leukocytes during recovery was primarily due to an increase in neutrophils in both groups. The cold-acclimatized group activated neutrophils after exercise in cold exposure, whereas the non-acclimatized group activated lymphocyte and cortisol after exercise in cold exposure. Lymphocyte subsets significantly changed in both groups over time during recovery as compared to rest. Immediately after exercise in both groups, CD16+ and CD69+ cells were elevated compared to rest or before exercise in both conditions. Acclimatization to exercise in the cold does not appear to influence exercise-induced immune changes in cold conditions, with the possible exception of neutrophils, lymphocytes and cortisol concentration.

  19. Longitudinal changes of nerve conduction velocity, distal motor latency, compound motor action potential duration, and skin temperature during prolonged exposure to cold in a climate chamber.

    Science.gov (United States)

    Maetzler, Walter; Klenk, Jochen; Becker, Clemens; Zscheile, Julia; Gabor, Kai-Steffen; Lindemann, Ulrich

    2012-09-01

    Changes of nerve conduction velocity (NCV), distal motor latency (DML), compound motor action potential (CMAP) duration, and skin temperature with regard to cold have been investigated by use of ice packs or cold water baths, but not after cooling of environmental temperature which has higher ecological validity. The aim of this study was to investigate these parameters during cooled room temperature. NCV, DML, and CMAP duration of the common fibular nerve, and skin temperature were measured in 20 healthy young females during exposure to 15°C room temperature, coming from 25°C room. We found that NCV decreased and DML increased linearly during 45 min observation time, in contrast to CMAP duration and skin temperature which changes followed an exponential curve. To the best of our knowledge, this is the first study investigating changes of these parameters during exposure to environmental cold. The results may pilot some new hypotheses and studies on physiological and pathological changes of the peripheral nervous system and skin to environmental cold, e.g., in elderly with peripheral neuropathies.

  20. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  1. Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage.

    Science.gov (United States)

    Keating, C; Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V

    2018-07-01

    The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25-1.0 kg chemical oxygen demand (COD) m-3 d-1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20-30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors.

  2. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  3. Temperature and phase-space density of a cold atom cloud in a quadrupole magnetic trap

    Energy Technology Data Exchange (ETDEWEB)

    Ram, S. P.; Mishra, S. R.; Tiwari, S. K.; Rawat, H. S. [Raja Ramanna Centre for Advanced Technology, Indore (India)

    2014-08-15

    We present studies on modifications in the temperature, number density and phase-space density when a laser-cooled atom cloud from optical molasses is trapped in a quadrupole magnetic trap. Theoretically, for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap is shown first to increase with increasing magnetic field gradient and then to decrease with it after attaining a maximum value at an optimum value of the magnetic-field gradient. The experimentally-measured variation in the phase-space density in the magnetic trap with changing magnetic field gradient is shown to exhibit a similar trend. However, the experimentally-measured values of the number density and the phase-space density are much lower than the theoretically-predicted values. This is attributed to the experimentally-observed temperature in the magnetic trap being higher than the theoretically-predicted temperature. Nevertheless, these studies can be useful for setting a higher phase-space density in the trap by establishing an optimal value of the field gradient for a quadrupole magnetic trap.

  4. Body temperature responses in spinal cord injured individuals during exercise in the cold and heat.

    NARCIS (Netherlands)

    Boot, C.R.L.; Binkhorst, R.A.; Hopman, M.T.E.

    2006-01-01

    The aim of this study was to assess the effect of arm exercise on the heat balance in spinal cord-injured (SCI) individuals with complete lesions at ambient temperatures of 10 and 35 degrees C. Four SCI with a high lesion (> or = T6) (SCI-H), seven with a low lesion (< T6) (SCI-L), and ten

  5. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2007-01-01

    Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in...

  6. Photoperiod and cold night temperature in control of flowering in Kalanchoë

    DEFF Research Database (Denmark)

    Lopes Coelho, Lívia; Kuligowska, Katarzyna; Lütken, Henrik Vlk

    2015-01-01

    was used as control species to validate treatments that consisted of combining short day photoperiod (8 h) and different night temperature (18, 12 and 6C). While K. prittwitzii had 100% flowering for all treatments, K. marmorata only flowered at 12C (33% plants flowering) and 6C (25% plants flowering...

  7. Cold Temperature Effects on Speciated VOC Emissions from Modern GDI Light-Duty Vehicles 1

    Science.gov (United States)

    In this study, speciated VOC emissions were characterized from three modern GDI light-duty vehicles. The vehicles were tested on a chassis dynamometer housed in a climate-controlled chamber at two temperatures (20 and 72 °F) using the EPA Federal Test Procedure (FTP) and a portio...

  8. Heat or Cold: Which One Exerts Greater Deleterious Effects on Health in a Basin Climate City? Impact of Ambient Temperature on Mortality in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-12-01

    Full Text Available Background: Although studies from many countries have estimated the impact of ambient temperature on mortality, few have compared the relative impacts of heat and cold on health, especially in basin climate cities. We aimed to quantify the impact of ambient temperature on mortality, and to compare the contributions of heat and cold in a large basin climate city, i.e., Chengdu (Sichuan Province, China; Methods: We estimated the temperature-mortality association with a distributed lag non-linear model (DLNM with a maximum lag-time of 21 days while controlling for long time trends and day of week. We calculated the mortality risk attributable to heat and cold, which were defined as temperatures above and below an “optimum temperature” that corresponded to the point of minimum mortality. In addition, we explored effects of individual characteristics; Results: The analysis provides estimates of the overall mortality burden attributable to temperature, and then computes the components attributable to heat and cold. Overall, the total fraction of deaths caused by both heat and cold was 10.93% (95%CI: 7.99%–13.65%. Taken separately, cold was responsible for most of the burden (estimate 9.96%, 95%CI: 6.90%–12.81%, while the fraction attributable to heat was relatively small (estimate 0.97%, 95%CI: 0.46%–2.35%. The attributable risk (AR of respiratory diseases was higher (19.69%, 95%CI: 14.45%–24.24% than that of cardiovascular diseases (11.40%, 95%CI: 6.29%–16.01%; Conclusions: In Chengdu, temperature was responsible for a substantial fraction of deaths, with cold responsible for a higher proportion of deaths than heat. Respiratory diseases exert a larger effect on death than other diseases especially on cold days. There is potential to reduce respiratory-associated mortality especially among the aged population in basin climate cities when the temperature deviates beneath the optimum. The result may help to comprehensively assess the

  9. [Effects of transient receptor potential melastatin 8 cation channels on inflammatory reaction induced by cold temperatures in human airway epithelial cells].

    Science.gov (United States)

    Li, Min-chao; Perelman, Juliy M; Kolosov, Victor P; Zhou, Xiang-dong

    2011-10-01

    To explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) in cold-induced production of inflammatory factors in airway epithelial cells and related signal transduction mechanism. The 16HBE human airway epithelial cells were stimulated with cold temperature (18°C). In intervention experiments, cells were pretreated with TRPM8 channel antagonist BCTC, protein kinase C (PKC) specific inhibitor calphostin C and transfected with TRPM8 shRNA or control shRNA respectively, and thereafter cold stimulation was applied. Cells were divided into 6 groups: a control group (incubated at 37°C), a cold stimulation group, a cold stimulation + BCTC group, a cold stimulation + TRPM8 shRNA group, a cold stimulation + control shRNA group, a cold stimulation + calphostin C group. Western blot was performed to show the extent of knockdown in TRPM8 protein expression in the TRPM8 shRNA transfected cells. Dynamics of relative concentration of intracellular Ca(2+) in the former 5 groups were measured by calcium imaging techniques. Images were taken at one frame per 10 seconds. The levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α mRNA and protein were detected by real-time PCR and ELISA respectively. The highest relative concentration of intracellular calcium in cold stimulation group (2.36 ± 0.24) was higher than that of control group (1.01 ± 0.02) (t = 12.52, P cold stimulation group (t = 6.69 and 9.12, all P cold stimulation group[0.66 ± 0.16, 0.77 ± 0.15, 0.73 ± 0.09 and (92 ± 13) ng/L, (125 ± 22) ng/L, (88 ± 12) ng/L ] were significantly higher than those in control group [0.37 ± 0.08, 0.32 ± 0.07, 0.48 ± 0.10 and (52 ± 8) ng/L, (50 ± 9) ng/L, (61 ± 8) ng/L] (t = 3.20 - 6.26, all P cold stimulation + BCTC group [0.42 ± 0.09, 0.52 ± 0.13, 0.52 ± 0.12 and (72 ± 8) ng/L, (92 ± 14) ng/L, (68 ± 11) ng/L], cold stimulation + TRPM8 shRNA group [0.41 ± 0.10, 0.49 ± 0.08, 0.50 ± 0.08 and (60 ± 12) ng/L, (89 ± 14) ng

  10. Cold Start Emissions of Spark-Ignition Engines at Low Ambient Temperatures as an Air Quality Risk

    Directory of Open Access Journals (Sweden)

    Bielaczyc Piotr

    2014-12-01

    Full Text Available SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC, emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC. The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.

  11. Oxidation performance of high temperature materials under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tuurna, Satu; Pohjanne, Pekka; Yli-Olli, Sanni; Kinnunen, Tuomo [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Oxyfuel combustion is widely seen as a major option to facilitate carbon capture and storage (CCS) from future boiler plants utilizing clean coal technologies. Oxyfuel combustion can be expected to differ from combustion in air by e.g. modified distribution of fireside temperatures, much reduced NOx but increased levels of fireside CO{sub 2}, SO{sub 2} and water levels due to extensive flue gas recirculation. Modified flue gas chemistry results in higher gas emissivity that can increase the thermal stresses at the heat transfer surfaces of waterwalls and superheaters. In addition, increased flue gas recirculation can increase the concentration of a number of contaminants in the deposited ash and promote fouling and corrosion. There is relatively little experimental information available about the effects of oxyfuel combustion on the performance of boiler material. In this work, the oxidation performance of steels X20CrMoV11-1 and TP347HFG has been determined at 580 C/650 C under simulated oxyfuel firing conditions. The results are presented and compared to corresponding results from simulated air firing conditions. (orig.)

  12. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Strong Effects of Temperature on the Early Life Stages of a Cold Stenothermal Fish Species, Brown Trout (Salmo trutta L.).

    Science.gov (United States)

    Réalis-Doyelle, Emilie; Pasquet, Alain; De Charleroy, Daniel; Fontaine, Pascal; Teletchea, Fabrice

    2016-01-01

    Temperature is the main abiotic factor that influences the life cycle of poikilotherms. The present study investigated the thermal tolerance and phenotypic plasticity of several parameters (development time, morphometric measures, bioenergetics) for both embryos and fry of a cold stenothermal fish species, brown trout (Salmo trutta L.) in order to allow for a holistic evaluation of the potential effects of temperature. Five temperatures (4°C, 6°C, 8°C, 10°C, and 12°C) were tested, and the effects of temperature were analyzed at three stages: hatching, emergence, and first food intake. A mean of 5,440 (S.E. ± 573) eggs, coming from seven females and seven males (seven families) captured close to Linkebeek (Belgium), were used for each temperature. Maximum survival of well-formed fry at first food intake and better use of energy budget were found at 6°C and 8°C, temperatures at which the possible contribution to the next generation should therefore be greatest. At 12°C, the experimental population fell dramatically (0.9% survival rate for well-formed fry at first food intake), and fry had almost no yolk sac at first food intake. The present results on survival at 12°C are in accordance with predictions of a sharp decrease in brown trout numbers in France over the coming decades according to climate change projections (1°C to 5°C temperature rise by 2100 for France). At 10°C, there was also a lower survival rate (55.4% at first food intake). At 4°C, the survival rate was high (76.4% at first food intake), but the deformity rate was much higher (22% at first food intake) than at 6°C, 8°C, and 10°C. The energetic budget showed that at the two extreme temperatures (4°C and 12°C) there was less energy left in the yolk sac at first food intake, suggesting a limited ability to survive starvation.

  14. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10); thigh skin (average, maximum and minimum) and rectal temperature (n=10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C) and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C), minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C) and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

  15. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.

    Directory of Open Access Journals (Sweden)

    Joseph Thomas Costello

    Full Text Available The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC, and compare these to 8°C cold water immersion (CWI. Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10; thigh skin (average, maximum and minimum and rectal temperature (n=10 were recorded before and 60 min after treatment. The greatest reduction (P<0.05 in muscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C, minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C skin temperature occurred immediately after both CWI and WBC (P<0.05. Skin temperature was significantly lower (P<0.05 immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

  16. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    OpenAIRE

    Zongyue Yu; Zhiqian Ren; Junyong Tao; Xun Chen

    2014-01-01

    A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testi...

  17. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  18. A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system

    International Nuclear Information System (INIS)

    Shi, X.J.; Zhang, P.

    2013-01-01

    Highlights: ► Four kinds of TBAB CHS generation methods are experimentally investigated. ► Accession of CHS into supercooled solution can be helpful to the generation. ► Higher flow rate results in higher energy efficiency of CHS generation. - Abstract: A cold storage air-conditioning system using tetra-n-butyl ammonium bromide (TBAB) clathrate hydrate slurry (CHS) as cold storage medium was built to investigate the high-efficiency method of TBAB CHS generation. In the present study, four kinds of different TBAB CHS generation methods were experimentally investigated and compared, and these methods included continuously cooling, turning off refrigerator while crystals appearing, supercooling release and accession of TBAB CHS into supercooled TBAB aqueous solution. The results showed that continuously cooling would lead to severe adhesion of crystal to the heat exchanger wall, and supercooling release took place with a big stochastic characteristic, hence the first and third method were concluded not reliable. Both the second and fourth methods could maintain the temperature of heat exchanger wall at a relatively higher level, therefore the crystal adhesion to the heat exchanger wall would be reduced significantly, which led to higher coefficient of performance (COP). In addition, accession of TBAB CHS into TBAB supercooled solution could shorten the time of supercooling release, resulting in about 21.8–35.4% shorter generation time than other methods. Moreover, the influence of flow rate on the CHS generation process was investigated, and the results showed that higher flow rate generally resulted in higher system COP

  19. Assessment of temperatures in the vaccine cold chain in two provinces in Lao People's Democratic Republic: a cross-sectional pilot study.

    Science.gov (United States)

    Kitamura, Tomomi; Bouakhasith, Viraneth; Phounphenghack, Kongxay; Pathammavong, Chansay; Xeuatvongsa, Anonh; Norizuki, Masataro; Okabayashi, Hironori; Mori, Yoshio; Machida, Munehito; Hachiya, Masahiko

    2018-04-27

    All childhood vaccines, except the oral polio vaccine, should be kept at 2-8 °C, since the vaccine potency can be damaged by heat or freezing temperature. A temperature monitoring study conducted in 2008-2009 reported challenges in cold chain management from the provincial level downwards. The present cross-sectional pilot study aimed to assess the current status of the cold chain in two provinces (Saravan and Xayabouly) of Lao People's Democratic Republic between March-April 2016. Two types of temperature data loggers recorded the temperatures and the proportions of time exposed to  8 °C were calculated. The temperature remained within the appropriate range in the central and provincial storages. However, the vaccines were frequently exposed to > 8 °C in Saravan and  8 °C during the transportation in Saravan and to both > 8 and cold chain in the district storage and during transportation remain, despite improvements at the provincial storage. A detailed up-to-date nationwide analysis of the current situation of the cold chain is warranted to identify the most appropriate intervention to tackle the remaining challenges.

  20. Effect of direction of approach to temperature on the delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb

    International Nuclear Information System (INIS)

    Ambler, J.F.R.

    1984-01-01

    The delayed hydrogen cracking behavior of cold-worked Zr-2.5Nb at temperatures above about 423 K depends upon the direction of approach to test temperature. Cooling to the test temperatures results in an increase in crack growth rate, da/dt, with increase in temperature, given by the following Arrhenius relationship da/dt = 6.86 X 10 -1 exp(--71500/RT) Heating from room temperature to the test temperature results in the same increase in da/dt with temperature, but only up to a certain temperature, T /SUB DAT/ . The temperature, T /SUB DAT/ , increases with the amount of hydride precipitated during cooling to room temperature, prior to heating, and with cooling rate. The results obtained can be explained in terms of the Simpson and Puls model of delayed hydrogen cracking, if the hydride precipitated at the crack tip is initially fully constrained and the matrix hydride loses constraint during heating

  1. Temperatura e umidade relativa na qualidade da tangerina "Montenegrina" armazenada Temperature and relative humidity during cold storage of 'Montenegrina' tangerine

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2008-04-01

    Full Text Available O presente trabalho foi conduzido com o objetivo de avaliar o efeito da temperatura e da umidade relativa do ar (UR sobre a manutenção da qualidade de tangerinas durante o período de armazenamento refrigerado (AR. O delineamento experimental utilizado foi inteiramente casualizado, em esquema bifatorial, com oito repetições, contendo 15 frutos cada. Os tratamentos avaliados constituíram-se da combinação das temperaturas 2, 3 e 4°C, com UR do ar de 90 e 96%. Após oito e 12 semanas de armazenamento, mais três dias de exposição a 20°C, foram realizadas as seguintes análises: acidez total titulável (ATT, sólidos solúveis totais (SST, consistência dos frutos, incidência de podridões e suculência. De acordo com os resultados obtidos, os frutos armazenados a 3°C + UR do ar de 90% apresentaram ATT, SST e consistência mais elevada, após oito e 12 semanas de AR. A incidência de podridão foi significativamente superior nos tratamentos com alta UR do ar (96%. Injúrias provocadas pela baixa temperatura ocorreram em alguns frutos no tratamento a 2°C. Não se constatou diferença significativa na suculência entre os tratamentos em ambas as datas de avaliação. A temperatura de 3°C combinada com UR de 90% apresentou os melhores resultados na conservação de tangerinas "Montenegrina", que podem ser armazenadas por um período de até oito semanas.This research was conducted in order to evaluate the effect of temperature and relative humidity (RH on the quality of tangerines during cold storage. The experimental design was entirely randomized, in a bifatorial design with eight replications of 15 fruits. The treatments were the combination of three temperatures (2, 3 and 4oC and two RH levels (90 and 96%. Evaluations of quality were performed after 8 and 12 weeks of cold storage plus 3 days of shelf life at 20°C. The analyzed parameters were: total titratable acidity (TTA, total soluble solids (TSS, fruits consistency, rot

  2. Effect of cold deformation on latent energy value and high-temperature mechanical properties of 12Cr18Ni10Ti steel

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Shiganakov, Sh.B.; Gusev, M.N.

    1997-01-01

    Energetic and magnetic characteristics and also the high-temperature mechanical properties depending on the preliminary cold deformation of 12Cr18Ni10Ti steel are presented. It is shown that the value of storage energy in the steel has being grown with increase of the deformation. The rate of its growth has been increased after beginning of martensitic γ→α'- transformation when value of comparative storage energy at first decreased and then has been stay practically constant. Level of mechanical properties of the steel at 1073 K has been determined not only by value of cold deformation but and structural reconstruction corresponding to deformations 35-45% and accompanying with α'-phase martensite formation and change of energy accumulating rate. Preliminary cold deformation (40-60 %) does not improve high- temperature plasticity of steel samples implanted by helium. refs. 7, figs. 2

  3. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation

    Directory of Open Access Journals (Sweden)

    Gregersen Finn

    2010-11-01

    Full Text Available Abstract Background Evaluating the limits of adaptation to temperature is important given the IPCC-predicted rise in global temperatures. The rate and scope of evolutionary adaptation can be limited by low genetic diversity, gene flow, and costs associated with adaptive change. Freshwater organisms are physically confined to lakes and rivers, and must therefore deal directly with climate variation and change. In this study, we take advantage of a system characterised by low genetic variation, small population size, gene flow and between-trait trade-offs to study how such conditions affect the ability of a freshwater fish to adapt to climate change. We test for genetically-based differences in developmental traits indicating local adaptation, by conducting a common-garden experiment using embryos and larvae from replicate pairs of sympatric grayling demes that spawn and develop in natural cold and warm water, respectively. These demes have common ancestors from a colonization event 22 generations ago. Consequently, we explore if diversification may occur under severely constraining conditions. Results We found evidence for divergence in ontogenetic rates. The divergence pattern followed adaptation predictions as cold-deme individuals displayed higher growth rates and yolk conversion efficiency than warm-deme individuals at the same temperature. The cold-deme embryos had a higher rate of muscle mass development. Most of the growth- and development differences occurred prior to hatch. The divergence was probably not caused by genetic drift as there was a strong degree of parallelism in the divergence pattern and because phenotypic differentiation (QST was larger than estimated genetic drift levels (microsatellite FST between demes from different temperature groups. We also document that these particular grayling populations cannot develop successfully at temperatures above 12°C, whereas other European populations can, and that increasing the

  4. Compaction of irradiated fuel can wastes by high temperature melting in cold crucibles

    International Nuclear Information System (INIS)

    Piccinato, R.; Ruty, J.P.; Caraballo, R.; Jacquet-Francillon, N.

    1993-01-01

    The fusion of hull wastes obtained from the reprocessing of various irradiated fuels is an alternative method to the cementation process used for the conditioning of such wastes. This new process, based on the direct fusion of hulls, has been carried out at CEA Marcoule with an inactive industrial prototype and qualified with an active laboratory prototype. The report shows the results obtained with the lab prototype on stainless steel and zircaloy hulls

  5. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  6. Overnight storage of whole blood: cooling and transporting blood at room temperature under extreme temperature conditions.

    Science.gov (United States)

    Thibault, L; Beauséjour, A; Jacques, A; Ducas, E; Tremblay, M

    2014-02-01

    Many countries allow the overnight storage of whole blood (WB) at ambient temperature. Some countries, such as Canada, also require a rapid cooling of WB with an active cooling system. Given the significant operational constraints associated with current cooling systems, an alternative method for cooling and transporting WB at 20-24°C was evaluated. Phase 22 cooling packs (TCP Reliable Inc., USA) were used in combination with vacuum-insulated panel (VIP) boxes. Temperature profiles of simulated WB units were studied in extreme temperatures (-35 and 40°C). The quality of blood components prepared using Phase 22 packs and CompoCool-WB (Fresenius HemoCare, Germany) was studied. Phase 22 packs reduced the temperature of simulated WB bags from 37 to 24°C in 1·7 ± 0·2 h. Used in combination with VIP boxes, Phase 22 packs maintain the temperature of bags between 20 and 24°C for 15 and 24 h, compared to 2 and 11 h with CompoCool-WB, when exposed at -35 and 40°C, respectively. The quality of platelet concentrates and plasma was comparable, regardless of the cooling system used. For red blood cell units, per cent haemolysis on day 42 was slightly higher in products prepared after cooling with Phase 22 packs compared to CompoCool-WB (0·33 ± 0·15% vs. 0·21 ± 0·06%; P environmental conditions. © 2013 International Society of Blood Transfusion.

  7. Temperature Variation and Heat Wave and Cold Spell Impacts on Years of Life Lost Among the Urban Poor Population of Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Thaddaeus Egondi

    2015-03-01

    Full Text Available Weather extremes are associated with adverse health outcomes, including mortality. Studies have investigated the mortality risk of temperature in terms of excess mortality, however, this risk estimate may not be appealing to policy makers assessing the benefits expected for any interventions to be adopted. To provide further evidence of the burden of extreme temperatures, we analyzed the effect of temperature on years of life lost (YLL due to all-cause mortality among the population in two urban informal settlements. YLL was generated based on the life expectancy of the population during the study period by applying a survival analysis approach. Association between daily maximum temperature and YLL was assessed using a distributed lag nonlinear model. In addition, cold spell and heat wave effects, as defined according to different percentiles, were investigated. The exposure-response curve between temperature and YLL was J-shaped, with the minimum mortality temperature (MMT of 26 °C. An average temperature of 21 °C compared to the MMT was associated with an increase of 27.4 YLL per day (95% CI, 2.7–52.0 years. However, there was no additional effect for extended periods of cold spells, nor did we find significant associations between YLL to heat or heat waves. Overall, increased YLL from all-causes were associated with cold spells indicating the need for initiating measure for reducing health burdens.

  8. A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Aimin; Sun, Hongwei; Feng, Shuang; Zhou, Mi; Gong, Shufang; Wang, Jingang; Zhang, Shuzhen

    2018-01-08

    Low temperature stress adversely affects plant growth, development, and crop productivity. Analysis of the function of genes in the response of plants to low temperature stress is essential for understanding the mechanism of chilling and freezing tolerance. In this study, PsCor413im1, a novel cold-regulated gene isolated from Phlox subulata, was transferred to Arabidopsis to investigate its function under low temperature stress. Real-time quantitative PCR analysis revealed that PsCor413im1 expression was induced by cold and abscisic acid. Subcellular localization revealed that PsCor413im1-GFP fusion protein was localized to the periphery of the chloroplast, consistent with the localization of chloroplast inner membrane protein AtCor413im1, indicating that PsCor413im1 is a chloroplast membrane protein. Furthermore, the N-terminal of PsCor413im1 was determined to be necessary for its localization. Compared to the wild-type plants, transgenic plants showed higher germination and survival rates under cold and freezing stress. Moreover, the expression of AtCor15 in transgenic plants was higher than that in the wild-type plants under cold stress. Taken together, our results suggest that the overexpression of PsCor413im1 enhances low temperature tolerance in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Recent Intensified Winter Coldness in the Mid-High Latitudes of Eurasia and Its Relationship with Daily Extreme Low Temperature Variability

    Directory of Open Access Journals (Sweden)

    Chuhan Lu

    2016-01-01

    Full Text Available Observational records in recent decades show a large-scale decrease in the cold-season temperature variance in the Northern Hemisphere midlatitudes under continuous global warming. However, severe low temperature events in winter frequently occurred in midlatitude Eurasia (MEA in the last decade. Here, we define a new coldness intensity (CI index for the near-surface based on the amplitude of daily anomalously cold temperatures in winter to demonstrate the CI of the variability of low temperature extremes. The results show that a sign-consistent mode dominates the CI variation in MEA, with a marked intensification during the last decade via empirical orthogonal function (EOF analysis. This leading mode is significantly related to the frequency of winter extreme events. The associated circulations are characterized by a remarkable anomalous anticyclone in Northwest Eurasia, which induced substantial cold advection in MEA. The widespread intensified CI in MEA is closely linked with strong surface anticyclones and synoptic blocking in the mid-high latitudes (25°E–85°E. Coincidently, positive phase shifts of the first two leading modes of the extratropical circulation, which feature similar blocking-like anomalies in the northwestern Eurasian subarctic, jointly play an important role in the recent frequency of severe winters.

  10. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  11. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  12. Low-temperature conditioning of "seed" cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in 'Coreano' garlic (Allium sativum) during plant development.

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D; Zavala-Gutiérrez, Karla G; Cao, Cong-Mei; Cisneros-Zevallos, Luis; Guevara-González, Ramón G; Torres-Pacheco, Irineo; Vázquez-Barrios, M Estela; Rivera-Pastrana, Dulce M; Mercado-Silva, Edmundo M

    2013-11-06

    Low-temperature conditioning of garlic "seed" cloves accelerated the development of the crop cycle, decreased plant growth, and increased the synthesis of phenolic compounds and anthocyanins in the outer scale leaves of the bulbs at harvest time, leading to 3-fold content increase compared with those conditioned at room temperature. Cold conditioning of "seed" cloves also altered the anthocyanin profile during bulb development and at harvest. Two new anthocyanins are reported for the first time in garlic. The high phenolics and anthocyanin contents in bulbs of plants generated from "seed" cloves conditioned at 5 °C for 5 weeks were preceded by overexpression of some putative genes of the phenolic metabolism [6-fold for phenylalanine ammonia lyase (PAL)] and anthocyanin synthesis [1-fold for UDP-sugar:flavonoid 3-O-glycosyltransferase (UFGT)] compared with those conditioned at room temperature.

  13. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    Science.gov (United States)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  14. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    OpenAIRE

    Mills, SC; Barrows, TT; Telfer, MW; Fifield, LK

    2017-01-01

    publisher: Elsevier articletitle: The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa journaltitle: Geomorphology articlelink: http://dx.doi.org/10.1016/j.geomorph.2016.11.011 content_type: article copyright: Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

  15. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    Science.gov (United States)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  16. The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions

    Science.gov (United States)

    Cox, C. J.; Morris, S. M.

    2017-12-01

    Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, "icing") frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be

  17. Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor

    Science.gov (United States)

    Chepfer, H.; Minnis, P.; Dubuisson, P.; Chiriaco, M.; Sun-Mack, S.; RivièRe, E. D.

    2007-03-01

    Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the tropics (9 to 20% of clouds with T < 202.5 K). Higher occurrences were found in the rare midlatitudes very cold clouds. NAP occurrence increases as cloud temperature decreases, and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning seems to be the main source of the NOx, which forms NAP in cold clouds over continents. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP may play a role in the dehydration of the upper troposphere when the tropopause is colder than 195 K.

  18. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    Science.gov (United States)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater

  19. Star Formation Conditions in a Planck Galactic Cold Clump, G108.84–00.81

    Science.gov (United States)

    Kim, Jungha; Lee, Jeong-Eun; Liu, Tie; Kim, Kee-Tae; Wu, Yuefang; Tatematsu, Ken‧ichi; Liu, Sheng-Yuan; JCMT Large Program “SCOPE” Collaboration; TRAO Key Science Program “TOP” Collaboration

    2017-07-01

    We present the results from a series of ground-based radio observations toward a Planck Galactic Cold Clump (PGCC), PGCC G108.84–00.81, which is located in one curved filamentary cloud in the vicinity of an extended H II region Sh2-152 and SNR G109.1-1.0. PGCC G108.84–00.81 is mainly composed of two clumps, “G108–N” and “G108–S”. In the 850 μm dust continuum emission map, G108–N is shown as one component while G108–S is fragmented into four components. There is no infrared source associated with G108–N, while there are two infrared sources (IRS 1 and IRS 2) associated with G108–S. The total mass of G108–N is larger than the Jeans mass, suggesting that G108–N is gravitationally unstable and a potential place for a future star formation. The clump properties of G108–N and G108–S such as the gas temperature and the column density, are not distinctly different. However, G108–S is slightly more evolved than G108–N, if considering the CO depletion factor, molecular abundances, and association with infrared sources. G108–S seems to be affected by the compression from Sh2-152, while G108–N is relatively protected from the external effect.

  20. Star Formation Conditions in a Planck Galactic Cold Clump, G108.84–00.81

    International Nuclear Information System (INIS)

    Kim, Jungha; Lee, Jeong-Eun; Liu, Tie; Kim, Kee-Tae; Wu, Yuefang; Tatematsu, Ken'ichi; Liu, Sheng-Yuan

    2017-01-01

    We present the results from a series of ground-based radio observations toward a Planck Galactic Cold Clump (PGCC), PGCC G108.84–00.81, which is located in one curved filamentary cloud in the vicinity of an extended H ii region Sh2-152 and SNR G109.1-1.0. PGCC G108.84–00.81 is mainly composed of two clumps, “G108–N” and “G108–S”. In the 850 μ m dust continuum emission map, G108–N is shown as one component while G108–S is fragmented into four components. There is no infrared source associated with G108–N, while there are two infrared sources (IRS 1 and IRS 2) associated with G108–S. The total mass of G108–N is larger than the Jeans mass, suggesting that G108–N is gravitationally unstable and a potential place for a future star formation. The clump properties of G108–N and G108–S such as the gas temperature and the column density, are not distinctly different. However, G108–S is slightly more evolved than G108–N, if considering the CO depletion factor, molecular abundances, and association with infrared sources. G108–S seems to be affected by the compression from Sh2-152, while G108–N is relatively protected from the external effect.

  1. Star Formation Conditions in a Planck Galactic Cold Clump, G108.84–00.81

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungha; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do (Korea, Republic of); Liu, Tie; Kim, Kee-Tae [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 34055 (Korea, Republic of); Wu, Yuefang [Department of Astronomy, Peking University, 100871, Beijing (China); Tatematsu, Ken' ichi [Department of Astronomical Science, SOKENDAI - The Graduate University for Advanced Studies, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Liu, Sheng-Yuan, E-mail: jeongeun.lee@khu.ac.kr [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Collaboration: JCMT Large Program “SCOPE” Collaboration, and TRAO Key Science Program “TOP” Collaboration

    2017-07-01

    We present the results from a series of ground-based radio observations toward a Planck Galactic Cold Clump (PGCC), PGCC G108.84–00.81, which is located in one curved filamentary cloud in the vicinity of an extended H ii region Sh2-152 and SNR G109.1-1.0. PGCC G108.84–00.81 is mainly composed of two clumps, “G108–N” and “G108–S”. In the 850 μ m dust continuum emission map, G108–N is shown as one component while G108–S is fragmented into four components. There is no infrared source associated with G108–N, while there are two infrared sources (IRS 1 and IRS 2) associated with G108–S. The total mass of G108–N is larger than the Jeans mass, suggesting that G108–N is gravitationally unstable and a potential place for a future star formation. The clump properties of G108–N and G108–S such as the gas temperature and the column density, are not distinctly different. However, G108–S is slightly more evolved than G108–N, if considering the CO depletion factor, molecular abundances, and association with infrared sources. G108–S seems to be affected by the compression from Sh2-152, while G108–N is relatively protected from the external effect.

  2. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    Science.gov (United States)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 μmol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 μmol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 μmol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect

  3. Metal-semiconductor interface in extreme temperature conditions

    International Nuclear Information System (INIS)

    Bulat, L.P.; Erofeeva, I.A.; Vorobiev, Yu.V.; Gonzalez-Hernandez, J.

    2008-01-01

    We present an investigation of electrons' and phonons' temperatures in the volume of a semiconductor (or metal) sample and at the interface between metal and semiconductor. Two types of mismatch between electrons' and phonons' temperatures take place: at metal-semiconductor interfaces and in the volume of the sample. The temperature mismatch leads to nonlinear terms in expressions for heat and electricity transport. The nonlinear effects should be taken into consideration in the study of electrical and heat transport in composites and in electronic chips

  4. Low temperature conditioning of garlic (Allium sativum L.) “seed” cloves induces alterations in sprouts proteome

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D.; Huerta-Ocampo, José Á.; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P.; Mercado-Silva, Edmundo M.

    2015-01-01

    Low-temperature conditioning of garlic “seed” cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that “seed” bulbs from “Coreano” variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic “seed” cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic “seed” cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies

  5. The effect of cold work, heat treatment, and composition on the austenite to R-phase transformation temperature of Ni-Ti shape memory alloys

    International Nuclear Information System (INIS)

    Thoma, P.E.; Angst, D.R.; Schachner, K.D.

    1995-01-01

    The influence of cold work (CW) and heat treatment (HT) on the austenite to R-Phase (A→R) transformation temperature (TT) of a near equiatomic and three other Ti rich NiTi SMA is examined. For the SMA having a near equiatomic composition, the A→R TT increases with increasing CW at low HT temperatures. For the SMA having the maximum possible Ti content, the A→R TT decreases with increasing CW at low HT temperatures. For all compositions, the A→R TT is not sensitive to CW at high HT temperatures. At a Ti content slightly below the maximum possible, the A→R TT is relatively insensitive to CW and HT temperature. For all of the SMA investigated, the A→R TT increases with increasing Ti content for a specific CW and HT temperature, and this effect is greatest at low CW and at high HT temperatures. (orig.)

  6. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment.

    Science.gov (United States)

    Khalili Ghadikolaei, Kamran; Gharechahi, Javad; Haghbeen, Kamahldin; Akbari Noghabi, Kambiz; Hosseini Salekdeh, Ghasem; Shahbani Zahiri, Hossein

    2018-03-01

    Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a V max and K m of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (E a ), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol -1 , 16.12 kJ mol -1 , and 56.09 kJ mol -1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.

  7. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  8. Flux Balance Analysis of Escherichia coli under Temperature and pH Stress Conditions

    KAUST Repository

    Xu, Xiaopeng

    2015-01-01

    important roles in specific conditions and are essential genes under those conditions. E. coli is a model organism, which is widely used. It can adapt to many stress conditions, including temperature, pH, osmotic, antibiotic, etc. Underlying mechanisms

  9. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  10. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  11. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  12. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  13. Numerical analysis for the conjugate heat transfer of skin under various temperature conditions of contrast therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Ae; Oh, Han Nah; Choi, Hyoung Gwon [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin; Kim, Eun Jeoung; Lee, Seung Deok [Yonsei University, Seoul (Korea, Republic of)

    2015-11-15

    In this paper, the contrast therapy of skin was numerically investigated by solving the conjugate heat transfer problem. A finite volume method based on the SIMPLE algorithm was adopted to solve the axisymmetric incompressible Navier-Stokes equations, coupled with an energy equation. These equations are strongly coupled with the Pennes bio-heat equation in order to consider the effect of blood perfusion rate. We investigated the thermal response of skin at some selected depths for various input temperature profiles of a stimulator for contrast therapy. From the numerical simulations, the regions with cold/hot threshold temperatures were found for five input temperature profiles. It was shown that the temperature varies mildly for different input profiles as the depth increases, owing to the Pennes effect. The input temperatures for effective hot/cold stimulation of dermis layer were found to be 47 degrees C and 7 degrees C, respectively. The present numerical results will be used for finding an optimal temperature profile of a stimulator for contrast therapy.

  14. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  15. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.

    Science.gov (United States)

    Janhunen, Pekka; Kaartokallio, Hermanni; Oksanen, Ilona; Lehto, Kirsi; Lehto, Harry

    2007-02-14

    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.

  16. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.

    Directory of Open Access Journals (Sweden)

    Pekka Janhunen

    Full Text Available Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma. While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.

  17. Body Temperatures in the Elderly: A National Study of Physiological, Social, and Environmental Conditions

    Science.gov (United States)

    Fox, R. H.; Woodward, Patricia M.; Exton-Smith, A. N.; Green, M. F.; Donnison, D. V.; Wicks, M. H.

    1973-01-01

    Two large-scale surveys of body temperatures in elderly people living at home were carried out in the winter of 1972. Most of the homes visited were cold with room temperatures below the minimum recommended by the Department of Health. Deep body temperatures below 35·5°C were found in 10% of those studied, and the difference between the skin temperature and the core temperature was also reduced in this group. Such individuals are at risk of developing hypothermia since they show evidence of some degree of thermoregulatory failure. Further research is needed, but meanwhile there are practical measures that could be taken to reduce the risk of hypothermia in the elderly. PMID:4686555

  18. Effect of heat curing methods on the temperature history and strength development of slab concrete for nuclear power plant structures in cold climates

    International Nuclear Information System (INIS)

    Lee, Gun Cheol; Han, Min Cheol; Baek, Dae Hyun; Koh, Kyung Taek

    2012-01-01

    The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to -10 degrees Celsius. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of 1200, 600, 200 mm and a design strength of 27 MPa were fabricated and cured at -10 degrees Celsius for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below 0 degrees Celsius within 40 h after exposure to -10 degrees Celsius, and then, the temperature dropped to -10 degrees Celsius and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around 5 degrees Celsius for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around 10 degrees Celsius for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after

  19. Investigation of Chlorella vulgaris UTEX 265 Cultivation under Light and Low Temperature Stressed Conditions for Lutein Production in Flasks and the Coiled Tree Photo-Bioreactor (CTPBR).

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2017-10-01

    Lutein has an increasing share in the pharmaceutical and nutraceutical market due to its benefits to eye health. Microalgae may be a potential source for lutein production while the expense limits the commercialization. In this study, a coiled tubular tree photobioreactor (CTPBR) design was investigated for cultivating the cold tolerant microalgae Chlorella vulgaris UTEX 265 under various conditions for lutein production. The influence and interaction of light irradiance strength, lighting cycle, and temperature on microalgae and lutein production efficiency at low temperature range were also studied in flasks via response surface method (RSM). The results demonstrated that 14 h day-light, 120 μmol photons m -2  s -1 , and 10 °C was the optimal condition for algae growth and lutein production at low temperature experimental ranges. C. vulgaris UTEX 265 showed good potential to produce lutein in cold weather, and the optimum lutein production was contrary to the specific lutein content but corresponds to the trend of optimum growth. Additionally, fast growth (μ = 1.50 day -1 ) and good lutein recovery (11.98 mg g -1  day -1 ) in CTPBR were also achieved at the low irradiance stress condition and the low temperature photo-inhibition conditions.

  20. Using satellite data for monitoring temperature conditions in fishing areas of the Northeast Atlantic for improving prognosis of fishery.

    Science.gov (United States)

    Vanyushin, G.; Borisov, V.; Bogdanov, M.; Bulatova, T.

    2012-04-01

    The attempt to establish the relationship between current temperature conditions in fishing areas of the Northeast Atlantic (The Norwegian and Barents Seas) and the management of capelin fishery was made. The capelin stock depends on abundance of its predators, as well as on hydrological and climatic conditions, which affect the spawning success, the egg hatching, duration and direction of the larval drift, availability of micro and macrozooplankton food to capelin at its various life stages. Taking into account all these points and importance of capelin for Norwegian and Russian fisheries, we can easily understand an heightened interest in cause of the observed variations in capelin stocks. We are still inclined to see hydrology as the driving force of these variations. Hydrological conditions in concrete year influence on capelin directly, as well as its prey stocks and predators, which, in their turn, affect capelin. The sea surface temperature (SST) is the most suitable index of annual and seasonal variations in hydrological conditions. The temperature data were derived from satellite monitoring basically. Continuous long-term database on the sea surface temperature (SST) comprising results of regional satellite monitoring (the NOAA satellite data) is used to resolve several applied problems particularly for prognosis of fish recruitment strenght. The maps of SST were created with the satellite data, as well as information of vessels, buoies and coastal stations. Here we use the maps of SST in fishing areas of the Norwegian and Barents Seas to clarify impact which duration of warm and cold seasons has on successful survival of capelin during its first year of life. The identified relation between onset of these seasons and their duration can allow us to forecast strength of the next capelin year-classes. Seasonal dynamics of heat content water in areas of young capelin presence were analyzed by the time when the 5°C isotherm passed the 35°E meridian (from the

  1. Effect of temperature on the mechanical characteristics of cold-worked steel OKh16N15M3B with active tension and creep

    International Nuclear Information System (INIS)

    Erasov, V.S.; Konoplenko, V.P.; Pirogov, E.N.

    1986-01-01

    Steel OKh16N15M3B is used extensively for the manufacture of atomic reactor fuel-element shells. The aim of this work is a study of the mechanical characteristics of this steel cold-worked by 20% with active tension and creep in the temperature range 973-1323 0 K, which is necessary for predicting the behavior of fuel-element shells in critical situations. It is found that above 973 0 K there is active loss of strength for cold-worked steel OKh16N15M3B. Strength characteristics in the region 973-1323 0 K decrease by more than a factor of six. Thermal activation analysis of the plastic deformation process, showing a sharp increase in activation energy above 1073 0 K, suggests a change in the mechanisms of plastic deformation taking place. For active tension and creep the same temperature range is obtained for a marked change in activation energy

  2. No association between temperature and deaths from cardiovascular and cerebrovascular diseases during the cold season in Astana, Kazakhstan – the second coldest capital in the world

    Directory of Open Access Journals (Sweden)

    Andrej M. Grjibovski

    2012-12-01

    Full Text Available Background. Several European and North American studies have reported associations between cold temperatures and mortality from diseases of the circulatory system. However, the effects of cold vary between the settings warranting further research in other parts of the world. Objectives. To study associations between temperature and mortality from selected diseases of circulatory system in Astana, Kazakhstan – the second coldest capital in the world. Methods. Daily counts of deaths from hypertensive diseases (ICD-10 codes: I10–I15, ischemic heart disease (I20–I25 and cerebrovascular diseases (I60–I69 among adults 18 years and older in Astana, Kazakhstan, during cold periods (October–March in 2000–2001 and 2006–2010 were collected from the City Registry Office. Associations between mortality and mean apparent temperature and minimum apparent temperature (average for lags 0–15 were studied using Poisson regression controlling for barometric pressure (average for lags 0–3, wind speed and effects of month, year, weekends and holidays. Analyses were repeated using mean and minimum temperatures. Results. Overall, there were 320, 4468 and 2364 deaths from hypertensive disorders, ischemic heart disease and cerebrovascular diseases, respectively. No significant associations between either mean, mean apparent, minimum or minimum apparent temperatures were found for any of the studied outcomes. Conclusions. Contrary to the European findings, we did not find inverse associations between apparent temperatures and mortality from cardiovascular or cerebrovascular causes. Factors behind the lack of association may be similar to those in urban settings in Siberia, that is, centrally heated houses and a culture of wearing large volumes of winter clothes outdoors. Further research on the sensitivity of the population in Kazakhstan to climatic factors and its adaptive capacity is warranted.

  3. No association between temperature and deaths from cardiovascular and cerebrovascular diseases during the cold season in Astana, Kazakhstan--the second coldest capital in the world.

    Science.gov (United States)

    Grjibovski, Andrej M; Nurgaliyeva, Nassikhat; Kosbayeva, Aliya; Menne, Bettina

    2012-01-01

    Several European and North American studies have reported associations between cold temperatures and mortality from diseases of the circulatory system. However, the effects of cold vary between the settings warranting further research in other parts of the world. To study associations between temperature and mortality from selected diseases of circulatory system in Astana, Kazakhstan--the second coldest capital in the world. Daily counts of deaths from hypertensive diseases (ICD-10 codes: I10-I15), ischemic heart disease (I20-I25) and cerebrovascular diseases (I60-I69) among adults 18 years and older in Astana, Kazakhstan, during cold periods (October-March) in 2000-2001 and 2006-2010 were collected from the City Registry Office. Associations between mortality and mean apparent temperature and minimum apparent temperature (average for lags 0-15) were studied using Poisson regression controlling for barometric pressure (average for lags 0-3), wind speed and effects of month, year, weekends and holidays. Analyses were repeated using mean and minimum temperatures. Overall, there were 320, 4468 and 2364 deaths from hypertensive disorders, ischemic heart disease and cerebrovascular diseases, respectively. No significant associations between either mean, mean apparent, minimum or minimum apparent temperatures were found for any of the studied outcomes. Contrary to the European findings, we did not find inverse associations between apparent temperatures and mortality from cardiovascular or cerebrovascular causes. Factors behind the lack of association may be similar to those in urban settings in Siberia, that is, centrally heated houses and a culture of wearing large volumes of winter clothes outdoors. Further research on the sensitivity of the population in Kazakhstan to climatic factors and its adaptive capacity is warranted.

  4. No association between temperature and deaths from cardiovascular and cerebrovascular diseases during the cold season in Astana, Kazakhstan – the second coldest capital in the world

    Science.gov (United States)

    Grjibovski, Andrej M.; Nurgaliyeva, Nassikhat; Kosbayeva, Aliya; Menne, Bettina

    2012-01-01

    Background Several European and North American studies have reported associations between cold temperatures and mortality from diseases of the circulatory system. However, the effects of cold vary between the settings warranting further research in other parts of the world. Objectives To study associations between temperature and mortality from selected diseases of circulatory system in Astana, Kazakhstan – the second coldest capital in the world. Methods Daily counts of deaths from hypertensive diseases (ICD-10 codes: I10–I15), ischemic heart disease (I20–I25) and cerebrovascular diseases (I60–I69) among adults 18 years and older in Astana, Kazakhstan, during cold periods (October–March) in 2000–2001 and 2006–2010 were collected from the City Registry Office. Associations between mortality and mean apparent temperature and minimum apparent temperature (average for lags 0–15) were studied using Poisson regression controlling for barometric pressure (average for lags 0–3), wind speed and effects of month, year, weekends and holidays. Analyses were repeated using mean and minimum temperatures. Results Overall, there were 320, 4468 and 2364 deaths from hypertensive disorders, ischemic heart disease and cerebrovascular diseases, respectively. No significant associations between either mean, mean apparent, minimum or minimum apparent temperatures were found for any of the studied outcomes. Conclusions Contrary to the European findings, we did not find inverse associations between apparent temperatures and mortality from cardiovascular or cerebrovascular causes. Factors behind the lack of association may be similar to those in urban settings in Siberia, that is, centrally heated houses and a culture of wearing large volumes of winter clothes outdoors. Further research on the sensitivity of the population in Kazakhstan to climatic factors and its adaptive capacity is warranted. PMID:23256090

  5. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  6. The influence of temperature on low cycle fatigue behavior of prior cold worked 316L stainless steel (II) : life prediction and failure mechanism

    International Nuclear Information System (INIS)

    Hong, Seong Gu; Yoon, Sam Son; Lee, Soon Bok

    2003-01-01

    Tensile and low cycle fatigue tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 deg. C. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM

  7. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  8. Challenges of cold chain quality for routine EPI in south-west Burkina-Faso: An assessment using automated temperature recording devices.

    Science.gov (United States)

    Sow, C; Sanou, C; Medah, C; Schlumberger, M; Mireux, F; Ouédraogo, I; Ouédraogo, S M; Betsem, E

    2018-06-18

    Abnormal temperatures are a major issue for vaccines within the Expanded Program of Immunization in tropical climates. Prolonged exposure to temperatures outside the standard +2 °C/+8 °C range can impact vaccine potency. The current study used automatic temperature recording devices (Testostore 171-1©) to monitor cold chain in remote areas of Western Burkina Faso. A series of 25 randomly selected health centers representing 33% of the existing 176 EPI facilities in Western Burkina Faso were prospectively assessed for eight months in 2015. Automatic measurements were compared to routine temperature loggers and vaccine vial monitors (VVM). The median age for all refrigerators was 9 years with 10/25 (42%) older than 10 years. Adverse temperatures were recorded in 20/24 (83%) refrigerators and ranged from -18.5 °C to +34.2 °C with 12,958/128,905 (10%) abnormal hourly records below +2 °C and 7357/128,905 (5.7%) above +8 °C. Time of day significantly affected the rate of temperature excursions, with higher rates from 00 am to 06 am (p cold chain reliability issues reported in the current study in Western Burkina Faso raise concern about vaccine potency. In the absence of systematic renewal of the cold chain infrastructure or improved staff training and monitoring, antibody response assessment is recommended to study levels of effective immunization coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.

  10. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  11. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  12. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    Science.gov (United States)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  13. Reaction Norms in Natural Conditions: How Does Metabolic Performance Respond to Weather Variations in a Small Endotherm Facing Cold Environments?

    Science.gov (United States)

    Petit, Magali; Vézina, François

    2014-01-01

    Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints. PMID:25426860

  14. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  15. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava.

    Science.gov (United States)

    An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng

    2017-05-01

    Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.

  16. The effect of surface condition and cold work on the sulphidation resistance of 153MA at 700 C

    Energy Technology Data Exchange (ETDEWEB)

    Szakalos, P.; Hertzman, S.; Pettersson, R.F.A. [Swedish Inst. for Metals Research, Stockholm (Sweden); Ivarsson, B. [Avesta Sheffield AB, Avesta (Sweden)

    2000-05-01

    The normal grain sized 153MA-sample experienced an almost linear weight gain curve in the sulphidizing environment while modified materials, with a finer grain size or cold worked structure, displayed more parabolic behaviour and lower weight gains. These effects may be related to more effective Cr-diffusion in the modified samples with a higher Cr-grain boundary diffusion in the fine grain-sample and a higher Cr-bulk diffusion rate in the cold worked sample. The sand blasted sample performed exceedingly well with a thin protective oxide layer compared to the etched and ground samples which both suffered significant weight loss and spalling. The deformed surface structure on the sand blasted sample enhances the Cr-bulk diffusion thus promoting a protective Cr-rich oxide formation. (orig.)

  17. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Directory of Open Access Journals (Sweden)

    J. M. Santiago

    2017-08-01

    Full Text Available Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta, and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. −49 % by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C, although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  18. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  19. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    Science.gov (United States)

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  20. Identification of complex model thermal boundary conditions based on exterior temperature measurement

    International Nuclear Information System (INIS)

    Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun

    2012-01-01

    Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)

  1. Temporal Changes in Mortality Related to Extreme Temperatures for 15 Cities in Northeast Asia: Adaptation to Heat and Maladaptation to Cold.

    Science.gov (United States)

    Chung, Yeonseung; Noh, Heesang; Honda, Yasushi; Hashizume, Masahiro; Bell, Michelle L; Guo, Yue-Liang Leon; Kim, Ho

    2017-05-15

    Understanding how the temperature-mortality association worldwide changes over time is crucial to addressing questions of human adaptation under climate change. Previous studies investigated the temporal changes in the association over a few discrete time frames or assumed a linear change. Also, most studies focused on attenuation of heat-related mortality and studied the United States or Europe. This research examined continuous temporal changes (potentially nonlinear) in mortality related to extreme temperature (both heat and cold) for 15 cities in Northeast Asia (1972-2009). We used a generalized linear model with splines to simultaneously capture 2 types of nonlinearity: nonlinear association between temperature and mortality and nonlinear change over time in the association. We combined city-specific results to generate country-specific results using Bayesian hierarchical modeling. Cold-related mortality remained roughly constant over decades and slightly increased in the late 2000s, with a larger increase for cardiorespiratory deaths than for deaths from other causes. Heat-related mortality rates have decreased continuously over time, with more substantial decrease in earlier decades, for older populations and for cardiorespiratory deaths. Our findings suggest that future assessment of health effects of climate change should account for the continuous changes in temperature-related health risk and variations by factors such as age, cause of death, and location. © Crown copyright 2017.

  2. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-05-01

    An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.

  3. Solar process for cold production at low temperature (-28 deg) by solid-gas sorption; Procede solaire de production de froid basse temperature (-28 deg) par sorption solide-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Le Pierres, N.

    2005-09-15

    The aim of this work is the design and experimentation of a thermochemical process for cold production purpose at -28 deg. C using low grade heat (70 deg. C) supplied by flat plate solar collectors. An exergetic analysis of the thermo-chemical dipole and of ideal thermodynamic cycles led to the definition of an original solar process. This process involves two cascaded cycles functioning in parallel. The cycle is discontinuous and presents a day phase of heating and regeneration and a night phase of cold production. A dynamic simulation allowed the study of its functioning depending on the weather conditions and on the dimensions of the process. A prototype covering the needs of a cold chamber loosing 40 W of cold continuously was built and tested in real conditions in Perpignan. It demonstrated the feasibility of this innovative concept and validated the hypothesis used to develop the model. A study of the process functioning was lead by simulation in different meteorological conditions and for different heat sources (solar, geothermal or industrial waste). It showed the potentialities of the concept. (author)

  4. Cold-season temperature in the Swiss Alps from AD 1100-1500; trends, intra-annual variability and forcing factors

    Science.gov (United States)

    de Jong, Rixt; Kamenik, Christian; Grosjean, Martin

    2010-05-01

    To fully understand past climatic changes and their forcing factors, detailed reconstructions of past summer and winter temperatures are required. Winter temperature reconstructions are scarce, however, because most biological proxies are biased towards the growing season. This study presents a detailed reconstruction of winter temperatures based on Chrysophyte stomatocysts, silicious scales formed by so-called 'golden algae'. Previous studies (Kamenik and Schmidt, 2005; Pla and Catalan, 2005) have demonstrated the sensitivity of these algae to cold-season temperatures. Chrysophyte stomatocyst analysis was carried out on varved sediments from Lake Silvaplana (1791 m a.s.l.) at annual to near-annual resolution for two periods; AD 1100-1500 and AD 1870-2004. For both periods the reference date 'date of spring mixing' (Smix) was reconstructed using a transfer function developed for the Austrian Alps (Kamenik and Schmidt, 2005). In the Austrian Alps, Smix was primarily driven by air temperature in the cold season. The strength of stomatocysts as a proxy for winter temperature was tested by directly comparing reconstructed Smix with measured temperatures from nearby meteostation Sils Maria for the period AD 1870 - 2004. Correlation was highest (R = -0.6; p number of eruptions during the much shorter instrumental period (Fischer et al., 2007). References: T. Crowley. Science 289, 270-277 (2000) E. Fischer et al. Geophys. Res. Lett. 34, L05707 (2007) C. Kamenik and R. Schmidt. Boreas 34, 477-489 (2005) I. Larocque-Tobler et al. Quat. Sci. Rev., accepted. S. Pla and J. Catalan. Clim. Dyn. 24, 263-278 (2005) M. Trachsel et al. Manuscript in review

  5. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua

    1999-01-01

    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  6. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  7. Temperature monitoring of vehicle engine exhaust gases under vibration condition using optical fibre temperature sensor systems

    International Nuclear Information System (INIS)

    Zhao, W Z; Suna, T; Grattana, K T V; Shen, Y H; Wei, C L; Al-Shamma'a, A I

    2006-01-01

    Two optical approaches, comprising and contracting both the fluorescence decay lifetime and the fibre Bragg grating (FBG) methods, were developed and evaluated for temperature monitoring of exhaust gases for use on a vehicle engine. The FBGs used in the system were written into specially designed Bi-Ge co-doped photosensitive fibres, to enable them to sustain high temperatures to over 800 0 C, which is far beyond that of FBGs written into most commercial photosensitive fibres. The sensors were subjected to a range of vibration tests, as a part of an optical exhaust monitoring network under development, and results from the test carried out are reported

  8. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  9. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  10. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  11. A cluster randomized non-inferiority field trial on the immunogenicity and safety of tetanus toxoid vaccine kept in controlled temperature chain compared to cold chain.

    Science.gov (United States)

    Juan-Giner, Aitana; Domicent, Camille; Langendorf, Céline; Roper, Martha H; Baoundoh, Paul; Fermon, Florence; Gakima, Primitive; Zipursky, Simona; Tamadji, Mbaihol; Grais, Rebecca F

    2014-10-29

    In resource-poor settings, cold chain requirements present barriers for vaccine delivery. We evaluated the immunogenicity and safety of tetanus toxoid (TT) vaccine in "Controlled Temperature Chain" (CTC; up to 40 °C for cold chain (SCC; 2-8 °C). Prior to the study, stability parameters of TT-CTC were shown to meet international requirements. A cluster randomized, non-inferiority trial was conducted in Moïssala district, Chad, December 2012-March 2013. Thirty-four included clusters were randomized to CTC or SCC. Women aged 14-49 years, eligible for TT vaccination and with a history of ≤1 TT dose, received two TT doses 4 weeks apart. Participants were blinded to allocation strategy. Tetanus antibody titers were measured using standard ELISA at inclusion and 4 weeks post-TT2. Primary outcome measures were post-vaccination seroconversion and fold-increase in geometric mean concentrations (GMC). Non-inferiority was by seroconversion difference (TTSCC-TTCTC) 95% of participants; upper 95%CI of the difference was 5.6%. Increases in GMC were over 4-fold; upper 95%CI of GMC ratio was 1.36 in the adjusted analysis. Few adverse events were recorded. This study demonstrates the immunogenicity and safety of TT in CTC at cold chain cannot be maintained. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Examination of food chain-derived Listeria monocytogenes strains of different serotypes reveals considerable diversity in inlA genotypes, mutability, and adaptation to cold temperatures.

    Science.gov (United States)

    Kovacevic, Jovana; Arguedas-Villa, Carolina; Wozniak, Anna; Tasara, Taurai; Allen, Kevin J

    2013-03-01

    Listeria monocytogenes strains belonging to serotypes 1/2a and 4b are frequently linked to listeriosis. While inlA mutations leading to premature stop codons (PMSCs) and attenuated virulence are common in 1/2a, they are rare in serotype 4b. We observed PMSCs in 35% of L. monocytogenes isolates (n = 54) recovered from the British Columbia food supply, including serotypes 1/2a (30%), 1/2c (100%), and 3a (100%), and a 3-codon deletion (amino acid positions 738 to 740) seen in 57% of 4b isolates from fish-processing facilities. Caco-2 invasion assays showed that two isolates with the deletion were significantly more invasive than EGD-SmR (P cold temperature following a downshift from 37°C to 4°C. Overall, three distinct cold-adapting groups (CAG) were observed: 46% were fast (200 h) adaptors. Intermediate CAG strains (70%) more frequently possessed inlA PMSCs than did fast (20%) and slow (10%) CAGs; in contrast, 87% of fast adaptors lacked inlA PMSCs. In conclusion, we report food chain-derived 1/2a and 4b serotypes with a 3-codon deletion possessing invasive behavior and the novel association of inlA genotypes encoding a full-length InlA with fast cold-adaptation phenotypes.

  13. Temperature-dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae).

    Science.gov (United States)

    Stratman, Karen N; Overholt, William A; Cuda, James P; Mukherjee, A; Diaz, R; Netherland, Michael D; Wilson, Patrick C

    2014-10-15

    A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    International Nuclear Information System (INIS)

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-01-01

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed

  15. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  16. Extremely Low Birth Weight Preterm Infants Lack Vasomotor Response in Relationship to Cold Body Temperatures at Birth

    OpenAIRE

    Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.; Wimmer, John E.

    2009-01-01

    Objective This study evaluated peripheral vasoconstriction in ELBW infants when body temperature decreased during the first 12-hours of life. Design An exploratory, within-subjects design with 10 ELBW infants. Abdominal and foot temperatures were measured every minute. Peripheral vasoconstriction (abdominal > peripheral temperature by 2? C) and abdominal-peripheral temperature difference were also evaluated. Results Abdominal and peripheral temperatures were significantly correlated within ea...

  17. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions

    DEFF Research Database (Denmark)

    Kristensen, Torsten Nygård; Barker, J. Stuart F.; Pedersen, Kamilla Sofie

    2008-01-01

    when compared with non-inbred lines of Drosophila melanogaster under different temperature conditions. Egg-to-adult viability, developmental time and sex ratio of emerging adults are studied under low, intermediate and high temperatures under laboratory as well as semi-natural conditions. The results...... show inbreeding depression for egg-to-adult viability. The level of inbreeding depression is highly dependent on test temperature and is observed only at low and high temperatures. Inbreeding did not affect the developmental time or the sex ratio of emerging adults. However, temperature affected...... the sex ratio with more females relative to males emerging at low temperatures, suggesting that selection against males in pre-adult life stages is stronger at low temperatures. The coefficient of variation (CV) of egg-to-adult viability within and among lines is higher for inbred flies and generally...

  18. A temporal-omic study of Propionibacterium freudenreichii CIRM-BIA1 adaptation strategies in conditions mimicking cheese ripening in the cold.

    Directory of Open Access Journals (Sweden)

    Marion Dalmasso

    Full Text Available Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C. Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C, inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1(T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome were differentially expressed during transition from 30°C to 4°C (P1. At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1(T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival.

  19. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  20. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  1. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  2. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon.

    Science.gov (United States)

    Lebow, Noelle K; DesRocher, Lisa D; Younce, Frank L; Zhu, Mei-Jun; Ross, Carolyn F; Smith, Denise M

    2017-12-01

    Cold-smoked salmon (CSS) production lacks a validated kill step for Listeria monocytogenes. Although Listeria spp. are reduced by nisin or high-pressure processing (HPP), CSS muscle discoloration is often observed after HPP. Effects of nisin and low-temperature HPP on L. innocua survival (nonpathogenic surrogate for L. monocytogenes), spoilage organism growth, color, and sensory preference and peelability of CSS were studied. Cold-smoked sockeye salmon (Oncorhynchus nerka) fillets ± nisin (10 μg/g) were inoculated with a 3-strain L. innocua cocktail, vacuum-packaged, frozen at - 30 °C, and high-pressure processed in an ice slurry within an insulated sleeve. Initial experiments indicated that nisin and HPP for 120 s at 450 MPa (N450) and 600 MPa (N600) were most effective against L. innocua, and thus were selected for further storage studies. L. innocua in N450 and N600-treated CSS was reduced 2.63 ± 0.15 and 3.99 ± 0.34 Log CFU/g, respectively, immediately after HPP. L. innocua and spoilage growth were not observed in HPP-treated CSS during 36 d storage at 4 °C. Low-temperature HPP showed a smaller increase in lightness of CSS compared to ambient-temperature HPP performed in previous studies. Sensory evaluation indicated that overall liking of CSS treated with N450 and N600 were preferred over the control by 61% and 62% of panelists, respectively (P high-risk ready-to-eat product that may be contaminated with L. monocytogenes. Results showed that nisin combined with high-pressure processing at low temperature, reduced the population of Listeria and controlled the spoilage organisms during storage. As an added benefit, high-pressure processing at low temperature may reduce lightening of the salmon flesh, leading to enhanced consumer preference. © 2017 Institute of Food Technologists®.

  3. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    Science.gov (United States)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  4. Lightning Location System Data from Wind Power Plants Compared to Meteorological Conditions of Warm- and Cold Thunderstorm Events

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Garolera, Anna Candela

    2016-01-01

    of topography, height above mean sea level (AMSL), and average ground flash density. For three sites, the most severe lightning events have been identified during the warm and cold months whereas the other two locations exhibit severe lightning detections mainly during the warm months. In this work severity......Five years of Lightning Location System (LLS) data from five different wind turbine sites in Europe are analysed. The sites are located in Croatia, Italy, Spain, France and one offshore wind power plant in the North sea. Each location exhibits individual characteristic properties in terms...... of such an episode can vary from tens of minutes to several hours in the case of new storms being continuously developed in the same area. The distance of the charge separating -10◦ C and the ground is usually larger than 3000 meters. This analyse provides information about the different thunderstorm types which...

  5. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  6. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  7. Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Vermeulen, C.J.; Pedersen, Kamilla Sofie; Beck, Hans C.

    2013-01-01

    insight into the molecular interplay between intrinsic stress responses, inbreeding depression and temperature tolerance, we performed a proteomic characterization of a well-defined conditional inbreeding effect in a single line of Drosophila melanogaster, which suffers from extreme cold sensitivity...

  8. γ-Radiolysis of benzophenone aqueous solution at elevated temperatures up to supercritical condition

    International Nuclear Information System (INIS)

    Miyazaki, Toyoaki; Katsumura, Yosuke; Lin Mingzhang; Muroya, Yusa; Kudo, Hisaaki; Asano, Masaharu; Yoshida, Masaru

    2006-01-01

    A product analysis study of γ-irradiated benzophenone aqueous solutions from room temperature to 400 deg. C has been carried out by the combination of a flow irradiation system and a liquid chromatographic method. At room temperature, the main decomposition products are phenol and hydroxybenzophenone isomers. In high temperature and supercritical water solutions, 9-fluorenone appears as an important product and the G-value of benzophenone consumption depends significantly on the water density under supercritical conditions

  9. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    Science.gov (United States)

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection...Temperature (K) 363 Ambient temperature (K) 900 Nozzle Diameter (mm) 0.09 Ambient density (kg/m3) 22.8 Injection Duration (ms) 1.5 Number of injector holes

  10. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    DEFF Research Database (Denmark)

    Man, E. A.; Sera, D.; Mathe, L.

    2016-01-01

    of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated...

  11. Temperature conditions of foundation plates under nuclear power plant reactor compartments

    International Nuclear Information System (INIS)

    Ehsaulov, S.L.

    1990-01-01

    Method for calculation of temperature conditions for foundation plates under reactor compartments located in the main building, used in construction of the second stage of the Kostroma nuclear power plant, is considered. The obtained calculation data can be used for determining the most suitable period of concrete placement, composition, initial temperature, manufacturing technology and ways of delivery of concrete mixture

  12. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition.

    Science.gov (United States)

    Yahya, S M; Anwer, S F; Sanghi, S

    2013-10-01

    In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.

  13. Setting parameters in the cold chain

    Directory of Open Access Journals (Sweden)

    Victoria Rodríguez

    2011-12-01

    Full Text Available Breaks in the cold chain are important economic losses in food and pharmaceutical companies. Many of the failures in the cold chain are due to improper adjustment of equipment parameters such as setting the parameters for theoretical conditions, without a corresponding check in normal operation. The companies that transport refrigeratedproducts must be able to adjust the parameters of the equipment in an easy and quick to adapt their functioning to changing environmental conditions. This article presents the results of a study carried out with a food distribution company. The main objective of the study is to verify the effectiveness of Six Sigma as a methodological toolto adjust the equipment in the cold chain. The second objective is more speciÞ c and is to study the impact of: reducing the volume of storage in the truck, the initial temperature of the storage areain the truck and the frequency of defrost in the transport of refrigerated products.

  14. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1979-10-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile may be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments

  15. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10 -5 m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables

  16. On the use of temperature for online condition monitoring of geared systems - A review

    Science.gov (United States)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  17. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  18. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: A large database study in Beijing, China between years 2013 and 2014-Utilizing a distributed lag non-linear analysis.

    Science.gov (United States)

    Luo, Yanxia; Li, Haibin; Huang, Fangfang; Van Halm-Lutterodt, Nicholas; Qin Xu; Wang, Anxin; Guo, Jin; Tao, Lixin; Li, Xia; Liu, Mengyang; Zheng, Deqiang; Chen, Sipeng; Zhang, Feng; Yang, Xinghua; Tan, Peng; Wang, Wei; Xie, Xueqin; Guo, Xiuhua

    2018-01-01

    The effects of ambient temperature on stroke death in China have been well addressed. However, few studies are focused on the attributable burden for the incident of different types of stroke due to ambient temperature, especially in Beijing, China. We purpose to assess the influence of ambient temperature on hospital stroke admissions in Beijing, China. Data on daily temperature, air pollution, and relative humidity measurements and stroke admissions in Beijing were obtained between 2013 and 2014. Distributed lag non-linear model was employed to determine the association between daily ambient temperature and stroke admissions. Relative risk (RR) with 95% confidence interval (CI) and Attribution fraction (AF) with 95% CI were calculated based on stroke subtype, gender and age group. A total number of 147, 624 stroke admitted cases (including hemorrhagic and ischemic types of stroke) were documented. A non-linear acute effect of cold temperature on ischemic and hemorrhagic stroke hospital admissions was evaluated. Compared with the 25th percentile of temperature (1.2 °C), the cumulative RR of extreme cold temperature (first percentile of temperature, -9.6 °C) was 1.51 (95% CI: 1.08-2.10) over lag 0-14 days for ischemic type and 1.28 (95% CI: 1.03-1.59) for hemorrhagic stroke over lag 0-3 days. Overall, 1.57% (95% CI: 0.06%-2.88%) of ischemic stroke and 1.90% (95% CI: 0.40%-3.41%) of hemorrhagic stroke was attributed to the extreme cold temperature over lag 0-7 days and lag 0-3 days, respectively. The cold temperature's impact on stroke admissions was found to be more obvious in male gender and the youth compared to female gender and the elderly. Exposure to extreme cold temperature is associated with increasing both ischemic and hemorrhagic stroke admissions in Beijing, China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hygrothermal conditions in cold, north facing attic spaces under the eaves with vapour-open roofing underlay in a cool, temperate climate

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Johnston, C.J.; Hansen, M.H.

    2016-01-01

    compliance with the current Danish Building Regulations (BR10) for airtightness (moisture levels in attics with vapour-open roofing underlays. North facing cold attic spaces under the eaves constitute a worst case scenario. Following best...... to allow an influx of 3.3 l/s of conditioned indoor air 20 °C and 60% RH at a pressure difference of 50 Pa) and ventilation (singled-sided, passive ventilation) contained more moisture and had significantly higher levels of mould growth than the non-ventilated attics. Under the same physical conditions...... the ‘pressure equalized’ attic rooms were found to have moisture levels in between those observed in the ventilated and non-ventilated attic rooms. Likewise, the observed levels of mould growth were in between those observed in the cases of the ventilated and non-ventilated attic rooms. Attics with reduced...

  20. Flux Balance Analysis of Escherichia coli under Temperature and pH Stress Conditions

    KAUST Repository

    Xu, Xiaopeng

    2015-05-12

    An interesting discovery in biology is that most genes in an organism are dispensable. That means these genes have minor effects on survival of the organism in standard laboratory conditions. One explanation of this discovery is that some genes play important roles in specific conditions and are essential genes under those conditions. E. coli is a model organism, which is widely used. It can adapt to many stress conditions, including temperature, pH, osmotic, antibiotic, etc. Underlying mechanisms and associated genes of each stress condition responses are usually different. In our analysis, we combined protein abundance data and mutant conditional fitness data into E. coli constraint-based metabolic models to study conditionally essential metabolic genes under temperature and pH stress conditions. Flux Balance Analysis was employed as the modeling method to analysis these data. We discovered lists of metabolic genes, which are E. coli dispensable genes, but conditionally essential under some stress conditions. Among these conditionally essential genes, atpA in low pH stress and nhaA in high pH stress found experimental evidences from previous studies. Our study provides new conditionally essential gene candidates for biologists to explore stress condition mechanisms.

  1. Effect of surface cold work on corrosion of Alloy 690TT in high temperature high pressure water

    International Nuclear Information System (INIS)

    Wang, J.; Zhang, Z.; Han, E.-H.; Ke, W.

    2009-01-01

    This paper aims to investigate the effect of surface cold work on corrosion of Alloy 690TT. The Alloy 690TT was mechanical ground and electro polished respectively and immersed in primary water at DO = 2 ppm and DH = 2.5ppm respectively. The microstructure of surface and the compositions and morphology of the surface film on Alloy 690TT after immersion test were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and focused ion beam (FIB). The results showed that feather-like oxide with decorated polyhedral oxide formed on ground surface and needle-like oxide with decorated polyhedral oxide formed on electro-polished surface. (author)

  2. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  3. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  4. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    Science.gov (United States)

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  5. Life expectancy, adapted technology and cold climate conditions : key issues for wind turbines in Canada; Duree de vie, adaptation technologique et conditions froides : un enjeu majeur pour les eoliennes au Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chaumel, J.L.; Nanta, R. [Quebec Univ., Rimouski, PQ (Canada); Golbeck, P. [Peter Golbeck Consultant, Rimouski, PQ (Canada)

    2007-07-01

    This presentation discussed the service life of wind turbines, particularly those operating in cold climates. A map of Quebec was included to indicate the potential sites for an additional 450 MW of wind energy capacity for northern Quebec, near James Bay. Different types of wind turbines were described in terms of their size and power, including those without transformers. It was noted that a 30 per cent growth in the wind power industry is anticipated annually. However, there is currently a lack of wind turbines. A 2 MW wind turbine costs $3 million and major reinvestment is needed after 10 years of service life due to component wear. It was noted that a gear box lasts less than 15 years and other generator components also require maintenance. The primary reasons for increased risk and cost include equipment failures due to component fatigue, cold weather operation, lack of maintenance and bad design for winter conditions. The components affected by failures include gearboxes, generators, pitch controls, and hydraulics. Since the industry is relatively new, there are no replacement parts available for these components and cranage costs are high. In addition, since Canada's entry into the wind industry is also relatively new, there is a lack of machine testing in Canada as well as a lack of understanding of energy capacity and the effects of cold weather. Overproduction also occurs frequently. tabs., figs.

  6. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    Science.gov (United States)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  7. Warm and cold molecular gas conditions modelled in 87 galaxies observed by the Herschel SPIRE Fourier transform spectrometer

    Science.gov (United States)

    Kamenetzky, J.; Rangwala, N.; Glenn, J.

    2017-11-01

    We have conducted two-component, non-local thermodynamic equilibrium modelling of the CO lines from J = 1-0 through J = 13-12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We find the average pressure of the cold molecular gas, traced especially by CO J = 1-0, is ˜105.0±0.5 K cm-3. The mid- to high-J lines of CO trace higher pressure gas at 106.5 ± 0.6 K cm-3; this pressure is slightly correlated with LFIR. Two components are often necessary to accurately fit the Spectral Line Energy Distributions; a one-component fit often underestimates the flux of carbon monoxide (CO) J = 1-0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when modelling the low-J lines alone or using an αCO conversion factor, the mass should be considered to be uncertain to a factor of at least 0.4 dex, and the vast majority of the CO luminosity will be missed (median, 65 per cent). We find a very large spread in our derived values of αCO, though they do not have a discernible trend with LFIR; the best fit is a constant 0.7 M⊙ (K km s- 1 pc2)-1, with a standard deviation of 0.36 dex, and a range of 0.3-1.6 M⊙ (K km s- 1 pc2)-1. We find average molecular gas depletion times (τdep) of 108 yr that decrease with increasing star formation rate. Finally, we note that the J = 11-10/J = 1-0 line flux ratio is diagnostic of the warm component pressure, and discuss the implications of this comprehensive study of SPIRE FTS extragalactic spectra for future study post-Herschel.

  8. The State of the Art in Cold Forging Lubrication

    DEFF Research Database (Denmark)

    Bay, Niels

    1994-01-01

    The manufature of components in steel, aluminium and copper alloys by cold forging production has increased ever since the 1950's. Typical processes are forward rod extrusion and backward can extrusion, upsetting, ironing, tube extrusion and radial extrusion. The tribological conditions in cold...... forging are extremely severe due to large surface expansion and normal pressure in the tool/workpiece interface combined with elevated tool temperatures. Except for the more simple cold forging operations successful production therefore requires advanced lubrication systems. The present paper gives...... a detailed description of the state of art for lubricant systems for cold forging of C-steels and low alloy steels as well as aluminium alloys including all the basic operations such as cleaning of the slugs, application of eventual conversion coating and lubrication. As regards cold forging of steel...

  9. Cold starting characteristics analysis of hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2017-01-01

    The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed. - Highlights: • The cold start behaviors of HFPE are investigated in detail. • CFD method is used for simulating temperature distribution in start process. • Thermodynamic derivation uncovers the compression temperature distribution. • The improvement suggestions of cold start strategy are proposed.

  10. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  11. The Nav1.9 Channel Is a Key Determinant of Cold Pain Sensation and Cold Allodynia

    Directory of Open Access Journals (Sweden)

    Stéphane Lolignier

    2015-05-01

    Full Text Available Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9−/− neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.

  12. The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia.

    Science.gov (United States)

    Lolignier, Stéphane; Bonnet, Caroline; Gaudioso, Christelle; Noël, Jacques; Ruel, Jérôme; Amsalem, Muriel; Ferrier, Jérémy; Rodat-Despoix, Lise; Bouvier, Valentine; Aissouni, Youssef; Prival, Laetitia; Chapuy, Eric; Padilla, Françoise; Eschalier, Alain; Delmas, Patrick; Busserolles, Jérôme

    2015-05-19

    Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9(-/-) neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.