WorldWideScience

Sample records for cold neutron imaging

  1. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  2. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  3. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    Science.gov (United States)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  4. ASIC Development for Three-Dimensional Silicon Imaging Array for Cold Neutrons

    International Nuclear Information System (INIS)

    Britton, C.L.; Jagadish, U.; Bryan, W.L.

    2004-01-01

    An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-(micro)m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported

  5. Development of instrumentation for imaging scattered cold neutrons. Phase 1 report

    International Nuclear Information System (INIS)

    Walter, J.

    1988-01-01

    The project involves the development of a cold neutron imaging array consisting of a neutron to charged particle convertor and an array of Si detector pixels. Each detector pixel has its own preamplifier/signal conditioning chain and its own data storage registers. The parallel processing capability will be contained on WSI-ASIC sub-array wafers with 196 channels per wafer. Such sub-arrays can be assembled into large focal plane arrays. The high speed of the silicon detectors and signal conditioning chains makes 100,000 cps per pixel a realistic goal. Calculations and experimental measurements of neutron detection efficiency as a function of neutron wavelength are very encouraging. Preliminary design studies of the preamplifier/signal conditioning chain appear to present no insurmountable technical problems

  6. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  7. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  8. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  9. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  10. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  11. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  12. Assessment of cold neutron radiography capability

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Roberts, J.A.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry

  13. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  14. Problems and prospects of neutron imaging

    International Nuclear Information System (INIS)

    Kobayashi, Hisao

    2008-01-01

    Technical problems and future prospects of neutron imaging and neutron radiography are reviewed and discussed for further development. For technical problems, neutron sources together with cold neutron, ultra-cold neutron, epithermal and fast-neutron beams, energy converters, and the intensity of neutron beam, dynamic range associated with imaging procedure, etc, are reviewed. As standardization, such indicators as beam purity, sensitivity, image quality, and beam quality are discussed and limitation of neutron radiography is also presented. As neutron imaging has developed as a nondestructive testing technique in industrial applications, further problems and prospects of quality control and qualification to perform neutron radiography, standardization and international cooperation of neutron imaging are discussed. (S. Ohno)

  15. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  16. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  17. Basic physics with ultra cold neutrons

    International Nuclear Information System (INIS)

    Protasov, K.

    2007-01-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  18. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  19. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  20. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  1. Detection of 10B distributions in histological samples by NCAR using thermal and cold neutrons and photoluminiscent imaging plates. New results

    International Nuclear Information System (INIS)

    Rant, J.; Skvarc, J.; Ilic, R.; Gabel, D.; Bayon, G.; Yanagie, H.; Kobayashi, H.; Lehmann, E.; Kuehne, G.

    1999-01-01

    The Neutron Capture Autoradiography (NCAR) using various Solid State Nuclear Track Detectors (SSNTDs) is a well established and accurate method to detect and measure the distributions of 10 B in the ppm range on macroscopic and microscopic level in biological samples, such as histological sections of tumours loaded with 10 B compounds used for BNCT (e.g. 1,2). recently a new technique of NCAR using sensitive photoluminescent Imaging Plates (IP) has been proposed to detect 10 B distributions in histological sections (3), exploiting excellent detection properties of IP systems such as very high detection sensitivity and quantum detection efficiency, broad linear response and dynamic range, very small image distortion, reusability of IP and possibilities of digital autoradiography. The advantage of IP-NCAR vs. NCAR with SSNTDs should be the much lower neutron fluence (10 7 10 9 vs. 10 10 10 13 n/cm 2 with SSNTDs), no intermediate chemical treatment (track etching) and direct and fast compuitational handling and evaluation of the digitized autoradiographic image. However, the spatial resolution of the present available IP detection systems is somewhat lower (∼ 0,04 mm) than with SSNTDs (∼ 0,01 mm). Another problem with IP NCAR is rather high sensitivity of IP to all types of ionizing radiations. Therefore the background of direct and induced gamma-rays as well as of epithermal and fast neutrons has to be filtered out of thermal neutron beam to be used for IP-NCAR. To improve the signal/background ratio and to increase the detectibility of 10 B we propose to use clean cold neutron beams for the IP-NCAR of 10 B distributions in histological samples in BNCT experiments (4,5). In the present work the recent results of experiments in IP-NCAR with cold neutrons from the neutron radiographic channel of the ORPHEE reactor in Saclay and with the rather clean thermal neutron beam of the NEUTRA neutron radiography facility of the PSI (Villingen) will be presented. For the

  2. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs

  3. Activation analysis opportunities using cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Rossbach, M

    1987-05-01

    Guided beams of cold neutrons being installed at a number of research reactors may become increasingly available for analytical research. A guided cold beam will provide higher neutron fluence rates and lower background interferences than in present facilities. In an optimized facility, fluence rates of 10/sup 9/ nxcm/sup -2/xs/sup -1/ are obtainable. Focusing a large area beam onto a small target will further increase the neutron intensity. In addition, the shift to lower neutron energy increases the effective cross sections. The absence of fast neutrons and gamma rays permits detectors to be placed near the sample without intolerable background, and thus the efficiency for counting prompt gamma rays can be much higher than in present systems. Measurements made at the hydrogen cold source of the FRJ-2 (DIDO) reactor at the KFA provide a numerical evaluation of the improvements in PGAA with respect to signal-to-background ratios of important elements and matrices. (author) 15 refs.

  4. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  5. Cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    Larsen, J.E.

    1980-01-01

    Cold neutron radiography may be improved by matching neutron temperature to the specific material to be analyzed. It is possible to bombard the material with neutrons having the precise average temperature necessary to realize the minimum attenuation coefficient, or to choose a neutron temperature that would increase the attenuation by inclusions, defects, etc., or to choose a neutron temperature that provides a good balance between sample transmission and defect attenuation. Other neutron temperatures might also be chosen for other reasons. This may be done by having a source of neutrons embedded in a moderator material, such as solid methane, and cooling the moderator material to the desired temperature by a cryogenic refrigerator. In another embodiment, neutrons from a nuclear reactor are passed through a moderator cooled by a cryogenic refrigerator. Since the neutron temperature is matched to the material being radiographically inspected, improved contrast and resolution can be obtained through thicker materials than it has heretofore been possible to analyze by cold neutron radiography. More optimum filtering of a neutron beam is also achieved by using a cryogenic refrigerator to cool the neutron beam filter. (auth)

  6. Improved cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    1981-01-01

    An improved cold neutron radiography technique is described in which the neutron temperature is matched to the specific material to be analyzed. In addition to a beam source and detector the apparatus incorporates a cryogenic refrigerator which enables the moderator material to be cooled to a predetermined adjustable temperature below the Bragg edge temperature of the sample. (U.K.)

  7. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  8. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  9. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  10. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  11. Neutron cooling and cold-neutron sources (1962)

    International Nuclear Information System (INIS)

    Jacrot, B.

    1962-01-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [fr

  12. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  13. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  14. The cold neutron source in DR 3

    International Nuclear Information System (INIS)

    Jensen, K.; Leth, j.A.

    1980-09-01

    A description of the cold neutron source in DR 3 is given. The moderator of the cold neutron source is supercritical hydrogen at about 30degK and 15 bar abs. The necessary cooling capacity is supplied by two Philips Stirling B20 cryogenerators. The hydrogen is circulated between the cryogenerators and the in-pile moderator chamber by small fans. The safety of the facility is based on the use of triple containment preventing contact between hydrogen and air. The triple containment is achieved by enclosing the high vacuum system, surrounging the hydrogen system, in a helium blanket. The achieved spectrum of the thermal neutron flux and the gain factor are given as well as the experience from more than 5 years of operation. Finally some work on extension of the facility to operate two cold sources is reported. (author)

  15. Combined neutron imaging techniques for cultural heritage purpose

    International Nuclear Information System (INIS)

    Materna, T.

    2009-01-01

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  16. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  17. Time-grated energy-selected cold neutron radiography

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Brun, T.O.; Claytor, T.N.; Farnum, E.H.; Greene, G.L.; Morris, C.

    1998-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as Time-Gated Energy-Selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross section drops significantly. This difference in scattering characteristics can be recorded in the TGES radiography and, because the Bragg cutoff occurs at different energy levels for various materials, the approach can be used to differentiate among these materials. This paper outlines the TGES radiography technique and shows an example of radiography using the approach

  18. The GKSS cold neutron source

    International Nuclear Information System (INIS)

    Knop, W.; Wedderien, T.; Krull, W.

    1995-01-01

    The FRG-1 research reactor, in operation since 1958 at 5 MW power, is upgraded and refurbished many times to follow the changing demands on safe operation and the today needs for scientific research. This requires during the lifetime of the reactor many measures to follow these demands. Within the last years many additional activities have been made to overcome the ageing of the experiments, to change the experimental facilities and to increase the neutron flux and adapt the neutron spectrum to ensure good scientific utilization of the research reactor for the next 15 to 20 years. (orig./HP)

  19. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  20. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  1. Development of cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Park, K. N. and others

    1999-05-01

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  2. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  3. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  4. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  5. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  6. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO2-A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    International Nuclear Information System (INIS)

    Matsushima, U.; Kardjilov, N.; Hilger, A.; Manke, I.; Shono, H.; Herppich, W.B.

    2009-01-01

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D 2 O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO 2 in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO 2 was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H 2 O and D 2 O in the plant container were exchanged every 30 min to observe water uptake. D 2 O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D 2 O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO 2 as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency (F v /F m ), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  7. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  8. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Soyama, K.; Suzuki, J. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  9. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  10. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K.

    2005-09-01

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  11. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  12. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  13. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  14. The neutron imaging diagnostic at NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  15. Cold fusion produces more tritium than neutrons

    International Nuclear Information System (INIS)

    Rajagopalan, S.R.

    1989-01-01

    The results of the major cold fusion experiments performed in various laboratories of the world and attempts to explain them are reviewed in brief. Particular reference is made to the experiments carried out in the Bhabha Atomic Research Centre (BARC), Bombay. In BARC experiments, it is found that tritium is the primary product of cold fusion. Author has put forward two hypothetical pictures of D-D fusion. (1) When a metal like Pd or Ti is loaded with D 2 , a crack forms. Propogation of such a crack accelerates deuterons which bombard Pd D 2 /D held by Pd or Ti leading to neutron capture or tritium formation with the release of protons and energy. The released protons might transfer its energy to some other deuteron and a chain reaction is started. This chain reaction terminates when a substantial portion of D in the crack tip is transmuted. This picture explains fusion reaction bursts and the random distribution of reaction sites, but does not explain neutron emission. (2) The deuterons accelerated by a propogating crack may hit a Pd/Ti nucleus instead of a deuterium nucleus and may transmute Pd/Ti. (M.G.B.). 18 refs

  16. The cold neutron facility of the JRR-3M

    International Nuclear Information System (INIS)

    Kumai, T.; Suzuki, M.; Kakefuda, K.

    1992-01-01

    A description is given of a cold neutron source and neutron guide tubes of the JRR-3M. The installation of the cold neutron source (CNS) together with the neutron guide system is one of the principal objectives of the remodeling project of the JRR-3 and this CNS is the first one that was installed in the high neutron flux reactors of 14 orders of magnitude in Japan. The CNS is a liquid hydrogen moderator and vertical thermosyphon type. It mainly consists of a hydrogen plant for liquid hydrogen and helium refrigerator plant for cold helium gas. Five neutron guide tubes are installed to get thermal and cold neutron beams in the beam hall. The CNS and the guide tubes have been operated very well since August 1990. (author)

  17. NANODIAMOND - diamond nano-powder reflectors for very cold neutrons

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2011-01-01

    The present proposal is based on recent observation of two new phenomena, related to the interaction of neutrons with nano-dispersed medium, in particular from powder of diamond nanoparticles with a characteristic size of ∼ 5 nm: -) efficient (close to 100%) reflection of slow neutrons (above 10-20 Angstroms) at any incidence angle; -) quasi-specular reflection of cold neutrons (above ∼ 5 Angstroms) at small grazing angles. We propose to implement such diamond nano-powder reflectors into sources of cold neutrons (where appropriate) as well as around upstream sections of neutron guides in order to increase fluxes of slow neutrons available for experiments. (authors)

  18. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  19. Neutron radiography using neutron imaging plate

    International Nuclear Information System (INIS)

    Chankow, Nares; Wonglee, Sarinrat

    2008-01-01

    Full text: The aims of this research are to study properties of neutron imaging plate, to obtain a suitable condition for neutron radiography and to use the neutron imaging plate for testing of materials nondestructively. The experiments were carried out by using a neutron beam from the Thai Research Reactor TRR-1/M1 at a power of 1.2 MW. A BAS-ND 2040 FUJI neutron imaging plate and a MX125 Kodak X-ray film/Gadolinium neutron converter screen combination were tested for comparison. It was found that the photostimulated light (PSL) read out of the imaging plate was directly proportional to the exposure time. It was also found that radiography with neutron using the imaging plate was approximately 40 times faster than the conventional neutron radiography using x-ray film/Gd converter screen combination. The sensitivity of the imaging plate to gamma-rays was investigated by using gamma-rays from an 192 Ir and a 60 Co radiographic sources. The imaging plate was found to be 5-6 times less sensitive to gamma-rays than a FUJI BAS-MS 2040 gamma-ray imaging plate. Finally, some specimens were selected to be radiographed with neutrons using the imaging plate and the x-ray film/Gd converter screen combination in comparison to x-rays. Parts containing light elements could be clearly observed by the two neutron radiographic techniques. It could be concluded that the image quality from the neutron imaging plate was comparable to the conventional x-ray film/Gd converter screen combination but the exposure time could be approximately reduced by a factor of 40

  20. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  1. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  2. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  3. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  4. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  5. Status of the Neutron Imaging and Diffraction Instrument IMAT

    Science.gov (United States)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  6. Current status for TRR-II Cold Neutron Source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Wang, C.H.; Chan, Y.K.; Shieh, D.J.

    2001-01-01

    The Taiwan Research Reactor (TRR) project (TRR-II) is carrying out at Institute of Nuclear Energy Research (INER) from October 1998 to December 2006. The purpose of Cold Neutron Source (CNS) project is to build entire CNS facility to generate cold neutrons within TRR-II reactor. The objective of CNS design is to install CNS facility with a competitive brightness of cold neutron beam to other facilities in the world. Based on the TRR-II CNS project schedule, the conceptual design for TRR-II CNS facility has been completed and the mock-up test facility for full-scale hydrogen loop has been designed. (author)

  7. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  8. Industrial applications at the new cold neutron radiography and tomography facility of the HMI

    International Nuclear Information System (INIS)

    Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Treimer, W.; Banhart, J.

    2005-01-01

    The new cold neutron radiography and tomography facility at the Hahn-Meitner-Institut Berlin is suited for the investigation of components and materials from different industrial fields. The high-flux measuring position of the facility allows real-time imaging of fast dynamical processes. Cold neutrons interact stronger with the matter compared to thermal neutrons, which leads to a much better radiography contrast. Some examples of different industry applications like investigations on discharging of a Lithium battery or on oil sediments in a vent pipe are presented

  9. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  10. Sonoluminescence: an IRaser creating cold fusion neutrons?

    International Nuclear Information System (INIS)

    Prevenslik, T.V.

    1996-01-01

    Sonoluminescence can be explained by treating the bubbles as IRasers with standing waves in resonance with the bubble dimensions. Since the IRaser resonant radiation is required to satisfy wave boundary conditions, the water molecules lining the bubble walls undergo a continuous population inversion as the bubble collapses. By stimulated processes, the Planck energy accumulates as the K b T energy of radiation photons is pumped from the surroundings through the rotational state of the water molecule. Bubble collapse occurs almost isothermally with the high IR absorptivity of the water molecule permitting the Planck energy to accumulate to 2∼6 eV only to be released by VIS-UV photon emission because of the low absorptivity of water at VIS-UV frequencies. As the IRaser cavity dimensions collapse to the spacing between water molecules at liquid density, soft x-rays at about 2 keV are predicted. But, this is less than 10 keV necessary for cold fusion so that no neutrons is directly expected yet. Therefore, it is suggested that UV laser enhancement is used to accumulate further bubble collapse energy

  11. Design and safety aspects of the Cornell cold neutron source

    International Nuclear Information System (INIS)

    Ouellet, Carol G.; Clark, David D.

    1992-01-01

    The cold neutron beam facility at the Cornell University TRIGA Mark II reactor will begin operational testing in early 1993. It is designed to provide a low background subthermal neutron beam that is as free as possible of fast neutrons and gamma rays for applied research and graduate-level instruction. The Cornell cold neutron source differs from the more conventional types of cold sources in that it is inherently safer because it uses a safe handling material (mesitylene) as the moderator instead of hydrogen or methane, avoids the circulation of cryogenic fluids by removing heat from the system by conduction through a 99.99% pure copper rod attached to a cryogenic refrigerator, and is much smaller in its size and loads. The design details and potential hazards are described, where it is concluded that no credible accident involving the cold source could cause damage to the reactor or personnel, or cause release of radioactivity. (author)

  12. The world’s first pelletized cold neutron moderator at a neutron scattering facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  13. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  14. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  15. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  16. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  17. Energy dependent neutron imaging

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Hitterman, R.L.; Rhodes, E.

    1990-01-01

    A waste package consisting of a container and high-level nuclear waste is being developed for the permanent disposal of radioactive waste. Yucca Mountain, Nevada, is being studied as a potential site for the underground high-level nuclear waste repository. A major consideration for choosing Yucca Mountain is the presence of zeolite in tertiary ash-flow tuffs. The presence of zeolites could provide geological barriers to radionuclide migration. The suitability of the tuffaceous rocks at Yucca Mountain for the repository is being investigated since the properties of the environment around a waste site must be well characterized to reliably predict performance. The results of experiments at Lawrence Livermore National Laboratory (LLNL) to assess the possibility of imaging water in Nevada Test Site welded tuff samples showed that nuclear magnetic resonance imaging is not viable. This leaves neutron tomography and high-frequency electromagnetic geotomography as possibilities for the practical imaging of distribution and flow of fluids in rock, including tuff specimens. Water tracers are needed in electromagnetic tomography techniques since the contrast for detecting water in cracks of tuff is lower than in granite because of the higher porosity in tuff. The results of preliminary testing with geotomography by LLNL indicates relatively low spatial resolution. More sensitive techniques for detecting water is needed. This paper describes preliminary experiments to apply pulsed neutrons to image water in a sample of tuff. 3 refs., 3 figs

  18. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  19. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  20. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  1. Very-cold-neutron optics and interferometry at ILL

    International Nuclear Information System (INIS)

    Eder, K.; Zeilinger, A.; Gruber, M.; Rasel, E.; Gaehler, R.; Mampe, W.; Drexel, W.

    1994-01-01

    At the vertical neutron guide from the cold source of the Institut Laue-Langevin (ILL) an optical bench with vibration isolation has been installed. The beam of very cold neutrons has a nominal wavelength of 100 A. An interferometer using three transmission phase gratings sputter-etched into quartz glass plates has been developed. Extensive experiments on the diffraction of very cold neutrons at these large area gratings with grating constants d = 2 μm and d = 1 μm were carried out. The experimental results were compared with Fresnel-Kirchhoff calculations showing agreement in great detail. A prototype interferometer with an overall length of 50 cm has been tested for λ = 105 A (ν = 38.7 m/s) neutrons. Finally we list the experiments envisaged. (author)

  2. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  3. Moving converter as the possible tool for producing ultra-cold neutrons on pulsed neutron sources

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1991-01-01

    A method is proposed for producing ultra-cold neutrons (UCN) at aperiodic pulse neutron sources. It is based on the use of the fast moving cooled converter of UCN in the time of the neutron pulse and includes the trapping of generated UCN's in a moving trap. 6 refs.; 2 figs

  4. Development of Cold Neutron Depth Profiling System at HANARO

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.; Sun, G. M.

    2012-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. A number of analytical techniques for depth profiling have been developed. Neutron Depth Profiling (NDP) system which was developed by Ziegler et al. is one of the leading analytical techniques. In NDP, a thermal or cold neutron beam passes through a material and interacts with certain isotopes that are known to emit monoenergetic-charged particle remaining a recoil nucleus after neutron absorption. The depth is obtained from the energy loss of those charged particles escaping surface of substrate material. For various applications of NDP technique, the Cold Neutron Depth Profiling System (CN-NDP) was developed at a neutron guide CG1 installed at the HANARO cold neutron source. In this study the design features of the cold neutron beam and target chamber for the CN-NDP system are given. Also, some experiments for the performance tests of the CN-NDP system are described

  5. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  6. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  7. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kiyanagi, Y.; Kosugi, N.; Iwasa, H.; Furusaka, M.; Watanabe, N.

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  8. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  9. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  10. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  11. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  12. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  13. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  14. Progress on the Magnetic Trapping of Ultra-cold Neutrons

    Science.gov (United States)

    Doyle, John M.

    1998-04-01

    Ultra-cold neutrons (UCN) have been instrumental in making improved measurements of the neutron beta-decay lifetime and in searches for a permanent electric dipole moment.(R. Golub, D. Richardson and S.K. Lamoreaux, Ultra-cold Neutrons), Adam Hilger, 1991 The most accurate experiments have taken place using in-core devices at ILL (Grenoble, France) and PNPI (St. Petersburg, Russia). Superthermal techniques offer the promise of high-density sources of UCN via scattering of cold neutrons. Cold neutron beams are available at many neutron facilities. We are currently working on the development of a superfluid helium UCN source using the Cold Neutron Research Facility at the NIST Research Reactor (Gaithersburg) . Our first experiment plans to use superthermal scattering of neutrons in superfluid helium to produce UCN within a magnetic trapping volume. A magnetic trap 30 cm long and 4 cm diameter will be filled with helium at about 100 mK. Cold neutrons (around 11 K) will be introduced into the trapping region where some of them scatter to low enough energies (around 1 mK) so that they are magnetically trapped. Once trapped the UCN travel undisturbed; they have a very small probability of upscattering. Detection will be accomplished as the UCN beta-decay. The resultant high-energy electron creates excited molecular helium dimers, a portion which decay in less than 10 ns and emit radiation in the XUV (50-100 nm). We have developed techniques to measure these scintillations. Analysis indicates that a high accuracy measurement of the neutron beta decay lifetime should be possible using our techniques. An apparatus has been constructed and initial runs are underway. An overview of the experiment, discussion of systematic errors and recent experimental progress will be presented. This work is done in collaboration with C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, D. McKinsey, M. Cooper, G. Greene, S. Lamoreaux, R. Golub, K. Habicht, K. Coakley, S. Dewey, D

  15. Results from neutron imaging of ICF experiments at NIF

    Science.gov (United States)

    Merrill, F. E.; Danly, C. R.; Fittinghoff, D. N.; Grim, G. P.; Guler, N.; Volegov, P. L.; Wilde, C. H.

    2016-03-01

    In 2011 a neutron imaging diagnostic was commissioned at the National Ignition Facility (NIF). This new system has been used to collect neutron images to measure the size and shape of the burning DT plasma and the surrounding fuel assembly. The imaging technique uses a pinhole neutron aperture placed between the neutron source and a neutron detector. The detection system measures the two-dimensional distribution of neutrons passing through the pinhole. This diagnostic collects two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically one image measures the distribution of the 14 MeV neutrons, and the other image measures the distribution of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core. Images have been collected for the majority of the experiments performed as part of the ignition campaign. Results from this data have been used to estimate a burn-averaged fuel assembly as well as providing performance metrics to gauge progress towards ignition. This data set and our interpretation are presented.

  16. Material characterization using cold neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Kamiyama, Takashi; Nagata, Toshiyuki; Hiraga, Fujio; Suzuki, Shun

    2006-01-01

    Transmission data using a pulsed neutron source have information on neutron cross-section that reflects the crystal structure of the object, and combined with area detector we can obtain the structural change depending on the position in the object. We performed several experimental studies to observe the change of the structure. We demonstrate position-dependent structural change of the lead in solid. It was indicated that the structure changed largely within few millimeters region. Furthermore, we observed the cross-section change of stainless steel (SS) samples with different treatments, which may be the effect of crystal grain structure of the SS samples caused by different treatment

  17. Cold neutron fluoroscopy of operating automotive engines

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Heritage, J.

    1983-01-01

    The application of neutron fluoroscopy in the automotive industry is a natural extension of previous studies with aircraft engines. This paper describes investigations with two sub-compact car engines. The extent and manner in which lubricants reached the various parts of the engines are compared and contrasted. The paper goes on to describe a study of the deposits inside turbochargers and postulates future topics worthy of investigation. The authors confirm that there is a place for neutron fluoroscopy both as a design tool and for investigations of ''in-service'' phenomena. (Auth.)

  18. Development of the RRR cold neutron beam facility

    International Nuclear Information System (INIS)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel

    2002-01-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  19. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  20. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  1. One-phonon scattering of ultra cold neutrons in copper

    International Nuclear Information System (INIS)

    Holas, A.

    1977-01-01

    Experiments with ultra cold neutrons (UCN) showed that their lifetime in a closed vessel is much smaller than expected. In order to explain this phenomenon, many different mechanisms leading to heating of UCN were proposed, among other things one-phonon coherent inelastic scattering (with phonon absorption). This paper shows quantitatively the contribution of this process to the total heating of UCN

  2. Studies of magnetism with inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    Jacrot, B.

    1964-01-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr

  3. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  4. Neutron Imaging Developments at LANSCE

    Science.gov (United States)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  5. Diffusion theory model for optimization calculations of cold neutron sources

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations

  6. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  7. Interphase microstress measurements in IN 718 by cold neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Repper, J.; Link, P.; Hofmann, M.; Petry, W. [TU Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Garching (Germany); Krempaszky, C. [TU Muenchen, Christian-Doppler-Labor fuer Werkstoffmechanik von Hochleistungslegierungen, Garching (Germany); Werner, E. [TU Muenchen, Lehrstuhl fuer Werkstoffkunde und Werkstoffmechanik, Garching (Germany)

    2010-06-15

    Thermal neutron diffraction is an important and reliable method for the investigation of microscopic stresses. The measurement of Bragg reflections caused by phases of small volume fractions, however, is often intricate due to low intensities and overlapping peaks. The wavelength range of cold neutrons allows to shift the Bragg reflections to larger scattering angles resulting in an increase of relative distances between Bragg reflections. The high resolution of cold neutron diffraction technique is demonstrated by in-situ load tests in which selected Bragg reflections caused by precipitates with small volume fractions in the precipitation strengthened alloy IN 718 are observed. The accumulated microstrains show marked differences in dependence of the precipitated phases within the matrix phase. (orig.)

  8. Polycrystalline Materials as a Cold Neutron and Gamma Radiation Filter

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The total neutron cross-section of polycrystalline beryllium, graphite and iron has been calculated beyond their cut-off wavelength using a general formula. The computer Cold Filter code was developed in order to provide the required calculations. The code also permits the calculation of attenuation of reactor gamma radiation, The calculated neutron transmissions through polycrystalline Be graphite and iron at different temperatures were compared with the experimental data measured at the ETRR-1 reactor using two TOF spectrometers. An overall agreement is obtained between the formula fits and experimental data at different temperatures. A feasibility study is carried on using polycrystalline Be, graphite and iron an efficient filter for cold neutrons and gamma radiation.

  9. Consideration of LH2 and LD2 cold neutron sources in heavy water reactor reflector

    International Nuclear Information System (INIS)

    Potapov, I.A.; Serebrov, A.P.

    2001-01-01

    The reactor power, the required CNS dimensions and power of the cryogenic equipment define the CNS type with maximized cold neutron production. Cold neutron fluxes from liquid hydrogen (LH 2 ) and liquid deuterium (LD 2 ) cold neutron sources (CNS) are analyzed. Different CNS volumes, presents and absence of reentrant holes inside the CNS, different adjustment of beam tube and containment are considered. (orig.)

  10. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  11. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  12. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    International Nuclear Information System (INIS)

    Oku, T.; Morita, S.; Moriyasu, S.; Yamagata, Y.; Ohmori, H.; Takizawa, Y.; Shimizu, H.M.; Hirota, T.; Kiyanagi, Y.; Ino, T.; Furusaka, M.; Suzuki, J.

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 -4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material

  13. Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Vincent, D H; Greenberg, R R; Stone, C A; Mackey, E A [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Anderson, D L [Food and Drug Administration, Washington, DC (United States); Clark, D D [Cornell Univ., Ithaca, NY (United States)

    1993-01-01

    An instrument for neutron capture prompt gamma-ray activation analysis (PGAA) has been constructed as part of the Cold Neutron Research Facility at the 20 MW National Institute of Standards and Technology Research Reactor. The neutron fluence rate (thermal equivalent) is 1.5*10[sup 8] n*cm[sup -2]*s[sup -] [sup 1], with negligible fast neutrons and gamma-rays. With compact geometry and hydrogen-free construction, the sensitivity is sevenfold better than an existing thermal instrument. Hydrogen background is thirtyfold lower. (author) 17 refs.; 2 figs.

  14. Neutron Dark-Field Imaging

    Science.gov (United States)

    Mullins, David

    2017-09-01

    Neutron imaging is typically used to image and reconstruct objects that are difficult to image using X-Ray imaging techniques. X-Ray absorption is primarily determined by the electron density of the material. This makes it difficult to image objects within materials that have high densities such as metal. However, the neutron scattering cross section primarily depends on the strong nuclear force, which varies somewhat randomly across the periodic table. In this project, an imaging technique known as dark field imaging using a far-field interferometer has been used to study a sample of granite. With this technique, interferometric phase images are generated. The dispersion of the microstructure of the sample dephases the beam, reducing the visibility. Collecting tomographic projections at different autocorrelation lengths (from 100 nanometers to 1.74 micrometers) essentially creates a 3D small angle scattering pattern, enabling mapping of how the microstructure is distributed throughout the sample.

  15. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  16. An ultra-cold neutron source at the MLNSC

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science

  17. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  18. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  19. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  20. The proposed cold neutron irradiation facility at the Breazeale reactor

    International Nuclear Information System (INIS)

    Dimeo, R. M.; Sokol, P. E.; Carpenter, J. M.

    1997-01-01

    We discuss the design considerations of a Cold Neutron Irradiation Facility (CNIF) originally to have been installed at the Penn State Breazeale Reactor (PSBR). The goal of this project was to study the effects of radiation-induced damage to cryogenic moderators and, in particular, solid methane. This work evolved through the design stage undergoing a full safety analysis and received tentative approval from the PSBR Safeguards Committee but was discontinued due to budgetary constraints. (auth)

  1. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  2. The Advanced Neutron Source liquid deuterium cold source

    International Nuclear Information System (INIS)

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy

  3. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  4. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO{sub 2}-A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, U. [Faculty of Agriculture, Iwate University (Japan)], E-mail: uzuki@iwate-u.ac.jp; Kardjilov, N.; Hilger, A.; Manke, I. [SF3, Helmholtz Center Berlin for Materials and Energy (Germany); Shono, H. [Faculty of Agriculture, Iwate University (Japan); Herppich, W.B. [Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim (Germany)

    2009-06-21

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D{sub 2}O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO{sub 2} in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO{sub 2} was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H{sub 2}O and D{sub 2}O in the plant container were exchanged every 30 min to observe water uptake. D{sub 2}O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D{sub 2}O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO{sub 2} as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency (F{sub v}/F{sub m}), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  5. Development of a high efficient conventional type cold neutron source using a non-explosive material

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Satoh, S.

    1999-01-01

    An efficient cold moderator that can be used easily at a small neutron source would be useful for neutron radiography, prompt gamma ray analysis and so on. Non-explosive materials are chosen for a cold moderator since explosive materials such as hydrogen and methane require a safety system. Neutronic performances of coupled moderators of various non-explosive materials are studied so as to develop such a cold moderator since the coupled moderator system is the best to obtain high intensity of cold neutrons. Effect of premoderator is studied and neutron spectra from methanol, ethanol, benzene, mesitylene and benzene methanol are measured around 20 K. The premoderator increased the cold neutron intensity by about 50∼70%. Methanol and mesitylene gave the highest cold neutron intensity. Effect of Be filter-reflector is also studied and a intensity gain of about 20% was obtained below about 5 MeV. (author)

  6. Cold neutron PGAA facility developments at university research reactors in the USA

    International Nuclear Information System (INIS)

    Uenlue, K.; Rios-Martinez, C.

    2005-01-01

    The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by a helium cryorefrigerator via copper cold fingers to maintain the moderator below 30 K at full power reactor operation. Texas Cold Neutron Source (TCNS) also uses mesitylene moderator that is cooled by a cryorefrigerator via a neon thermosiphon. The operation of the TCNS is based on a helium cryorefrigerator, which liquefies neon gas in a 3-m long thermosiphon. The thermosiphon cools and maintains mesitylene moderator at about 30 K in a chamber. Neutrons streaming through the mesitylene chamber are moderated and thus reduce their energy to produce a cold neutron distribution. (author)

  7. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  8. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  9. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  10. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  11. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2001-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D2O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10deg from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very importable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H2) to the deuterium (D2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. The new reactor will have 13 beam tubes, 4 of which are looking at the cold neutron source (CNS), including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments foreseen in the new neutron research facility will use cold neutrons from the CNS. The mounting of the hardware components of the CNS into the reactor has started in the spring of 2000. The CNS will go into trial operation in the end of year 2000. (J.P.N.)

  12. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gobrecht, K.

    1999-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2 O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4000 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 deg from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2 ) to the deuterium (D 2 ) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long term change of the hydrogen content in the deuterium is avoided be storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3 Ni 2 , the other one with 150 kg of ZrCo(0.8)Ni(0.2). Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in less than 6 minutes at a pressure < 3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the cold neutron source (CNS), including two for very cold (VCN) and ultra-cold neutron (UCN

  13. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  14. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  15. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  16. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  17. Excited-state imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Vredenbregt, E.J.D.; Scholten, R.E.; Deshmukh, P.C.; Chakraborty, P.; Williams, J.F.

    2007-01-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes

  18. State-selective imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.

    2008-01-01

    Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We

  19. Characterization of the new neutron imaging and materials science facility IMAT

    Science.gov (United States)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  20. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  1. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  2. Status of TRR-II cold neutron source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Chan, Y.K.; Wang, C.H.; Chen, S.K.

    2001-01-01

    The Taiwan research reactor improvement and the utilization promotion project (TRR-II) with a vertical cold neutron source (CNS) is carrying out at the Institute of Nuclear Energy Research (INER). The CNS with a two-phase thermosiphon loop consists of an annular cylindrical moderator cell, a single moderator transfer tube and a condenser. A cylindrical annulus moderator cell with boiling liquid hydrogen at 1.2 bar and 20.7 K gives an optimum moderation for cold neutrons in the wavelength range between 4 A and 15 A. The moderator cell lies around 400 mm away from the core center. Its perturbed thermal flux is about 1.4 x 10 14 cm -2 s -1 . It is close to the maximum thermal neutron flux area in D 2 O tank to get the maximum possible brightness about 1 x 10 12 n cm -2 s -1 A -1 sterad -1 at 4 A. An experimental study for thermal-hydraulic characteristics of the two-phase thermosiphon loop has been performed on a full-scale mockup loop using a Freon-11 as a working fluid. The objective of the mockup testing is to validate operation and heat removal capacity in CNS hydrogen loop design. Moreover, this loop will be used to demonstrate no onset of flooding and flow oscillations in a single transfer tube under CNS normal and abnormal conditions. The flooding limitation, the liquid level, and the void fraction in the moderator cell as a function of the initial Freon-11 inventory, the heat load, and the moderator cell geometry are also reported. (orig.)

  3. Neutron Imaging with Timepix Coupled Lithium Indium Diselenide

    Directory of Open Access Journals (Sweden)

    Elan Herrera

    2017-12-01

    Full Text Available The material lithium indium diselenide, a single crystal neutron sensitive semiconductor, has demonstrated its capabilities as a high resolution imaging device. The sensor was prepared with a 55 μ m pitch array of gold contacts, designed to couple with the Timepix imaging ASIC. The resulting device was tested at the High Flux Isotope Reactor, demonstrating a response to cold neutrons when enriched in 95% 6 Li. The imaging system performed a series of experiments resulting in a <200 μ m resolution limit with the Paul Scherrer Institute (PSI Siemens star mask and a feature resolution of 34 μ m with a knife-edge test. Furthermore, the system was able to resolve the University of Tennessee logo inscribed into a 3D printed 1 cm 3 plastic block. This technology marks the application of high resolution neutron imaging using a direct readout semiconductor.

  4. Electronic imaging applied to neutron radiography

    International Nuclear Information System (INIS)

    Garrett, D.A.; Bracher, D.A.

    1976-01-01

    A commercially - available image intensifier was used with a scan conversion memory and a mobile 252 Cf based neutron radiography system to obtain neutron radiographs on a television monitor in 0.5 minutes to 10.0 minutes

  5. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    Science.gov (United States)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments

  6. Neutron imaging integrated circuit and method for detecting neutrons

    Science.gov (United States)

    Nagarkar, Vivek V.; More, Mitali J.

    2017-12-05

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge state less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.

  7. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  8. Initial performance of the Cornell cold neutron beam

    International Nuclear Information System (INIS)

    Clark, D.D.; Spern, S.A.; Atwood, A.G.

    1997-01-01

    The cold source for a guided neutron beam has been installed in a Cornell TRIGA beamport and has successfully undergone thermal tests up to full power (normally 480 kW). Tests to date (8/1/96) include spectral and yield measurements at 10 kW with the first three meters of the 2-cm by 5-cm Ni-on-glass guide in place. A 110-cm 3 Al chamber, located 17 cm from the core, contains solid mesitylene and is cooled by conduction through a 269-cm long Cu rod connected to a cryorefrigerator outside the reactor shield. Distributions of flux per unit velocity have been measured at 10 kW by time-of-flight. Anticipated properties of the complete 13 m long beam at full power are discussed. (author)

  9. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  10. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  11. Report on the international workshop on cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.

    1999-01-01

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance

  12. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  13. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  14. Neutron-optical effects at very cold neutrons scattering on the spherical particles of different sizes

    International Nuclear Information System (INIS)

    Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.

    2006-01-01

    Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ

  15. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  16. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I.

    2006-01-01

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year

  17. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  18. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  19. Developments of high-performance moderator vessel for JRR-3 cold neutron source

    International Nuclear Information System (INIS)

    Arai, Masaji; Tamura, Itaru; Hazawa, Tomoya

    2015-05-01

    The cold neutron source (CNS) facility converts thermal neutrons into cold neutrons to moderate neutrons with liquid hydrogen. The cold neutron beam at Japan Research Reactor No. 3 (JRR-3) is led to the beam experimental devices in the beam hall through neutron guide tubes. High intensities of the cold neutron beam are always demanded for increasing the experimental effectiveness and accuracy. In the Department of Research Reactor and Tandem Accelerator, developments of high-performance CNS moderator vessel that can produce cold neutron intensity about two times higher compared to the existing vessel have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the design and manufacture of new vessel. In the present study, design strength evaluation, mockup test, simulation for thermo-fluid dynamics of the liquid hydrogen and strength evaluation of the different-material-bonding were studied. By these evaluation results, we verified that the developed new vessel can be applied to CNS moderator vessel of JRR-3. (author)

  20. Neutron imaging and applications a reference for the imaging community

    CERN Document Server

    McGreevy, Robert L; Bilheux, Hassina Z

    2009-01-01

    Offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. This title features a section that describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas.

  1. Development of the RRR Cold Neutron Source facility

    International Nuclear Information System (INIS)

    Masriera, N.; Lecot, C.; Hergenreder, D.; Lovotti, O.; Serebrov, A.; Zakharov, A.; Mityukhlyaev, V.

    2003-01-01

    This paper describes some general design issues on the Cold Neutron Source (CNS) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspects of the design: the requirements that lead to an innovative design, the overall design itself and the definition of a technical approach in order to develop the necessary design solutions. The RRR-CNS has liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation Thermosiphon loop. The Thermosiphon is surrounded by a CNS Vacuum Containment made of zirconium alloy, that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The applied design approach allows ensuring that the RRR-CNS, in spite of being innovative, will meet all the design, performance and quality requirements. (author)

  2. Cryogenic technology review of cold neutron source facility for localization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Cheol; Park, D. S.; Moon, H. M.; Soon, Y. P. [Daesung Cryogenic Research Institute, Ansan (Korea); Kim, J. H. [United Pacific Technology, Inc., Ansan (Korea)

    1998-02-01

    This Research is performed to localize the cold neutron source(CNS) facility in HANARO and the report consists of two parts. In PART I, the local and foreign technology for CNS facility is investigated and examined. In PART II, safety and licensing are investigated. CNS facility consists of cryogenic and warm part. Cryogenic part includes a helium refrigerator, vacuum insulated pipes, condenser, cryogenic fluid tube and moderator cell. Warm part includes moderator gas control, vacuum equipment, process monitoring system. Warm part is at high level as a result of the development of semiconductor industries and can be localized. However, even though cryogenic technology is expected to play a important role in developing the 21st century's cutting technology, it lacks of specialists and the research facility since the domestic market is small and the research institutes and government do not recognize the importance. Therefore, it takes a long research time in order to localize the facility. The safety standard of reactor for hydrogen gas in domestic nuclear power regulations is compared with that of the foreign countries, and the licensing method for installation of CNS facility is examined. The system failure and its influence are also analyzed. 23 refs., 59 figs., 26 tabs. (Author)

  3. Neutron imaging system based on a video camera

    International Nuclear Information System (INIS)

    Dinca, M.

    2004-01-01

    The non-destructive testing with cold, thermal, epithermal or fast neutrons is nowadays more and more useful because the world-wide level of industrial development requires considerably higher standards of quality of manufactured products and reliability of technological processes especially where any deviation from standards could result in large-scale catastrophic consequences or human loses. Thanks to their properties, easily obtained and very good discrimination of the materials that penetrate, the thermal neutrons are the most used probe. The methods involved for this technique have advanced from neutron radiography based on converter screens and radiological films to neutron radioscopy based on video cameras, that is, from static images to dynamic images. Many neutron radioscopy systems have been used in the past with various levels of success. The quality of an image depends on the quality of the neutron beam and the type of the neutron imaging system. For real time investigations there are involved tube type cameras, CCD cameras and recently CID cameras that capture the image from an appropriate scintillator through the agency of a mirror. The analog signal of the camera is then converted into digital signal by the signal processing technology included into the camera. The image acquisition card or frame grabber from a PC converts the digital signal into an image. The image is formatted and processed by image analysis software. The scanning position of the object is controlled by the computer that commands the electrical motors that move horizontally, vertically and rotate the table of the object. Based on this system, a lot of static image acquisitions, real time non-destructive investigations of dynamic processes and finally, tomographic investigations of the small objects are done in a short time. A system based on a CID camera is presented. Fundamental differences between CCD and CID cameras lie in their pixel readout structure and technique. CIDs

  4. Measuring hydrogen by cold-neutron prompt-gamma activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Paul, R L; Greenberg, R R [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    By irradiating with cold neutrons and avoiding hydrogenous materials of construction, a PGAA instrument was developed at the Cold Neutron Research Facility at NIST with hydrogen detection limits in the microgram range in many materials. Quantities of 5-10 [mu]g H/g are presently measurable in gram-sized samples of silicon or quartz, and of order 0.01 wt % can be quantitatively measured in complex silicate rocks. (author) 19 refs.; 1 fig.; 1 tab.

  5. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  6. New neutron imaging using pulsed sources. Characteristics of a pulsed neutron source and principle of pulsed neutron imaging

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki

    2012-01-01

    Neutron beam is one of important tools to obtain the transmission image of an object. Until now, steady state neutron sources such as reactors are mainly used for this imaging purpose. Recently, it has been demonstrated that pulsed neutron imaging based on accelerator neutron sources can provide a real-space distribution of physical information of materials such as crystallographic structure, element, temperature, hydrogen bound state, magnetic field and so on, by analyzing wavelength dependent transmission spectrum, which information cannot be observed or difficult to obtain with a traditional imaging method using steady state neutrons. Here, characteristics of the pulsed neutron source and principle of the pulsed neutron imaging are explained as a basic concept of the new method. (author)

  7. Monte-Carlo simulation on the cold neutron guides at CARR

    International Nuclear Information System (INIS)

    Guo Liping; Wang Hongli; Yang Tonghua; Cheng Zhixu; Liu Yi

    2003-01-01

    The designs of the two cold neutron guides to be built at China Advanced Research Reactor (CARR) are simulated with Monte-Carlo simulation software VITESS. Various parameters of the guides, e.g. transmission efficiency, neutron flux, divergence, etc., are obtained. (author)

  8. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  9. Cold neutron interaction with a classical electric field: Some basic theoretical and experimental considerations

    International Nuclear Information System (INIS)

    Bruce, S.; Diaz-Valdes, J.; Bennun, L.; Minning, P.C.

    2008-01-01

    We explore the feasibility of performing an experiment to measure the interaction of cold neutrons with a given classical electric field. Bound and scattering states could be detected by means of an approximate Aharonov-Casher configuration. The theoretical background is presented and then some primary elements for building a neutron detector of this nature are proposed

  10. Aharonov-Bohm and gravity experiments with the very-cold-neutron interferometer

    CERN Document Server

    Zouw, G V D; Felber, J; Gähler, R; Geltenbort, P; Zeilinger, Anton

    2000-01-01

    We report on the specific techniques associated with experiments with the interferometer for very-cold neutrons at the Institute Laue-Langevin (ILL). Two recent experiments are presented: one to measure the gravitational phase shift to high precision and one to demonstrate the non-dispersivity of the scalar Aharonov-Bohm effect for neutrons.

  11. Fast neutron radiography using photoluminescent imaging plates

    International Nuclear Information System (INIS)

    Rant, J.; Kristof, E.; Balasko, M.; Stade, J.

    1999-01-01

    Fast neutron radiography (FNR) and resonance neutron radiography (RNR) are complementary to the conventional radiography with high energy gamma-rays or brems-strahlung radiation used for the inspection of thick metal objects. In both non-destructive methods, the contrast sensitivity and the penetration power can be improved by using higher energy neutrons. At present direct techniques based either n Solid State Nuclear Track detectors (SSNTDs) or scintillating screens and transfer techniques using activation threshold detectors and radiographic films are applied for the detection of fast neutron images. Rather low detection sensitivity of film and SSNTD based fast neutron imaging methods and also rather poor inherent image contrast of SSNTD pose a problem for FNR in the fast neutron energy region 1-15 MeV interesting for NDT. For more efficient detection of fast neutron images the use of novel highly sensitive photoluminescent imaging plates (IP) in combination with threshold at the KFKI research reactor. The conventional IP produced by FUJI Photo Film Co. for the detection of beta and X-ray radiation were used. The threshold activation detectors were the reactions 115 In(n, n') 115m In, 64 Zn(n,p) 64 Cu, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na and 27 Al(n, α) 24 Na. These threshold reactions cover the fast neutron energy region between 0,7 MeV and 12 MeV. Pure, commercially available metals 0,1 mm to 0,25 mm thick made of In, Zn, Fe, Mg and Al were used as converter screens. The very high sensitivity of IP, the linearity of their response over 5 decades of exposure dose and the high dynamic digitalisation latitude enabled fast neutron radiography of image quality comparable to the quality of thermal NR. In our experimental conditions (φ n ∼ 10 8 n/cm 2 s, R Cd ∼ 2) the neutron exposure and IP exposure periods were still practical and comparable to the half life of the corresponding reaction products (half an hour to several hours). Even with the 27 Al(n.α) 24

  12. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  13. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  14. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  15. Basic design of the HANARO cold neutron source using MCNP code

    International Nuclear Information System (INIS)

    Yu, Yeong Jin; Lee, Kye Hong; Kim, Young Jin; Hwang, Dong Gil

    2005-01-01

    The design of the Cold Neutron Source (CNS) for the HANARO research reactor is on progress. The CNS produces neutrons in the low energy range less than 5meV using liquid hydrogen at around 21.6 K as the moderator. The primary goal for the CNS design is to maximize the cold neutron flux with wavelengths of around 2 ∼ 12 A and to minimize the nuclear heat load. In this paper, the basic design of the HANARO CNS is described

  16. Characterization of a scintillating lithium glass ultra-cold neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, B.; Rebenitsch, L.A.; Hansen-Romu, S.; Mammei, R.; Martin, J.W. [University of Winnipeg, Department of Physics, Winnipeg (Canada); Lauss, B. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen (Switzerland); Lindner, T. [TRIUMF, Vancouver (Canada); University of Winnipeg, Department of Physics, Winnipeg (Canada); Pierre, E. [TRIUMF, Vancouver (Canada); Osaka University, Research Centre for Nuclear Physics, Osaka (Japan)

    2017-01-15

    A {sup 6}Li-glass-based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7±0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7{sup +1.3}{sub -1.9}%. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI. (orig.)

  17. Neutron polarizing Fe-Al supermirror on a Si crystal substrate and its applications for thermal and cold neutrons

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Shchebetov, A.F.; Soroko, Z.N.

    1994-01-01

    Experimental data are presented for an Fe-Al neutron polarizing supermirror on a Si crystal substrate with an antireflecting Cd layer. The polarizing efficiency of this supermirror is P≥qslant0.8 for the range of glancing angles θ/λ=0.25-1.7 /nm and P≥qslant0.95 for θ/λ=0.34-1.7 /nm. Some applications of this supermirror for thermal and cold neutrons are considered. ((orig.))

  18. Optics for Advanced Neutron Imaging and Scattering

    International Nuclear Information System (INIS)

    Moncton, David E.; Khaykovich, Boris

    2016-01-01

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  19. Simulation study on the cold neutron guides in China advanced research reactor

    International Nuclear Information System (INIS)

    Guo Liping; Yang Tonghua; Wang Hongli; Sun Kai; Zhao Zhixiang

    2003-01-01

    The designs of the two cold neutron guides, CNG1 and CNG2, to be built in China advanced research reactor (CARR) are studied with Monte-Carlo simulation technique. The neutron flux density at the exit of the both guides can reach above 1 x10 9 cm -2 ·s -1 under the assumed flux spectrum of the cold neutron source. The transmission efficiency is 50% and 42%, and the maximum divergence is about 2.2 degree and 1.9 degree, respectively for CNG1 and CNG2. Neutron distribution along horizontal direction is quite uniform for both guides, with maximum fluctuation of less than 3%. Gravity can affect neutron distribution along vertical direction considerably

  20. The National Ignition Facility Neutron Imaging System

    International Nuclear Information System (INIS)

    Wilke, Mark D.; Batha, Steven H.; Bradley, Paul A.; Day, Robert D.; Clark, David D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary P.; Jaramillo, Steven A.; Montoya, Andrew J.; Morgan, George L.; Oertel, John A.; Ortiz, Thomas A.; Payton, Jeremy R.; Pazuchanics, Peter; Schmidt, Derek W.; Valdez, Adelaida C.; Wilde, Carl H.

    2008-01-01

    The National Ignition Facility (NIF) is scheduled to begin deuterium-tritium (DT) shots possibly in the next several years. One of the important diagnostics in understanding capsule behavior and to guide changes in Hohlraum illumination, capsule design, and geometry will be neutron imaging of both the primary 14 MeV neutrons and the lower-energy downscattered neutrons in the 6-13 MeV range. The neutron imaging system (NIS) described here, which we are currently building for use on NIF, uses a precisely aligned set of apertures near the target to form the neutron images on a segmented scintillator. The images are recorded on a gated, intensified charge coupled device. Although the aperture set may be as close as 20 cm to the target, the imaging camera system will be located at a distance of 28 m from the target. At 28 m the camera system is outside the NIF building. Because of the distance and shielding, the imager will be able to obtain images with little background noise. The imager will be capable of imaging downscattered neutrons from failed capsules with yields Y n >10 14 neutrons. The shielding will also permit the NIS to function at neutron yields >10 18 , which is in contrast to most other diagnostics that may not work at high neutron yields. The following describes the current NIF NIS design and compares the predicted performance with the NIF specifications that must be satisfied to generate images that can be interpreted to understand results of a particular shot. The current design, including the aperture, scintillator, camera system, and reconstruction methods, is briefly described. System modeling of the existing Omega NIS and comparison with the Omega data that guided the NIF design based on our Omega results is described. We will show NIS model calculations of the expected NIF images based on component evaluations at Omega. We will also compare the calculated NIF input images with those unfolded from the NIS images generated from our NIS numerical

  1. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  2. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gutsmiedl, E.; Gobrecht, K.

    2001-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D2O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H2) to the deuterium (D2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long term change of the hydrogen content in the deuterium is avoided be storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo3Ni2, the other one with 150 kg of ZrCo(0.8)Ni(0.2). Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in less than 6 minutes at a pressure < 3 bar. (orig.)

  3. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  4. Development of In-pile Plug Assembly and Primary Shutter for Cold Neutron Guide System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Won; Cho, Yeong Garp; Ryu, Jeong Soo; Lee, Jung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This report describes the mechanical design, fabrication, and installation procedure of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. A special tool and procedure for a replacement of in-pile plug and guide cassette is also presented with the interface condition in the reactor hall.

  5. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  6. Interaction of thermal and cold neutrons with solids

    International Nuclear Information System (INIS)

    Kilany, M.M.A.

    1986-01-01

    The present thesis deals with total neutron cross-section measurements carried out for germanium - single crystal in the energy range from 2.2 eV to 2.5 MeV, at liquid nitrogen temperature (80 K), room temperature and (440 ± 3) K. Moreover, it includes the transmitted reactor spectrum through the Ge - single crystal with different orientations w.r.t. the neutron beam direction. This thesis also deals with the cross - section measurements of polycrystalline graphite in the energy range from 0.5 eV to 1.3 MeV (neutron wavelength from 0.4 A to 7.8 A). The work also presents the neutron transmission measurements of pyrolytic graphite (P.G) crystal in a neutron wavelength band from 0.3 A to 5.0 A , at different orientations of the crystal w.r.t. the beam direction

  7. Performance of the advanced cold neutron source and optics upgrades at the NIST Research Reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Cook, J.C.; Rowe, J.M.

    2003-01-01

    On March 6, 2002, the NIST Research Reactor resumed routine operation following a six-month shutdown for facility upgrades and maintenance. During the shutdown, the original liquid hydrogen cold neutron source was removed, and the advanced cold source was installed. An optical filter was installed on one of the neutron guides, NG-3, replacing a crystal filter for the 30-m SANS instrument and the guide used between the chopper disks of the Disk Chopper time-of-flight Spectrometer (DCS) installed on NG-4 has been recently reconfigured. Additional improvements in the neutron optics of various instruments are being made. The advanced liquid hydrogen cold neutron source performs as expected, nearly doubling the flux available to most instruments. The measured gains range from about 1.4 at 2 A, to over a factor of two at 15 A. Also as expected, the heat load in the new source increased to 1200 watts, but the previously existing refrigerator has easily accommodated the increase. With intensity gains of a factor of two in the important long wavelength region of the spectrum, the advanced cold source significantly enhances the measurement capability of the cold neutron scattering instrumentation at NIST. The optical filter on NG-3 is also very successful; the 30-m SANS has an additional gain of two at 17 A. A system of refracting lenses and prisms near the SANS sample position has made possible measurements at low Q (0.0005 A -1 ) that were previously not feasible. The DCS has also seen additional intensity gain factors in excess of two for the majority of experiments and at short neutron wavelengths the gains exceed three. In addition, two new triple axis spectrometers will feature double-focusing monochromators in order to exploit the full size of the available thermal and cold neutron beam tubes. The success of the advanced cold source and enhanced neutron optics contributed to the recognition of the NIST Center for Neutron Research as 'the premiere neutron scattering

  8. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  9. LISe pixel detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Elan; Hamm, Daniel [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Milburn, Rob [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Burger, Arnold [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Department of Life and Physical Sciences, Fisk University, Nashville, TN (United States); Bilheux, Hassina [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Santodonato, Louis [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chvala, Ondrej [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Stowe, Ashley [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2016-10-11

    Semiconducting lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of {sup 6}Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 µm pitch on a 5×5×0.56 mm{sup 3} LISe substrate. An experimentally verified spatial resolution of 300 µm was observed utilizing a super-sampling technique.

  10. Temperature imaging using epithermal neutrons

    International Nuclear Information System (INIS)

    Fowler, P.H.; Taylor, A.D.

    1987-08-01

    The paper concerns the temperature measurement of suitable targets, both remotely and non-invasively, using epithermal neutrons. The text was presented at the Neutron Resonance Radiography Workshop, Los Alamos, U.S.A., 1987. The technique is demonstrated for tantalum foils at different temperatures, using a pulsed beam of epithermal neutrons, at both Los Alamos and ISIS (United Kingdom). Results on the measured time-of-flight spectra and the tantalum resonances are presented. Beam properties and fluxes at ISIS are discussed. Features of the proposed detectors suitable for the temperature technique are outlined, along with the data analysis, the moving targets, the cyclic temperature variations and transients, and the usefulness of the technique. (U.K.)

  11. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    International Nuclear Information System (INIS)

    Iga, Kiminori; Takada, Hiroshi; Nagao, Tadashi.

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B 4 C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  12. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  13. Cold neutron prompt gamma activation analysis at NIST; A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R L; Lindstrom, R M [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    An instrument for prompt gamma-ray activation analysis is now in operation at the NIST Cold Neutron Research Facility (CNRF). The cold neutron beam is relatively free of contamination by fast neutrons and reactor gamma rays, and the neutron fluence rate is 1.5 x 10 [sup 8] cm [sup -2] x s [sup -1] (thermal equivalent). As a result of a compact target-detector geometry the sensitivity is better by a factor of as much as seven than that obtained with an existing thermal instrument, and hydrogen background is a factor of 50 lower. This instrument was applied to multielement analysis of the Allende meteorite and other materials. (author) 14 refs.; 2 figs.; 1 tab.

  14. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    Cantargi, F; Sbaffoni, M; Granada, R

    2004-01-01

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed [es

  15. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  16. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  17. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  18. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  19. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  20. Storage of cold and thermal neutrons with perfect crystals at the pulsed source

    International Nuclear Information System (INIS)

    Jericha, E.

    1996-12-01

    The possibility of storing cold neutrons by sequential Bragg reflections between two parallel perfect crystal plates in backscattering geometry has been implemented as the parasitic instrument VESTA at the pulsed neutron source ISIS. Filling the neutrons into and releasing them from the storage cavity is accomplished by applying a short-pulsed magnetic field at the crystal plates. The method takes advantage of the conservation of the axial component of the neutron wave vector after Bragg reflection and its Zeeman shift in a magnetic field. The setup at ISIS is presented where a monochromatic neutron beam with wavelength 6.27 A and 2.9 x 10 4 n/scm 2 flux is taken out of the neutron guide leading to the IRIS backscattering spectrometer by a pyrolytic graphite crystal monochromator. The longest storage period obtained with the setup was 2.655 s which corresponds to 1574 consecutive Bragg reflections and a distance traveled of 1675 n. The measurements are analyzed by heuristic methods developed for neutron storage experiments. The apparatus is seen as a passive resonator system and characteristics like stored neutron intensity, the efficiency of the storage process, the probability to remain in the system, the mirror reflectivity, the dispersion of the stored distribution, the penetration depth of a neutron into a crystal mirror and the figure of merit of the resonator system are discussed. Monte Carlo simulations of the extracted beam and of the stored neutron distribution were performed to deepen the understanding of the experimental results. (author)

  1. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various samples. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  2. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  3. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Albani, G.; Cazzaniga, C.; Rebai, M.; Gorini, G.; Croci, G.; Muraro, A.; Cippo, E. Perelli; Tardocchi, M.; Cavenago, M.; Murtas, F.; Claps, G.; Pasqualotto, R.

    2015-01-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3 He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10 B(n,α) 7 Li reaction). GEM detectors can be realized in large area (1 m 2 ) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards

  4. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  5. Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams

    Science.gov (United States)

    Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria

    2018-05-01

    We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.

  6. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  7. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  8. Computed image analysis of neutron radiographs

    International Nuclear Information System (INIS)

    Dinca, M.; Anghel, E.; Preda, M.; Pavelescu, M.

    2008-01-01

    Similar with X-radiography, using neutron like penetrating particle, there is in practice a nondestructive technique named neutron radiology. When the registration of information is done on a film with the help of a conversion foil (with high cross section for neutrons) that emits secondary radiation (β,γ) that creates a latent image, the technique is named neutron radiography. A radiographic industrial film that contains the image of the internal structure of an object, obtained by neutron radiography, must be subsequently analyzed to obtain qualitative and quantitative information about the structural integrity of that object. There is possible to do a computed analysis of a film using a facility with next main components: an illuminator for film, a CCD video camera and a computer (PC) with suitable software. The qualitative analysis intends to put in evidence possibly anomalies of the structure due to manufacturing processes or induced by working processes (for example, the irradiation activity in the case of the nuclear fuel). The quantitative determination is based on measurements of some image parameters: dimensions, optical densities. The illuminator has been built specially to perform this application but can be used for simple visual observation. The illuminated area is 9x40 cm. The frame of the system is a comparer of Abbe Carl Zeiss Jena type, which has been adapted to achieve this application. The video camera assures the capture of image that is stored and processed by computer. A special program SIMAG-NG has been developed at INR Pitesti that beside of the program SMTV II of the special acquisition module SM 5010 can analyze the images of a film. The major application of the system was the quantitative analysis of a film that contains the images of some nuclear fuel pins beside a dimensional standard. The system was used to measure the length of the pellets of the TRIGA nuclear fuel. (authors)

  9. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  10. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  11. Prompt gamma-ray analysis using JRR-3M cold and thermal neutron guide beams

    International Nuclear Information System (INIS)

    Yonezawa, C.; Haji Wood, A.K.; Magara, M.; Hoshi, M.; Tachikawa, E.; Sawahata, H.; Ito, Y.

    1993-01-01

    A permanent and stand-alone neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M has been constructed. Neutron flux at the sample positions were 1.4x10 8 and 2.4x10 7 n cm -2 s -1 for the cold and thermal neutrons, respectively. The γ-ray spectrometer is equipped to acquire three modes of spectra simultaneously: single mode, Compton suppression mode and pair mode, in an energy range up to 12 MeV. Owing to the cold neutron guide beam and the low γ-ray background system, analytical sensitivities and detection limits better than those in other PGA systems have been achieved. Analytical sensitivity and detection limit for 73 elements were measured. Boron, Gd, Sm and Cd are the most sensitive elements with detection limits down to 1 to 10 ng. For some elements such as F, Al, V, Eu and Hf, decay γ-rays are more sensitive compared to their respective prompt γ-ray. Analytical sensitivity of several heavy elements through detection of characteristic X-rays was higher than that through the prompt γ-ray detection. Analytical applicability of some sensitive elements such as B, H, Gd and Sm were examined. Isotopic analysis of Ni and Si were also examined. (author)

  12. On the design of a cold neutron irradiator (CNI) for quantitative materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Alexander Grover [Cornell Univ., Ithaca, NY (United States)

    1997-08-01

    A design study of a cold neutron irradiator (CNI) for materials characterization using prompt gamma-ray neutron activation analysis (PGNAA) is presented. Using 252Cf neutron sources in a block of moderator, a portion of which is maintained at a cryogenic temperature, the CNI employs cold neutrons instead of thermal neutrons to enhance the neutron capture reaction rate in a sample. Capture gamma rays are detected in an HPGe photon detector. Optimization of the CNI with respect to elemental sensitivity (counts per mg) is the primary goal of this design study. Monte Carlo simulation of radiation transport, by means of the MCNP code and the ENDF/B cross-section libraries, is used to model the CNI. A combination of solid methane at 22 K, room-temperature polyethylene, and room-temperature beryllium has been chosen for the neutron delivery subsystem of the CNI. Using four 250-microgram 252Cf neutron sources, with a total neutron emission rate of 2.3 x 109 neutrons/s, a thermal-equivalent neutron flux of 1.7 x 107 neutrons/cm2-s in an internally located cylindrical sample space of diameter 6.5 cm and height 6.0 cm is predicted by MCNP calculations. A cylindrical port with an integral annular collimator composed of bismuth, lead, polyethylene, and lithium carbonate, is located between the sample and the detector. Calculations have been performed of gamma-ray and neutron transport in the port and integral collimator with the objective of optimizing the statistical precision with which one can measure elemental masses in the sample while also limiting the fast neutron flux incident upon the HPGe detector to a reasonable level. The statistical precision with which one can measure elemental masses can be enhanced by a factor of between 2.3 and 5.3 (depending on the origin of the background gamma rays) compared with a neutron irradiator identical to the CNI except for the replacement of the cryogenic solid methane by room

  13. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  14. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  15. Study of scattering in bi-dimensional neutron radiographic images

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.

    2009-01-01

    The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)

  16. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  17. Development of Cold Neutron Scattering Kernels for Advanced Moderators

    International Nuclear Information System (INIS)

    Granada, J. R.; Cantargi, F.

    2010-01-01

    The development of scattering kernels for a number of molecular systems was performed, including a set of hydrogeneous methylated aromatics such as toluene, mesitylene, and mixtures of those. In order to partially validate those new libraries, we compared predicted total cross sections with experimental data obtained in our laboratory. In addition, we have introduced a new model to describe the interaction of slow neutrons with solid methane in phase II (stable phase below T = 20.4 K, atmospheric pressure). Very recently, a new scattering kernel to describe the interaction of slow neutrons with solid Deuterium was also developed. The main dynamical characteristics of that system are contained in the formalism, the elastic processes involving coherent and incoherent contributions are fully described, as well as the spin-correlation effects.

  18. The increase of the subthermal neutron flux by using a cold neutron source at the FRG-1

    International Nuclear Information System (INIS)

    Krueger, A.; Turgut, M.H.

    1986-01-01

    The increase of the subthermal neutron flux (wavelength range 4-6 A by a cold neutron source (CNS) at a radial beam tube of the FRG-1 reactor is investigated in combination with different reflectors (H 2 O, C, Be, D 2 O). Advantage factors on the basis of the directed neutron flux, resulting from the use of the CNS, are calculated for various configurations. In addition, the influence of different scattering models (gas, Koppel/Young) for the CNS, group structure, and structural materials are described. Finally, the CNS assembly which is going to be installed at the FRG-1 is treated in detail. For the calculations the transport code NEUTRA and the spectral code GGC-4 are used. (orig.) [de

  19. Neutron Imaging of Diesel Particulate Filters

    International Nuclear Information System (INIS)

    Strzelec, Andrea; Bilheux, Hassina Z.; Finney, Charles E.A.; Daw, C. Stuart; Foster, Dave; Rutland, Christopher J.; Schillinger, Burkhard; Schulz, Michael

    2009-01-01

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique

  20. Formation of tomographic images with neutrons

    International Nuclear Information System (INIS)

    Duarte, A.; Tenreiro, C; Valencia, J; Steinman, G.; Henriquez, C

    2000-01-01

    The possibility of having a non-destructive method of analysis for archaeological and paleontological samples is of interest. A special group of fossil samples has come to our attention, which because of their value should be preserved and, therefore, the availability of an indirect, non-destructive, non contaminating analytical technique is important. The strong absorption of usual kinds of radiation by a fossilized sample restricts the application of conventional methods of analysis. A type of radiation that is not completely attenuated by thick samples, in sizes that are typical in paleontology, is necessary. Neutrons may be considered as an ideal non-invasive probe with the possibility of developing a technique for the formation and analysis of images. A technique has been developed for the spatial reconstruction of the contents of a fossilized sample (tomography) with neutrons, without touching or altering the sample in any way. The neutron beam was extracted from the RECH-1 reactor belonging to the CCHEN, La Reina. The tomographic images of the contents of a fossilized egg are presented for the first time and represent views or cuts of the content as well as a set that permits the three dimensional reconstruction of the inside of the object and its subsequent animation in graphic format. This project developed a technique for taking neutron radiographs of this kind of sample including the numerical algorithms and the treatment and formation of the images (CW)

  1. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  2. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  3. The upgraded cold neutron triple-axis spectrometer FLEXX – enhanced capabilities by new instrumental options

    Directory of Open Access Journals (Sweden)

    Habicht Klaus

    2015-01-01

    Full Text Available The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  4. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  5. JRR-3 cold neutron source facility H2-O2 explosion safety proof testing

    International Nuclear Information System (INIS)

    Hibi, T.; Fuse, H.; Takahashi, H.; Akutsu, C.; Kumai, T.; Kawabata, Y.

    1990-01-01

    A cold Neutron Source (CNS) will be installed in Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) during its remodeling project. This CNS holds liquid hydrogen at a temperature of about 20 K as a cold neutron source moderator in the heavy water area of the reactor to moderate thermal neutrons from the reactor to cold neutrons of about 5 meV energy. In the hydrogen circuit of the CNS safety measures are taken to prevent oxygen/hydrogen reaction (H 2 -O 2 explosion). It is also designed in such manner that, should an H 2 -O 2 explosion take place, the soundness of all the components can be maintained so as not to harm the reactor safety. A test hydrogen circuit identical to that of the CNS (real components designed by TECHNICATOME of France) was manufactured to conduct the H 2 -O 2 explosion test. In this test, the detonation that is the severest phenomenon of the oxygen/hydrogen reaction took place in the test hydrogen circuit to measure the exerted pressure on the components and their strain, deformation, leakage, cracking, etc. Based on the results of this measurement, the structural strength of the test hydrogen circuit was analyzed. The results of this test show that the hydrogen circuit components have sufficient structural strength to withstand an oxygen/hydrogen reaction

  6. Fast-neutron, coded-aperture imager

    Science.gov (United States)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  7. A study of television imaging system for fast neutron radiography

    International Nuclear Information System (INIS)

    Yoshii, Koji

    1992-01-01

    The neutron radiography with fast neutron beam is a very useful imaging technique for thicker objects, especially those composed of hydrogen-rich materials which are sometimes difficult to image by thermal neutron radiography. The fast neutron radiography has not been studied so much as the thermal neutron radiography. The fast neutron radiography has been studied at the fast neutron source reactor 'Yayoi' of the University of Tokyo built in Tokai-mura. The average neutron energy of the Yayoi is about 1 MeV, and the peak neutron flux at the core center is 0.8 x 10 12 at the maximum operating power of 2 kW. In the experiment on fast neutron radiography, a CR39 nuclear track detector has been used successfully. But in the Yayoi radiography procedure, about 24 hours were required for obtaining an imaging result. To get a prompt imaging result and a real-time imaging result, it is necessary to develop a fast neutron television system, and in this paper, a new fast neutron TV system is proposed. The main difference is the converter material sensitive to fast neutrons. The study on the fast neutron TV system was carried out by using the Baby Cyclotron of Japan Steel Works, and the good images were realized. (K.I.)

  8. Monte Carlo simulation of grating-based neutron phase contrast imaging at CPHS

    International Nuclear Information System (INIS)

    Zhang Ran; Chen Zhiqiang; Huang Zhifeng; Xiao Yongshun; Wang Xuewu; Wie Jie; Loong, C.-K.

    2011-01-01

    Since the launching of the Compact Pulsed Hadron Source (CPHS) project of Tsinghua University in 2009, works have begun on the design and engineering of an imaging/radiography instrument for the neutron source provided by CPHS. The instrument will perform basic tasks such as transmission imaging and computerized tomography. Additionally, we include in the design the utilization of coded-aperture and grating-based phase contrast methodology, as well as the options of prompt gamma-ray analysis and neutron-energy selective imaging. Previously, we had implemented the hardware and data-analysis software for grating-based X-ray phase contrast imaging. Here, we investigate Geant4-based Monte Carlo simulations of neutron refraction phenomena and then model the grating-based neutron phase contrast imaging system according to the classic-optics-based method. The simulated experimental results of the retrieving phase shift gradient information by five-step phase-stepping approach indicate the feasibility of grating-based neutron phase contrast imaging as an option for the cold neutron imaging instrument at the CPHS.

  9. Fundamentals and applications of neutron imaging. Application part 9. Application of neutron imaging to biological research

    International Nuclear Information System (INIS)

    Kawabata, Yuji

    2007-01-01

    For radiography, the use of neutrons as a complement to X-rays is especially suitable for biological research such as plant, wood, and medical application due to the enhanced sensitivity to light elements such as hydrogen, carbon, and nitrogen. The present paper introduces applications of neutron CT to the humidity (water) distribution and its variation in the flowering plant as cut carnation, observation of water movement in refrigerated chrysanthemum leaves using very cold neutron and in cut leaves using deuterium oxide and ordinary water, measurement of water movement in sprouting cone and soy bean and growing ginseng in the soil, and other applications as to archaeological wood immersed in a restoration solution and to medical purposes. (S. Ohno)

  10. Neutron Ghost Imaging Technology Research on CARR Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Ghost imaging is also known as quantum imaging. Different from the classical imaging, the neutron ghost imaging is based on the quantum mechanics properties of light field and its intrinsic parallel characteristic, and developed by new optical

  11. Fast-neutron, coded-aperture imager

    International Nuclear Information System (INIS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-01-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  12. Fast-neutron, coded-aperture imager

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Richard S., E-mail: richard.woolf@nrl.navy.mil; Phlips, Bernard F., E-mail: bernard.phlips@nrl.navy.mil; Hutcheson, Anthony L., E-mail: anthony.hutcheson@nrl.navy.mil; Wulf, Eric A., E-mail: eric.wulf@nrl.navy.mil

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  13. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  14. Scintillator Based Coded-Aperture Imaging for Neutron Detection

    International Nuclear Information System (INIS)

    Hayes, Sean-C.; Gamage, Kelum-A-A.

    2013-06-01

    In this paper we are going to assess the variations of neutron images using a series of Monte Carlo simulations. We are going to study neutron images of the same neutron source with different source locations, using a scintillator based coded-aperture system. The Monte Carlo simulations have been conducted making use of the EJ-426 neutron scintillator detector. This type of detector has a low sensitivity to gamma rays and is therefore of particular use in a system with a source that emits a mixed radiation field. From the use of different source locations, several neutron images have been produced, compared both qualitatively and quantitatively for each case. This allows conclusions to be drawn on how suited the scintillator based coded-aperture neutron imaging system is to detecting various neutron source locations. This type of neutron imaging system can be easily used to identify and locate nuclear materials precisely. (authors)

  15. Lithium indium diselenide: A new scintillator for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lukosi, Eric, E-mail: elukosi@utk.edu [University of Tennessee, Knoxville, TN (United States); Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min [University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Trtik, Pavel [Paul Scherrer Institut, Villigen CH-5232 (Switzerland); Penumadu, Dayakar; Young, Stephen [University of Tennessee, Knoxville, TN (United States); Santodonato, Louis; Bilheux, Hassina [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Burger, Arnold; Matei, Liviu [Fisk University, Nashville, TN (United States); Stowe, Ashley C. [University of Tennessee, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-11

    Lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 µm or larger resulted in an average spatial resolution of 67 µm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 µm thick LISe (27 µm) outperforms a commercial 50 µm thick ZnS(Cu):{sup 6}LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the {sup 6}Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of {sup 115}In and its long-lived {sup 116}In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  16. Investigation of neutron emission in a cold fusion experiment in palladium

    International Nuclear Information System (INIS)

    Szustakowski, M.; Farny, J.; Muniak, M.; Nowak, A.; Parys, P.; Skrzeczanowski, W.; Socha, R.; Teter, J.; Wolski, J.; Wolowski, J.; Woryna, E.

    1989-01-01

    This paper reports on the experiments dealing with performance of nuclear fusion at room temperature actually which create a great sensation and are carried out in various laboratories. This interest arises from the results achieved by Fleischmann and Pons, and it results from their paper that there exists a possibility of obtaining an ignition owing to nuclear fusion reactions during usual electrochemical process--namely the electrolysis of D O with use of the system of Pd-Pt electrodes. From this reason the measurements of the yield and behavior of neutron emission give the information about processes of interest. At the IPPLM the cold fusion experiments have been conducted from the beginning of April 1989. In the first experiment the reliable evidence of neutron emission was obtained. A number of irregularly repeated neutron pulses of the level of 10 5 per pulse was recorded. The measurements of the neutron emission, in this experiment, were performed with the use of three independent methods employing the 2.5 MeV neutron spectrometer, the scintillation neutron detector as well as the nuclear track detector. neutron emission had been first recorded after 106 hours of the electrolysis process of D 2 O

  17. Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science

    Directory of Open Access Journals (Sweden)

    Winfried Kockelmann

    2018-02-01

    Full Text Available The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example.

  18. Thermal hydraulic tests of a liquid hydrogen cold neutron source. NISTIR 5026

    International Nuclear Information System (INIS)

    Siegwarth, J.D.; Olson, D.A.; Lewis, M.A.; Rowe, J.M.; Williams, R.E.; Kopetka, P.

    1995-01-01

    Liquid hydrogen cold neutron source designed at NBSR contains neutron moderator chamber. The NIST-B electrically heated glass moderator chamber used to test the NBSR chamber testing showed the following results: Stable operation possible up to at least 2200 watts with two-phase flow; LH 2 mass quickly reaches new, stable value after heat load change; Void fraction well below 20 at anticipated power and pressure; Restart of H 2 flow verified after extending supply line; Visual inspection showed no dryout or unexpected voids

  19. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  20. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  1. Development of a new superfluid helium ultra-cold neutron source and a new magnetic trap for neutron lifetime measurements

    International Nuclear Information System (INIS)

    Leung, Kent Kwan Ho

    2013-01-01

    The development of an Ultra-Cold Neutron (UCN) source at the Institut Laue-Langevin (ILL) based on super-thermal down-scattering of a Cold Neutron (CN) beam in superfluid 4 He is described. A continuous flow, self-liquefying 3 He cryostat was constructed. A beryllium coated prototype converter vessel with a vertical, window-less extraction system was tested on the PF1b CN beam at the ILL. Accumulation measurements with a mechanical valve, and continuous measurements with the vessel left open, were made. The development of a new magnetic UCN trap for neutron lifetime (τ β ) measurements is also described. A 1.2 m long octupole made from permanent magnets, with a bore diameter of 94 mm and surface field of 1.3 T, was assembled. This will be combined with a superconducting coil assembly and used with vertical confinement of UCN by gravity. A discussion of the systematic effects, focussing on the cleaning of above-threshold UCNs, is given. The possibility of detecting the charged decay products is also discussed. UCN storage experiments with the magnetic array and a fomblin-coated piston were performed on PF2 at the ILL. These measurements studied depolarization, spectrum cleaning, and loss due to material reflections in the trap experimentally.

  2. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1989-01-01

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  3. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  4. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  5. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1977-02-01

    Results from a study of the resistivity recovery of neutron-irradiated and cold-worked thorium on isochronal annealing, activation energies, and isothermal annealing and kinetics are discussed. The nature and extent of radiation effects on the resistivity of thorium at 80 0 K, interpretation of stage II recovery above 80 0 K, and activation energy and interpretation of stage III recovery are also discussed. There are 79 references

  6. Looking for spectral changes occurring during storage of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Steyerl, A; Malik, S S [Rhode Island Univ., Kingston, RI (United States); Geltenbort, P [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France)

    1997-04-01

    It seems that the spectrum of ultra-cold neutrons does change. The measured data indicate with 5{sigma} reliability, that a small heating by about 2{center_dot}10{sup -10} eV ({approx} 2 mm of rise height against the earth`s gravity) occurred during the initial {approx} 10{sup 3} wall reflections, and no change thereafter. The reason of this effect is searched for. (author). 3 refs.

  7. Performance of the prototype LANL solid deuterium ultra-cold neutron source

    CERN Document Server

    Hill, R E; Bowles, T J; Greene, G L; Hogan, G; Lamoreaux, S; Marek, L; Mortenson, R; Morris, C L; Saunders, A; Seestrom, S J; Teasdale, W A; Hoedl, S; Liu, C Y; Smith, D A; Young, A; Filippone, B W; Hua, J; Ito, T; Pasyuk, E A; Geltenbort, P; García, A; Fujikawa, B; Baessler, S; Serebrov, A

    2000-01-01

    A prototype of a solid deuterium (SD sub 2) source of Ultra-Cold Neutrons (UCN) is currently being tested at LANSCE. The source is contained within an assembly consisting of a 4 K polyethylene moderator surrounded by a 77 K beryllium flux trap in which is embedded a spallation target. Time-of-flight measurements have been made of the cold neutron spectrum emerging directly from the flux trap assembly. A comparison is presented of these measurements with results of Monte Carlo (LAHET/MCNP) calculations of the cold neutron fluxes produced in the prototype assembly by a beam of 800 MeV protons incident on the tungsten target. A UCN detector was coupled to the assembly through a guide system with a critical velocity of 8 m/s ( sup 5 sup 8 Ni). The rates and time-of-flight data from this detector are compared with calculated values. Measurements of UCN production as a function of SD sub 2 volume (thickness) are compared with predicted values. The dependence of UCN production on SD sub 2 temperature and proton beam...

  8. A 3-D Thermal Analysis of the HANARO Cold Neutron Moderator Cell

    International Nuclear Information System (INIS)

    Han, Gee Y.; Kim, Heo Nil

    2007-01-01

    Fundamental studies on a thermal analysis of a cryogenic system such as a cold neutron source (CNS) have increased significantly for a successful CNS design in cold neutron research during recent years. A three-dimensional (3-D) thermal analysis model for the HANARO CNS was developed and used to accurately predict a temperature distribution between the hydrogen inside and the entire inner and outer surfaces of a moderator cell, whose moderator and cell walls are heated differently, under a steady-state operating condition by using the HEATING 7 code. The objective of this study is primarily to predict a temperature distribution through a heat flow in a cold neutron moderator cell heated from a nuclear heating and cooled by a cryogenic coolant. This paper presents satisfactory results of a steady-state temperature distribution in a cryogenic moderator cell. They are used to support the thermal stress analysis of the moderator cell walls and to provide a safe operation for the HANARO CNS facility

  9. Neutron radiography of thick hydrogenous materials with use of an imaging plate neutron detector

    International Nuclear Information System (INIS)

    Kato, K.; Matsumoto, G.; Karasawa, Y.; Niimura, N.; Matsubayashi, M.; Tsuruno, A.

    1996-01-01

    The value of the neutron mass attenuation coefficient of hydrogen being very high, it is extremely difficult to image normal size, living animals with neutron radiography. However, the authors suggest the possibility of applying neutron radiography for biomedical specimens. The organs in the breast, bones and cartilages in the extremities, and the tail of mice and rats were clearly imaged by neutron radiography with Gd foils as neutron converters and X-ray films. However, no contours of the organs in the mouse abdomen were visible with neutron radiography with an exposure time of 200 s. By adding Gd or Li compounds as neutron converters to imaging X-ray plates, imaging plates have been developed for neutron detectors. A trial using these imaging plates for neutron radiography of water-filled containers and the abdomen of mice was completed. The roundness of a 100 ml-beaker was imaged with a neutron exposure of 180 s. Obscure contours of the liver and kidneys of the mouse were imaged with a neutron exposure of 100 s. (orig.)

  10. A prototype detector using the neutron image intensifier and multi-anode type photomultiplier tube for pulsed neutron imaging

    International Nuclear Information System (INIS)

    Ishikawa, Hirotaku; Sato, Hirotaka; Hara, Kaoru Y.; Kamiyama, Takashi

    2016-01-01

    We developed a neutron two-dimensional (2-D) detector for pulsed neutron imaging as a prototype detector, which was composed of a neutron image intensifier and a multi-anode type photomultiplier tube. A neutron transmission spectrum of α-Fe plate was measured by the prototype detector, and compared with the one measured by a typical neutron 2-D detector. The spectrum was in reasonable agreement with the one measured by the typical detector in the neutron wavelength region above 0.15 nm. In addition, a neutron transmission image of a cadmium indicator was obtained by the prototype detector. The usefulness of the prototype detector for pulsed neutron imaging was demonstrated. (author)

  11. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  12. One-dimensional neutron imager for the Sandia Z facility.

    Science.gov (United States)

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  13. Compact High Resolution SANS using very cold neutrons (VCN-SANS)

    International Nuclear Information System (INIS)

    Kennedy, S.; Yamada, M.; Iwashita, Y.; Geltenbort, P.; Bleuel, M.; Shimizu, H.

    2011-01-01

    SANS (Small Angle Neutron Scattering) is a popular method for elucidation of nano-scale structures. However science continually challenges SANS for higher performance, prompting exploration of ever-more exotic and expensive technologies. We propose a compact high resolution SANS, using very cold neutrons, magnetic focusing lens and a wide-angle spherical detector. This system will compete with modern 40 m pinhole SANS in one tenth of the length, matching minimum Q, Q-resolution and dynamic range. It will also probe dynamics using the MIEZE method. Our prototype lens (a rotating permanent-magnet sextupole), focuses a pulsed neutron beam over 3-5 nm wavelength and has measured SANS from micelles and polymer blends. (authors)

  14. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2017-04-11

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  15. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  16. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  17. Development of cold moderator vessel for the spallation neutron source. Flow field measurements and thermal hydraulic analyses in cold moderator vessel

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute is developing a several MW-scale spallation target system under the High-Intensity Accelerator Project. A cold moderator using supercritical hydrogen is one of the key components in the target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the recirculation and stagnant flows which cause hot spots. In order to develop the conceptual design of the moderator structure in progress, the flow field was measured using a PIV (Particle Image Velocimetry) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow field such as recirculation flows, stagnant flows etc. was clarified. The hydraulic analytical results using the standard k-ε model agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out under liquid hydrogen conditions. Based on these results, we clarified the possibility of suppressing the local temperature rise within 3 K under 2 MW operating condition. (author)

  18. Characterization of a neutron imaging setup at the INES facility

    Science.gov (United States)

    Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.

    2013-10-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.

  19. Stereoscopic radiographic images with thermal neutrons

    International Nuclear Information System (INIS)

    Silvani, M.I.; Almeida, G.L.; Rogers, J.D.; Lopes, R.T.

    2011-01-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  20. Stereoscopic radiographic images with thermal neutrons

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  1. Results from the Coded Aperture Neutron Imaging System (CANIS)

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Hilton, Nathan R.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging- a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  2. Results from the coded aperture neutron imaging system

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging - a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  3. A New Approach to Measuring the Neutron Decay Correlations with Cold Neutrons at LANSCE

    International Nuclear Information System (INIS)

    Wilburn, W.S.; Bowman, J.D.; Greene, G.L.; Jones, G.L.; Kapustinsky, J.S.; Penttila, S.I.

    1999-01-01

    Precision measurements of the neutron beta-decay correlations A, B, a, and b provide important tests of the standard model of electroweak interactions: a test of the unitarity of the first row of the CKM matrix, a search for new weak interactions, a test of the theory of nuclear beta decays, and a test of the conserved-vector-current hypothesis. The authors are designing an experiment at the LANSCE short-pulse spallation source to measure all four correlations to an order of magnitude better accuracy than the existing measurements. The accuracy of the previous measurements was limited by systematics. The design of the proposed experiment makes use of the pulsed nature of the LANSCE source to reduce systematic errors associated with the measurement of the neutron polarization as well as other systematic errors. In addition, the authors are developing silicon strip detectors for detecting both the proton and electron from the neutron decay

  4. qBounce - a realization of the quantum bouncer with ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Abele, Hartmut; Bittner, Thomas; Cronenberg, Gunther; Filter, Hanno; Jenke, Tobias; Mitsch, Kevin; Thalhammer, Martin [Atominstitut TU Wien, Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, Grenoble (France)

    2012-07-01

    We present the observation of a quantum bouncing ball in the gravitational field of the Earth. Quantum states in the Earth's gravitational field can be observed, when ultra-cold neutrons fall under gravity. In our previous experiment in collaboration with the Institute Laue-Langevin/Grenoble, the lowest stationary quantum state of neutrons in the Earth's gravitational field was clearly identified. In the new experiment qBounce, we use this technique to prepare a neutron in the ground state and then to let it fall and bounce off a neutron mirror. Oscillations in time similar to the harmonic oscillator system described by Glauber states have been observed. Such a quantum particle bouncing in a linear gravitational field is known as the quantum bouncer. The motivation of this activity is also the investigation of quantum phases and quantum decoherence. For that matter we have developed position-sensitive neutron detectors with an extra-high spatial resolution.

  5. A newly developed technique of wireless remote controlled visual inspection system for neutron guides of cold neutron research facilities at HANARO

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2012-01-01

    KAERI developed a neutron guide system for cold neutron research facilities at HANARO from 2003 to 2010. In 2008, the old plug shutter and instruments were removed, and a new plug and primary shutter were installed as the first cold neutron delivery system at HANARO. At the beginning of 2010, all the neutron guides and accessories had been successfully installed as well. The neutron guide system of HANARO consists of the in pile plug assembly with in pile guides, the primary shutter with in shutter guides, the neutron guides in the guide shielding room with secondary shutter, and the neutron guides in the neutron guide hall. Three kinds of glass materials were selected with optimum lengths by considering their lifetime, shielding, maintainability and cost as well. Radiation damage of the guides can occur on the coating and glass by neutron capturing in the glass. It is a big challenge to inspect a guide failure because of the difficult surrounding environment, such as high level radiation, limited working space, and massive hard work for removing and reinstalling the shielding blocks as shown in Fig 1. Therefore, KAERI has developed a wireless remote controlled visual inspection system for neutron guides using an infrared light camera mounted on the vehicle moving in the guide

  6. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  7. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  8. Measurement of cold neutron spectra at a model of cryogenic moderator of the IBR-2M reactor

    International Nuclear Information System (INIS)

    Kulikov, S.A.; Chernikov, A.N.; Shabalin, E.P.; Kalinin, I.V.; Morozov, V.M.; Novikov, A.G.; Puchkov, A.V.

    2010-01-01

    The article is dedicated to methods and results of experimental determination of cold neutron spectra from solid mesitylene at neutron moderator temperatures 10-50 K. Experiments were fulfilled at the DIN-2PI spectrometer of the IBR-2 reactor. The main goals of this work were to examine a system of constants for Monte Carlo calculation of cryogenic moderators of the IBR-2M reactor and to determine the temperature dependence of cold neutron intensity from the moderator. A reasonable agreement of experimental and calculation results for mesitylene at 20 K has been obtained. The cold neutron intensity at temperature of moderator 10 K is about 1.8 times higher than at T=50 K

  9. Report on polarised and inelastic cold neutron scattering at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    2004-01-01

    The ANSTO's Instrument Workshop on Polarised and Inelastic Cold Neutron Scattering, was held at Lucas Heights on 27-28 January. 30 participants attended, from 6 Australian Universities, 3 ANSTO Divisions, and 5 overseas countries in Asia, Europe and North America. All participants had the opportunity to give their vision for work in 2005 and beyond. The recommendation was that ANSTO proceed with a monochromator/ shield/ polariser system and appropriate dance floor on a cold guide, in such a way that alternative secondary spectrometers (3-axis, LONGPOL-type, reflectometry) can be installed. If the National Science Council of Taiwan proceeds with its cold 3-axis project, ANSTO should then implement the LONGPOL / polarised-beam reflectometry option. If not, ANSTO should implement the cold 3-axis spectrometer. The workshop came to the following additional conclusions: There was a strong sense that any 3-axis spectrometer should have a multi-analyser/multidetector combination, or at least an upgrade path to this. At this stage, there is no case for 2 cold-neutron triple-axis spectrometers at the RRR. The desired Q-range is 0.02-5 Angstroms -1 ; with an energy transfer range of 20 μeV - 15 meV. The instrument is likely to run unpolarised for 2/3 of the time and polarised for the remainder, and the instrument(s) should be designed to allow easy changeover between polarised and unpolarised operation. We expect roughly equal interest/demand in studying single crystals, powders, surfaces/interfaces and naturally disordered systems. There was a strong sense that the facility should eventually have a cold-neutron time-of-flight spectrometer of the IN5 or IN6 type, with a polarised incident beam option, and designed in such a way that polarisation analysis could be implemented if inexpensive large-area analysers become available. This should be a high priority for the next wave of instruments that ANSTO plans to build after 2005

  10. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  11. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  12. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    International Nuclear Information System (INIS)

    Rothrock, Benjamin G.; Farrar, Mike B.

    2009-01-01

    In June 1961, construction was started on the High Flux Isotope Reactor (HFIR) facility inside the Oak Ridge National Laboratory (ORNL), at the recommendation of the U.S. Atomic Energy Commission (AEC) Division of Research. Construction was completed in early 1965 with criticality achieved on August 25, 19651. From the first full power operating cycle beginning in September 1966, the HFIR has achieved an outstanding record of service to the scientific community. In early 1995, the ORNL deputy director formed a group to examine the need for upgrades to the HFIR following the cancellation of the Advanced Neutron Source Project by DOE. This group indicated that there was an immediate need for the installation of a cold neutron source facility in the HFIR to produce cold neutrons for neutron scattering research uses. Cold neutrons have long wavelengths in the range of 4-12 angstroms. Cold neutrons are ideal for research applications with long length-scale molecular structures such as polymers, nanophase materials, and biological samples. These materials require large scale examination (and therefore require a longer wavelength neutron). These materials represent particular areas of science are at the forefront of current research initiatives that have a potentially significant impact on the materials we use in our everyday lives and our knowledge of biology and medicine. This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  13. Real time neutron reflectometry using neutron optical imaging

    International Nuclear Information System (INIS)

    Smith, Gregory S.; Majewski, Jaroslaw

    2001-01-01

    We will describe recent improvements to the SPEAR reflectometer at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos. One of the changes consists of wider convergent, incident-beam, collimation to take advantage of optical imaging for specular scattering. In addition, the instrument now views a partially coupled liquid hydrogen moderator as opposed to the decoupled moderator that was previous in-place. While the wavelength distribution is poorer, it matches the time (wavelength) resolution of the reflectometer more closely with the angular resolution. Since the integrated intensity of the partially coupled moderator is higher than the decoupled moderator, we show a similar gain in incident beam flux on the sample without loss of the ability to separate fringes. The increases in intensity from the moderator gain and the improved collimation combine to allow us to measure reflectivities with good statistics down to 10 -4 in a matter of minutes and reflectivities of 10 -6 in an hour. Examples of measurements showing the gain in data accumulation rates are presented. (author)

  14. Applications of image plates in neutron radiography and neutron diffraction at BARC, Trombay

    International Nuclear Information System (INIS)

    Shaikh, A.M.

    2013-01-01

    Neutron radiography techniques based on Gd, Dy and In metallic foils and X-ray film have been used at this centre since early seventies for various NDT and R and D work in nuclear, defence and aerospace industries. In recent years use of photostimulated luminescence based phosphor imaging plate has been introduced in our work. This has enabled to achieve higher sensitivities and dynamic ranges of recording radiographs with acceptable spatial resolution. It also provides digital image information which is more convenient for quantitative evaluations. Neutron image plates have been used in variety of radiography techniques such as conventional neutron radiography (NR), neutron induced beta radiography (NIBR), hydrogen sensitive epithermal neutron radiography (HYSEN) and for neutron powder diffractometry using Apsara, CIRUS and Dhruva reactors as neutron sources. Recently the image plates have also been used for characterization of thermalized neutron beam from a plasma focus neutron source and recording neutron radiographs. Prior to the utilization image plates have been characterised for their performance. Details of the measurements and applications will be presented. (author)

  15. Television imaging system for fast neutron radiography using baby cyclotron

    International Nuclear Information System (INIS)

    Yoshii, Koji; Miya, Kenzo; Katoh, Norihiko.

    1993-01-01

    A television imaging system for fast neutron radiography (FNR-TV) developed using the fast neutron source reactor YAYOI was applied to the baby-cyclotron based fast neutron source to get images of thick objects quickly. In the system the same technique as a current television imaging system of thermal neutron radiography was applied, while the luminescent converter was used to detect fast neutrons. Using the CR39 track etch method it took about 7 h to get an image, while the FNR-TV only 20 s enough for taking the same object. However the FNR-TV imaging result of the simulation model of a large explosive device for the space launch vehicle of H-2 type was not so good as the image taken with the CR39 track etch method. The reason was that the luminescence intensity of the FNR-TV converter was a quarter of that in the YAYOI. (author)

  16. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  17. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    International Nuclear Information System (INIS)

    Cronert, T; Zakalek, P; Rücker, U; Brückel, T; Dabruck, J P; Doege, P E; Nabbi, R; Bessler, Y; Hofmann, M; Butzek, M; Klaus, M; Lange, C; Hansen, W

    2016-01-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D 2 O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H 2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H 2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H 2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement. (paper)

  18. Cold-neutron multi-chopper spectrometer for MLF, J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Kajimoto, Ryoich; Nakamura, Mistutaka; Arai, Masatoshi; Sato, Taku J.; Osakabe, Toyotaka; Matsuda, Masaaki; Metoki, Naoto; Kakurai, Kazuhisa; Itoh, Shinichi

    2005-01-01

    We are planning to construct a cold-neutron multi-chopper spectrometer for a new spallation neutron source at Materials and Life Science Facility (MLF) at J-PARC, which is dedicated to investigation of low energy excitations and quasi-elastic excitations in the field of solid state physics, chemistry, materials science, soft matter science and biomaterial science. The planned spectrometer will be installed at a H 2 -coupled moderator and will be equipped with a pulse-shaping disk-chopper in addition to a monochromating disk-chopper, and realizes both high-energy resolution (ΔE/E i ≥1%) and high-intensity (one order of magnitude higher than the present state-of-the-art chopper spectrometers)

  19. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    CERN Document Server

    Fiori, F

    2002-01-01

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (ten...

  20. Thermodynamic considerations on self-regulating characteristics of a cold neutron source with a closed thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Ogino, Fumimaru.

    1991-01-01

    The present report describes that a cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a self-regulating characteristic under thermal disturbances if the effect of the moderator transfer tube is negligible. Due to this property, the liquid level in the moderator cell is kept almost constant under thermal disturbances. The thermodynamic meaning of the self-regulating property in the idealized closed-thermosiphon and the effect of the moderator transfer tube to the self-regulation are described. (author)

  1. Aspects of ultra-cold neutron production in radiation fields at the FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wlokka, Stephan Albrecht

    2016-08-17

    Neutrons are called ''ultra-cold'', if they are reflected by a material surface under all angles of incident. They can then be stored for long times (ca. 1000s). In the new UCN source at the FRM II, Deuterium will be used to produce the UCN. Its behaviour under irradiation was investigated. Additionally the transport properties of new UCN guides were tested. Also, the helium-3 content of purified helium samples was examined, because using this type of helium greatly reduces the tritium production when used at the reactor.

  2. Cold dilute neutron matter on the lattice. II. Results in the unitary limit

    International Nuclear Information System (INIS)

    Lee, Dean; Schaefer, Thomas

    2006-01-01

    This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature

  3. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1976-01-01

    Recovery of neutron-irradiated and cold-worked thorium was studied using electrical resistivity measurements. Thorium wires containing 30 and 300 wt ppM carbon were irradiated to fast neutron fluence of 1.3 x 10 18 n/cm 2 (E greater than 0.1 MeV). Another group of thorium wires containing 45, 300 and 600 wt ppM carbon were laterally compressed 5 to 40 percent. Both irradiation and cold-working were performed at liquid nitrogen temperature. The induced resistivity was found to increase with carbon content for both treatments. Isochronal recovery studies were performed in the 120--420 0 K temperature range. Two recovery stages (II and III) were found for both cold-worked and irradiated samples. In all cases the activation energies were determined by use of the ratio-of-slope method. Consistent results were observed for both irradiated and cold-worked specimens within the experimental error in the two stages. Other methods were also used in determining the activation energy of stage III for irradiated samples. All analysis methods indicated that the activation energies decreased with increasing carbon content for differently treated specimens. Possible reasons for such behavior are discussed. The annealing data obtained do not fit a simple chemical rate equation but follow the empirical exponential equation proposed by Avrami. A model of detrapping of interstitials from impurities is suggested for stage II recovery. On the basis of the observed low activation energy and high retention of defects above stage III, a divacancy migration model is proposed for stage III recovery

  4. Neutron beams. Tracks analysis, imaging and medicine

    International Nuclear Information System (INIS)

    Pepy, G.

    2006-01-01

    Thermal neutron beams can supply informations about the arrangement of atoms and molecules and about their movement inside the matter. This article treats of the preparation of thermal neutron beams and of the applications that use their penetration and matter activation properties: 1 - thermal neutrons production; 2 - basic properties of thermal neutrons: neutrons scattering, absorbing materials, activating materials, transparent materials, preparation of a neutron beam; 3 - tracks measurement by activation: activation method, measurement of marine pollution by heavy elements, historical evolution of glass composition; 4 - neutron radiography: neutronography, neutronoscopy: viscosity measurement; 5 - cancer treatment. (J.S.)

  5. Design of a cold-neutron source for the Bariloche LINAC with solid mesitylene as moderator material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, J.R.

    2006-01-01

    We present the results of calculations performed with the code MCNP-4C relative to the neutron-field behaviour within the moderator for the Bariloche-LINAC cold-neutron source, using mesitylene at 89 K as moderating material. Throughout the design calculations we used preliminary nuclear-data libraries for that material that were previously generated and partially validated. The optimum dimensions for a slab and a cylindrical moderator were obtained, with and without a premoderator, from the point of view of neutron production and time-width of the neutron pulse

  6. Numerical simulation for neutron pinhole imaging in ICF

    International Nuclear Information System (INIS)

    Chen Faxin; Yang Jianlun; Wen Shuhuai

    2005-01-01

    Pinhole imaging of the neutron production in laser-driven inertial confinement fusion experiments can provide important information about performance of various capsule designs. In order to get good results in experiments, it is needed to judge performance of various pinhole designs qualitatively or quantitatively before experiment. Calculation of imaging can be simply separated into pinhole imaging and image spectral analysis. In this paper, pinhole imaging is discussed, codes for neutron pinhole imaging and image showing is programed. The codes can be used to provide theoretical foundation for pinhole designing and simulating data for image analysing. (authors)

  7. Elements and process for recording direct image neutron radiographs

    International Nuclear Information System (INIS)

    Poignant, R.V. Jr.; Przybylowicz, E.P.

    1975-01-01

    An element is provided for recording a direct image neutron radiograph, thus eliminating the need for a transfer step (i.e., the use of a transfer screen). The element is capable of holding an electrostatic charge and comprises a first layer for absorbing neutrons and generating a current by dissipation of said electrostatic charge in proportion to the number of neutrons absorbed, and a second layer for conducting the current generated by the absorbed neutrons, said neutron absorbing layer comprising an insulative layer comprising neutron absorbing agents in a concentration of at least 10 17 atoms per cm 3 . An element for enhancing the effect of the neutron beam by utilizing the secondary emanations of neutron absorbing materials is also disclosed along with a process for using the device. (U.S.)

  8. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  9. DUNBID, the Delft University neutron backscattering imaging detector

    International Nuclear Information System (INIS)

    Bom, V.R.; Eijk, C.W.E. van; Ali, M.A.

    2005-01-01

    In the search for low-metallic land mines, the neutron backscattering technique may be applied if the soil is sufficiently dry. An advantage of this method is the speed of detection: the scanning speed may be made comparable to that of a metal detector. A two-dimensional position sensitive detector is tested to obtain an image of the back scattered thermal neutron radiation. Results of experiments using a radionuclide neutron source are presented. The on-mine to no-mine signal ratio can be improved by the application of a window on the neutron time-of-flight. Results using a pulsed neutron generator are also presented

  10. Optimal shape of a cold-neutron triple-axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K., E-mail: lefmann@fys.ku.d [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden); Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Treue, F. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Kirkensgard, J.J.K. [Institute of Nature and Models, Roskilde University (Denmark); Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen (Denmark); Plesner, B. [Institute of Nature and Models, Roskilde University (Denmark); Hansen, K.S. [Institute of Nature and Models, Roskilde University (Denmark); Mid-Greenland High School, Nuuk, Greenland (Denmark); Kleno, K.H. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden)

    2011-04-01

    We have performed a McStas optimization of the primary spectrometer for a generic 40 m long, cold-neutron triple-axis spectrometer with a doubly focusing monochromator. The optimal design contains an elliptically focusing guide, a virtual source point before a low-grade PG monochromator, and non-equidistant focusing at the monochromator. The flux at 5 meV shows a gain factor 12 over the 'classical' design with a straight 12x3cm{sup 2}, m=2 guide and a vertically focusing PG monochromator. In addition, the energy resolution was found to be improved. This unexpectedly large design improvement agrees with the Liouville theorem and can be understood as the product of many smaller gain factors, combined with a more optimal utilization of the beam divergence within the guide. Our results may be relevant for a possible upgrade of a number of cold-neutron triple-axis spectrometers-and for a possible triple-axis spectrometer at the European Spallation Source.

  11. Performance of a thermal neutron radiographic system using imaging plates

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo L. de; Furieri, Rosanne; Lopes, Ricardo T.

    2009-01-01

    A performance evaluation of a neutron radiographic system equipped with a thermal neutron sensitive imaging plate has been undertaken. It includes the assessment of spatial resolution, linearity, dynamic range and the response to exposure time, as well as a comparison of these parameters with the equivalent ones for neutron radiography employing conventional films and a gadolinium foil as converter. The evaluation and comparison between the radiographic systems have been performed at the Instituto de Engenharia Nuclear - CNEN, using the Argonauta Reactor as source of thermal neutrons and a commercially available imaging plate reader. (author)

  12. Modeling the National Ignition Facility neutron imaging system.

    Science.gov (United States)

    Wilson, D C; Grim, G P; Tregillis, I L; Wilke, M D; Patel, M V; Sepke, S M; Morgan, G L; Hatarik, R; Loomis, E N; Wilde, C H; Oertel, J A; Fatherley, V E; Clark, D D; Fittinghoff, D N; Bower, D E; Schmitt, M J; Marinak, M M; Munro, D H; Merrill, F E; Moran, M J; Wang, T-S F; Danly, C R; Hilko, R A; Batha, S H; Frank, M; Buckles, R

    2010-10-01

    Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.

  13. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle

    International Nuclear Information System (INIS)

    Zboray, Robert; Kickhofel, John; Damsohn, Manuel; Prasser, Horst-Michael

    2011-01-01

    Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.

  14. A combined system for the generation of an intense cold neutron beam with a medium power research reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Okumura, K.

    1989-01-01

    A system consisting of a very cold moderator and a neutron-accelerating high speed turbine is proposed for the intensification of a cold neutron beam in a medium power research reactor up to the level applicable to inelastic neutron scattering spectrometers. A numerical result for 5 cm thick solid ortho-deuterium at a temperature of about 4 K and a turbine with a blade velocity of about 350 m/s gives an output intensity of monochromatic neutrons of about 10 7 n/cm 2 at an energy of about 3.5 meV with an energy width of about 0.2 meV for a typical case of a 5 MW reactor. (orig.)

  15. Inelastic neutron scattering and spectral measurements of advanced cold moderator materials

    International Nuclear Information System (INIS)

    Conrad, H.; Prager, M.; Nuenighoff, K.; Pohl, C.; Kuhs, W.F.

    2004-01-01

    Inelastic neutron scattering with emphasis on energetically low lying modes as well as cold neutron leakage measurements have been performed on four prospective advanced cold moderator materials. Employing the time-of-flight instrument SV29 at the Juelich FRJ-2 reactor, spectra have been obtained from synthetic methane clathrate, tetrahydro-furane (THF) clathrate, 1,3,5-trimethyl-benzene (mesitylene) and light water ice at several temperatures between 2 K and 70 K. Clearly separated excitations at energy transfers of ±1 meV, +2 meV and +3 meV have been observed with synthetic methane clathrate. In mesitylene a wealth of low lying excitations have been observed. In the quenched phase we found lines at 4.7, 7.2, 9.6, 13.6, 15.4, 18.4, 19.0, 23.0, 29.5 and 34.3 meV, respectively. In the annealed phase, we observed significant shifts with the majority of lines. The lowest lying lines now are located at 7.0, 8.5 and 10.5 meV, respectively. In hexagonal ice at T=2 K up to now unreported low lying energy levels were found at energy transfers of 1.8 meV and 2.8 meV. An additional line at about 10 meV could be detected in THF clathrate. Mesitylene, synthetic methane clathrate and water ice, all at T=20 K, have been tested as moderators at the Juelich spallation mock-up JESSICA. The expected gain in neutron leakage current at energies around 2 meV as compared to conventional liquid hydrogen moderators has been observed for methane clathrate and mesitylene. (orig.)

  16. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Delage, O.

    2010-01-01

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  17. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  18. Zone plate imaging of 14-MeV neutrons

    International Nuclear Information System (INIS)

    Lerche, R.A.; Lane, S.M.; Hawryluk, A.M.; Ceglio, N.M.

    1986-01-01

    At Livermore we are interested in imaging the thermonuclear burn region of fusion targets irradiated at our Nova laser facility. We expect compressed core diameters to be 10's of microns, and would like images with better than 10-μm resolution. Alpha particle images provided the first direct information about the thermonuclear burn geometry in thin walled exploding pusher targets. In future high density target experiments, only highly penetrating radiations like the 14-MeV neutrons will escape the target core to provide information about the burn region. To make the measurement with a neutron ''pinhole'' camera requires a 10μm pinhole through about 10 cm of material and 10 14 to 10 15 source neutrons. Penumbral imaging offers some improvement over a pinhole. Zone plate coded imaging (ZPCI) techniques are particularly well suited for imaging small objects like the compressed core of a laser fusion target. We have been using ZPCI techniques to image nonpenetrating radiations like x rays and alpha particles for about 10 years. The techniques are well developed. Imaging penetrating radiations like 14-MeV neutrons using ZPCI techniques has several possible advantages. The large solid angle subtended by the Zone plate might substantially reduce the required target neutron yield needed to produce a useful image, and a neutron zone plate system with 10-μm resolution might be easier to fabricate and characterize than a pinhole system. This paper explores the use of ZPCI techniques with penetrating radiation

  19. Development of a new electronic neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Brenizer, J.S. [Department of Mechanical, Aerospace and Nuclear Engineering, Thornton Hall, University of Virginia, Charlottesville, VA 22903-2442 (United States); Berger, H. [Industrial Quality, Inc., Gaithersburg, MD (United States); Gibbs, K.M. [Industrial Quality, Inc., Gaithersburg, MD (United States); Mengers, P. [Paultek Systems, Inc., Nevada City, CA (United States); Stebbings, C.T. [Department of Mechanical, Aerospace and Nuclear Engineering, Thornton Hall, University of Virginia, Charlottesville, VA 22903-2442 (United States); Polansky, D. [Industrial Quality, Inc., Gaithersburg, MD (United States); Rogerson, D.J. [Naval Air Warfare Center, China Lake, CA (United States)

    1999-11-03

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included {sup 6}Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifier, fiber optically coupled to a 1134 (h)x486 (v) frame transfer CCD camera. The camera system was designed to be compatible with a Navy-sponsored accelerator neutron source. The planned neutron source is an RF quadrupole accelerator that will provide a fast neutron flux of 10{sup 7} n/cm{sup 2}-s (at a source distance of 1 m) at an energy of about 2.2 MeV and a thermal neutron flux of 10{sup 6} n/cm{sup 2}-s at a source L/D ratio of 30. The electronic camera produced good quality real-time images at these neutron levels. On-chip integration could be used to improve image quality for low flux situations. The camera and accelerator combination provided a useful non-reactor neutron inspection system.

  20. Development of Neutron Imaging System for Neutron Tomography at Thai Research Reactor TRR-1/M1

    Science.gov (United States)

    Wonglee, S.; Khaweerat, S.; Channuie, J.; Picha, R.; Liamsuwan, T.; Ratanatongchai, W.

    2017-09-01

    The neutron imaging is a powerful non-destructive technique to investigate the internal structure and provides the information which is different from the conventional X-ray/Gamma radiography. By reconstruction of the obtained 2-dimentional (2D) images from the taken different angle around the specimen, the tomographic image can be obtained and it can provide the information in more detail. The neutron imaging system at Thai Research Reactor TRR-1/M1 of Thailand Institute of Nuclear Technology (Public Organization) has been developed to conduct the neutron tomography since 2014. The primary goal of this work is to serve the investigation of archeological samples, however, this technique can also be applied to various fields, such as investigation of industrial specimen and others. This research paper presents the performance study of a compact neutron camera manufactured by Neutron Optics such as speed and sensitivity. Furthermore, the 3-dimentional (3D) neutron image was successfully reconstructed at the developed neutron imaging system of TRR-1/M1.

  1. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  2. Collimator design for neutron imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Sommargren, G.E.; Lerche, R.A.

    1981-01-01

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism

  3. Characterization of a neutron imaging setup at the INES facility

    Energy Technology Data Exchange (ETDEWEB)

    Durisi, E.A., E-mail: elisabettaalessandra.durisi@unito.it [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Visca, L. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Albertin, F.; Brancaccio, R. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Corsi, J. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dughera, G. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Ferrarese, W. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Giovagnoli, A.; Grassi, N. [Fondazione Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Piazza della Repubblica, 10078 Venaria Reale, Torino (Italy); Grazzi, F. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lo Giudice, A.; Mila, G. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); and others

    2013-10-21

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/{sup 6}LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup.

  4. Characterization of a neutron imaging setup at the INES facility

    International Nuclear Information System (INIS)

    Durisi, E.A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.

    2013-01-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/ 6 LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup

  5. A novel dual mode neutron-gamma imager

    International Nuclear Information System (INIS)

    Cooper, Robert Lee; Gerling, Mark; Brennan, James S.; Mascarenhas, Nicholas; Mrowka, Stanley; Marleau, Peter

    2010-01-01

    The Neutron Scatter Camera (NSC) can image fission sources and determine their energy spectra at distances of tens of meters and through significant thicknesses of intervening materials in relatively short times (1). We recently completed a 32 element scatter camera and will present recent advances made with this instrument. A novel capability for the scatter camera is dual mode imaging. In normal neutron imaging mode we identify and image neutron events using pulse shape discrimination (PSD) and time of flight in liquid scintillator. Similarly gamma rays are identified from Compton scatter in the front and rear planes for our segmented detector. Rather than reject these events, we show it is possible to construct a gamma-ray image by running the analysis in a 'Compton mode'. Instead of calculating the scattering angle by the kinematics of elastic scatters as is appropriate for neutron events, it can be found by the kinematics of Compton scatters. Our scatter camera has not been optimized as a Compton gamma-ray imager but is found to work reasonably. We studied imaging performance using a Cs137 source. We find that we are able to image the gamma source with reasonable fidelity. We are able to determine gamma energy after some reasonable assumptions. We will detail the various algorithms we have developed for gamma image reconstruction. We will outline areas for improvement, include additional results and compare neutron and gamma mode imaging.

  6. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  7. Implementation of neutron phase contrast imaging at FRM-II

    International Nuclear Information System (INIS)

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  8. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.C.; Barker, J.G.; Rowe, J.M.; Williams, R.E. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States); Gagnon, C. [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Lindstrom, R.M. [Scientist Emeritus, Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8395, Gaithersburg, MD 20899-8395 (United States); Ibberson, R.M.; Neumann, D.A. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States)

    2015-08-21

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  9. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  10. Dynamic response of thermal neutron measurements in electrochemically produced cold fusion subject to pulsed current

    International Nuclear Information System (INIS)

    Granada, Jose; Converti, Jose; Mayer, Roberto; Guido, German; Florido, Pablo; Patino, Nestor; Sobehart, Leonardo; Gomez, Silvia; Larreteguy, Axel

    1988-01-01

    The present work shows the results of measurements performed on electrolytic cells using a high efficiency (22%) neutron detection system in combination with a procedure involving a non-stationary current through the cell's circuit. Cold fusion was produced in electrolytic cells containing LiH dissolved in heavy water with a palladium cathode. The dynamic response to low frequency current pulses was measured. Characteristic patterns showing one or two bumps were obtained in a repeatable fashion. These patterns are strongly dependent on the previous charging history of the cathode. The technique employed seems to be very convenient as a research tool for a systematic study of the different variables governing the phenomenon. (Author)

  11. A study of some temperature effects on the phonons in aluminium by use of cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, K E; Dahlborg, U; Holmryd, S

    1960-04-15

    Using the cold neutron scattering technique about 300 phonons have been determined in a single aluminium crystal at room temperature to define 10 pairs of dispersion curves, Investigations have been made of the variation of frequencies, phonon line widths and multi-phonon spectra in the temperature range 293 < T < 932 K. For a particular direction in the crystal lattice it is shown that the frequencies vary about 15 % over this temperature range The line widths are of such a magnitude that the derived phonon mean free paths vary from about 5 phonon wave lengths at 600 K to about 1.5 phonon wave lengths at 930 K. The observed multiphonon spectra are found to agree with calculated differential cross sections in the incoherent approximation.

  12. An advanced hadron facility: A combined kaon factory and cold-neutron source

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1987-01-01

    A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H - linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 μAmp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed

  13. Detail design and manufacturing result of the HANARO cold neutron source moderator cell

    International Nuclear Information System (INIS)

    Hwang, Dong Gil; Han, Young Soo; Kim, Soo Sung; Lee, Kye Hong; Kim, Young Jin

    2005-01-01

    Moderator cell which is on the process of developing is the core of the Cold Neutron Source(CNS) and operates at cryogenic of 20K and made of aluminum. When infer from experience in all nuclear reactors that use moderator cell, Aluminum has a proper nature to use at cryogenic that use hydrogen. And a lot of data was already published for the Aluminum characters which are in the investigative state. Because performance of moderator cell is getting better when thickness is thinner, moderator was designed to double cylinder type of thin plate style. Aluminum is excellent both manufacturing and welding. If the plate is less than 3.0mm, manufacturing and welding are difficult. Because of this, after making a moderator cell, manufacture and integrity are evaluated. In this paper, detailed design of moderator cell and manufacturing result are described

  14. The upgrade of the cold neutron three-axis spectrometer IN12 at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Schmalzl, K., E-mail: schmalzl@ill.fr [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Schmidt, W. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Raymond, S. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Feilbach, H. [Forschungszentrum Jülich, Peter Grünberg Institut PGI 6, D-52425 Jülich (Germany); Mounier, C. [Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Vettard, B. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Brückel, T. [Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2016-05-21

    After nearly 40 years of successful operation the cold three-axis spectrometer IN12 at the Institut Laue-Langevin, Grenoble, France, has been relocated to a new position and the primary spectrometer has been upgraded. Latest modern optical components are employed. A new guide in combination with a virtual source concept and a double focusing monochromator guarantee highest flux. With its high unpolarized and polarized neutron flux IN12 allows for demanding experiments. A velocity selector in the guide ensures a clean beam and a very low background. A gain in flux of about an order of magnitude at the sample position has been achieved compared to the previous instrument and IN12's wavelength range now extends far into the warmish region.

  15. The effect of, within the sphere confined, particle diffusion on the line shape of incoherent cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.

    1999-01-01

    Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)

  16. The Design of a Moderator for a Cold Neutron Source for the LINAC of the Centro Atomico Bariloche

    International Nuclear Information System (INIS)

    Torres, Lourdes; Gilette, Victor

    2003-01-01

    The results obtained in the design of a moderator to a cold neutron source for LINAC are given. Light water ice at 100 deg K was used as a moderator and we calculated its optimum dimension.We also calculated a grid moderator

  17. Neutron penumbral imaging of laser-fusion targets

    International Nuclear Information System (INIS)

    Lerche, R.A.; Ress, D.B.

    1988-01-01

    Using a new technique, penumbral coded-aperture imaging, the first neutron images of laser-driven, inertial-confinement fusion targets were obtained. With these images the deuterium-tritium burn region within a compressed target can be measured directly. 4 references, 11 figures

  18. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  19. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  20. In situ diagnostics of the crystal-growth process through neutron imaging

    DEFF Research Database (Denmark)

    Tremsin, Anton S.; Makowska, Malgorzata Grazyna; Perrodin, Didier

    2016-01-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e......, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼ 0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change.......g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole...

  1. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  2. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  3. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    Science.gov (United States)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  4. Conceptual design of facilities and systems for cold neutron source in HANARO

    International Nuclear Information System (INIS)

    Kim, Y. K.; Jung, H. S.; Wu, S. I.; Ahn, S. H.; Park, Y. C.; Cho, Y. G.; Ryu, J. S.; Kim, Y. J.

    2004-05-01

    The systems and facilities for the HANARO cold neutron source consist of hydrogen handling system, vacuum system, gas blanket system, helium refrigeration system and electrical and instrumentation and control system. The overriding safety goal in the system design is to prevent the escape of hydrogen from the system boundary or the ingress of air into the hydrogen boundary. Of primary concern is the release of hydrogen (or intrusion of oxygen) into an area where any subsequent reaction could possibly result in damage to the reactor building or safety systems or components, as well as jeopardize personnel safety. It has been an general rule that all aspects of the system design were based on the demonstrated technology of long standing world-wide. In some cases, other options are also suggested for the flexibility of independent review process. This report hopefully serves as basis for the coming detail design and engineering. This report is mainly concentrated on the conceptual system design performed during the first project year. It includes the key safety design requirements in the beginning, followed by the description of the preliminary system design. At the rear part, building layout and equipment arrangement are briefly introduced for easy understanding of the whole pictures. The design status for the In-Pool Assembly including safety analysis and neutron guide and instruments will be discussed in another report

  5. Moisture imaging of a camphor tree by neutron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Karakama, Isamu; Sakura, Tsuguo; Matsubayashi, Masashi

    1998-01-01

    Moisture distribution of a camphor tree was presented. A 23 year old camphor tree was downed at university forest and a wood disk, about 1 cm in width, was lumbered out from the breast height of the tree. The wood disk as well as a newly developing branch of the tree were irradiated with thermal neutrons at an atomic reactor installed at Japan Atomic Energy Research Institute. The total flux of thermal neutron was 3.0 x 10 9 n/cm 2 . Water specific images of the disk and a branch were presented with high resolution, which was estimated to be about 16 μm. In the case of wood disk, moisture decreasing manner while drying was also shown through neutron image. Neutron images showed that the moisture decreasing rate in sapwood was similar to that of heartwood. (author)

  6. DIANE stationary neutron radiography system image quality and industrial applications

    International Nuclear Information System (INIS)

    Cluzeau, S.; Huet, J.; Tourneur, P. le

    1994-01-01

    The SODERN neutron radiography laboratory has operated since February 1993 using a sealed tube generator (GENIE 46). An experimental programme of characterization (dosimetry, spectroscopy) has confirmed the expected performances concerning: neutron flux intensity, neutron energy range, residual gamma flux. Results are given in a specific report [2]. This paper is devoted to the image performance reporting. ASTM and specific indicators have been used to test the image quality with various converters and films. The corresponding modulation transfer functions are to be determined from image processing. Some industrial applications have demonstrated the capabilities of the system: corrosion detection in aircraft parts, ammunitions filling testing, detection of polymer lacks in sandwich steel sheets, detection of moisture in a probe for geophysics, residual ceramic cores imaging in turbine blades. Various computerized electronic imaging systems will be tested to improve the industrial capabilities. (orig.)

  7. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  8. The analysis and correction of neutron scattering effects in neutron imaging

    International Nuclear Information System (INIS)

    Raine, D.A.; Brenizer, J.S.

    1997-01-01

    A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used

  9. Studies of magnetism with inelastic scattering of cold neutrons; Etudes de magnetisme realisees a l'aide de la diffusion inelastique de neutrons froids

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [French] La technique de diffusion inelastique des neutrons froids est utilisee pour etudier certains aspects du magnetisme: ondes de spins, integrales d'echange, etude au voisinage du point de Curie, etc. Apres une description de l'appareillage, on analyse diverses experiences effectuees dans les domaines enumeres plus haut. (auteur)

  10. MINER - A Mobile Imager of Neutrons for Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John E. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, James S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark D [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kiff, Scott D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mascarenhas, Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van De Vreugde, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    We have developed a mobile fast neutron imaging platform to enhance the capabilities of emergency responders in the localization and characterization of special nuclear material. This mobile imager of neutrons for emergency responders (MINER) is based on the Neutron Scatter Camera, a large segmented imaging system that was optimized for large-area search applications. Due to the reduced size and power requirements of a man-portable system, MINER has been engineered to fit a much smaller form factor, and to be operated from either a battery or AC power. We chose a design that enabled omnidirectional (4π) imaging, with only a ~twofold decrease in sensitivity compared to the much larger neutron scatter cameras. The system was designed to optimize its performance for neutron imaging and spectroscopy, but it does also function as a Compton camera for gamma imaging. This document outlines the project activities, broadly characterized as system development, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.

  11. Neutron tomography at IPEN-CNEN/SP: images and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pugliesi, Reynaldo; Pereira, Marco Antonio Stanojev; Andrade, Marcos Leandro Garcia, E-mail: pugliesi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The neutron tomography is a non destructive testing technique used to inspect the internal structure of a sample by means of tridimensional digital images. Because of the neutron-matter interaction characteristics this technique can be used to inspect hydrogen-rich substances like ceramics, oil, grease, water, rubber, blood and others, even wrapped by thick metal layers. In this way, the information provided by neutrons are complementary to the ones provided by X-rays. The Brazilian Institute for Nuclear Technology IPEN-CNEN/SP has an equipment for neutron tomography which since Nov/2011 is operational and installed at the IEA-R1 Nuclear Research Reactor. This equipment is able to provide high quality tomographs and some important results obtained for Proton Exchange Membranes (PEM) cell, for an archaeological sample and for pottery, will be presented. Furthermore, details of its construction and its versatility, in the sense that by means of small adjustments is possible to obtain images by other neutron imaging techniques, will be also presented. Is very important enhance that the high quality of the obtained images is due to the excellence of the IEA-R1 reactor which is able to furnish neutron beams with adequate intensity for such purpose. (author)

  12. Neutron CSI: Integrated platform for non-destructive composition and stress imaging with neutrons

    International Nuclear Information System (INIS)

    Materna, T.; Pirling, T.

    2011-01-01

    We propose to build an interdisciplinary platform for non-destructive analysis and imaging with neutrons. The project regroups an instrument already available at ILL (Laue-Langevin Institute), SALSA, with a new one for Neutron Tomography coupled to Prompt-Gamma Neutron Activation (PGNA) as well as partial usage of another proposed instrument, FIPPS. The focus of the proposition is the versatility of high spatial resolution and energy-selective neutron tomography to provide a rapid and precise 3D morphological map of an object as well as indirect information on its 3D elemental and structural composition through the scan of Bragg-edges in transmission. Coupled to PGNA imaging and the strain analysis power of SALSA, the aim of the platform is to answer key questions occurring in geological, metallurgical, engineering and medical fields, material research and cultural heritage. (authors)

  13. The Phase-Space Transformer Instrument (PASTIS) and the Phase-Space Transformation on Ultra-Cold Neutrons

    International Nuclear Information System (INIS)

    Henggeler, W.; Boehm, M.

    2003-11-01

    Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)

  14. Neutron Imaging Control Report: FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-30

    During the 2016 fiscal year, work began on the supervision and control systems for the neutron source currently under construction in the B194 accelerator caves. This source relies on a deuteron beam colliding with a high-speed stream of deuterium gas to create neutrons, which poses significant technical challenges. To help overcome those challenges, an integrated, operator-focused control architecture is required to collect and assimilate disparate data from a variety of measurement points, as well as provide the means to remotely control the system hardware.

  15. Random mask optimization for fast neutron coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Kyle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

  16. Neutron beam applications - A development of real-time imaging processing for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whoi Yul; Lee, Sang Yup; Choi, Min Seok; Hwang, Sun Kyu; Han, Il Ho; Jang, Jae Young [Hanyang University, Seoul (Korea)

    1999-08-01

    This research is sponsored and supported by KAERI as a part of {sup A}pplication of Neutron Radiography Beam.{sup M}ain theme of the research is to develop a non-destructive inspection system for the task of studying the real-time behaviour of dynamic motion using neutron beam with the aid of a special purpose real-time image processing system that allows to capture an image of internal structure of a specimen. Currently, most off-the-shelf image processing programs designed for visible light or X-ray are not adequate for the applications that require neutron beam generated by the experimental nuclear reactor. In addition, study of dynamic motion of a specimen is severely constrained by such image processing systems. In this research, a special image processing system suited for such application is developed which not only supplements the commercial image processing system but allows to use neutron beam directly in the system for the study. 18 refs., 21 figs., 1 tab. (Author)

  17. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  18. Improve the efficiency of PEMFC using neutron imaging

    International Nuclear Information System (INIS)

    Kim, Tae Joo; Shim, Chulmuu

    2010-01-01

    The water management is one of the most critical issues for PEMFC commercialization. In order to make a proper scheme for water management, the information of water distribution and behavior is very important. But the visualization is difficult due to metallic coverage. Recently, neutron imaging has joined the canon of diagnostic methods for fuel cell research and is applied worldwide with qualitative and quantitative results. In this investigation, we prepared 3-parallel serpentine single PEMFC. The active area is 250 mm 2 and channel size is 1 Χ 1 mm, respectively. Distribution and transport of water in an operating PEMFC were observed as functions of flow directions and differential pressures between anode and cathodes. This investigation was performed at BST-2, Nest. The collimation ratio is 600 and neutron fluence of BST-2 is 7.2 Χ 10 6 n/s, respectively. Neutron image was captured by A-Si detector with 1 sec expsosure time. The PEMFC has different performances for each differential pressure and flow directions. When the neutron images are compared with operating conditions, the distribution and behavior of water are different. Total water fraction is increased and then decreases as the current density increases. This situation is similar trend for the flow directions. It is shown that neutron imaging technique is powerful tool to visualize the PEMFC and the water distribution and behavior of an operating PEMFC helps improve the efficiency of PEMFC

  19. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  20. Technical review and evaluation for the installation of cold neutron source facility at HANARO

    International Nuclear Information System (INIS)

    Choi, Chang Woong; Kim, Dong Hoon; Lee, Mu Woong; Cho, Man Soon; Oh, Yun Woo; Park, Sun Hee; Park, Kuk Nam; Lee, Chang Hee

    1996-01-01

    The principle subjects of this study are to analyze the technical characteristics of cold neutron source(CNS) and take measures to cope with the matters regarding the installation of CNS facility at HANARO. This report, thus, reviews the current status of the CNS facilities that are now in operation worldwide and classifies the system and equipment to select the appropriate type for HANARO and provides advice and guidance for the future basic and detail design. As we have none of CNS facility here and very few experienced persons yet, this report provides some information for domestic users through the investigation of the utilization fields and experimental facilities of CNS, and presents the estimated total cost for the project based on JRR-3M. In addition, the work scope of the conceptual design, which will be performed in advance of the basic and detail design, and cooperative program with the countries having the advanced technology of CNS is presented in this report. 43 tabs., 57 figs., 22 refs. (Author)

  1. New feature of the neutron color image intensifier

    Science.gov (United States)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi; Miyabe, Keisuke

    2009-06-01

    We developed prototype neutron color image intensifiers with high-sensitivity, wide dynamic range and long-life characteristics. In the prototype intensifier (Gd-Type 1), a terbium-activated Gd 2O 2S is used as the input-screen phosphor. In the upgraded model (Gd-Type 2), Gd 2O 3 and CsI:Na are vacuum deposited to form the phosphor layer, which improved the sensitivity and the spatial uniformity. A europium-activated Y 2O 2S multi-color scintillator, emitting red, green and blue photons with different intensities, is utilized as the output screen of the intensifier. By combining this image intensifier with a suitably tuned high-sensitive color CCD camera, higher sensitivity and wider dynamic range could be simultaneously attained than that of the conventional P20-phosphor-type image intensifier. The results of experiments at the JRR-3M neutron radiography irradiation port (flux: 1.5×10 8 n/cm 2/s) showed that these neutron color image intensifiers can clearly image dynamic phenomena with a 30 frame/s video picture. It is expected that the color image intensifier will be used as a new two-dimensional neutron sensor in new application fields.

  2. New feature of the neutron color image intensifier

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi; Miyabe, Keisuke

    2009-01-01

    We developed prototype neutron color image intensifiers with high-sensitivity, wide dynamic range and long-life characteristics. In the prototype intensifier (Gd-Type 1), a terbium-activated Gd 2 O 2 S is used as the input-screen phosphor. In the upgraded model (Gd-Type 2), Gd 2 O 3 and CsI:Na are vacuum deposited to form the phosphor layer, which improved the sensitivity and the spatial uniformity. A europium-activated Y 2 O 2 S multi-color scintillator, emitting red, green and blue photons with different intensities, is utilized as the output screen of the intensifier. By combining this image intensifier with a suitably tuned high-sensitive color CCD camera, higher sensitivity and wider dynamic range could be simultaneously attained than that of the conventional P20-phosphor-type image intensifier. The results of experiments at the JRR-3M neutron radiography irradiation port (flux: 1.5x10 8 n/cm 2 /s) showed that these neutron color image intensifiers can clearly image dynamic phenomena with a 30 frame/s video picture. It is expected that the color image intensifier will be used as a new two-dimensional neutron sensor in new application fields.

  3. A neutron image plate quasi-Laue diffractometer for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, F.; Castagna, J.C.; Wilkinson, C. [European Molecular Biology Laboratory, Grenoble (France)] [and others

    1994-12-31

    An instrument which is based on image plate technology has been constructed to perform cold neutron Laue crystallography on protein structures. The crystal is mounted at the center of a cylindrical detector which is 400mm long and has a circumference of 1000mm, with gadolinium oxide-containing image plates mounted on its exterior surface. Laue images registered on the plate are read out by rotating the drum and translating a laser read head parallel to the cylinder axis, giving a pixel size of 200{mu}m x 200{mu}m and a total read time of 5 minutes. Preliminary results indicate that it should be possible to obtain a complete data set from a protein crystal to atomic resolution in about two weeks.

  4. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  5. Development of a neutron imager based on superconducting detectors

    International Nuclear Information System (INIS)

    Miyajima, Shigeyuki; Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki; Fujimaki, Akira; Hidaka, Mutsuo; Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu

    2016-01-01

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a "1"0B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a "1"0B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with "1"0B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  6. Cold neutron beam studies of parity-violation in the n-α and n-p systems

    International Nuclear Information System (INIS)

    Markoff, D.M.

    2001-01-01

    Long wavelength neutrons (λ>1 A) in a cold neutron beam provide a valuable probe to study the strong and weak nuclear forces in hadronic systems, where the description is complicated by the quark structure of the particles. As a consequence of parity-violation (PV) arising from the weak interaction, the low-energy neutron transverse spin-polarization vector rotates as the neutrons transverse a medium. The magnitude of the PV spin-rotation observable in the n-α system provides important new data to determine the strength of the neutron-nucleus weak interaction. Measurement of the spin-rotation in the bare neutron-proton system with a parahydrogen target, will provide important constraints on the weak nucleon-nucleon (NN) interaction including the neutral current contribution, and will increase our understanding of the strong NN interaction. This paper will review the recent spin-rotation measurement in a liquid helium target, and the proposed measurement in a parahydrogen target

  7. Methods and applications in high flux neutron imaging

    International Nuclear Information System (INIS)

    Ballhausen, H.

    2007-01-01

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  8. Evolution of Neutron Imaging at TRIGA PUSPATI Reactor: A Promising Digital Real-Time Imaging

    International Nuclear Information System (INIS)

    Khairiah Yazid; Muhammad Rawi Mohamed Zin; Rafhayudi Jamro; Azraf Azman

    2016-01-01

    Neutron radiography is a powerful tool for non-destructive testing of materials and finds numerous applications in industry and in material research as well. The basic principle is similar to that of X-ray radiography. A beam of neutrons falls on the sample and after passing through the sample, leaves the sample image on a photographic plate or on a detector. The neutrons interact with the nuclei of the atoms that compose the sample and the absorption and scattering properties of the contained elements make it possible to produce images of components containing light elements, like hydrogen beneath a matrix of metallic elements, (lead or bismuth), which cannot be easily done with conventional X ray radiography. Exploiting this property, neutron radiography has been used in applications requiring the identification of (light) materials inside solid samples. This article gives an overview of utilization of the CCD camera system in neutron imaging system for real time radiography/ tomography investigations. (author)

  9. Study of liquid hydrogen and liquid deuterium cold neutron sources; Etude de sources de neutrons froids a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Harig, H D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10{sup 15} n/cm{sup 2}s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10{sup 12} n/cm{sup 2}s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [French] En vue de l'installation d'une source a neutrons froids dans un reacteur a haut flux (flux thermique maximal environ 10{sup 15} n/cm{sup 2}s), nous avons fait une etude neutronique experimentale de differentes sources froides a hydrogene et a deuterium liquides aupres d'un reacteur a faible puissance (100 kW environ 10{sup 12} n/cm{sup 2}s). Nous avons etudie: des couches annulaires de differentes epaisseurs d'hydrogene liquide normal et d'hydrogene a grand pourcentage para, des cellules cylindriques de 18 et 38 cm de diametre, remplies de deuterium liquide et placees a differentes positions dans le reflecteur D{sub 2}O. Ce travail traite l'implantation de l'installation cryogenique et donne une description generale de l'experience. L'interpretation des resultats fait etat entre autres d'une comparaison entre l'experience et une etude theorique portant sur les memes moderateurs. (auteurs)

  10. Alignment effects on a neutron imaging system using coded apertures

    International Nuclear Information System (INIS)

    Thfoin, Isabelle; Landoas, Olivier; Caillaud, Tony; Vincent, Maxime; Bourgade, Jean-Luc; Rosse, Bertrand; Disdier, Laurent; Sangster, Thomas C.; Glebov, Vladimir Yu.; Pien, Greg; Armstrong, William

    2010-01-01

    A high resolution neutron imaging system is being developed and tested on the OMEGA laser facility for inertial confinement fusion experiments. This diagnostic uses a coded imaging technique with a penumbral or an annular aperture. The sensitiveness of these techniques to misalignment was pointed out with both experiments and simulations. Results obtained during OMEGA shots are in good agreement with calculations performed with the Monte Carlo code GEANT4. Both techniques are sensitive to the relative position of the source in the field of view. The penumbral imaging technique then demonstrates to be less sensitive to misalignment compared to the ring. These results show the necessity to develop a neutron imaging diagnostic for megajoule class lasers taking into account our alignment capabilities on such facilities.

  11. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  12. A new compact, high sensitivity neutron imaging system

    International Nuclear Information System (INIS)

    Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.

    2012-01-01

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10 9 –10 10 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 10 10 . The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60 Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  13. Dehydration process of fish analyzed by neutron beam imaging

    International Nuclear Information System (INIS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T.M.

    2009-01-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  14. Neutron radiography activity in the european program cost 524: Neutron imaging techniques

    International Nuclear Information System (INIS)

    Chirco, P.; Bach, P.; Lehmann, E.; Balasko, M.

    2001-01-01

    COST is a framework for scientific and technical cooperation, allowing the coordination of national research on a European level, including 32 member countries. Participation of institutes from non-COST countries is possible. From an initial 7 Actions in 1971, COST has grown to 200 Actions at the beginning of 2000. COST Action 524 is under materials domain, the title of which being 'Neutron Imaging Techniques for the Detection of Defects in Materials', under the Chairmanship of Dr. P. Chirco (I.N.F.N.). The following countries are represented in the Management Committee of Action 524: Italy, France, Austria, Germany, United Kingdom, Hungary, Switzerland, Spain, Czech Republic, Slovenia, and Russia. The six working groups of this Action are working respectively on standardization of neutron radiography techniques, on aerospace application, on civil engineering applications, on comparison and integration of neutron imaging techniques with other NDT, on neutron tomography, and on non radiographic techniques such as neutron scattering techniques. A specific effort is devoted to standardization issues, with respect to other non European standards. Results of work performed in the COST frame are published or will be published in the review INSIGHT, edited by the British Institute of Non Destructive Testing

  15. Fundamentals and applications of neutron imaging. Application part 3. Application of neutron imaging in aircraft, space rocket, car and gunpowder industries

    International Nuclear Information System (INIS)

    Ikeda, Yasushi

    2007-01-01

    Neutron imaging is applied to nondestructive test. Four neutron imaging facilities are used in Japan. The application examples of industries are listed in the table: space rocket, aircraft, car, liquid metal, and works of art. Neutron imaging of transportation equipments are illustrated as an application to industry. X-ray radiography testing (XRT) image and neutron radiography testing (NRT) image of turbine blade of aircraft engine, honeycomb structure of aircraft, helicopter rotor blade, trigger tube, separation nut of space rocket, carburetor of car, BMW engine, fireworks and ammunitions are illustrated. (S.Y.)

  16. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  17. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  18. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  19. New Image of Comet Halley in the Cold

    Science.gov (United States)

    2003-09-01

    VLT Observes Famous Traveller at Record Distance Summary Seventeen years after the last passage of Comet Halley , the ESO Very Large Telescope at Paranal (Chile) has captured a unique image of this famous object as it cruises through the outer solar system. It is completely inactive in this cold environment. No other comet has ever been observed this far - 4200 million km from the Sun - or that faint - nearly 1000 million times fainter than what can be perceived with the unaided eye. This observation is a byproduct of a dedicated search [1] for small Trans-Neptunian Objects, a population of icy bodies of which more than 600 have been found during the past decade. PR Photo 27a/03 : VLT image (cleaned) of Comet Halley PR Photo 27b/03 : Sky field in which Comet Halley was observed PR Photo 27c/03 : Combined VLT image with star trails and Comet Halley The Halley image ESO PR Photo 27a/03 ESO PR Photo 27a/03 [Preview - JPEG: 546 x 400 pix - 207k] [Normal - JPEG: 1092 x 800 pix - 614k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] Caption : PR Photo 27a/03 shows the faint, star-like image of Comet Halley (centre), observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures from three of the four 8.2-m VLT telescopes with a total exposure time of about 9 hours were combined to show the magnitude 28.2 object. At this time, Comet Halley was about 4200 million km from the Sun (28.06 AU) and 4080 million km (27.26 AU) from the Earth. All images of stars and galaxies in the field were removed during the extensive image processing needed to produce this unique image. Due to the remaining, unavoidable "background noise", it is best to view the comet image from some distance. The field measures 60 x 40 arcsec 2 ; North is up and East is left. Remember Comet Halley - the famous "haired star" that has been observed with great regularity - about once every 76 years - during more than two millennia? Which was visited by an

  20. Two Cases of Sternal 'Cold' Lesions on Bone Imaging in the Metastatic Skeletal Disease

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung Gun; Seo, Bong Kwan; Lee, Hoon Yong; Lee, Myung Chul; Choi, Sung Jae; Kim, Noe Kyeong; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1983-09-15

    Traditionally, a positive bone scan shows single or multiple areas of increased uptake in them metastatic skeletal disease. The occurrence of 'cold' lytic-like or photon-deficient lesions in bone imaging is probably uncommon. Photon-deficient focus or cold lesion of the sternum was demonstrated on {sup 99m}Tc-MDP bone imaging in 2 individuals with acute myeloid leukemia and primary hepatoma, respectively.

  1. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    Science.gov (United States)

    Gubarev, M. V.

    2007-01-01

    The refractive index for most materials is slightly less than unity, which opens an opportunity to develop the grazing incidence neutron imaging optics. The ideal material for the optics would be natural nickel and its isotopes. Marshall Space Flight Center (MSFC) has active development program on the nickel replicated optics for use in x-ray astronomy. Brief status report on the program is presented. The results of the neutron focusing optic test carried by the MSFC team at National Institute of Standards and Technology (NIST) are also presented. Possible applications of the optics are briefly discussed.

  2. Production of ultra cold neutrons with a solid deuterium converter; Produktion von ultrakalten Neutronen mit einem festen Deuteriumkonverter

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Andreas

    2008-10-28

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particle physics. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates for experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the neutron lifetime ({tau}{sub n}), the axial-vector coupling constant (g{sub A}), or in search of quantum effects of gravity. In this work the setup of a source for ultra cold neutrons with a solid deuterium converter is described, which serves as a prototype for a new, strong UCN source, that is currently designed and constructed at the FRMII in Garching. The prototype source has been taken into operation and important parameters have been measured. These experimental results have been compared with theoretical models to prove calculations for the performance of the new source at the FRMII. (orig.)

  3. Study of archaeological objects by neutron imaging, xrd and xrf

    International Nuclear Information System (INIS)

    Dinca, M.; Dinu, A. D.; Stanciulescu, M. G.; Mandescu, D.

    2015-01-01

    Archaeological objects were borrowed from Arges County History Museum (ACHM) and investigated at the Institute for Nuclear Research (INR). Metallic objects made in iron, copper alloys and silver discovered in southern part of Romania, mostly Dacian and Roman origin, were investigated. For imaging was used the neutron and gamma imaging facility from tangential channel of the TRIGA ACPR to put in evidence the internal structure of the objects. For elemental and chemical composition, concentration levels in objects were performed investigations by X-ray fluorescence (XRF) and X-ray diffraction (XRD). These investigations offer valuable information in archaeological research about composition, structure of the bulk, presence of alteration, inclusions, typology of the location of material extraction, manufacturing techniques etc. This work is an example of application of neutron imaging and other radiation-based analytical methods for cultural heritage research that had the aim to involve some of the non-destructive investigation methods available at INR. (authors)

  4. Fertilizer application and root development analyzed by neutron imaging

    International Nuclear Information System (INIS)

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2013-01-01

    We studied the development of the soybean root system under different application of fertilizer applying neutron imaging technique. When neutron beam was irradiated, the root image as well as fertilizer imbedded in a thin aluminum container was clearly projected, since water amount in roots are higher than that in soil. Through image analysis, the development of root system was studied under different application of the fertilizer. The development of a main root with lateral roots was observed without applying fertilizer. When the fertilizer was homogeneously supplied to the soil, the morphological development of the root showed the similar pattern to that grown without fertilizer, in different to the amount of the fertilizer. In the case of local application of the fertilizer, lateral position or downward to the main root, the inhibition of the root growth was observed, suggesting that the localization of the fertilizer is responsible for reduction of the soybean yield. (author)

  5. Preliminary examination of the applicability of imaging plates to fast neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2001-01-01

    Fast neutron radiography is an attractive non-destructive inspection technique because of the excellent penetration characteristics of fast neutrons in matter. However, the difficulty of detecting fast neutrons reduces this attractive feature. As an experiment to overcome the difficulty, imaging plates were applied to fast neutron radiography. A simple combination of two sheets of imaging plates and a sheet of polyethylene as a proton emitter was examined with the (fast neutron, thermal neutron and gamma ray) FTG discriminator proposed by Yoneda et al. . The experimental results showed that the method could be applicable to fast neutron radiography with effective discrimination of γ-rays

  6. Characterization of two Japanese ancient swords through neutron imaging

    International Nuclear Information System (INIS)

    Grazzi, Francesco; Zoppi, Marco; Salvemini, Filomena; Kaestner, Anders; Lehmann, Eberhard; Civita, Francesco

    2015-01-01

    Japanese blades are culturally interesting objects both from the stylistic point of view and because of their fantastic performances. In this work, we present new results, using a non-invasive approach, concerning these peculiar artefacts. Two integer Japanese swords, pertaining to Kyoto (987-1596) and Shinto (1596-1781) periods have been analysed through neutron-imaging techniques. The experiments have been performed at the ICON beam line, operating at the spallation neutron source SINQ, Paul Scherrer Institut in Switzerland. The reconstruction of projection data into neutron tomographic slices or volumes, allowed us to identify some very peculiar characteristics, related to the forging methods and to the different thermal treatments applied to produce the cutting edge and its unique feature. (author)

  7. Imaging of fast-neutron sources using solid-state track-recorder pinhole radiography

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Gold, R.; Roberts, J.H.; Kaiser, B.J.; Preston, C.C.

    1983-08-01

    Pinhole imaging methods are being developed and tested for potential future use in imaging the intense neutron source of the Fusion Materials Irradiation Test (FMIT) Facility. Previously reported, extensive calibration measurements of the proton, neutron, and alpha particle response characteristics of CR-39 polymer solid state track recorders (SSTRs) are being used to interpret the results of imaging experiments using both charged particle and neutron pinhole collimators. High resolution, neutron pinhole images of a 252 Cf source have been obtained in the form of neutron induced proton recoil tracks in CR-39 polymer SSTR. These imaging experiments are described as well as their potential future applications to FMIT

  8. Measurement of 241Am Ground State Radiative Neutron Capture Cross Section with Cold Neutron Beam. Progress Report on Research Contract HUN14318 for the CRP on Minor Actinide Neutron Reaction Data (MANREAD)

    International Nuclear Information System (INIS)

    Belgya, T.; Szentmiklosi, L.; Kis, Z.; Nagy, N.M.; Konya, J.

    2012-01-01

    The ground state cross section of 242 Am has been measured with beams of cold neutrons at the Budapest Research Reactor using the X-ray emission of the decay product of 242 Pu. This methodology avoids the uncertainty caused by resonance neutrons in the pile activations. The target was characterized with gamma and X-ray spectrometry. The obtained ground state cross section is 540 ± 32 b, which is at the low end of the most recent literature values, but agrees with most of them within their uncertainty. (author)

  9. Control of the neutron detector count rate by optical imaging

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Johnson, L.C.

    1992-01-01

    The signal processing electronics used for the NE451 detectors on the TFTR multichannel neutron collimator are presently showing saturation effects at high counting rates equivalent to neutron yields of ∼10 16 n/s. While nonlinearity due to pulse pileup can be corrected for in most present TFTR experiments, additional steps are required for neutron source strengths above ∼3x10 16 n/s. These pulse pileup effects could be reduced by inserting sleeves in the collimator shielding to reduce the neutron flux in the vicinity of the detectors or by reducing the volume of detector exposed to the flux. We describe a novel method of avoiding saturation by optically controlling the number neutron events processed by the detector electronics. Because of the optical opacity of the ZnS-plastic detectors such as NE451, photons from a proton-recoil scintillation arise from a spatially localized area of the detector. By imaging a selected portion of the detector onto a photomultiplier, we reduce the effective volume of the detector in a controllable, reversible way. A prototype system, consisting of a focusing lens, a field lens, and a variable aperture, has been constructed. Results of laboratory feasibility tests are presented

  10. Probing the potential of neutron imaging for biomedical and biological applications

    International Nuclear Information System (INIS)

    Watkin, Kenneth L.; Bilheux, Hassina Z.; Ankner, John Francis

    2009-01-01

    Neutron imaging of biological specimens began soon after the discovery of the neutron by Chadwick in 1932. The first samples included tumors in tissues, internal organs in rats, and bones. These studies mainly employed thermal neutrons and were often compared with X-ray images of the same or equivalent samples. Although neutron scattering is widely used in biological studies, neutron imaging has yet to be exploited to its full capability in this area. This chapter summarizes past and current research efforts to apply neutron radiography to the study of biological specimens, in the expectation that clinical and medical research, as well as forensic science, may benefit from it.

  11. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  12. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  13. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    International Nuclear Information System (INIS)

    Piegsa, Florian Michael

    2009-01-01

    The doublet neutron-deuteron (nd) scattering length b 2,d , which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b 2,d can be obtained via a linear combination of the spin-independent nd scattering length b c,d and the spin-dependent one, b i,d . The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b 2,d below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b i,d . During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the neutron with ferromagnetic samples and magnetic fields

  14. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    neutron with ferromagnetic samples and magnetic fields. For the first time, quantitative imaging of such samples could be performed using a dedicated compact Ramsey apparatus. First results of this spin-off project as well as the principle idea of the imaging technique are presented. (orig.)

  15. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  16. Consequences of the conversion of research reactor cores on experimental facilities at the example of a cold neutron source

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Goebs, H.; Stroemich, A.

    1985-01-01

    The consequences for and specifically the potential reduction of the performance of research reactors have been in discussions very often within the last five years as one of the draw-backs which has to be paid for the reduction of the proliferation risk at research reactor plants. Up to now and up to our knowledge the available results are restricted to unperturbated fluxes. Thus, this contribution makes the attempt to demonstrate the consequence of core conversion on an example of a real experimental facility and - at the same time - on one that is going to be used in the next decade a lot, i.e. a cold neutron source (CNS). (author)

  17. Numerical simulation on self-regulating characteristics of a cold neutron source with a closed-thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Okamoto, Sunao

    1989-01-01

    A cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a characteristic of self-regulation to the heat load fluctuations if the moderator transfer tube fulfills certain conditions. A dynamical equation of the closed-thermosiphon type CNS having such a property has been presented on the basis of the non-equilibrium thermodynamics. Kyoto University Reactor (KUR) CNS is investigated by numerical simulation of this equation. The numerical predictions for the self-regulating characteristics are in agreement with available experimental data. (author)

  18. Simulating pasta phases by molecular dynamics and cold atoms. Formation in supernovae and superfluid neutrons in neutron stars

    International Nuclear Information System (INIS)

    Watanabe, Gentaro

    2010-01-01

    In dense stars such as collapsing cores of supernovae and neutron stars, nuclear 'pasta' such as rod-like and slab-like nuclei are speculated to exist. However, whether or not they are actually formed in supernova cores is still unclear. Here we solve this problem by demonstrating that a lattice of rod-like nuclei is formed from a bcc lattice by compression. We also find that the formation process is triggered by an attractive force between nearest neighbor nuclei, which starts to act when their density profile overlaps, rather than the fission instability. We also discuss the connection between pasta phases in neutron star crusts and ultracold Fermi gases. (author)

  19. Preliminary design of the cold neutron source for the Centro Atomico Bariloche Electron LINAC Facility. I. Solid benzene as moderating material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, Jose R.

    2004-01-01

    We present the results of preliminary calculations performed with the code MCNP-4C relative to the neutron field behavior within the moderator for the CAB-LINAC cold neutron source, using benzene at 89 K as moderating material. Throughout the design calculations nuclear data libraries previously generated and validated were used. The optimum dimensions for a slab and a grid moderator were calculated, with and without a pre moderator, from the point of view of neutron production and the time-width of the neutron pulse. (author)

  20. How to organize a neutron imaging user lab? 13 years of experience at PSI, CH

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.H., E-mail: eberhard.lehmann@psi.ch [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Vontobel, P.; Frei, G.; Kuehne, G.; Kaestner, A. [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2011-09-21

    PSI has a relatively long tradition in neutron imaging since the first trials were done at its formerly existing research reactor SAPHIR with film methods. This reactor source was replaced after its shutdown in 1994 by the spallation neutron source SINQ in 1996, driven by the 590 MeV cyclotron for protons with presently up to 2.3 mA beam current. One of the first experimental devices at SINQ was the thermal neutron imaging facility NEUTRA, which was designed from scratch and has been the first device of its kind at a spallation source. Until now, NEUTRA has been successfully in use for many investigations in a wide range of studies covering fuel cell research, environmental behavior of plants, nuclear fuel inspection and the research on cultural heritage objects. It has been the host of PhD projects for students from all over Europe for years. In a previous meeting it has been offered as a European reference facility. Some of its features were really adapted to the layout of new installations. In 2004, it was possible to initiate the project of a second beam line at SINQ for imaging with cold neutrons. Previous studies have shown the potential of this option in order to broaden the user profile and to extend the scientific basis for neutron imaging. It was inaugurated with a workshop at PSI in 2005. The user service was started at the facility ICON in 2006. Beside the setup, installation and optimization of the facilities, the organization of the user program plays an important role. The two neutron imaging beam lines are equal installations at SINQ among the 14 scientific devices. Therefore, the user approach is organized via 'calls for proposals', which are sent out each half year via the 'Digital User Office (DUO)' (see (http://duo.web.psi.ch)). The evaluation of the proposals is done by the 'Advisory Committee for Neutron Imaging (ACNI)' consisting of 6 external and PSI internal members. Further requests are given by industrial

  1. How to organize a neutron imaging user lab? 13 years of experience at PSI, CH

    Science.gov (United States)

    Lehmann, E. H.; Vontobel, P.; Frei, G.; Kuehne, G.; Kaestner, A.

    2011-09-01

    PSI has a relatively long tradition in neutron imaging since the first trials were done at its formerly existing research reactor SAPHIR with film methods. This reactor source was replaced after its shutdown in 1994 by the spallation neutron source SINQ in 1996, driven by the 590 MeV cyclotron for protons with presently up to 2.3 mA beam current. One of the first experimental devices at SINQ was the thermal neutron imaging facility NEUTRA, which was designed from scratch and has been the first device of its kind at a spallation source. Until now, NEUTRA has been successfully in use for many investigations in a wide range of studies covering fuel cell research, environmental behavior of plants, nuclear fuel inspection and the research on cultural heritage objects. It has been the host of PhD projects for students from all over Europe for years. In a previous meeting it has been offered as a European reference facility. Some of its features were really adapted to the layout of new installations. In 2004, it was possible to initiate the project of a second beam line at SINQ for imaging with cold neutrons. Previous studies have shown the potential of this option in order to broaden the user profile and to extend the scientific basis for neutron imaging. It was inaugurated with a workshop at PSI in 2005. The user service was started at the facility ICON in 2006. Beside the setup, installation and optimization of the facilities, the organization of the user program plays an important role. The two neutron imaging beam lines are equal installations at SINQ among the 14 scientific devices. Therefore, the user approach is organized via "calls for proposals", which are sent out each half year via the "Digital User Office (DUO)" (see http://duo.web.psi.ch). The evaluation of the proposals is done by the "Advisory Committee for Neutron Imaging (ACNI)" consisting of 6 external and PSI internal members. Further requests are given by industrial collaborations. This beam time

  2. How to organize a neutron imaging user lab? 13 years of experience at PSI, CH

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Vontobel, P.; Frei, G.; Kuehne, G.; Kaestner, A.

    2011-01-01

    PSI has a relatively long tradition in neutron imaging since the first trials were done at its formerly existing research reactor SAPHIR with film methods. This reactor source was replaced after its shutdown in 1994 by the spallation neutron source SINQ in 1996, driven by the 590 MeV cyclotron for protons with presently up to 2.3 mA beam current. One of the first experimental devices at SINQ was the thermal neutron imaging facility NEUTRA, which was designed from scratch and has been the first device of its kind at a spallation source. Until now, NEUTRA has been successfully in use for many investigations in a wide range of studies covering fuel cell research, environmental behavior of plants, nuclear fuel inspection and the research on cultural heritage objects. It has been the host of PhD projects for students from all over Europe for years. In a previous meeting it has been offered as a European reference facility. Some of its features were really adapted to the layout of new installations. In 2004, it was possible to initiate the project of a second beam line at SINQ for imaging with cold neutrons. Previous studies have shown the potential of this option in order to broaden the user profile and to extend the scientific basis for neutron imaging. It was inaugurated with a workshop at PSI in 2005. The user service was started at the facility ICON in 2006. Beside the setup, installation and optimization of the facilities, the organization of the user program plays an important role. The two neutron imaging beam lines are equal installations at SINQ among the 14 scientific devices. Therefore, the user approach is organized via 'calls for proposals', which are sent out each half year via the 'Digital User Office (DUO)' (see (http://duo.web.psi.ch)). The evaluation of the proposals is done by the 'Advisory Committee for Neutron Imaging (ACNI)' consisting of 6 external and PSI internal members. Further requests are given by industrial collaborations. This beam time

  3. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    Science.gov (United States)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  4. A Time of Flight Fast Neutron Imaging System Design Study

    Science.gov (United States)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  5. The upgraded cold neutron three-axis spectrometer FLEXX at BER II at HZB

    DEFF Research Database (Denmark)

    Duc Le, Manh; Skoulatos, Markos; Quintero-Castro, Diana Lucía

    2014-01-01

    Larmor labeling is seen as one of the key ingredients in the development of novel neutron instrumentation. FLEXX puts special emphasis on exploiting the neutron resonance spin echo (NRSE) technique for high-resolution spectroscopy on dispersive quasi-particle excitations. This enables unique...

  6. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  7. Neutron imaging options at the BOA beamline at Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Morgano, M.; Peetermans, S.; Lehmann, E.H.; Panzner, T.; Filges, U.

    2014-01-01

    The BOA beamline at the Swiss spallation neutron source SINQ at Paul Scherrer Institut is a flexible instrument used mainly for testing novel techniques and devices for neutron scattering and optics, but, due to the large and relatively homogeneous field of view, it can be successfully used for experiments in the field of neutron imaging. The beamline allows also for the exploitation of advanced imaging concepts such as polarized neutron imaging and diffractive neutron imaging. In this paper we present the characterization of the BOA beamline in the light of its neutron imaging capabilities. We show also the different techniques that can be employed there as user-friendly plugins for non-standard neutron imaging experiments

  8. UF6 Cylinder Imaging by Fast Neutron Transmission Tomography

    International Nuclear Information System (INIS)

    McElroy, R.; Hausladen, P.; Blackston, M.; Croft, S.

    2015-01-01

    The common use Non-Destructive Assay techniques for the determination of 235 U enrichment and mass of UF6 cylinders used in the production of nuclear reactor fuel require prior knowledge of the physical distribution of the UF6 within the cylinder. The measurement performance for these techniques is typically evaluated based on assumed bounding case distributions of the material. However, little direct data such as radiographic or tomographic images, regarding the distribution of the UF6 within the cylinder is available against which to judge these assumptions. We have developed and tested a prototype active neutron tomographic imaging system employing an Associated Particle Imaging (API) neutron generator and an array of pixelated neutron scintillation counters. This system has been successfully used to obtain the 3-dimensional map of the distribution of UF6 within a type 12B storage cylinder. Results from these measurements are presented and the potential performance and utility of this technique with larger 30B and 48Y cylinders is discussed. (author)

  9. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  10. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  11. Neutron radiography imaging with 2-dimensional photon counting method and its problems

    International Nuclear Information System (INIS)

    Ikeda, Y.; Kobayashi, H.; Niwa, T.; Kataoka, T.

    1988-01-01

    A ultra sensitive neutron imaging system has been deviced with a 2-dimensional photon counting camara (ARGUS 100). The imaging system is composed by a 2-dimensional single photon counting tube and a low background vidicon followed with an image processing unit and frame memories. By using the imaging system, electronic neutron radiography (NTV) has been possible under the neutron flux less than 3 x 10 4 n/cm 2 ·s. (author)

  12. Installation for Studying the Scattering of Cold Neutrons; Installation pour l'etude de la diffusion des neutrons thermiques; Ustanovka dlya izucheniya rasseyaniya kholodnykh nejtronov; Instalacion para estudiar la dispersion de neutrones frios

    Energy Technology Data Exchange (ETDEWEB)

    Golikov, V V; Shapiro, F L; Shkatula, A; Yanik, E A [Ob' edinennyj institut yadernykh issledovanij, Dubna, Union of Soviet Socialist Republics (Russian Federation)

    1963-01-15

    Using the pulsed fut reactor in the Joint Institute for Nuclear Research, an installation was set up to investigate the spectrometry of cold neutrons. The moderator, adjoining the reactor reflector, and the beryllium filter were at the temperature of liquid nitrogen. The scatterer, located at a distance of about 0. 6 m from the moderator, was irradiated by flashes of cold neutrons, whose duration was determined by the lifetime of the neutrons in the moderator and the dispersion of the times-of-flight over a distance of 0. 6 m. The frequency of the flashes was 8/s. The steep beryllium edge of the spectrum, lying around 200 {mu}s, was used for spectrometry in the quasi-elastic range. The energy of the scattered neutrons was determined by the time-of-flight over the distance between scatterer and detector, which was about 10-40 m. ZnS + 10{sub 2}{sup 10} O{sub 3} scintillation detectors with surfaces of 300 and 2 000 cm{sup 2} were used and the efficiency, for fast neutrons, was about 60%. (author) [French] A l'aide du reacteur a flux pulse de neutrons rapides de l'Institut unifie de recherches nucleaires, les auteurs ont mis au point une installation pour la spectrometrie des neutrons thermiques. Le ralentisseur contigu au reflecteur du reacteur et le filtre deberyllium sont maintenus a la temperature de l'azote liquide. Le diffuseur, place a environ 60 cm du ralentisseur, est irradie par une bouffee de neutrons thermiques dont la duree est determinee par la vie moyenne des neutrons dans le ralentisseur et par l'etalement des temps de vol necessaires pour parcourir la distance de 60 cm. La frequence des bouffees est de 8/s. Pour la spectrometrie dans la region quasi-elastique, on utilise la bande en bordure du spectre qui correspond au beryllium et s'etale sur environ 200 {mu}s. L'energie des neutrons diffuses est determinee par la duree du parcours entre le diffuseur et le detecteur. Les auteurs ont utilise des detecteurs a scintillation a ZnS + 10{sub 2}{sup 10} O

  13. Stereographic images acquired with gamma rays and thermal neutron radiography

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani; Almeida, Gevaldo L. de; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-01-01

    Full text: The inner structure of an object, which should not be submitted to an invasive assay, can only be perceived by using a suitable technique in order to render it transparent. A widely employed technique for this purpose involves the using of a radiation capable to pass through the object, collecting the transmitted radiation by a proper device, which furnishes a radiographic attenuation map of the object. This map, however, does not display the spatial distribution of the inner components of the object, but a convoluted view for each specific attitude of the object with regard to the set beam-detector. A 3D tomographic approach would show that distribution but it would demand a large number of projections requiring special equipment and software, not always available or affordable. In some circumstances however, a 3D tomography can be replaced by a stereographic view of the object under inspection, as done in this work, where instead of tens of radiographic projections, only two of them taken at suitable object attitudes are employed. Once acquired, these projections are properly processed and observed through a red and green eyeglass. For monochromatic images, this methodology requires the transformation of the black and white radiographs into red and white and green and white ones, which are afterwards merged to yield a single image. All the process is carried out with the software Image J . In this work, the Argonauta reactor at the Instituto de Engenharia Nuclear in Rio de Janeiro has been used as a source of thermal neutrons to acquire the neutron radiographic images, as well as to produce 198 Au sources employed in the acquisition of gamma-ray radiographic ones. X-ray or neutron-sensitive imaging plates have been used as detector, which after exposure were developed by a reader using a 0.5μm-diameter laser beam. (author)

  14. Skyrme interaction and the properties of cold and hot neutron matter

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Hassan, M.Y.M.; Ramadan, S.

    1986-08-01

    The binding energy per particle, effective mass, magnetic susceptibility, etc for neutron matter are calculated using the Skyrme interaction SKII. Relativistic corrections to the non-relativistic Skyrme effective interaction to order 1/C 2 are also used to calculate the corrections for the binding energy of neutron matter. The correction is very small for small values of k h and increases as k n is increased. The thermal properties of neutron matter are calculated also using SKII force. The temperature dependences of the volume and spin pressure are determined. The results obtained show a similar trend as previous theoretical estimates by different methods of calculation. (author)

  15. Noise characteristics of neutron images obtained by cooled CCD device

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-01-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  16. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  17. Sparse image representation for jet neutron and gamma tomography

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, T. [EURATOM-MEdC Association, Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania); Kiptily, V. [EURATOM/CCFE Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Tiseanu, I.; Zoita, V. [EURATOM-MEdC Association, Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania)

    2013-10-15

    Highlights: •A new tomographic method for the reconstruction of the 2-D neutron and gamma emissivity on JET. •The method is based on the sparse representation of the reconstructed image in an over-complete dictionary. •Several techniques, based on a priori information are used to regularize this highly limited data set tomographic problem. •The proposed method provides good reconstructions in terms of shapes and resolution. -- Abstract: The JET gamma/neutron profile monitor plasma coverage of the emissive region enables tomographic reconstruction. However, due to the availability of only two projection angles and to the coarse sampling, tomography is a highly limited data set problem. A new reconstruction method, based on the sparse representation of the reconstructed image in an over-complete dictionary, has been developed and applied to JET neutron/gamma tomography. The method has been tested on JET experimental data and significant results are presented. The proposed method provides good reconstructions in terms of shapes and resolution.

  18. Effects of sample and spectrum characteristics on cold and thermal neutron prompt gamma activation analysis in environmental studies of plants

    International Nuclear Information System (INIS)

    Robinson, L.; Zhao, L.

    2009-01-01

    Previous studies including the development of methods for the determination of carbon, nitrogen, and phosphorus in cattail using cold neutron prompt gamma activation (CNPGAA) and thermal neutron prompt gamma activation analysis (TNPGAA); evaluation of the precision and accuracy of these methods through the analysis of Standard Reference Materials (SRMs); and comparison of the sensitivity of CNPGAA to TNPGAA have been done in the CNPGAA and TNPGAA facilities at the National Institute of Standards and Technology (NIST). This paper integrates the findings from all of these prior studies and presents recommendations for the application of CNPGAA and TNPGAA in environmental studies of plants based on synergistic considerations of the effects of neutron energy, matrix factors such as chlorine content, Compton scattering, hydrogen content, sample thickness, and spectral interferences from Cl on the determination of C, N, and P. This paper also provides a new approach that simulates a sensitivity curve for an element of interest (S), which is a function of hydrogen content (X) and sample thickness (Y) as follows: S = aX + bY + c (where a, b, and c are constants). This approach has provided more accurate results from the analysis of SRMs than traditional methods and an opportunity to use models to optimize experimental conditions. (author)

  19. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Festa, G., E-mail: giulia.festa@roma2.infn.it [Università degli Studi di Roma Tor Vergata (Italy); Università degli Studi di Milano-Bicocca (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Tardino, G. [BauArt Basel, Basel (Switzerland); Pontecorvo, L. [Conservatorio di Cosenza – Cosenza Conservatory (Italy); Mannes, D.C. [Paul Scherrer Institut, Villigen (Switzerland); Senesi, R. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Gorini, G. [Università degli Studi di Milano-Bicocca (Italy); Andreani, C. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy)

    2014-10-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process.

  20. Neutrons and music: Imaging investigation of ancient wind musical instruments

    International Nuclear Information System (INIS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D.C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-01-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process

  1. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Science.gov (United States)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D. C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-10-01

    A set of seven musical instruments and two instruments cares from the 'Fondo Antico della Biblioteca del Sacro Convento' in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments' restoration process.

  2. Neutron and Gamma Imaging for National Security Applications

    Science.gov (United States)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  3. Preliminary experiment of fast neutron imaging with direct-film method

    International Nuclear Information System (INIS)

    Pei Yuyang; Tang Guoyou; Guo Zhiyu; Zhang Guohui

    2005-01-01

    A preliminary experiment is conducted with direct-film method under the condition that fast neutron is generated by the reaction of 9 Be(d, n) on the Beijing University 4.5 MV Van de Graaff, whose energy is lower than 7 MeV. Basic characteristics of direct-film neutron radiography system are investigated with the help of samples in different materials, different thickness and holes of different diameter. The fast neutron converter, which is vital for fast neutron imaging, is produced with the materials made in China. The result indicates that fast neutron converter can meet the requirement of fast neutron imaging; further research of fast neutron imaging can be conducted on the accelerator and neutron-generator in China. (authors)

  4. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    Science.gov (United States)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  5. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  6. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  7. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    Science.gov (United States)

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Development of a novel neutron detector for imaging and analysis

    International Nuclear Information System (INIS)

    Darambara, D.G.; Beach, A.C.; Spyrou, N.M.

    1993-01-01

    A hardware system employing dynamic Random Access Memory (dRAM) has been designed to make possible the detection of neutrons. One recognised difficulty with dynamic memory devices is the alpha-particle problem. That is alpha-particle 'contamination' present within the dRAM encapsulating material may interact sufficiently as to corrupt stored data. These corruptions, 'known as soft errors', may be induced in dRAMs by the interaction of charged particles with the chip itself as a basis for system function. A preliminary feasibility study has been carried out to use dynamic RAMs as alpha-particle detectors. The initial system tests provide information upon detection efficiency, soft error reading rate, energy dependence of the soft error rate and the soft error reading rate, energy dependence of the soft error rate and the soft error operating bias relationship. These findings highlight the usefulness of such a device in neutron dosimetry, imaging and analysis, by using a neutron converter with a high cross section for the (n, α) capture reaction. (author) 20 refs.; 8 figs

  9. The expression of myocardial injury in cold induced myocardial imaging and echocardiography of systematic scleroderma

    International Nuclear Information System (INIS)

    Liang Jiugen; Zhu Xiaojun; Jiang Ningyi; Chen Shaoxiong

    1999-01-01

    The study was performed with cold-induced 99m Tc(MIBI) myocardial imaging (MI) in 23 patients with systematic scleroderma. The left ventricular function and wall motion were also observed by dimensional echocardiography (UCG). 14 patients had myocardial perfusion abnormalities visualized by MI, including 5 cases with fixed defects of 9 segments, 3 cases with reversible defects of 6 segments and 6 cases with both fixed and reversible one of 14 segments. The positive rate in myocardial imaging had no significant differences between patients with and without Raynaud's phenomenon (0.5>P>0.25). Compared with baseline, the ejection fraction, stroke volume, cardiac output were significantly decreased during cold-induced in patients with abnormal myocardial scintigraphy (P<0.05), and had significant difference compared with normal group (P<0.05). 4 cases with cold-induced reversible perfusion defects had anatomically correlated regional ventricular hypokinesia in UCG

  10. Image enhancement using MCNP5 code and MATLAB in neutron radiography

    International Nuclear Information System (INIS)

    Tharwat, Montaser; Mohamed, Nader; Mongy, T.

    2014-01-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. - Highlights: • This work is applicable for static based film neutron radiography and digital neutron imaging. • MATLAB is a useful tool for imaging enhancement in radiographic film. • Advanced imaging processing is available in the ETRR-2 for imaging processing and data extraction. • The digital imaging system is suitable for complex shapes and sizes, while MATLAB technique is suitable for simple shapes and sizes. • Quantitative measurements are available

  11. Simulation study for the influences of fluid physical properties on void fraction of moderator cell of cold neutron source

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Quanke; Bi Qincheng; Chen Tingkuan; Du Shejiao

    2004-01-01

    The void fraction at different heights in the annular channel of moderator cell mockup was measured with a differential pressure transducer. The tests proved that the ratio of surface tension to density of liquid phase is the main factor that determines the physical properties on void fraction. The larger the ratio, the smaller the void fraction. The ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen. Therefore, Freon 113 can be used as working fluid to study the void fraction in the hydrogen two-phase thermo-siphon loop in the cold neutron source (CNS) of China Advanced Research Reactor (CARR), and the results are conservative

  12. Neutron and proton tests of different technologies for the upgrade of cold readout electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Nagel, Martin

    2012-01-01

    The expected increase of total integrated luminosity by a factor of ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 \\cdot 10^{16} n/cm2 and with 200 MeV protons up to an integrated fluence of 2.6 \\cdot 10^{14} p/cm2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  13. Assessment of Radiographic Image Quality by Visual Examination of Neutron Radiographs of the Calibration Fuel Pin

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    Up till now no reliable radiographic image quality standards exist for neutron radiography of nuclear reactor fuel. Under the Euratoro Neutron Radiography Working Group (NRWG) Test Program neutron radiographs were produced at different neutron radiography facilities within the European Community...... of a calibration fuel pin. The radiographs were made by the direct, transfer and tracketch methods using different film recording materials. These neutron radiographs of the calibration fuel pin were used for the assessement of radiographic image quality. This was done by visual examination of the radiographs...

  14. Monte Carlo modeling of neutron imaging at the SINQ spallation source

    International Nuclear Information System (INIS)

    Lebenhaft, J.R.; Lehmann, E.H.; Pitcher, E.J.; McKinney, G.W.

    2003-01-01

    Modeling of the Swiss Spallation Neutron Source (SINQ) has been used to demonstrate the neutron radiography capability of the newly released MPI-version of the MCNPX Monte Carlo code. A detailed MCNPX model was developed of SINQ and its associated neutron transmission radiography (NEUTRA) facility. Preliminary validation of the model was performed by comparing the calculated and measured neutron fluxes in the NEUTRA beam line, and a simulated radiography image was generated for a sample consisting of steel tubes containing different materials. This paper describes the SINQ facility, provides details of the MCNPX model, and presents preliminary results of the neutron imaging. (authors)

  15. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  16. Residual stresses in cold-coiled helical compression springs for automotive suspensions measured by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Brand, P. C.; Drews, A. R.; Krause, A.; Lowe-Ma, C.

    2004-01-01

    Roč. 367, 1-2 (2004), s. 306-311 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z2043910 Keywords : residual stress, automotive springs, neutron diffraction Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.445, year: 2004

  17. Study of cold neutron sources: Implementation and validation of a complete computation scheme for research reactor using Monte Carlo codes TRIPOLI-4.4 and McStas

    International Nuclear Information System (INIS)

    Campioni, Guillaume; Mounier, Claude

    2006-01-01

    The main goal of the thesis about studies of cold neutrons sources (CNS) in research reactors was to create a complete set of tools to design efficiently CNS. The work raises the problem to run accurate simulations of experimental devices inside reactor reflector valid for parametric studies. On one hand, deterministic codes have reasonable computation times but introduce problems for geometrical description. On the other hand, Monte Carlo codes give the possibility to compute on precise geometry, but need computation times so important that parametric studies are impossible. To decrease this computation time, several developments were made in the Monte Carlo code TRIPOLI-4.4. An uncoupling technique is used to isolate a study zone in the complete reactor geometry. By recording boundary conditions (incoming flux), further simulations can be launched for parametric studies with a computation time reduced by a factor 60 (case of the cold neutron source of the Orphee reactor). The short response time allows to lead parametric studies using Monte Carlo code. Moreover, using biasing methods, the flux can be recorded on the surface of neutrons guides entries (low solid angle) with a further gain of running time. Finally, the implementation of a coupling module between TRIPOLI- 4.4 and the Monte Carlo code McStas for research in condensed matter field gives the possibility to obtain fluxes after transmission through neutrons guides, thus to have the neutron flux received by samples studied by scientists of condensed matter. This set of developments, involving TRIPOLI-4.4 and McStas, represent a complete computation scheme for research reactors: from nuclear core, where neutrons are created, to the exit of neutrons guides, on samples of matter. This complete calculation scheme is tested against ILL4 measurements of flux in cold neutron guides. (authors)

  18. Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope

    Science.gov (United States)

    2017-09-14

    with a Light Field Microscope Gordon E. Lott Follow this and additional works at: https://scholar.afit.edu/etd Part of the Atomic, Molecular and......https://scholar.afit.edu/etd/774 THREE-DIMENSIONAL IMAGING OF COLD ATOMS IN A MAGNETO-OPTICAL TRAP WITH A LIGHT FIELD MICROSCOPE DISSERTATION Gordon E

  19. Dynamic infrared imaging for cancer: research and development in the Argentine Boron neutron capture therapy

    International Nuclear Information System (INIS)

    Santa Cruz, Gustavo A.; Bertotti, J.; Marin, J.

    2009-01-01

    In the framework of the Argentine Boron Neutron Capture Therapy (BNCT) project for treating metastatic cutaneous melanoma, we have initiated a research and development program aimed at obtaining a noninvasive methodology for following-up the treated patients. The technique is called Dynamic Infrared Imaging (DIRI) and comprises the acquisition of infrared images as a function of time of the anatomical part under study, when the region is subjected to a mild cold stress. Vascular, metabolic and regulating differences between normal and tumor tissues appear as differences in the pattern of temperature evolution, which can be correlated with the anatomical and functional aspects of both. Two patients enrolled in the BNCT protocol were studied with DIRI. A good spatial correlation between dose, temperature recovery velocity and skin reaction distributions was observed at the time of maximum expression of the erythematous reaction. Melanoma nodules appear as highly localized hyperthermic regions, surrounded and interconnected by elevated temperature areas. Their temperature recovery velocity after the thermal cold stress was substantially faster than that of normal skin with an appreciably large temperature difference (6 degreesC to 10 degreesC). These tissue differences can be related with the thermal conductivity and metabolic rate as explained by a simple one-directional heat transport model. Compared with other imaging modalities (CT and Doppler ultrasound) DIRI has had a similar ability for confirming the already diagnosed nodules. Together with the clinical observation, DIRI provides a potentially useful amount of information, at a competitive cost-benefit relationship suitable for performing a non-invasive functional assessment of this kind of cutaneous lesions and the evaluation of the acute skin reaction following irradiation. (author)

  20. Scintillating-fiber imaging detector for 14-MeV neutrons

    International Nuclear Information System (INIS)

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-01-01

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images

  1. A SrBPO5: Eu2+ phosphor for neutron imaging

    International Nuclear Information System (INIS)

    Sakasai, K.; Katagiri, M.; Toh, K.; Nakamura, T.

    2001-01-01

    A SrBPO 5 : Eu 2+ phosphor material has been investigated for neutron imaging. This phosphor showed photostimulated luminescence (PSL) by illumination of 635 nm laser light after X-ray irradiation. The spectral characteristics of the phosphor were similar to those of BaFBr: Eu 2+ , which is a commonly used phosphor of imaging plates. In addition, we found that this phosphor also showed PSL for neutron irradiation. It comes from the fact that it contains atomic boron in base matrix. Therefore, this phosphor can be used for neutron imaging without adding neutron sensitive materials such as Gd in commercially available neutron imaging plates. The PSL intensity and the neutron detection will be increased by using enriched boron instead of natural boron. (author)

  2. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Durini, Daniel, E-mail: d.durini@fz-juelich.de [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Degenhardt, Carsten; Rongen, Heinz [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Feoktystov, Artem [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching (Germany); Schlösser, Mario; Palomino-Razo, Alejandro [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Frielinghaus, Henrich [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching (Germany); Waasen, Stefan van [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany)

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λ{sub n}=5 Å or neutron energy of E{sub n}=3.27 meV) up to a neutron dose of 6×10{sup 12} n/cm{sup 2}. The dark signals as well as the breakdown voltages (V{sub br}) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped {sup 6}Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. I{sub out}-V{sub bias} measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  3. Malaysia: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Muhammad Rawi Mohamed Zin

    2012-01-01

    Inspection of cultural heritage artifact by neutron imaging becoming interesting and important research area since its able to sees internal structure non-destructively. Therefore advanced neutron imaging capability to conduct this kind of inspection is needed. Associated with this needs, TRIGA MARK II PUSPATI reactor has neutron imaging facility, NUR-2 which capable for radiography and tomography usage. Details parameters of current set up is given. Neutron radiography capability at this facility has been relied on direct method technique by the usage of SR-45 KODAK film technology. Current set-up has been used by university student through-out the country to conduct their research in various levels of educations

  4. New neutron imaging techniques to close the gap to scattering applications

    International Nuclear Information System (INIS)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide. (paper)

  5. New neutron imaging techniques to close the gap to scattering applications

    Science.gov (United States)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.

  6. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hu; Zou, Yubin, E-mail: zouyubin@pku.edu.cn; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator–based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8–2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8–2.0 ms, especially for materials with strong moderating capability.

  7. Digital image processing for real-time neutron radiography and its applications

    International Nuclear Information System (INIS)

    Fujine, Shigenori

    1989-01-01

    The present paper describes several digital image processing approaches for the real-time neutron radiography (neutron television-NTV), such as image integration, adaptive smoothing and image enhancement, which have beneficial effects on image improvements, and also describes how to use these techniques for applications. Details invisible in direct images of NTV are able to be revealed by digital image processing, such as reversed image, gray level correction, gray scale transformation, contoured image, subtraction technique, pseudo color display and so on. For real-time application a contouring operation and an averaging approach can also be utilized effectively. (author)

  8. Analysis of neutron spectra and fluxes obtained with cold and thermal moderators at IBR-2 reactor: experimental and computer modeling studies at small-angle scattering YuMO setup

    International Nuclear Information System (INIS)

    Kuklin, A.I.; Rogov, A.D.; Gorshkova, Yu.E.; Kovalev, Yu.S.; Kutuzov, S.A.; Utrobin, P.K.; Rogachev, A.V.; Ivan'kov, O.I.; Solov'ev, D.V.; Gordelij, V.I.

    2011-01-01

    Results of experimental and computer modeling investigations of neutron spectra and fluxes obtained with cold and thermal moderators at the IBR-2 reactor (JINR, Dubna) are presented. The studies are done for small-angle neutron scattering (SANS) spectrometer YuMO (beamline number 4 of the IBR-2). The measurements of neutron spectra for two methane cold moderators are done for the standard configuration of the SANS instrument. The data from both moderators under different conditions of their operation are compared. The ratio of experimentally determined neutron fluxes of cold and thermal moderators at different wavelength is shown. Monte Carlo simulations are done to determine spectra for cold methane and thermal moderators. The results of the calculations of the ratio of neutron fluxes of cold and thermal moderators at different wavelength are demonstrated. In addition, the absorption of neutrons in the air gaps on the way from the moderator to the investigated sample is presented. SANS with the protein apoferritin was done in the case of cold methane as well as a thermal moderator and the data were compared. The perspectives for the use of the cold moderator for a SANS spectrometer at the IBR-2 are discussed. The advantages of the YuMO spectrometer with the thermal moderator with respect to the tested cold moderator are shown

  9. Applications and characteristics of imaging plates as detector in neutron radiography at SINQ

    CERN Document Server

    Kolbe, H; Gunia, W; Körner, S

    1999-01-01

    Imaging plate technique is a commonly accepted method in many fields as in medicine, biology and physics for detection of the distribution of beta- and gamma-radiation or X-rays on large areas. Recently a new type of imaging plate sensitive to neutrons has been developed. The storage layer is doped with gadolinium, which, after absorption of neutrons, produces radiation detectable by the same sensitive crystals used in conventional imaging plates. At the spallation neutron source, SINQ, at the Paul Scherrer Institut (CH) some of the characteristics of the neutron radiography station in combination with the imaging plate technique were investigated. The intensity distribution of the source was measured to check the accuracy for quantification of the image data. Also, the reproducibility of results obtained by this detection system was stated. For a test object, the high selectivity for different neutron absorption is demonstrated at details with low contrast. The obtainable spatial resolution was determined re...

  10. Visualization and measurement by image processing of thermal hydraulic phenomena by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki

    1996-01-01

    Neutron Radiography was applied to visualization of thermal hydraulic phenomena and measurement was carried out by image processing the visualized images. Since attenuation of thermal neutron rays is high in ordinary liquids like water and organic fluid while it is low in most of metals, liquid flow behaviors can be visualized through a metallic wall by neutron radiography. Measurement of void fraction and flow vector field which is important to study thermal hydraulic phenomena can be carried out by image processing the images obtained by the visualization. Various two-phase and liquid metal flows were visualized by a JRR-3M thermal neutron radiography system in the present study. Multi-dimensional void fraction distributions in two-phase flows and flow vector fields in liquid metals, which are difficult to measure by the other methods, were successfully measured by image processing. It was shown that neutron radiography was efficiently applicable to study thermal hydraulic phenomena. (author)

  11. Non-Destructive Spent Fuel Characterization with Semiconducting Gallium Arsinde Neutron Imaging Arrays

    International Nuclear Information System (INIS)

    McGregor, Douglas S.; Gersch, Holly K.; Sanders, Jeffrey D.; Lee, John C.; Hammig, Mark D.; Hartman, Michael R.; Yong Hong Yang; Klann, Raymond T.; Elzen, Brian Van Der; Lindsay, John T.; Simpson, Philip A.

    2002-01-01

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency

  12. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  13. Development of neutron imaging beamline for NDT applications at Dhruva reactor, India

    Science.gov (United States)

    Shukla, Mayank; Roy, Tushar; Kashyap, Yogesh; Shukla, Shefali; Singh, Prashant; Ravi, Baribaddala; Patel, Tarun; Gadkari, S. C.

    2018-05-01

    Thermal neutron imaging techniques such as radiography or tomography are very useful tool for various scientific investigations and industrial applications. Neutron radiography is complementary to X-ray radiography, as neutrons interact with nucleus as compared to X-ray interaction with orbital electrons. We present here design and development of a neutron imaging beamline at 100 MW Dhruva research reactor for neutron imaging applications such as radiography, tomography and phase contrast imaging. Combinations of sapphire and bismuth single crystals have been used as thermal neutron filter/gamma absorber at the input of a specially designed collimator to maximize thermal neutron to gamma ratio. The maximum beam size of neutrons has been restricted to ∼120 mm diameter at the sample position. A cadmium ratio of ∼250 with L / D ratio of 160 and thermal neutron flux of ∼ 4 × 107 n/cm2 s at the sample position has been measured. In this paper, different aspects of the beamline design such as collimator, shielding, sample manipulator, digital imaging system are described. Nondestructive radiography/tomography experiments on hydrogen concentration in Zr-alloy, aluminium foam, ceramic metal seals etc. are also presented.

  14. Microstructured boron foil scintillating G-GEM detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Takeshi, E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Bautista, Unico [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Philippine Nuclear Research Institute-Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City (Philippines); Mitsuya, Yuki [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Takahashi, Hiroyuki [Department of Nuclear Engineering and Management, The University of Tokyo, Tokyo (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK) (Japan); Otake, Yoshie; Taketani, Atsushi [Center for Advanced Photonics, Neutron Beam Technology Team, RIKEN, Saitama (Japan); Uesaka, Mitsuru [Nuclear Professional School, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki (Japan); Toyokawa, Hiroyuki [Research Institute for Measurement and Analytical Instrumentation, Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan)

    2016-12-01

    In this study, a new simple neutron imaging gaseous detector was successfully developed by combining a micro-structured {sup 10}B foil, a glass gas electron multiplier (G-GEM), and a mirror–lens–charge-coupled device (CCD)–camera system. The neutron imaging system consists of a chamber filled with Ar/CF{sub 4} scintillating gas mixture. Inside this system, the G-GEM is mounted for gas multiplication. The neutron detection in this system is based on the reaction between {sup 10}B and neutrons. A micro-structured {sup 10}B is developed to overcome the issue of low detection efficiency. Secondary electrons excite Ar/CF{sub 4} gas molecules, and high-yield visible photons are emitted from those excited gas molecules during the gas electron multiplication process in the G-GEM holes. These photons are easily detected by a mirror–lens–CCD–camera system. A neutron radiograph is then simply formed. We obtain the neutron images of different materials with a compact accelerator-driven neutron source. We confirm that the new scintillating G-GEM-based neutron imager works properly with low gamma ray sensitivity and exhibits a good performance as a new simple digital neutron imaging device.

  15. A combined H2/CH4 cold moderator for a short pulsed neutron source

    International Nuclear Information System (INIS)

    Williamson, K.D.; Lucas, A.T.

    1989-01-01

    Both the ISIS (Rutherford-Appleton Laboratory) spallation source and the Los Alamos Neutron Scattering Center (LANSCE) were designed to produce neutrons as a result of an 800-MeV proton beam being incident on a target. Both systems are intended to accept beam intensities up to 200 μA. Cryogenic moderators of liquid hydrogen and methane are either in use or are planned for service at both facilities. Very low temperature methane would be an ideal moderating material as it has a high hydrogen density and many low frequency modes, which facilitate thermalization. Such moderators are in service at two major world facilities, KEK (Japan) and Argonne National Laboratory (USA). Unfortunately, solid methane has very low thermal conductivity and is subject to radiation damage making a moderator of this type impractical for use in high-intensity beam, such as indicated above. This report outlines a possible alternative using small spheres of solid methane in a matrix of supercritical hydrogen at 25 K. 4 figs

  16. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  17. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Lefmann, Kim; Abrahamsen, Asger Bech

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator...

  18. Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign

    International Nuclear Information System (INIS)

    Blackston, Matthew A.; Hausladen, Paul

    2010-01-01

    Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

  19. Geant4 Analysis of a Thermal Neutron Real-Time Imaging System

    Science.gov (United States)

    Datta, Arka; Hawari, Ayman I.

    2017-07-01

    Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.

  20. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  1. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  2. Characteristics of poly- and mono-crystalline BeO and SiO{sub 2} as thermal and cold neutron filters

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Mansy, M.S., E-mail: drmohamedmansy88@hotmail.com [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt)

    2015-09-01

    Highlights: • Neutron filtering features of BeO and SiO{sub 2} poly- and mono-crystals. • Calculations of the cold and thermal neutron cross sections and transmission with the code “HEXA-FILTERS”. • Optimal mosaic spread, thicknesses and cutting planes for BeO and SiO{sub 2} mono-crystals. - Abstract: A simple model along with a computer code “HEXA-FILTERS” is used to carry out the calculation of the total cross-sections of BeO and SiO{sub 2} having poly or mono-crystalline form as a function of neutron wavelength at room (R.T.) and liquid nitrogen (L.N.) temperatures. An overall agreement is indicated between the calculated neutron cross-sections and experimental data. Calculation shows that 25 cm thick of polycrystalline BeO cooled at liquid nitrogen temperature was found to be a good filter for neutron wavelengths longer than 0.46 nm. While, 50 cm of SiO{sub 2}, with much less transmission, for neutrons with wavelengths longer than 0.85 nm. It was also found that 10 cm of BeO and 15 cm SiO{sub 2} thick mono-crystals cut along their (0 0 2) plane, with 0.5° FWHM on mosaic spread and cooled at L.N., are a good thermal neutron filter, with high effect-to-noise ratio.

  3. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  4. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Martin Johann

    2013-07-19

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  5. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    International Nuclear Information System (INIS)

    Muehlbauer, Martin Johann

    2013-01-01

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  6. A portable neutron spectroscope (NSPECT) for detection, imaging and identification of nuclear material

    Science.gov (United States)

    Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard

    2010-08-01

    We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.

  7. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.; Williams, Walter J.

    2017-02-01

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutron radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.

  8. Argentina: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Sánchez, Fernando

    2012-01-01

    In Argentina there exists a community of researchers of national institutions involved in CH studies and also periodic congresses about the topic since 2007. A new group on neutron imaging is beginning at Bariloche Atomic Center (CNEA). The plan of this group is: - Characterize the facility: flux, doses, collimation, etc;. - Establish contact with CH researchers for offering neutron imaging; - Demonstrate capabilities of the technique with 2D imaging; - In the future, a 3D tomography improvement will be developed

  9. Detection of cold gas releases in space via low energy neutral atom imaging

    International Nuclear Information System (INIS)

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-eV hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper the authors examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, they examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then they review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of angstrom) foils and then electrostatically analyzing these newly created ions to reject the large (> 10 10 cm -2 s -1 ) UV background to which the low energy detectors are sensitive. They conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment

  10. Neutron imaging of Zr-1%Nb fuel cladding material containing hydrogen

    International Nuclear Information System (INIS)

    Svab, E.; Meszaros, Gy.; Somogyvari, Z.; Balasko, M.; Koeroesi, F.

    2004-01-01

    Hydrogen distribution and hydride phases were analyzed in reactor fuel cladding pressure tube Zr-1%Nb material up to 13,300 ppm. From neutron diffraction measurements, formation of cubic δ-ZrH 2 and a small amount of tetragonal γ-ZrH was established. Texture effects were analyzed by imaging plate technique. From neutron radiography images a linear model was set up that adequately described the relationship between gray levels and nominal H-concentrations. The H-distribution was unveiled by 3D intensity histograms and fractal analysis of multilevel-segmented neutron radiography images

  11. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  12. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  13. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laubach, M.A., E-mail: mlaubach@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Hayward, J.P., E-mail: jhayward@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Zhang, X., E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Cates, J.W., E-mail: jcates7@vols.utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  14. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method

    OpenAIRE

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-01-01

    Objective: To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. Methods: TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Results: Both assays provided good linearity, accuracy, reproducibility and selectivity for dete...

  15. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  16. Application of backscatter electrons for large area imaging of cavities produced by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pastukhov, V.I. [Joint Stock Company “Institute of Nuclear Materials” (JSC “INM”), Zarechny, Sverdlovsk Region (Russian Federation); Ural Federal University Named After the First President of Russia, B. N. Yeltsyn, Ekaterinburg (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Averin, S.A.; Panchenko, V.L. [Joint Stock Company “Institute of Nuclear Materials” (JSC “INM”), Zarechny, Sverdlovsk Region (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Portnykh, I.A. [Joint Stock Company “Institute of Nuclear Materials” (JSC “INM”), Zarechny, Sverdlovsk Region (Russian Federation); Freyer, P.D. [Westinghouse Electric Company, Pittsburgh, PA (United States); Giannuzzi, L.A. [L.A. Giannuzzi & Associates LLC, Fort Myers, FL (United States); Garner, F.A., E-mail: frank.garner@dslextreme.com [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Radiation Effects Consulting LLC, Richland, WA (United States); Texas A& M University, College Station, TX (United States)

    2016-11-15

    It is shown that with proper optimization, backscattered electrons in a scanning electron microscope can produce images of cavity distribution in austenitic steels over a large specimen surface for a depth of ∼500–700 nm, eliminating the need for electropolishing or multiple specimen production. This technique is especially useful for quantifying cavity structures when the specimen is known or suspected to contain very heterogeneous distributions of cavities. Examples are shown for cold-worked EK-164, a very heterogeneously-swelling Russian fast reactor fuel cladding steel and also for AISI 304, a homogeneously-swelling Western steel used for major structural components of light water cooled reactors. This non-destructive overview method of quantifying cavity distribution can be used to direct the location and number of required focused ion beam prepared transmission electron microscopy specimens for examination of either neutron or ion-irradiated specimens. This technique can also be applied in stereo mode to quantify the depth dependence of cavity distributions.

  17. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    International Nuclear Information System (INIS)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-01-01

    Recently, RMD has investigated the use of CLYC (Cs 2 LiYCl 6 :Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam TM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our 252 Cf source was possible using both pulse height and pulse shape discrimination with CLYC. • Imaging

  18. A Detector for 2-D Neutron Imaging for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Britton, Charles L. Jr.; Bryan, W.L.; Wintenberg, Alan Lee; Clonts, Lloyd G.; Warmack, Robert J. Bruce; McKnight, Timothy E.; Frank, Steven Shane; Cooper, Ronald G.; Dudney, Nancy J.; Veith, Gabriel M.

    2006-01-01

    We have designed, built, and tested a 2-D pixellated thermal neutron detector. The detector is modeled after the MicroMegas-type structure previously published for collider-type experiments. The detector consists of a 4X4 square array of 1 cm 2 pixels each of which is connected to an individual preamplifier-shaper-data acquisition system. The neutron converter is a 10B film on an aluminum substrate. We describe the construction of the detector and the test results utilizing 252Cf sources in Lucite to thermalize the neutrons. Drift electrode (Aluminum) Converter (10B) 3 mm Conversion gap neutron (-900 V)

  19. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  20. Bulk magnetic domain structures visualized by neutron dark-field imaging

    International Nuclear Information System (INIS)

    Gruenzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kuehne, G.; Schaefer, R.; Pofahl, S.; Roennow, H. M. R.; Pfeiffer, F.

    2008-01-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs

  1. Bulk magnetic domain structures visualized by neutron dark-field imaging

    Science.gov (United States)

    Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.

    2008-09-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.

  2. Russia: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Kozlenko, Denis

    2012-01-01

    The development of neutron imaging techniques as a tool for non-destructive analysis of the internal structure, defects and processes in industrial products, functional materials, objects of cultural heritage attracts considerable attention at the present time. The dedicated instruments are available at the many neutron sources. The IBR-2M high flux pulsed reactor is one of the most powerful pulsed neutron sources in the world with the average power 2 MW, power per neutron pulse 1850 MW and neutron flux in pulse of 5·10 15 n/cm 2 /s. During the period December 2006 – December 2010 the reactor was on modernization for replacement of the reactor vessel and fuel elements. During 2011, the successful physical and power start-up of IBR-2M were performed. Now reactor is operational and can be used for research and development activities using neutron scattering techniques in next 25 years prospective. However, no instruments dedicated for neutron imaging is installed at IBR-2M so far. Moreover, in Russian Federation there is no dedicated neutron imaging facility for cultural heritage research at the moment

  3. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  4. A new method by steering kernel-based Richardson–Lucy algorithm for neutron imaging restoration

    International Nuclear Information System (INIS)

    Qiao, Shuang; Wang, Qiao; Sun, Jia-ning; Huang, Ji-peng

    2014-01-01

    Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson–Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively

  5. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-05-01

    Full Text Available Abstract Background Freezing tolerance is an important factor in the geographical distribution of plants and strongly influences crop yield. Many plants increase their freezing tolerance during exposure to low, nonfreezing temperatures in a process termed cold acclimation. There is considerable natural variation in the cold acclimation capacity of Arabidopsis that has been used to study the molecular basis of this trait. Accurate methods for the quantitation of freezing damage in leaves that include spatial information about the distribution of damage and the possibility to screen large populations of plants are necessary, but currently not available. In addition, currently used standard methods such as electrolyte leakage assays are very laborious and therefore not easily applicable for large-scale screening purposes. Results We have performed freezing experiments with the Arabidopsis accessions C24 and Tenela, which differ strongly in their freezing tolerance, both before and after cold acclimation. Freezing tolerance of detached leaves was investigated using the well established electrolyte leakage assay as a reference. Chlorophyll fluorescence imaging was used as an alternative method that provides spatial resolution of freezing damage over the leaf area. With both methods, LT50 values (i.e. temperature where 50% damage occurred could be derived as quantitative measures of leaf freezing tolerance. Both methods revealed the expected differences between acclimated and nonacclimated plants and between the two accessions and LT50 values were tightly correlated. However, electrolyte leakage assays consistently yielded higher LT50 values than chlorophyll fluorescence imaging. This was to a large part due to the incubation of leaves for electrolyte leakage measurements in distilled water, which apparently led to secondary damage, while this pre-incubation was not necessary for the chlorophyll fluorescence measurements. Conclusion Chlorophyll

  6. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  7. Super-resolution processing for pulsed neutron imaging system using a high-speed camera

    International Nuclear Information System (INIS)

    Ishizuka, Ken; Kai, Tetsuya; Shinohara, Takenao; Segawa, Mariko; Mochiki, Koichi

    2015-01-01

    Super-resolution and center-of-gravity processing improve the resolution of neutron-transmitted images. These processing methods calculate the center-of-gravity pixel or sub-pixel of the neutron point converted into light by a scintillator. The conventional neutron-transmitted image is acquired using a high-speed camera by integrating many frames when a transmitted image with one frame is not provided. It succeeds in acquiring the transmitted image and calculating a spectrum by integrating frames of the same energy. However, because a high frame rate is required for neutron resonance absorption imaging, the number of pixels of the transmitted image decreases, and the resolution decreases to the limit of the camera performance. Therefore, we attempt to improve the resolution by integrating the frames after applying super-resolution or center-of-gravity processing. The processed results indicate that center-of-gravity processing can be effective in pulsed-neutron imaging with a high-speed camera. In addition, the results show that super-resolution processing is effective indirectly. A project to develop a real-time image data processing system has begun, and this system will be used at J-PARC in JAEA. (author)

  8. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    Mochiki, Koh-ichi; Koiso, Manabu; Yamaji, Akihiro; Iwata, Hideki; Kihara, Yoshitaka; Sano, Shigeru; Murata, Yutaka

    2001-01-01

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  9. Trends in X-, gamma and neutron radiographic imaging at IGCAR Kalpakkam

    International Nuclear Information System (INIS)

    Venkatraman, B.; Raghu, N.; Menaka, M.; Anandraj, R.

    2015-01-01

    In the nuclear fuel cycle, right from raw material stage through fabrication and in service inspection upto the retirement of the component, NDE is an indispensable tool. While X- and gamma radiography is quite common, neutron radiography is a very efficient and complementary tool which can enhance investigations in the field of non-destructive testing as well as in many fundamental research applications. The main advantage of neutrons compared to X-rays is its ability to penetrate heavy elements and also image light elements (i.e. with low atomic numbers) such as hydrogen, water, carbon etc. This is because, neutrons interact with the nucleus rather than with the outer electron in the shell. This also makes it possible to distinguish between different isotopes of the same element by neutron radiography. The KAMINI reactor at IGCAR is a versatile and unique facility wherein extensive work has been undertaken on neutron radiography and activation analysis. Apart from conventional neutron radiography using transfer technique, real time neutron imaging of fuel pins and other objects have also been carried out. Using Beam purity indicator and sensitivity indicator, the neutron beam from KAMINI has also been characterized. This paper focuses on the developments and applications of digital imaging NDE using X-, gamma and neutrons at IGCAR. Both 2-dimensional imaging and -D tomography has been undertaken. Case studies undertaken for strategic and core industries including societal applications such as in cultural heritage is also highlighted. Advanced image processing and analysis has also been applied for enhancing the sensitivity and better defect quantification

  10. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    International Nuclear Information System (INIS)

    Wang, Zujun; Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-01-01

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10 8 n/cm 2 s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10 11 , 5 × 10 11 , and 1 × 10 12 n/cm 2 , respectively. The mean dark signal (K D ), dark signal spike, dark signal non-uniformity (DSNU), noise (V N ), saturation output signal voltage (V S ), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike

  11. Neutron imaging development for megajoule scale inertial confinement fusion experiments{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G P; Bradley, P A; Day, R D; Clark, D D; Fatherley, V E; Finch, J P; Garcia, F P; Jaramillo, S A; Montoya, A J; Morgan, G L; Oertel, J A; Ortiz, T A; Payton, J R; Pazuchanics, P; Schmidt, D W; Valdez, A C; Wilde, C H; Wilke, M D; Wilson, D C [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)], E-mail: gpgrim@lanl.gov

    2008-05-15

    Neutron imaging of Inertial Confinement Fusion (ICF) targets is useful for understanding the implosion conditions of deuterium and tritium filled targets at Mega-Joule/Tera-Watt scale laser facilities. The primary task for imaging ICF targets at the National Ignition Facility, Lawrence Livermore National Laboratory, Livermore CA, is to determine the asymmetry of the imploded target. The image data, along with other nuclear information, are to be used to provide insight into target drive conditions. The diagnostic goal at the National Ignition Facility is to provide neutron images with 10 {mu}m resolution and peak signal-to-background values greater than 20 for neutron yields of {approx} 10{sup 15}. To achieve this requires signal multiplexing apertures with good resolution. In this paper we present results from imaging system development efforts aimed at achieving these requirements using neutron pinholes. The data were collected using directly driven ICF targets at the Omega Laser, University of Rochester, Rochester, NY., and include images collected from a 3 x 3 array of 15.5 {mu}m pinholes. Combined images have peak signal-to-background values greater than 30 at neutron yields of {approx} 10{sup 13}.

  12. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. N.; Hu, H. S., E-mail: huasi-hu@mail.xjtu.edu.cn; Wang, D. M.; Jia, J. [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, T. K. [Laser Fusion Research Center, CAEP, Mianyang, 621900 Sichuan (China); Jia, Q. G. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-12-15

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging.

  13. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  14. Demonstration of Focusing Wolter Mirrors for Neutron Phase and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Daniel S. Hussey

    2018-03-01

    Full Text Available Image-forming focusing mirrors were employed to demonstrate their applicability to two different modalities of neutron imaging, phase imaging with a far-field interferometer, and magnetic-field imaging through the manipulation of the neutron beam polarization. For the magnetic imaging, the rotation of the neutron polarization in the magnetic field was measured by placing a solenoid at the focus of the mirrors. The beam was polarized upstream of the solenoid, while the spin analyzer was situated between the solenoid and the mirrors. Such a polarized neutron microscope provides a path toward considerably improved spatial resolution in neutron imaging of magnetic materials. For the phase imaging, we show that the focusing mirrors preserve the beam coherence and the path-length differences that give rise to the far-field moiré pattern. We demonstrated that the visibility of the moiré pattern is modified by small angle scattering from a highly porous foam. This experiment demonstrates the feasibility of using Wolter optics to significantly improve the spatial resolution of the far-field interferometer.

  15. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  16. Thailand: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Khaweerat, Sasiphan

    2012-01-01

    Undoubtedly, neutron imaging is one of the best investigation techniques for cultural heritage researches. Cultural heritage is what we obtain from the past and pass on to future generation. It contains unique and irreplaceable record that is important to fulfill our understanding about the past. Recently, many cultural heritages remain untouched and historical records are ambiguous because scientific method of proof is difficult to make without destruction. Fortunately, the neutron imaging technique allows property of neutron that can penetrate through object providing non-invasive characterization. The intensity of transmitting neutron varies upon neutron flux at exposing position and elemental composition in particular objects. Consequently, the object’s provenance, manufacturing technology, authentication, and hidden structure can be determined. To achieve a high quality image and further service for cultural heritage research, good facility and practice are of significant concerns.This CRP provides great opportunity to develop neutron facility and to standardize methodology in Thailand. After official meeting between Thailand Institute of Nuclear Technology (TINT) and Office of National Museum (ONM), Fine Arts Department on 24th January 2011, we are agreed to collaborate in CRP- F11018. With supporting from IAEA, the neutron imaging technology will be sustainable developed and the strengthen collaboration between TINT and ONM will be established. TINT scientists will work in an appropriate channel to meet the state-of-the-art end user’s requirements. Since the hidden historical records will be revealed, we strongly believe that the adapted neutron imaging technique will help answer questions regarding ancient Thais

  17. Switzerland: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies - Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Mannes, David

    2012-01-01

    Historical bronze objects play an important rule in cultural heritage research as this material was used for a broad variety of different purposes (tools, weapons, jewellery, cult objects,…) since more than 5000 years in most parts of the world (Africa, Asia, Europe). Furthermore this group of copper alloys shows high durability and has low susceptibility for corrosion, which explains the large number of objects, which have stand the test of time and wait to be studied. For the study of cultural heritage objects non-destructive testing methods are in many cases required and generally preferred. Neutron imaging provides a unique opportunity to thoroughly characterize bronze objects and to provide information on the inner structure also from larger objects while other conventional methods such as X-ray methods are restricted to surface regions of such metal objects. In the scope of this CRP we propose an interdisciplinary platform for non-destructive investigations of historical bronze objects using neutrons. The platform will provide a forum and link users from the cultural heritage area with partners from the neutron imaging community. As outcome we anticipate a document listing the possibilities and limitations of neutron imaging (such as neutron-radiography, -tomography, energy selective imaging,…) and other neutron based techniques (e.g. diffraction, PGAA,...) to investigate certain questions and problems from the cultural heritage area regarding bronze objects. The document should also contain possible methodical approaches (i.e. how to perform certain investigations) and list partners from the neutron imaging community, which could help in the planning and realization of investigations. The platform will intensify the collaboration and strengthen the connections between the involved research institutes from both areas neutron physics and cultural heritage and result in a long-lasting synergetic effect

  18. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  19. Plastic fiber scintillator response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  20. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  1. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  2. A coupled diffusion-transport computational method and its application for the determination of space dependent angular flux distributions at a cold neutron source

    International Nuclear Information System (INIS)

    Turgut, M.H.

    1985-01-01

    A fast calculation program ''BRIDGE'' was developed for the calculation of a Cold Neutron Source (CNS) at a radial beam tube of the FRG-I reactor, which couples a total assembly diffusion calculation to a transport calculation for a certain subregion. For the coupling flux and current boundary values at the common surfaces are taken from the diffusion calculation and are used as driving conditions in the transport calculation. 'Equivalence Theorie' is used for the transport feedback effect on the diffusion calculation to improve the consistency of the boundary values. The optimization of a CNS for maximizing the subthermal flux in the wavelength range 4 - 6 A is discussed. (orig.) [de

  3. Bulgaria: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Djingova, Rumyana

    2012-01-01

    Neutron tomography has recently found new applications in many different fields like for example in Biology, Medicine, Geology, Archaeology and Cultural Heritage. One of the reasons is the fast development in digital image recording and processing, which enables the computation of tomographic reconstructions from high-resolution images at a reasonable timescale. The development of new detectors with better signal-to-noise characteristics and faster read-out electronics has allowed the overcoming of some of the spatial and time resolution limitations of conventional neutron radiography and tomography. Nevertheless the quantification of neutron tomographic data is a challenging task in many cases. The diverse experimental conditions at different facilities (beam spectrum, collimation, background, etc.) hinder the distinct relation between attenuation coefficient and single material. In this case complementary methods should be used for determination of the chemical composition in multicomponent samples which can be related later to the obtained matrix of attenuation coefficients from the neutron tomographic measurement

  4. A concept to collect neutron and x-ray images on the same line of sight at NIF

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Izumi, N.; Jedlovec, D.; Fittinghoff, D. N.; Pak, A.; Park, H.-S. [Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  5. A concept to collect neutron and x-ray images on the same line of sight at NIF.

    Science.gov (United States)

    Merrill, F E; Danly, C R; Izumi, N; Jedlovec, D; Fittinghoff, D N; Grim, G P; Pak, A; Park, H-S; Volegov, P L; Wilde, C H

    2014-11-01

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  6. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  7. South Africa: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    De Beer, Frikkie

    2012-01-01

    South Africa has a rich cultural history with ample opportunities for Neutron Imaging to be applied in Archaeological and Palaeontological studies as depicted in the references. Through this collaboration the NI and CH communities are united to introduce neutron induced Autoradiography of paintings as new analytical technique to South Africa. The outcome is foreseen to be a database on NI techniques and applications in CH as well as and exhibition at a museum to showcase the scientific collaborations

  8. Brazil: Overview of activities on Neutron Imaging (NI) and Cultural Heritage (CH) studies

    International Nuclear Information System (INIS)

    Pugliesi, Reynaldo

    2012-01-01

    The neutron imaging is a set of non - destructive testing techniques commonly employed to inspect the internal structure of objects. Because of the neutron - matter interaction characteristics, these techniques are largely employed to inspect hydrogenous substances (water, organic fibers, adhesives, etc) even wrapped by thick metal layers. The Brazilian culture is surrounded by a rich cultural heritage, mainly left by Indians and slaves. Many of the old objects and tools they have used, were manufactured by using clay, wood, organic fibers as well as bones. These materials and the ones used for their restoration are manufactured of several types of hydrogenous substances and hence the use of neutron imaging techniques are very adequate to study such objects. The neutron imaging activities at IPEN - CNEN/SP began in 1988 and the primary objective of the working group was to design and to construct an operational facility for neutron imaging, to be installed in the beam-hole - 08 of the 5MW IEA-R1 Nuclear Research Reactor. From 1992 to 1997, the group has developed several 2D imaging techniques

  9. Advanced neutron imaging methods with a potential to benefit from pulsed sources

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Penumadu, D.; Manke, I.

    2011-01-01

    During the last decade neutron imaging has seen significant improvements in instrumentation, detection and spatial resolution. Additionally, a variety of new applications and methods have been explored. As a consequence of an outstanding development nowadays various techniques of neutron imaging go far beyond a two- and three-dimensional mapping of the attenuation coefficients for a broad range of samples. Neutron imaging has become sensitive to neutron scattering in the small angle scattering range as well as with respect to Bragg scattering. Corresponding methods potentially provide spatially resolved and volumetric data revealing microstructural inhomogeneities, texture variations, crystalline phase distributions and even strains in bulk samples. Other techniques allow for the detection of refractive index distribution through phase sensitive measurements and the utilization of polarized neutrons enables radiographic and tomographic investigations of magnetic fields and properties as well as electrical currents within massive samples. All these advanced methods utilize or depend on wavelength dependent signals, and are hence suited to profit significantly from pulsed neutron sources as will be discussed.

  10. Quantitative analysis of γ–oryzanol content in cold pressed rice bran oil by TLC–image analysis method

    Directory of Open Access Journals (Sweden)

    Apirak Sakunpak

    2014-02-01

    Conclusions: The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  11. Fundamentals and applications of neutron imaging. Applications part 5. Application of neutron imaging to fluid engineering-1

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Asano, Hitoshi; Umekawa, Hisashi; Matsubayashi, Masahito

    2007-01-01

    Characteristics of the neutron beam attenuation vary with elements constituting the object and it attenuates with hydrogen and a specific element greatly and penetrates most metal well. Normal liquid such as water, oil, the organic liquid includes a lot of hydrogen, and a neutron beam attenuates, but attenuation characteristics of the metal well used industrially such as iron, copper, aluminum are smaller than normal liquid. Because most machines are made of metal, and liquid behavior of the machine inside can be seen through neutron radiography, it is possible to be used as the X-rays of the machine. As an application of neutron radiography to the fluid engineering, fluid behavior in the metal pipe and container, especially two phase flow mingled with each phase of gas/liquid/solid, has been visible and measurable which is difficult to be performed by other methods, and in late years the industry use of neutron radiography attracts attention particularly. This serial course describes overviews of two-phase flow visualization and measurement and freezing/cooling machinery as the first example of recent application to the machinery. (T. Tanaka)

  12. Neutron Imaging of Lithium Concentration in Battery Pouch Cells

    Science.gov (United States)

    2011-06-01

    water distribution and removal phenomena in an operating pemfc via neutron radiography,” J. Electrochem. Soc., vol. 155, no. 3, pp. B294–B302, 2008...12] J. B. Siegel, D. A. McKay, A. G. Stefanopoulou, D. S. Hussey, and D. L. Jacobson, “Measurement of liquid water accumulation in a pemfc with dead

  13. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuhua, E-mail: yuhua.su@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Oikawa, Kenichi; Harjo, Stefanus; Shinohara, Takenao; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Zhang, Shuoyuan; Parker, Joseph Don [Neutron R& D Division, CROSS-Tokai, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Sato, Hirotaka [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shiota, Yoshinori; Kiyanagi, Yoshiaki [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tomota, Yo [Research Center for Strategic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-10-15

    Neutron Bragg-edge transmission imaging makes it possible to quantitatively visualize the two-dimensional distribution of microstructure within a sample. In order to examine its application to engineering products, time-of-flight Bragg-edge transmission imaging experiments using a pulsed neutron source were performed for plastically bent plates composed of a ferritic steel and a duplex stainless steel. The non-homogeneous microstructure distributions, such as texture, crystalline size, phase volume fraction and residual elastic strain, were evaluated for the cross sections of the bent plates. The obtained results were compared with those by neutron diffraction and electron back scatter diffraction, showing that the Bragg-edge transmission imaging is powerful for engineering use.

  14. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  15. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Science.gov (United States)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  16. Research on neutron radiography in Research Reactor Institute, Kyoto University and activities related to it

    International Nuclear Information System (INIS)

    Fujine, Shigenori; Yoneda, Kenji

    1994-01-01

    The research on neutron radiography in Research Reactor Institute, Kyoto University was begun in 1974 using the E-2 experimental hole which was designed for neutron irradiation. It was reconstructed for the excellent performance as neutron radiography facility by fixing aluminum plugs, a collimator and so on. The research activities thereafter are briefly described. In 1989, the cold neutron facility was installed in the graphite thermal neutron facility, and the experiment on cold neutron radiography became feasible. The reactor in Kyoto University is of the thermal output of 5 MW, and is put to the joint utilization by universities and research institutes in whole Japan. The experimental items carried out so far are enumerated. At present, the main subjects of research are the development of the standard for establishing image evaluation method, the analysis of gas-liquid two-phase flow, the construction of the data base for the literatures and images of neutron radiography, the application of cold neutron radiography, the development of the imaging method using fast neutrons and so on. The thermal neutron radiography and the cold neutron radiography facilities of Kyoto University research reactor are described. The research and activities at Kyoto University research reactor and the investigation of problems are reported. (K.I.) 56 refs

  17. Stereomicroscopic imaging technique for the quantification of cold flow in drug-in-adhesive type of transdermal drug delivery systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Katragadda, Usha; Khan, Mansoor A

    2014-05-01

    Cold flow is a phenomenon occurring in drug-in-adhesive type of transdermal drug delivery systems (DIA-TDDS) because of the migration of DIA coat beyond the edge. Excessive cold flow can affect their therapeutic effectiveness, make remova