WorldWideScience

Sample records for cold neutron imaging

  1. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  2. Cold neutron imaging detection with a GSO scintillator

    CERN Document Server

    Tokanai, F; Oku, T; Ino, T; Suzuki, J I; Ikeda, T; Ootani, W; Otani, C; Sato, H; Shimizu, H M; Kiyanagi, Y; Hirota, T

    2000-01-01

    The pulse-height spectrum and two-dimensional image of a 0.5 mm thick GSO scintillator were investigated for a 6 A cold neutron beam. The 31 and 81 keV peaks resulting from neutron absorption by Gd nuclei were identified in the pulse-height spectrum by using a photomultiplier tube. Images of 1.5 and 2.1 mm (FWHM) in diameter were observed for 1 and 2 mm diameter incident beams with an image intensifier and viewed by a CCD camera, corresponding to a position resolution of 1.3 mm (FWHM). The result implies that a position resolution of better than 100 mu m would be achievable by employing a GSO scintillator thinner than 20 mu m.

  3. Development of scintillation imaging device for cold neutrons

    CERN Document Server

    Gorin, A; Manuilov, I V; Morimoto, K; Oku, T; Ryazantsev, A; Shimizu, H M; Suzuki, J I; Tokanai, F

    2002-01-01

    As an application of the wavelength-shifting (WLS) fiber technique recently developed in the field of high-energy physics, a novel type of imaging device for neutrons has been successfully investigated; a space resolution of 1 mm FWHM with detection efficiency of 55% for 10 A neutrons has been experimentally confirmed with a prototype made of a 0.5-mm-thick ZnS(Ag)+ sup 6 LiF scintillator plate optically coupled to WLS fiber arrays. In addition to promising results obtained in this study, its simple structure and reliable operation allow us to foresee a new generation of imaging devices to meet the increasing demand for large-area and high space-resolution imaging devices for several new projects on spallation neutron sources in the world.

  4. Development of scintillation imaging device for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gorin, Alexander; Kuroda, Kei-ichi; Manuilov, Igor; Morimoto, Kouji; Oku, Takayuki; Ryazantsev, Andrei; Shimizu, Hirohiko M. E-mail: shimizu@riken.go.jp; Suzuki, Jun-ichi; Tokanai, Fuyuki

    2002-03-01

    As an application of the wavelength-shifting (WLS) fiber technique recently developed in the field of high-energy physics, a novel type of imaging device for neutrons has been successfully investigated; a space resolution of 1 mm FWHM with detection efficiency of 55% for 10 A neutrons has been experimentally confirmed with a prototype made of a 0.5-mm-thick ZnS(Ag)+{sup 6}LiF scintillator plate optically coupled to WLS fiber arrays. In addition to promising results obtained in this study, its simple structure and reliable operation allow us to foresee a new generation of imaging devices to meet the increasing demand for large-area and high space-resolution imaging devices for several new projects on spallation neutron sources in the world.

  5. Development of scintillation imaging device for cold neutrons

    Science.gov (United States)

    Gorin, Alexander; Kuroda, Kei-ichi; Manuilov, Igor; Morimoto, Kouji; Oku, Takayuki; Ryazantsev, Andrei; Shimizu, Hirohiko M.; Suzuki, Jun-ichi; Tokanai, Fuyuki

    2002-03-01

    As an application of the wavelength-shifting (WLS) fiber technique recently developed in the field of high-energy physics, a novel type of imaging device for neutrons has been successfully investigated; a space resolution of 1 mm FWHM with detection efficiency of 55% for 10 Å neutrons has been experimentally confirmed with a prototype made of a 0.5-mm-thick ZnS(Ag)+ 6LiF scintillator plate optically coupled to WLS fiber arrays. In addition to promising results obtained in this study, its simple structure and reliable operation allow us to foresee a new generation of imaging devices to meet the increasing demand for large-area and high space-resolution imaging devices for several new projects on spallation neutron sources in the world.

  6. Cold neutron interferometry

    Science.gov (United States)

    Kitaguchi, Masaaki

    2009-10-01

    Neutron interferometry is a powerful technique for studying fundamental physics. A large dimensional interferometer for long wavelength neutrons is extremely important in order to investigate problems of fundamental physics, including tests of quantum measurement theories and searches for non-Newtonian effects of gravitation, since the sensitivity of interferometer depends on the wavelength and the interaction length. Neutron multilayer mirrors enable us to develop the large scale interferometer for long wavelength neutrons. The multilayer mirror is one of the most useful devices in cold neutron optics. A multilayer of two materials with different potentials is understood as a one-dimensional crystal, which is suitable for Bragg reflection of long wavelength neutrons. Cold and very cold neutrons can be utilized for the interferometer by using the multilayer mirrors with the proper lattice constants. Jamin-type interferometer by using beam splitting etalons (BSEs) has shown the feasibility of the development of large scale interferometer, which enables us to align the four independent mirrors within required precision. The BSE contains two parallel multilayer mirrors. A couple of the BSEs in the Jamin-type interferometer separates and recombines the two paths spatially. Although the path separation was small at the first test, now we have already demonstrated the interferometer with perfectly separated paths. This has confirmed that the multilayer mirrors cause no serious distortion of wave front to compose a interferometer. Arranging such mirrors, we are capable of establishing even a Mach-Zehnder type with much larger size. The interferometer using supermirrors, which reflects the wide range of the wavelength of neutrons, can increase the neutron counts for high precision measurements. We are planning the experiments using the interferometer both for the very cold neutrons and for the pulsed neutrons including J-PARC.

  7. Shaping micron-sized cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Frédéric, E-mail: Frederic.Ott@cea.fr [CEA, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); Kozhevnikov, Sergey [Joint Institute for Nuclear Research, ul. Joliot-Curie 6, Dubna, Moscow oblast 141980 (Russian Federation); Thiaville, André [Laboratoire de Physique des Solides, Univ. Paris—Sud, CNRS UMR 8502, 91405 Orsay (France); Torrejón, Jacob [Unité Mixte de Physique, CNRS/Thales, Campus de l’Ecole Polytechnique, 91767 Palaiseau (France); Vázquez, Manuel [Instituto de Ciencia de Materiales, CSIC, 28049 Madrid (Spain)

    2015-07-11

    In the field of neutron scattering, the need for micro-sized (1–50 µm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  8. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  9. Neutron imaging and tomography with MCPS

    NARCIS (Netherlands)

    Duarte Pinto, S.C.; Ortega, R; Ritzau, S.; Pasquale, D; Laprade, B.; Mrotek, S.; Gardell, S.; Zhou, Z.; Plomp, J.; van Eijck, L.; Bilheux, H.; Dhiman, I.

    2017-01-01

    A neutron imaging detector based on neutron-sensitive microchannel plates (mcps) was constructed and tested at beamlines of thermal and cold neutrons. The mcps are made of a glass mixture containing 10B and natural Gd, which makes the bulk of the mcp an efficient neutron converter. Contrary to the

  10. Neutron Imaging Development at China Academy of Engineering Physics (CAEP)

    Science.gov (United States)

    Li, Hang; Wang, Sheng; Cao, Chao; Huo, Heyong; Tang, Bin

    Based the China Mianyang Research Reactor (CMRR) and D-T accelerator neutron source, thermal neutron, cold neutron and fast neutron imaging facilities are all installed at China Academy of Engineering Physics (CAEP). Various samples have been imaged by different energy neutrons and shown the neutron imaging application in industry, aerospace and so on. The facilities parameters and recent neutron imaging development will be shown in this paper.

  11. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  12. The crystal acceleration effect for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation); Berdnikov, Ya. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru; Kuznetsov, I. A.; Lasitsa, M. V.; Semenikhin, S. Yu., E-mail: ssy@pnpi.spb.ru; Vezhlev, E. O.; Voronin, V. V., E-mail: vvv@pnpi.spb.ru [Petersburg Nuclear Physics Institute NRC KI (Russian Federation)

    2017-01-15

    A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to its homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.

  13. Neutron measurements in search of cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1991-05-10

    We have conducted a search for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 140 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of the naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also observed to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observed neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior.

  14. Neutron measurements in search of cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs.

  15. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  16. Time-gated energy-selected cold neutron radiography

    CERN Document Server

    McDonald, T E; Claytor, T N; Farnum, E H; Greene, G L; Morris, C

    1999-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as time-gated energy-selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross ...

  17. Spectroscopy with cold and ultra-cold neutrons

    Science.gov (United States)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  18. Spectroscopy with cold and ultra-cold neutrons

    OpenAIRE

    Abele Hartmut; Jenke Tobias; Konrad Gertrud

    2014-01-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the \\RB drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron $\\beta$-decay. We aim for a precision on the 10$^{-4}$ level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gr...

  19. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  20. Development of cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Park, K. N. and others

    1999-05-01

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  1. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  2. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  3. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  4. Design of a Cold Neutron Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sang Ik; Kim, Y. K.; Jung, H. S.; Park, Y. C.; Kim, H. G.; Lee, B. C.; Ahn, S. H.; Han, Y. S.; Kim, H. R

    2006-04-15

    This report is summarized of the design results of a Cold Neutron Laboratory Building (CNLB) and its whole technical documents submitted to the regulatory body. This report is composed of the CNLB's safety analysis report in the final version and the question and answer documents carried out for its screening to get an approval. The objective of this report is to keep the design results about following terms. Also, it is intended to record serially the technical work conducted for its screening and to find out easily the whole process of the CNLB project. Civil and Architectural Design for CNLB, Seismic and Structure Analysis for CNLB, Shielding Design of the Neutron Guide and the Experimental Equipment and Design of the Compressed Air, Cooling Water, Ventilation, Fire Protection, Electricity System, and etc on.

  5. Neutron Imaging Calibration to Measure Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Bilheux, Hassina Z [ORNL; Sharma, Vishaldeep [ORNL; Fricke, Brian A [ORNL

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  6. Cold symptoms (image)

    Science.gov (United States)

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  7. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  8. Demonstration of Achromatic Cold-Neutron Microscope Utilizing Axisymmetric Focusing Mirrors

    OpenAIRE

    Liu, D.; Hussey, D.; Gubarev, M. V.; Ramsey, B. D.; Jacobson, D.; Arif, M.; Moncton, D. E.; Khaykovich, B.

    2013-01-01

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron i...

  9. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wehring, B.W.; Uenlue, K.

    1996-12-19

    The goals of this three-year study were: (1) design a neutron focusing system for use with the Texas Cold Neutron Source (TCNS) to produce an intense beam of cold neutrons appropriate for prompt gamma activation analysis (PGAA); (2) orchestrate the construction of the focusing system, integrate it into the TCNS neutron guide complex, and measure its performance; and (3) design, setup, and test a cold-neutron PGAA system which utilizes the guided focused cold neutron beam. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, the authors obtained gains of 3 to 5 for 4 different converging guide geometries. During the second year of the DOE grant, the subject of this final report, Ovonic Synthetic Materials Company was contracted to build a converging neutron guide focusing system to the specifications. Considerable time and effort were spent working with Ovonics on selecting the materials for the converging neutron guide system. The major portion of the research on the design of a cold-neutron PGAA system was also completed during the second year. At the beginning of the third year of the grant, a converging neutron guide focusing system had been ordered, and a cold-neutron PGAA system had been designed. Since DOE did not fund the third year, there was no money to purchase the required equipment for the cold-neutron PGAA system and no money to perform tests of either the converging neutron guide or the cold-neutron PGAA system. The research already accomplished would have little value without testing the systems which had been designed. Thus the project was continued at a pace that could be sustained with internal funding.

  10. A detector for neutron imaging

    CERN Document Server

    Britton, C L; Wintenberg, A L; Warmack, R J; McKnight, T E; Frank, S S; Cooper, R G; Dudney, N J; Veith, G M; Stephan, A C

    2004-01-01

    A bright neutron source such as the Spallation Neutron Source (SNS) places extreme requirements on detectors including excellent 2-D spatial imaging and high dynamic range. Present imaging detectors have either shown position resolutions that are less than acceptable or they exhibit excessive paralyzing dead times due to the brightness of the source. High neutron detection efficiency with good neutron- gamma discrimination is critical for applications in neutron scattering research where the usefulness of the data is highly dependent on the statistical uncertainty associated with each detector pixel.. A detector concept known as MicroMegas (MicroMEsh GAseous Structure) has been developed at CERN in Geneva for high- energy physics charged-particle tracking applications and has shown great promise for handling high data rates with a rather low-cost structure. We are attempting to optimize the MicroMegas detector concept for thermal neutrons and have designed a 1-D neutron strip detector which we have tested In ...

  11. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  12. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  13. Optimization of cold neutron beam extraction at ESS

    OpenAIRE

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt; Lauritzen, Bent; Mezei, F.; Pitcher, E.; Takibayev, A.; Willendrup, Peter Kjær; Zanini, L.

    2013-01-01

    The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differen...

  14. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  15. New features in cold neutron radiography and tomography Part I: thinner scintillators and a neutron velocity selector to improve the spatial resolution

    CERN Document Server

    Baechler, S; Dierick, M; Jolie, J; Kuehne, G; Lehmann, E; Materna, T

    2002-01-01

    The tomography setup developed at the PGA facility of the Swiss spallation source SINQ has provided encouraging results in the field of cold neutron imaging. Performances of the detection system based on a CCD camera and a converter screen have been recently improved using sup 6 LiF/ZnS:Ag scintillators with different thickness. Indeed, reducing the layer of the scintillator improved considerably the spatial resolution while keeping a reasonable efficiency. Furthermore, a neutron velocity selector was temporarily added to the setup to perform radiography and tomography experiments with monochromatic neutron beams. Basic properties of transmitted beams were studied to assess the applicability of this device in neutron imaging. Of interest was the enhancement of the L/D-ratio by selecting neutron beams of short wavelengths. Cold neutron tomography demonstrated to be a useful technique in various spheres of activity, such as aerospatial industry or radioactive waste storage. Various applications of the neutron v...

  16. Optimization of cold neutron beam extraction at ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position...... from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differences in the wavelength spectrum and origin of neutrons depending on the angel of view....

  17. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  18. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  19. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    CERN Document Server

    Ogawa, Y; Kosugi, N; Iwasa, H; Furusaka, M; Watanabe, N

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  20. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  1. Biomembranes research using thermal and cold neutrons.

    Science.gov (United States)

    Heberle, F A; Myles, D A A; Katsaras, J

    2015-11-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques. Published by Elsevier Ireland Ltd.

  2. Ultra-cold neutron production with superfluid helium and spallation neutrons

    CERN Document Server

    Masuda, Y

    2000-01-01

    Ultra-cold neutrons (UCN) production in superfluid helium with spallation neutrons is discussed. A source is described, where superfluid helium is located in a cold moderator of deuterium at 20 K surrounded by a thermal moderator of heavy water at 300 K. A lead target is installed in the thermal moderator for neutron production via a medium energy proton induced spallation reaction. A Monte Carlo simulation showed that a UCN density of the order of 10 sup 5 n/cm sup 3 is achievable with an acceptable heat load for the helium cryostat.

  3. Neutron Imaging Device Using Wave Length Shifting Fibre Technique

    CERN Document Server

    Gorin, A; Kiyanagi, Y

    2002-01-01

    A high resolution imaging device for cold neutrons detection has been constructed for the neutron optics (nop) Group in RIKEN, and tested with thermal neutrons at the Laue-Langevin Institute in Grenoble. It consists of a thin plate of ZnS(Ag)+6LiF scintillator optically coupled with Y11(400) wave-length shifting (WLS) fibres. The space resolution was found to be ~ 0.45 mm in FWHM as expected from the pitch of WLS fibres with a crossection of 0.4 ´ 0.4 mm2. The detection efficiency for thermal neutrons (l = 2.5 ) was estimated with respect to 3He monitor, and found to be ~ 10 %, which ensured a reasonable efficiency for cold neutrons (l = 10 ).

  4. Edge localized modes of cold neutrons in periodic condensed media

    Science.gov (United States)

    Belyakov, V. A.

    2017-06-01

    It is found that for certain energies of discreet cold neutrons, quasi-stationary eigen solutions of the corresponding Schrodinger equation, which are localized in the layer of a periodic medium, exist. The localization time of these solutions is strongly dependent on the layer thickness, being finite for a finite layer thickness and increasing indefinitely upon a infinite growth of the layer thickness as the third power of the layer thickness. The problem has been solved in the two-wave approximation of the dynamic diffraction theory for the neutron propagation direction coinciding with the periodicity axes (normal incidence of the neutron beam on the layer). The expressions for neutron eigenwave functions in a periodic medium, the reflection and transmission coefficients, and the neutron wavefunction in the layer as a function of the neutron energy incident on the layer have been determined. It turns out that for the certain discrete neutron energies, the amplitudes of the neutron wavefunction in the layer reach sharp maxima. The corresponding energies are just outside of the neutron stop band (energies forbidden for neutron propagation in the layer) and determine the energies of neutron edge modes (NEMs) localized in the layer, which are direct analogs of the optical edge modes for photonic crystals. The dispersion equation for the localized neutron edge modes has been obtained and analytically solved for the case of thick layers. A rough estimate for the localization length L is L ( db N)-1, where b is the neutron scattering length, d is the crystal period, and N is the density of nuclei in the crystal. The estimates of the localized thermal neutron lifetime show that acheaving of a lifetime close to the free neutron lifetime seems nonrealistic due to absorption of thermal neutrons and requires a perfect large size crystal. Nevertheless, acheaving the localized neutron lifetime exceeding by 104 times the neutron time of flight through the layer appears as

  5. Study of fast neutron radiation effects in cold moderator materials

    CERN Document Server

    Shabalin, E P; Kulagin, E N; Kulikov, S A; Melikhov, V V

    2002-01-01

    A phenomenon of spontaneous release of energy accumulated in some hydrogenous materials under fast neutron irradiation at low temperature was studied at a cryogenic irradiation facility of the IBR-2 reactor in Dubna for the purpose of cold neutron moderator development. Spontaneous release of energy occurred in water ice after 5 - 11 h of fast neutron irradiation at a temperature of less than 34 K and at an absorbed dose rate of 0.4 MGy/h. In contrast with previous data, no spontaneous burp was observed in solid methane

  6. New features in cold neutron radiography and tomography Part I: thinner scintillators and a neutron velocity selector to improve the spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, S. E-mail: sebastien.baechler@unifr.ch; Kardjilov, N.; Dierick, M.; Jolie, J.; Kuehne, G.; Lehmann, E.; Materna, T

    2002-10-01

    The tomography setup developed at the PGA facility of the Swiss spallation source SINQ has provided encouraging results in the field of cold neutron imaging. Performances of the detection system based on a CCD camera and a converter screen have been recently improved using {sup 6}LiF/ZnS:Ag scintillators with different thickness. Indeed, reducing the layer of the scintillator improved considerably the spatial resolution while keeping a reasonable efficiency. Furthermore, a neutron velocity selector was temporarily added to the setup to perform radiography and tomography experiments with monochromatic neutron beams. Basic properties of transmitted beams were studied to assess the applicability of this device in neutron imaging. Of interest was the enhancement of the L/D-ratio by selecting neutron beams of short wavelengths. Cold neutron tomography demonstrated to be a useful technique in various spheres of activity, such as aerospatial industry or radioactive waste storage. Various applications of the neutron velocity selector are described in the second part, namely, New features in cold neutron radiography and tomography--Part II: Applied energy-selective neutron radiography and tomography.

  7. Tomographic Neutron Imaging using SIRT

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, Jens [University of Tennessee, Knoxville (UTK); FINNEY, Charles E A [ORNL; Toops, Todd J [ORNL

    2013-01-01

    Neutron imaging is complementary to x-ray imaging in that materials such as water and plastic are highly attenuating while material such as metal is nearly transparent. We showcase tomographic imaging of a diesel particulate filter. Reconstruction is done using a modified version of SIRT called PSIRT. We expand on previous work and introduce Tikhonov regularization. We show that near-optimal relaxation can still be achieved. The algorithmic ideas apply to cone beam x-ray CT and other inverse problems.

  8. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  9. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  10. Neutron imaging integrated circuit and method for detecting neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; More, Mitali J.

    2017-12-05

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge state less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.

  11. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  12. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  13. Optimization of ultra-cold neutron scintillation detectors

    Science.gov (United States)

    Novopoltsev, M. I.; Pokotilovskii, Yu. N.

    1980-05-01

    The results are presented of the optimization of scintillation detectors of ultra-cold neutrons relative to the thickness of scintillator ZnS(Ag) and radiator LiOH. The method is stated and results are reported of measurements of the energy dependence of the efficiency of UCN detectors. The detector with a rotating scintillator is described. It has a high and constant efficiency over the whole UCN energy range.

  14. Neutron Imaging with Timepix Coupled Lithium Indium Diselenide

    Directory of Open Access Journals (Sweden)

    Elan Herrera

    2017-12-01

    Full Text Available The material lithium indium diselenide, a single crystal neutron sensitive semiconductor, has demonstrated its capabilities as a high resolution imaging device. The sensor was prepared with a 55 μ m pitch array of gold contacts, designed to couple with the Timepix imaging ASIC. The resulting device was tested at the High Flux Isotope Reactor, demonstrating a response to cold neutrons when enriched in 95% 6 Li. The imaging system performed a series of experiments resulting in a <200 μ m resolution limit with the Paul Scherrer Institute (PSI Siemens star mask and a feature resolution of 34 μ m with a knife-edge test. Furthermore, the system was able to resolve the University of Tennessee logo inscribed into a 3D printed 1 cm 3 plastic block. This technology marks the application of high resolution neutron imaging using a direct readout semiconductor.

  15. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  16. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Cekanova, Maria [University of Tennessee, Knoxville (UTK); Bilheux, Jean-Christophe [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL; Herwig, Kenneth W [ORNL

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS will offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.

  17. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  18. A Monte Carlo Simulation of Ultra-Cold Neutron Production by Bragg Reflection from a Moving Single Crystal

    DEFF Research Database (Denmark)

    Steenstrup, S.

    1978-01-01

    A Monte Carlo simulation was performed of a “Gedanken Experiment” where ultra-cold neutrons are produced by Bragg reflection from a moving mosaic single crystal. It is shown that ultra-cold neutrons can be obtained by using thermal or cold neutrons (in practice only the latter). The space...... of the major axis increases with the ratio of the velocity of the incident neutrons to the velocity of the reflected neutrons. The proposed method of production of ultra-cold neutrons might be useful in cases where a beam of ultra-cold quasi-monochromatic neutrons is required....

  19. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    Science.gov (United States)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the

  20. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics

    Science.gov (United States)

    Bin, Tang; Heyong, Huo; Ke, Tang; Rogers, John; Haste, Martin; Christodoulou, Marios

    A new cold neutron radiography beamline has been designed and constructed for the Mianyang reactor at the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics. This paper describes the components of the system and demonstrates the achievable image resolution.

  1. Neutron Based Imaging and Element-mapping at the Budapest Neutron Centre

    Science.gov (United States)

    Kis, Z.; Szentmiklósi, L.; Belgya, T.; Balaskó, M.; Horváth, L. Z.; Maróti, B.

    The Budapest Neutron Centre (BNC) is a consortium of institutes to co-ordinate research activities carried out at the Budapest Research Reactor. It hosts two neutron imaging facilities (RAD and NORMA) operated by the Centre for Energy Research, Hungarian Academy of Sciences and offers access to this scientific infrastructure for the domestic and international users. The radiography station (RAD) at the thermal neutron beamline of the reactor gives a possibility to study relatively large objects by thermal neutron-, gamma- and X-ray radiography, and to benefit from the complementary features of the different radiations. RAD is being extended in 2014 with digital imaging and tomographic capabilities. The image detection is based on suitable converter screens. The static radiography and tomography images are acquired by a new, large area sCMOS camera, whereas the dynamic radiography is accomplished by a low-light-level TV camera and a frame grabber card. The NORMA facility is designed to perform neutron radiography and tomography on small samples using guided cold neutrons. Here two non-destructive techniques are coupled to determine the chemical composition and to visualize the internal structure of heterogeneous objects. The position-sensitive element analysis with prompt-gamma activation analysis (PGAA) and the imaging with neutron radiography/tomography (NR/NT) are integrated into a unique facility called NIPS-NORMA. The goal of such a combination of these methods is to save substantial beam time in the so-called NR/NT-driven PGAI (Prompt Gamma Activation Imaging) mode, in which the interesting regions are first visualized and located, and subsequently the time-consuming prompt-gamma measurements are made only where it is really needed. The paper will give an overview about the technical details of the facilities, and the latest results of selected applications from the fields of archaeometry, engineering and material science.

  2. Materials Selection for the HFIR Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    2001-08-24

    In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

  3. Flat Panel Imaging of Thermal Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, K.

    1999-09-14

    An initial investigation for the use of an amorphous silicon flat panel as an imaging detector for thermal neutrons is described. A dpiX Model SS2200 imaging panel was used with a Li-6 enriched, LiF-ZnS(Ag) scintillator screen for a thermal neutron imaging investigation using the Breazeale Nuclear Reactor and the neutron radiography facility at Penn State University''s Radiation Science and Engineering Center. Good quality thermal neutron images were obtained at exposures in the range of 106 to 107n/cm2, values that compare favorably with those normally required for a medium-speed film result. Spatial resolution observed was in the order of 2 line pairs/mm, a value consistent with the resolution limitation of the imaging screen. The neutron images showed excellent quality, as determined with radiographs of the modified Type A gage test piece, often used to evaluate thermal neutron radioscopic images. Fourteen consecutive holes in the ''A'' gage test piece were observed, an excellent result as compared to typical neutron radioscopic systems.

  4. Neutron imaging and applications a reference for the imaging community

    CERN Document Server

    McGreevy, Robert L; Bilheux, Hassina Z

    2009-01-01

    Offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. This title features a section that describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas.

  5. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  6. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Science.gov (United States)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  7. Modeling gated neutron images of THD capsules

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Douglas Carl [Los Alamos National Laboratory; Grim, Gary P [Los Alamos National Laboratory; Tregillis, Ian L [Los Alamos National Laboratory; Wilke, Mark D [Los Alamos National Laboratory; Morgan, George L [Los Alamos National Laboratory; Loomis, Eric N [Los Alamos National Laboratory; Wilde, Carl H [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Fatherley, Valerie E [Los Alamos National Laboratory; Clark, David D [Los Alamos National Laboratory; Schmitt, Mark J [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory; Wang, Tai - Sen F [Los Alamos National Laboratory; Danly, Christopher R [Los Alamos National Laboratory; Batha, Steven H [Los Alamos National Laboratory; Patel, M [LLNL; Sepke, S [LLNL; Hatarik, R [LLNL; Fittinghoff, D [LLNL; Bower, D [LLNL; Marinak, M [LLNL; Munro, D [LLNL; Moran, M [LLNL; Hilko, R [NSTEC; Frank, M [LLNL; Buckles, R [NSTEC

    2010-01-01

    Time gating a neutron detector 28m from a NIF implosion can produce images at different energies. The brighter image near 14 MeV reflects the size and symmetry of the capsule 'hot spot'. Scattered neutrons, {approx}9.5-13 MeV, reflect the size and symmetry of colder, denser fuel, but with only {approx}1-7% of the neutrons. The gated detector records both the scattered neutron image, and, to a good approximation, an attenuated copy of the primary image left by scintillator decay. By modeling the imaging system the energy band for the scattered neutron image (10-12 MeV) can be chosen, trading off the decayed primary image and the decrease of scattered image brightness with energy. Modeling light decay from EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A leads to a preference from BCF99-55 for the first NIF detector, but DPAC 30 and Liquid A would be preferred if incorporated into a system. Measurement of the delayed light from the NIF scintillator using implosions at the Omega laser shows BCF99-55 to be a good choice for down-scattered imaging at 28m.

  8. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  9. Physics Analyses in the Design of the HFIR Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1999-09-27

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept.

  10. A new aperture for neutron and x-ray imaging of inertial confinement fusion experiments.

    Science.gov (United States)

    Danly, C R; Grim, G P; Guler, N; Intrator, M H; Merrill, F E; Volegov, P; Wilde, C H

    2012-10-01

    Recent neutron imaging of experiments at the National Ignition Facility has provided useful information about the hotspot shape and cold-fuel distribution and has also given insight into avenues for improvement. Neutron image reconstruction depends on accurate pointing information because the point-spread function of the neutron aperture is not shift invariant. Current pointing techniques are limited in their accuracy and rely upon detailed information about the as-built structure of the array, which is difficult to determine. We present a technique for extracting high-precision pointing information from both neutron and x-ray images, and a new aperture design with features to facilitate this technique, and allow future co-registration of neutron and x-ray images.

  11. LISe pixel detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Elan; Hamm, Daniel [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Milburn, Rob [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Burger, Arnold [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Department of Life and Physical Sciences, Fisk University, Nashville, TN (United States); Bilheux, Hassina [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Santodonato, Louis [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chvala, Ondrej [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Stowe, Ashley [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2016-10-11

    Semiconducting lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of {sup 6}Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 µm pitch on a 5×5×0.56 mm{sup 3} LISe substrate. An experimentally verified spatial resolution of 300 µm was observed utilizing a super-sampling technique.

  12. Application of cold neutron radiography for freshness measurement of fruit and vegetables. Moisture content in chrysanthemum cut flower

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, U. [Ryukyu Univ., Faculty of Agriculture, Nishihara, Okinawa (Japan); Kawabata, Y. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Institute; Horie, T. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    2003-01-01

    Metabolism of crops is suppressed at a low temperature. Pre-cooling of the crops before a long term preservation is very valid for keeping their freshness. Vacuum pre-cooling is possible to decrease quickly the temperature of fruit and vegetables using the latent heat of moisture evaporation. Many cut flowers of chrysanthemum, however are pointed out to lose their freshness on long-haul transportation. The changes of moisture content in the chrysanthemum cut flowers before and after the vacuum pre-cooling are measured by cold neutron radiography. High contrast images of the cut flowers obtained by the cold neutron radiography are considered as the change of hydrogen contents in the cut flowers at before and after the vacuum pre-cooling. The degree of brightness in the images of cut flowers after the pre-cooling increases in comparison with the one before the pre-cooling. The water equivalent thickness of the leaves of chrysanthemum after the pre-cooling decreases in comparison with the one before the pre-cooling. The moisture contents evaporated from the injured leaves of chrysanthemum are shown clearly and quantitatively in the images of cold neutron radiography. (M. Suetake)

  13. Cold neutron interaction with a classical electric field: Some basic theoretical and experimental considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, S. [Department of Physics, University of Concepcion, P.O. Box 160-C, Concepcion (Chile); Diaz-Valdes, J. [Department of Physics, University of Concepcion, P.O. Box 160-C, Concepcion (Chile)], E-mail: jdiaz@udec.cl; Bennun, L.; Minning, P.C. [Department of Physics, University of Concepcion, P.O. Box 160-C, Concepcion (Chile)

    2008-03-15

    We explore the feasibility of performing an experiment to measure the interaction of cold neutrons with a given classical electric field. Bound and scattering states could be detected by means of an approximate Aharonov-Casher configuration. The theoretical background is presented and then some primary elements for building a neutron detector of this nature are proposed.

  14. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  15. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  16. Neutron beam imaging with GEM detectors

    Science.gov (United States)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  17. Optical readout for imaging neutron scintillation detectors

    Science.gov (United States)

    Hutchinson, Donald P.; Richards, Roger K.; Maxey, L. Curt; Cooper, Ronald G.; Holcomb, David E.

    2002-11-01

    The Spallation Neutron Source (SNS) under construction at the Oak Ridge National Laboratory (ORNL) will be the most important new neutron scattering facility in the United States. Neutron scattering instruments for the SNS will require large area detectors with fast response (LiF/ZnS(Ag) scintillator screen coupled to a wavelength-shifting fiber optic readout array. A 25 x 25 cm prototype detector is currently under development. Initial tests at the Intense Pulsed Neutron Source at the Argonne National Laboratory have demonstrated good imaging properties coupled with very low gamma ray sensitivity. The response time of this detector is approximately 1 microsecond. Details of the design and test results of the detector will be presented.

  18. Characterization of a scintillating lithium glass ultra-cold neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, B.; Rebenitsch, L.A.; Hansen-Romu, S.; Mammei, R.; Martin, J.W. [University of Winnipeg, Department of Physics, Winnipeg (Canada); Lauss, B. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen (Switzerland); Lindner, T. [TRIUMF, Vancouver (Canada); University of Winnipeg, Department of Physics, Winnipeg (Canada); Pierre, E. [TRIUMF, Vancouver (Canada); Osaka University, Research Centre for Nuclear Physics, Osaka (Japan)

    2017-01-15

    A {sup 6}Li-glass-based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7±0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7{sup +1.3}{sub -1.9}%. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI. (orig.)

  19. Precise determination of the degree of polarization of a cold neutron beam

    Science.gov (United States)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussière, A.; Guillaud, J. P.; Kossakowski, R.; Liaud, P.

    1991-08-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed.

  20. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  1. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  2. Investigations of stone consolidants by neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, F. [Atomic Institute of the Austrian Universities, Vienna University of Technology, Vienna (Austria)], E-mail: hameed@ati.ac.at; Schillinger, B. [Technische Universitaet Muenchen, FRM II and Physics Department E21, Garching (Germany); Rohatsch, A. [Institute for Engineering Geology, Vienna University of Technology, Vienna (Austria); Zawisky, M.; Rauch, H. [Atomic Institute of the Austrian Universities, Vienna University of Technology, Vienna (Austria)

    2009-06-21

    The chemical preservation and structural reintegration of natural stones applied in historical buildings is carried out by the use of different stone strengtheners. As these agents contain hydrogen, they offer good properties for neutron imaging. The main interest in the restoration process is the development of a suitable stone consolidant. In cooperation with the St. Stephans Cathedral and the geologists at Vienna University of Technology, we are investigating the penetration depth and distribution of different stone consolidants. These studies are being carried out with different stone samples, mostly porous natural building stones, limestones and sandstones. The two strengtheners used in this study are ethyl silicate ester (Wacker OH100) and dissolved polymethylmetacrylate (PMMA, Paraloid B72). Neutron radiography and neutron tomography can be used successfully to visualize the distribution of consolidants both in two and three dimensions.

  3. Cold Neutron Focusing Multiple Biconcave Lenses and Anti-Gravity Prisms for 40m Small Angle Neutron Scattering Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jun-Bo; Choi, Sung-Min [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2007-07-01

    Small angle neutron scattering (SANS) instrument with long flight path is a very powerful tool to investigate the structures of various nanoscale materials. Currently, a new 40m SANS instrument is under development to be installed at HANARO, which will be one of the key facilities for nano-characterization in Korea. To enhance the measurement capability of the 40m SANS, especially in the low Q region, cold neutron focusing and cancellation of gravity effects using multiple biconcave lenses and prisms are suggested. In this paper, we present recent Monte Carlo simulation studies on the refractive focusing and anti-gravity optics.

  4. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  5. Selective Energy Neutron Radiographic Imaging Origins and Lessons for Low Cost Systems

    Science.gov (United States)

    Barton, J. P.; Rogers, J. D.

    Major advances in selective energy techniques for neutron radiographic imaging have been demonstrated recently at very advanced, high flux, shared user facilities. The origins of selective energy methods for neutron radiography have been reviewed and options for low cost systems at lower flux, lower budget, single-user neutron source facilities are discussed. An original cold NR Imaging demonstration used a simple filter of polycrystalline beryllium and single crystal bismuth cooled by liquid nitrogen. An expensive refrigerated moderator source block is not essential. A less expensive option omits use of the single crystal bismuth. A low cost boost to cold neutron flux at a low power reactor uses a refrigerated source block of solid methane. For NR Imaging at selective epithermal energies, a single crystal neutron monochromator provides a low cost option. Alternatively a pulsed neutron source and time of flight technique is included in the original reports on selective energy methods. The original demonstrations using low cost systems indicate new advanced selective energy techniques pioneered at high flux sources may be developed at lower flux, single-user sources.

  6. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  7. On the design of a cold neutron irradiator (CNI) for quantitative materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Alexander Grover [Cornell Univ., Ithaca, NY (United States)

    1997-08-01

    A design study of a cold neutron irradiator (CNI) for materials characterization using prompt gamma-ray neutron activation analysis (PGNAA) is presented. Using 252Cf neutron sources in a block of moderator, a portion of which is maintained at a cryogenic temperature, the CNI employs cold neutrons instead of thermal neutrons to enhance the neutron capture reaction rate in a sample. Capture gamma rays are detected in an HPGe photon detector. Optimization of the CNI with respect to elemental sensitivity (counts per mg) is the primary goal of this design study. Monte Carlo simulation of radiation transport, by means of the MCNP code and the ENDF/B cross-section libraries, is used to model the CNI. A combination of solid methane at 22 K, room-temperature polyethylene, and room-temperature beryllium has been chosen for the neutron delivery subsystem of the CNI. Using four 250-microgram 252Cf neutron sources, with a total neutron emission rate of 2.3 x 109 neutrons/s, a thermal-equivalent neutron flux of 1.7 x 107 neutrons/cm2-s in an internally located cylindrical sample space of diameter 6.5 cm and height 6.0 cm is predicted by MCNP calculations. A cylindrical port with an integral annular collimator composed of bismuth, lead, polyethylene, and lithium carbonate, is located between the sample and the detector. Calculations have been performed of gamma-ray and neutron transport in the port and integral collimator with the objective of optimizing the statistical precision with which one can measure elemental masses in the sample while also limiting the fast neutron flux incident upon the HPGe detector to a reasonable level. The statistical precision with which one can measure elemental masses can be enhanced by a factor of between 2.3 and 5.3 (depending on the origin of the background gamma rays) compared with a neutron irradiator identical to the CNI except for the replacement of the cryogenic solid methane by room

  8. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  9. The Neutron Imaging System Fielded at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  10. Stereoscopic radiographic images with thermal neutrons

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Rogers, J. D.; Lopes, R. T.

    2011-10-01

    Spatial structure of an object can be perceived by the stereoscopic vision provided by eyes or by the parallax produced by movement of the object with regard to the observer. For an opaque object, a technique to render it transparent should be used, in order to make visible the spatial distribution of its inner structure, for any of the two approaches used. In this work, a beam of thermal neutrons at the main port of the Argonauta research reactor of the Instituto de Engenharia Nuclear in Rio de Janeiro/Brazil has been used as radiation to render the inspected objects partially transparent. A neutron sensitive Imaging Plate has been employed as a detector and after exposure it has been developed by a reader using a 0.5 μm laser beam, which defines the finest achievable spatial resolution of the acquired digital image. This image, a radiographic attenuation map of the object, does not represent any specific cross-section but a convoluted projection for each specific attitude of the object with regard to the detector. After taking two of these projections at different object attitudes, they are properly processed and the final image is viewed by a red and green eyeglass. For monochromatic images this processing involves transformation of black and white radiographies into red and white and green and white ones, which are afterwards merged to yield a single image. All the processes are carried out with the software ImageJ. Divergence of the neutron beam unfortunately spoils both spatial and contrast resolutions, which become poorer as object-detector distance increases. Therefore, in order to evaluate the range of spatial resolution corresponding to the 3D image being observed, a curve expressing spatial resolution against object-detector gap has been deduced from the Modulation Transfer Functions experimentally. Typical exposure times, under a reactor power of 170 W, were 6 min for both quantitative and qualitative measurements. In spite of its intrinsic constraints

  11. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  12. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

  13. Polarizing Ultra-Cold Neutrons for the Superconducting Trap PENeLOPE

    Science.gov (United States)

    Picker, R.; Schreyer, W.; Haas, F.; Hartmann, F. J.; Losekamm, M.; Paul, S.; Stoepler, R.; Tietze, C.

    2014-03-01

    PENeLOPE (Precision Experiment on the Neutron Lifetime Operating with Proton Extraction) is a novel experiment to measure the lifetime of the free neutron. It features magneto-gravitational storage of ultra-cold neutrons; only one spin state of the neutrons can be stored magnetically, hence a polarization system is necessary. In contrast to most other magnetic storage experiments, the magnetic field is ramped up from zero after filling, which results in a complete spatial and energetic separation of the two spin states; this allows the use of novel techniques in cleaning the trap from the unwanted spin state in addition to pre-polarization. A polarization of 99.98% should be achievable.

  14. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Science.gov (United States)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  15. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  16. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    Science.gov (United States)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  17. Time-Encoded Neutron Imaging for Applications in Nuclear Security

    Science.gov (United States)

    Brubaker, Erik; Brennan, James; Gerling, Mark; Marleau, Peter; Monterial, Mateusz; Nowack, Aaron; Schuster, Patricia; Sturm, Ben; Sweany, Melinda

    2017-09-01

    Time-encoded imaging (TEI) refers to a class of techniques that extract directional information from a radiation field by inducing a time modulation in a detected particle flux. These approaches are in many ways analogous to pinhole and coded aperture imaging, in which a spatial modulation rather than a time modulation is induced. TEI is particularly useful for imaging energetic particle radiation such as gamma rays and fission-energy neutrons, which cannot be easily lensed. We developed TEI-based neutron imaging systems for two classes of nuclear security applications. First, high-resolution neutron emission imaging of distributed neutron sources was demonstrated with a single-pixel TEI imager. Second, long standoff source detection via a neutron signature was accomplished using a large-area, self-modulating TEI system. We demonstrate the ability to detect a 1 mCi Cf-252 source at 100 m standoff in 12 minutes.

  18. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    OpenAIRE

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J.M.; Simpson, G.; Soldner, T.; Ur, C.A.; Urban, W.; Vancraeyenest, A.

    2013-01-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work...

  19. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Science.gov (United States)

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.

    2013-12-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.

  20. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  1. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  2. Looking for spectral changes occurring during storage of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Steyerl, A.; Malik, S.S. [Rhode Island Univ., Kingston, RI (United States); Geltenbort, P. [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France)

    1997-04-01

    It seems that the spectrum of ultra-cold neutrons does change. The measured data indicate with 5{sigma} reliability, that a small heating by about 2{center_dot}10{sup -10} eV ({approx} 2 mm of rise height against the earth`s gravity) occurred during the initial {approx} 10{sup 3} wall reflections, and no change thereafter. The reason of this effect is searched for. (author). 3 refs.

  3. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  4. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2017-04-11

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  5. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Science.gov (United States)

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin

    2017-04-01

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  6. Quantitative neutron imaging of water distribution, venation network and sap flow in leaves.

    Science.gov (United States)

    Defraeye, Thijs; Derome, Dominique; Aregawi, Wondwosen; Cantré, Dennis; Hartmann, Stefan; Lehmann, Eberhard; Carmeliet, Jan; Voisard, Frédéric; Verboven, Pieter; Nicolai, Bart

    2014-08-01

    Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress. The leaf hydraulic architecture is a key determinant of plant sap transport and plant-atmosphere exchange processes. Non-destructive imaging with neutrons shows large potential for unveiling the complex internal features of the venation network and the transport therein. However, it was only used for two-dimensional imaging without addressing flow dynamics and was still unsuccessful in accurate quantification of the amount of water. Quantitative neutron imaging was used to investigate, for the first time, the water distribution in veins and lamina, the three-dimensional venation architecture and sap flow dynamics in leaves. The latter was visualised using D2O as a contrast liquid. A high dynamic resolution was obtained by using cold neutrons and imaging relied on radiography (2D) as well as tomography (3D). The principle of the technique was shown for detached leaves, but can be applied to in vivo leaves as well. The venation network architecture and the water distribution in the veins and lamina unveiled clear differences between plant species. The leaf water content could be successfully quantified, though still included the contribution of the leaf dry matter. The flow measurements exposed the hierarchical structure of the water transport pathways, and an accurate quantification of the absolute amount of water uptake in the leaf was possible. Particular advantages of neutron imaging, as compared to X-ray imaging, were identified. Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress.

  7. Development of Neutron Imaging System for Neutron Tomography at Thai Research Reactor TRR-1/M1

    Science.gov (United States)

    Wonglee, S.; Khaweerat, S.; Channuie, J.; Picha, R.; Liamsuwan, T.; Ratanatongchai, W.

    2017-09-01

    The neutron imaging is a powerful non-destructive technique to investigate the internal structure and provides the information which is different from the conventional X-ray/Gamma radiography. By reconstruction of the obtained 2-dimentional (2D) images from the taken different angle around the specimen, the tomographic image can be obtained and it can provide the information in more detail. The neutron imaging system at Thai Research Reactor TRR-1/M1 of Thailand Institute of Nuclear Technology (Public Organization) has been developed to conduct the neutron tomography since 2014. The primary goal of this work is to serve the investigation of archeological samples, however, this technique can also be applied to various fields, such as investigation of industrial specimen and others. This research paper presents the performance study of a compact neutron camera manufactured by Neutron Optics such as speed and sensitivity. Furthermore, the 3-dimentional (3D) neutron image was successfully reconstructed at the developed neutron imaging system of TRR-1/M1.

  8. Energy-selective neutron transmission imaging at a pulsed source

    Science.gov (United States)

    Kockelmann, W.; Frei, G.; Lehmann, E. H.; Vontobel, P.; Santisteban, J. R.

    2007-08-01

    Energy-selective neutron radiography experiments were carried out at the ISIS pulsed spallation source. This neutron transmission imaging technique combines the hardware used for conventional neutron radiography with the Bragg edge transmission features of time-of-flight methods. The main component of the energy-selective radiography set-up was a gated image-intensified CCD camera that viewed a neutron sensitive scintillation screen via a mirror. Energy resolution was obtained via synchronization of the light-intensifier with the pulse structure of the neutron source. It is demonstrated that contrast enhancement of materials can be straightforwardly achieved, and that microstructural features in metal samples can be directly visualized with high spatial resolution by taking advantage of the Bragg edges in the energy dependent neutron cross sections.

  9. qBounce - a realization of the quantum bouncer with ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Abele, Hartmut; Bittner, Thomas; Cronenberg, Gunther; Filter, Hanno; Jenke, Tobias; Mitsch, Kevin; Thalhammer, Martin [Atominstitut TU Wien, Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, Grenoble (France)

    2012-07-01

    We present the observation of a quantum bouncing ball in the gravitational field of the Earth. Quantum states in the Earth's gravitational field can be observed, when ultra-cold neutrons fall under gravity. In our previous experiment in collaboration with the Institute Laue-Langevin/Grenoble, the lowest stationary quantum state of neutrons in the Earth's gravitational field was clearly identified. In the new experiment qBounce, we use this technique to prepare a neutron in the ground state and then to let it fall and bounce off a neutron mirror. Oscillations in time similar to the harmonic oscillator system described by Glauber states have been observed. Such a quantum particle bouncing in a linear gravitational field is known as the quantum bouncer. The motivation of this activity is also the investigation of quantum phases and quantum decoherence. For that matter we have developed position-sensitive neutron detectors with an extra-high spatial resolution.

  10. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    Science.gov (United States)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  11. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  12. Characterization of a neutron imaging setup at the INES facility

    Energy Technology Data Exchange (ETDEWEB)

    Durisi, E.A., E-mail: elisabettaalessandra.durisi@unito.it [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Visca, L. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Albertin, F.; Brancaccio, R. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Corsi, J. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dughera, G. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Ferrarese, W. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Giovagnoli, A.; Grassi, N. [Fondazione Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Piazza della Repubblica, 10078 Venaria Reale, Torino (Italy); Grazzi, F. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lo Giudice, A.; Mila, G. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); and others

    2013-10-21

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/{sup 6}LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup.

  13. Neutron diffractometer for bio-crystallography (BIX) with an imaging plate neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    We have constructed a dedicated diffractometer for neutron crystallography in biology (BIX) on the JRR-3M reactor at JAERI (Japan Atomic Energy Research Institute). The diffraction intensity from a protein crystal is weaker than that from most inorganic materials. In order to overcome the intensity problem, an elastically bent silicon monochromator and a large area detector system were specially designed. A preliminary result of diffraction experiment using BIX has been reported. An imaging plate neutron detector has been developed and a feasibility experiment was carried out on BIX. Results are reported. An imaging plate neutron detector has been developed and a feasibility test was carried out using BIX.

  14. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  15. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  16. LET, a cold neutron multi-disk chopper spectrometer at ISIS

    Science.gov (United States)

    Bewley, R. I.; Taylor, J. W.; Bennington, S. M.

    2011-05-01

    LET is a new multi-chopper direct geometry cold neutron spectrometer, recently installed on target station 2 (TS2) at the ISIS spallation neutron source. The characteristics of the primary spectrometer are a 25 m straight super-mirror guide viewing the new highly efficient coupled solid methane moderator system. This combination yields a high incident flux of neutrons with a wide dynamic range of 0.6-80 meV. LET employs a novel flux compression guide design which in combination with two 300 Hz counter rotating choppers produces fine energy resolutions of ≥0.8% δE/Ei , to be realised with very little flux sacrifice compared to conventional methods. The multi-chopper system is designed to make full use of the long 100 ms time frames of TS2, allowing the user to make multiple measurements within a single frame. The secondary spectrometer is characterised by a wide area position sensitive 3He multidetector with π steradians of nearly gapless coverage over the angular range from -40° to +140° in the horizontal plane and ±30° in the vertical plane. The multidetector utilises the worlds first 4 m position sensitive 3He neutron detector tubes. LET has been designed specifically to allow the use of polarised neutrons allowing the user to exploit full XYZ neutron polarisation analysis. In addition a new 9 T magnet has been designed for LET allowing the use of large samples of 25 mm×25 mm with a 30° vertical opening to make use of the large multidetector.

  17. Neutron detection with imaging plates Part II. Detector characteristics

    CERN Document Server

    Thoms, M

    1999-01-01

    On the basis of the physical processes described in Neutron detection with imaging plates - part I: image storage and readout [Nucl. Instr. and Meth. A 424 (1999) 26-33] detector characteristics, such as quantum efficiency, detective quantum efficiency, sensitivity to neutron- and gamma-radiation, readout time and dynamic range are predicted. It is estimated that quantum efficiencies and detective quantum efficiencies close to 100% can be reached making these kind of detectors interesting for a wide range of applications.

  18. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  19. A multicore compound glass optical fiber for neutron imaging

    Science.gov (United States)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason

    2017-04-01

    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  20. Neutron imaging for geothermal energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  1. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    Science.gov (United States)

    Karch, J.; Sobolev, Yu.; Beck, M.; Eberhardt, K.; Hampel, G.; Heil, W.; Kieser, R.; Reich, T.; Trautmann, N.; Ziegner, M.

    2014-04-01

    The performance of the solid deuterium ultra-cold neutron (UCN) source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10MJ is described. The solid deuterium converter with a volume of cm3 (8mol), which is exposed to a thermal neutron fluence of n/cm2, delivers up to 240000 UCN ( m/s) per pulse outside the biological shield at the experimental area. UCN densities of 10 cm3 are obtained in stainless-steel bottles of 10 L. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

  2. Image Enhancement for High frame-rate Neutron Radiography

    OpenAIRE

    Saito, Y; Ito, D.

    2015-01-01

    High frame rate neutron radiography has been utilized to investigate two-phase flow in a metallic duct. However, images obtained by high frame-rate neutron radiography suffered from severe statistical noise due to its short exposure time. In this study, a spatio-temporal filter was applied to reduce the noise in the sequence images obtained by high frame-rate neutron radiography. Experiments were performed at the B4-port of the Research Reactor Institute, Kyoto University, which has a thermal...

  3. Neutron Imaging Developments at LANSCE [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schirato, Richard C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swift, Alicia L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ickes, Timothy Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ward, William Carl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian Simon [Univ. of California, Berkeley, CA (United States); Tremsin, Anton [Univ. of California, Berkeley, CA (United States); Sevanto, Sanna Annika [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Espy, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dickman, Lee Thoresen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800-MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  4. Cold Uniform Matter and Neutron Stars in the Quark-Meson-Coupling Model

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Stone; P.A.M. Guichon; H.H. Matevosyan; A.W. Thomas

    2007-08-01

    A new density dependent effective baryon-baryon interaction has been recently derived from the quark-meson-coupling (QMC) model, offering impressive results in application to finite nuclei and dense baryon matter. This self-consistent, relativistic quark-level approach is used to construct the Equation of State (EoS) and to calculate key properties of high density matter and cold, slowly rotating neutron stars. The results include predictions for the maximum mass of neutron star models, together with the corresponding radius and central density, as well the properties of neutron stars with mass of order 1.4 M{sub {circle_dot}}. The cooling mechanism allowed by the QMC EoS is explored and the parameters relevant to slow rotation, namely the moment of inertia and the period of rotation investigated. The results of the calculation, which are found to be in good agreement with available observational data, are compared with the predictions of more traditional EoS, based on the A18+{delta}v+UIX* and modified Reid soft core potentials, the Skyrme SkM* interaction and two relativistic mean field (RMF) models for a hybrid stars including quark matter. The QMC EoS provides cold neutron star models with maximum mass 1.9-2.1 M{sub {circle_dot}}, with central density less than 6 times nuclear saturation density (n{sub 0} = 0.16 fm{sup -3}) and offers a consistent description of the stellar mass up to this density limit. In contrast with other models, QMC predicts no hyperon contribution at densities lower than 3n{sub 0}, for matter in {beta}-equilibrium. At higher densities, {Xi}{sup -,0} and {Lambda} hyperons are present. The absence of lighter {Sigma}{sup {+-},0} hyperons is understood as a consequence of antisymmetrization, together with the implementation of the color hyperfine interaction in the response of the quark bag to the nuclear scalar field.

  5. Aspects of ultra-cold neutron production in radiation fields at the FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wlokka, Stephan Albrecht

    2016-08-17

    Neutrons are called ''ultra-cold'', if they are reflected by a material surface under all angles of incident. They can then be stored for long times (ca. 1000s). In the new UCN source at the FRM II, Deuterium will be used to produce the UCN. Its behaviour under irradiation was investigated. Additionally the transport properties of new UCN guides were tested. Also, the helium-3 content of purified helium samples was examined, because using this type of helium greatly reduces the tritium production when used at the reactor.

  6. Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Adam J. Brooks

    2017-12-01

    Full Text Available A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316 test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μ m, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity.

  7. Optimal shape of a cold-neutron triple-axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K., E-mail: lefmann@fys.ku.d [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden); Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Treue, F. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Kirkensgard, J.J.K. [Institute of Nature and Models, Roskilde University (Denmark); Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen (Denmark); Plesner, B. [Institute of Nature and Models, Roskilde University (Denmark); Hansen, K.S. [Institute of Nature and Models, Roskilde University (Denmark); Mid-Greenland High School, Nuuk, Greenland (Denmark); Kleno, K.H. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden)

    2011-04-01

    We have performed a McStas optimization of the primary spectrometer for a generic 40 m long, cold-neutron triple-axis spectrometer with a doubly focusing monochromator. The optimal design contains an elliptically focusing guide, a virtual source point before a low-grade PG monochromator, and non-equidistant focusing at the monochromator. The flux at 5 meV shows a gain factor 12 over the 'classical' design with a straight 12x3cm{sup 2}, m=2 guide and a vertically focusing PG monochromator. In addition, the energy resolution was found to be improved. This unexpectedly large design improvement agrees with the Liouville theorem and can be understood as the product of many smaller gain factors, combined with a more optimal utilization of the beam divergence within the guide. Our results may be relevant for a possible upgrade of a number of cold-neutron triple-axis spectrometers-and for a possible triple-axis spectrometer at the European Spallation Source.

  8. The new neutron imaging facility at TRIGA reactor in Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Ouardi, A.; Alami, R.; Bensitel, A. [Centre National de l' Energie des Science et des Techniques Nucleaires, PB.1382 R.P 10001 Rabat (Morocco)

    2011-07-01

    A new neutron imaging facility is currently developed around 2 MW TRIGA MARK-II reactor at Maamora Nuclear research centre (CENM). Neutron imaging combined to X-ray or gamma radiography offers the opportunity to extend Non Destructive Testing (NDT) activities DT in Morocco to new fields of applications such as space and aircraft Moroccan industry, mining, wood industry and Archeology. The facility is planed to be completed in the end of 2011. In order to reduce the gamma-ray content in the neutron beam, the reactor tangential channel is selected. For power of 2 MW, the corresponding thermal neutron flux at the inlet of the tangential channel is around 1.10{sup 13}ncm{sup 2}/s. The facility will be based on a conical neutron collimator with a flight tube of 8m and offers three circular diaphragms with diameters of 1cm, 2 cm and 4 cm corresponding to L/D-ratio varying between 200 and 600. The holes will be housed in the primary shutter. These diaphragms' sizes allow to perform neutron radiography with high resolution (L/D = 600) and high speed (L/D= 200). Monte Carlo calculations by a fully 3D numerical code GEANT4 are used to optimize the whole neutron beam line and to reach a shorten distance between the source and detector and reduce as possible the exposure time. (author)

  9. Neutron Imaging Control Report: FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-30

    During the 2016 fiscal year, work began on the supervision and control systems for the neutron source currently under construction in the B194 accelerator caves. This source relies on a deuteron beam colliding with a high-speed stream of deuterium gas to create neutrons, which poses significant technical challenges. To help overcome those challenges, an integrated, operator-focused control architecture is required to collect and assimilate disparate data from a variety of measurement points, as well as provide the means to remotely control the system hardware.

  10. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    Science.gov (United States)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  11. Neutron detection with imaging plates Part I. Image storage and readout

    CERN Document Server

    Thoms, M; Wilkinson, C

    1999-01-01

    The detection of neutrons with imaging plates is based on a sequence of physical processes, which are happening during the neutron exposure and the readout of the image information. These processes are investigated in detail starting with the neutron absorption and conversion to secondary radiation by various neutron converter materials and ending with the detection of the photostimulated luminescence, which is emitted during the readout. It is shown that these processes can be quantified by several key parameters, such as i.e. the neutron absorption cross section, the emitted secondary energy and the conversion efficiency of released secondary energy to storage centers in the storage phosphor. The resulting detector characteristics are described in the second part, namely, Neutron detection with imaging plates - part II: detector characteristics [Nucl. Instr. and Meth. A 424 (1999) 34-39].

  12. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  13. New feature of the neutron color image intensifier

    Science.gov (United States)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi; Miyabe, Keisuke

    2009-06-01

    We developed prototype neutron color image intensifiers with high-sensitivity, wide dynamic range and long-life characteristics. In the prototype intensifier (Gd-Type 1), a terbium-activated Gd 2O 2S is used as the input-screen phosphor. In the upgraded model (Gd-Type 2), Gd 2O 3 and CsI:Na are vacuum deposited to form the phosphor layer, which improved the sensitivity and the spatial uniformity. A europium-activated Y 2O 2S multi-color scintillator, emitting red, green and blue photons with different intensities, is utilized as the output screen of the intensifier. By combining this image intensifier with a suitably tuned high-sensitive color CCD camera, higher sensitivity and wider dynamic range could be simultaneously attained than that of the conventional P20-phosphor-type image intensifier. The results of experiments at the JRR-3M neutron radiography irradiation port (flux: 1.5×10 8 n/cm 2/s) showed that these neutron color image intensifiers can clearly image dynamic phenomena with a 30 frame/s video picture. It is expected that the color image intensifier will be used as a new two-dimensional neutron sensor in new application fields.

  14. CONRAD-2: Cold Neutron Tomography and Radiography at BER II (V7

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2016-11-01

    Full Text Available V7 has widely been recognized as a versatile and flexible instrument for innovative neutron imaging and has made decisive contributions to the development of new methods by exploiting different contrast mechanisms for imaging. The reason for the success in method development is the flexibility of the facility which permits very fast change of the instrument’s configuration and allows for performing non-standard experiments. The ability for complementary experiments with the laboratory X-ray tomographic scanner (MicroCT Lab offers the opportunity to study samples at different contrast levels and spatial resolution scales.

  15. Studies of magnetism with inelastic scattering of cold neutrons; Etudes de magnetisme realisees a l'aide de la diffusion inelastique de neutrons froids

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [French] La technique de diffusion inelastique des neutrons froids est utilisee pour etudier certains aspects du magnetisme: ondes de spins, integrales d'echange, etude au voisinage du point de Curie, etc. Apres une description de l'appareillage, on analyse diverses experiences effectuees dans les domaines enumeres plus haut. (auteur)

  16. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho

    2007-06-15

    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  17. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.H., E-mail: eberhard.lehmann@psi.ch [Neutron Imaging and Activation Group, Spallation Neutron Source Division, Paul Scherrer Institut, CH-5232 Villigen, PSI (Switzerland); Peetermans, S.; Josic, L. [Neutron Imaging and Activation Group, Spallation Neutron Source Division, Paul Scherrer Institut, CH-5232 Villigen, PSI (Switzerland); Leber, H. [W. Blösch AG, CH-2540 Grenchen, P.O. Box 244 (Switzerland); Swygenhoven, H. van [Material Science and Simulation Group, Spallation Neutron Source Division, Paul Scherrer Institut, CH-5232 Villigen, PSI (Switzerland)

    2014-01-21

    Crystalline-structured materials with preferentially large grains were investigated by means of energy-selective neutron imaging methods (transmission radiography and tomography) under the conditions of the best possible spatial resolution at the ICON facility, SINQ, and PSI. Because of the cold spectrum at that beam line, access to the Bragg diffraction features was possible even when the energy resolution of the used selector device was only 15%. Grains with a size below the detector resolution (approximately 25 μm) are not visible, and a quasi-homogeneous contrast variation is found when the neutron energy is varied.In the cases of welded stainless steel samples and rolled Al plates, we obtained structural information from a very short exposure of approximately 60 s. Tomographic examinations of these samples at suitable neutron energies qualitatively verified the radiographic findings by showing the same features in the bulk. Comparison to common electron backscatter diffraction (EBSD) investigations in selected regions of the samples provided a complete verification of the neutron-image data with respect to the grain size and the different grain orientations. The method of energy-selective neutron imaging provides an easy and straightforward approach for non-invasive material research that can be performed without any sample preparation if the most suitable neutron energy is chosen. Further studies will be necessary to extend the experimental data base to other materials with different crystal structures and grain sizes. A comparison to diffraction data will enhance the quantitative value of the investigations.

  18. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials

    Science.gov (United States)

    Lehmann, E. H.; Peetermans, S.; Josic, L.; Leber, H.; van Swygenhoven, H.

    2014-01-01

    Crystalline-structured materials with preferentially large grains were investigated by means of energy-selective neutron imaging methods (transmission radiography and tomography) under the conditions of the best possible spatial resolution at the ICON facility, SINQ, and PSI. Because of the cold spectrum at that beam line, access to the Bragg diffraction features was possible even when the energy resolution of the used selector device was only 15%. Grains with a size below the detector resolution (approximately 25 μm) are not visible, and a quasi-homogeneous contrast variation is found when the neutron energy is varied.In the cases of welded stainless steel samples and rolled Al plates, we obtained structural information from a very short exposure of approximately 60 s. Tomographic examinations of these samples at suitable neutron energies qualitatively verified the radiographic findings by showing the same features in the bulk. Comparison to common electron backscatter diffraction (EBSD) investigations in selected regions of the samples provided a complete verification of the neutron-image data with respect to the grain size and the different grain orientations. The method of energy-selective neutron imaging provides an easy and straightforward approach for non-invasive material research that can be performed without any sample preparation if the most suitable neutron energy is chosen. Further studies will be necessary to extend the experimental data base to other materials with different crystal structures and grain sizes. A comparison to diffraction data will enhance the quantitative value of the investigations.

  19. Spectroscopic fast neutron transmission imaging in a treaty verification setting

    Directory of Open Access Journals (Sweden)

    K. Ogren

    2018-01-01

    Full Text Available Measurements of the geometric configuration of objects and their material composition are needed for nuclear treaty verification purposes. We experimentally demonstrate a simple method based on monoenergetic fast neutron transmission to realize crude imaging of the geometric configuration of special nuclear material, confirm its fissionable content, and obtain information on its approximate fissile mass. In the experiment, we used monoenergetic neutrons from D(d, n3He and T(d, n4He reactions and a linear array of liquid scintillation detectors to perform spectroscopic neutron imaging of up to 13.7 kg of highly enriched uranium in a spherical geometry. We also show an example of detection of material diversion and confirm the presence of fissionable material based on the measurement of high-energy prompt fission neutrons, including estimating the quantity of material from the comparison of measured and predicted fission neutron emission rate. The combination of crude imaging and fissionable material detection and quantification in a simple approach may be attractive in certain treaty verification scenarios.

  20. Spectroscopic fast neutron transmission imaging in a treaty verification setting

    Science.gov (United States)

    Ogren, K.; Nattress, J.; Jovanovic, I.

    2018-01-01

    Measurements of the geometric configuration of objects and their material composition are needed for nuclear treaty verification purposes. We experimentally demonstrate a simple method based on monoenergetic fast neutron transmission to realize crude imaging of the geometric configuration of special nuclear material, confirm its fissionable content, and obtain information on its approximate fissile mass. In the experiment, we used monoenergetic neutrons from D(d, n)3He and T(d, n)4He reactions and a linear array of liquid scintillation detectors to perform spectroscopic neutron imaging of up to 13.7 kg of highly enriched uranium in a spherical geometry. We also show an example of detection of material diversion and confirm the presence of fissionable material based on the measurement of high-energy prompt fission neutrons, including estimating the quantity of material from the comparison of measured and predicted fission neutron emission rate. The combination of crude imaging and fissionable material detection and quantification in a simple approach may be attractive in certain treaty verification scenarios.

  1. NIPS–NORMA station—A combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Zoltán, E-mail: kis.zoltan@energia.mta.hu; Szentmiklósi, László; Belgya, Tamás

    2015-04-11

    Neutron attenuation, scattering or radiative capture are used in various non-destructive methods to gain morphological, structural, elemental or isotopic information about the sample under study. The combined use of position-sensitive prompt gamma-ray detection (i.e. prompt gamma-ray activation imaging, PGAI) and neutron radiography/tomography (NR/NT) makes it possible to determine the 3D distribution of major elements and to visualize internal structures of heterogeneous objects in a non-destructive way. Based on earlier experience, the first ever permanent facility for this purpose, NIPS–NORMA, was constructed at the Budapest Neutron Centre, Hungary in 2012. The installation consists of a well-shielded, Compton-suppressed HPGe detector; a CCD-camera based imaging equipment and a motorized positioning system with sample support. Conventional PGAA measurements and NR/NT imaging using guided cold neutrons are the basic methods that form the basis of the more sophisticated experimental method called NR/NT-driven PGAI. The current status of the experimental station and its characteristics are described in the present paper.

  2. Stable accretion from a cold disc in highly magnetized neutron stars

    Science.gov (United States)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.

    2017-11-01

    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  3. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  4. Recent improvements in the methodology of neutron imaging

    Indian Academy of Sciences (India)

    Recent improvements in the methodology of neutron imaging. EBERHARD H LEHMANN .... the user program, based on applied science and industrial partnership must be the driving force for the efficient use of the ... customers from the scientific and industrial community. The access to the faculties is organized via a ...

  5. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  6. Progress Update on Iterative Reconstruction of Neutron Tomographic Images

    Energy Technology Data Exchange (ETDEWEB)

    Hausladen, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gregor, Jens [Univ. of Tennessee, Knoxville, TN (United States)

    2016-09-15

    This report satisfies the fiscal year 2016 technical deliverable to report on progress in development of fast iterative reconstruction algorithms for project OR16-3DTomography-PD2Jb, "3D Tomography and Image Processing Using Fast Neutrons." This project has two overall goals. The first of these goals is to extend associated-particle fast neutron transmission and, particularly, induced-reaction tomographic imaging algorithms to three dimensions. The second of these goals is to automatically segment the resultant tomographic images into constituent parts, and then extract information about the parts, such as the class of shape and potentially shape parameters. This report addresses of the component of the project concerned with three-dimensional (3D) image reconstruction.

  7. The Signal Chain - how the Removal of an Image Intensifier at the AERE Reactor in Bangladesh Improves Neutron Imaging

    Science.gov (United States)

    Schillinger, Burkhard; Saha, Sudipta

    Most neutron imaging systems use a neutron sensitive scintillation screen and camera. Due to the highly exothermic nature of the detection reaction, many thousand photons are produced for one detected neutron. If an additional image intensifier is used, the signal generated by very few neutrons may saturate the camera without delivering sufficient neutron statistics to examine a neutron radiography sample. This article takes a look at the signal chain for neutron radiography and tries to give some help for estimating required statistics and exposure times.

  8. A neutron image plate quasi-Laue diffractometer for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Cipriani, F.; Castagna, J.C.; Wilkinson, C. [European Molecular Biology Laboratory, Grenoble (France)] [and others

    1994-12-31

    An instrument which is based on image plate technology has been constructed to perform cold neutron Laue crystallography on protein structures. The crystal is mounted at the center of a cylindrical detector which is 400mm long and has a circumference of 1000mm, with gadolinium oxide-containing image plates mounted on its exterior surface. Laue images registered on the plate are read out by rotating the drum and translating a laser read head parallel to the cylinder axis, giving a pixel size of 200{mu}m x 200{mu}m and a total read time of 5 minutes. Preliminary results indicate that it should be possible to obtain a complete data set from a protein crystal to atomic resolution in about two weeks.

  9. Neutron Imaging of Lithium Concentration in Battery Pouch Cells

    Science.gov (United States)

    2011-06-01

    resolution limit of currently available high resolution cross- strip anode Micro-Channel Plate ( MCP ) detectors [14], [15], [9]. Prior attempts to investigate...Lithium ion batteries using neutron imaging [7] were limited by the resolution of the imaging system, but the new high resolution MCP detector , with 10...transmission behavior, including optical effects due to the geometric unsharpness and the detector response. The resulting model provides the basis for a

  10. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  11. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    neutron with ferromagnetic samples and magnetic fields. For the first time, quantitative imaging of such samples could be performed using a dedicated compact Ramsey apparatus. First results of this spin-off project as well as the principle idea of the imaging technique are presented. (orig.)

  12. Influence of projectile neutron number on cross section in cold fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.

  13. Analysis of a measured neutron background below 6 MeV for fast-neutron imaging systems

    Science.gov (United States)

    Ide, K.; Becchetti, M. F.; Flaska, M.; Poitrasson-Riviere, A.; Hamel, M. C.; Polack, J. K.; Lawrence, C. C.; Clarke, S. D.; Pozzi, S. A.

    2012-12-01

    Detailed and accurate information on the neutron background is relevant for many applications that involve radiation detection, both for non-coincidence and coincidence countings. In particular, for the purpose of developing advanced neutron-detection techniques for nuclear non-proliferation and nuclear safeguards, the energy-dependent, ground-level, neutron-background information is needed. There are only a few previous studies available about the neutron background below 10 MeV, which is a typical neutron energy range of interest for nuclear non-proliferation and nuclear-safeguards applications. Thus, there is a potential for further investigation in this energy range. In this paper, neutron-background measurement results using organic-liquid scintillation detectors are described and discussed, with a direct application in optimization simulations of a fast-neutron imager based on liquid scintillators. The measurement was performed in summer 2011 in Ann Arbor, Michigan, USA, and the measurement setup consisted of several EJ-309 liquid scintillators and a fast waveform digitizer. The average neutron flux below 6 MeV was measured to be approximately 4e-4 counts/cm2/s. In addition, the relationship between the neutron-background count rate and various environmental quantities, such as humidity, at Earth's ground level was investigated and the results did not reveal any straightforward dependences. The measured pulse height distribution (PHD) was unfolded to determine the energy spectrum of the background neutrons. The unfolded neutron-background spectrum was implemented to a previously-created MCNPX-PoliMi model of the neutron-scatter camera and simple-backprojection images of the background neutrons were acquired. Furthermore, a simulated PHD was obtained with the MCNPX-PoliMi code using the "Cosmic-Ray Shower Library" (CRY) source sub-routine which returns various types of radiation, including neutrons and photons at a surface, and accounts for solar cycle

  14. Bubble masks for time-encoded imaging of fast neutrons.

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  15. High-resolution neutron microtomography with noiseless neutron counting detector

    Science.gov (United States)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.; Lehmann, E.; Butler, L. G.; Dawson, M.

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency (˜70% for cold neutrons), spatial resolutions ranging from 15 to 55 μm and a temporal resolution of ˜1 μs—combined with the virtual absence of readout noise—make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual ˜400 μm grains in an organic powder encapsulated in a ˜700 μm thick metal casing.

  16. Longitudinal-gradient magnet for time focusing of ultra-cold neutrons

    Science.gov (United States)

    Arimoto, Y.; Yoshioka, T.; Shimizu, H. M.; Mishima, K.; Ino, T.; Taketani, K.; Muto, S.; Kitaguchi, M.; Imajo, S.; Iwashita, Y.; Yamashita, S.; Kamiya, Y.; Yoshimi, A.; Asahi, K.; Shima, T.; Sakai, K.

    A gradient DC magnet is designed using 3D magnetic field analysis code. This magnet, referred to as a B0 magnet, is one of the key elements of a time-focusing device for ultra-cold neutrons (UCNs) based on a radio frequency gradient flipper - a so-called rebuncher. The magnet generates a guide and a potential field that interacts with the magnetic moment of UCNs and its main body comprises a C-shaped yoke made from iron. A field gradient is generated by a pole arrangement that includes an anisotropic inter-pole, which causes the fringe field to be uniform in the longitudinal direction even when the pole gap distance changes. The designed magnet has the following properties: (1) a maximum B-field of 10 kGauss, decreasing to 2 kGauss at a longitudinal distance of 25 cm, with a gradient of less than 400 Gauss/cm, (2) variations in the fringe field along the y direction is less than 4% over a range of - 3 cm≤ y ≤ 3 cm at any z position in the spin-flipping region. Tracking simulations show that the B0 magnet is capable of accepting UCNs in the velocity range 2.3∼3.3 m/s.

  17. Using CFD as Preventative Maintenance Tool for the Cold Neutron Source Thermosiphon System

    Directory of Open Access Journals (Sweden)

    Mark Ho

    2016-01-01

    Full Text Available The cold neutron source (CNS system of the Open Pool Australian Light-Water (OPAL reactor is a 20 L cryogenically cooled liquid deuterium thermosiphon system. The CNS is cooled by forced convective helium which is held at room temperature during stand-by (SO mode and at ~20 K during normal operation (NO mode. When helium cooling stops, the reactor is shut down to prevent the moderator cell from overheating. This computational fluid dynamics (CFD study aims to determine whether the combined effects of conduction and natural convection would provide sufficient cooling for the moderator cell under the influence of reactor decay heat after reactor shutdown. To achieve this, two commercial CFD software packages using an identical CFD mesh were first assessed against an experimental heat transfer test of the CNS. It was found that both numerical models were valid within the bounds of experimental uncertainty. After this, one CFD model was used to simulate the thermosiphon transient condition after the reactor is shut down. Two independent shutdown conditions of different decay-heat power profiles were simulated. It was found that the natural convection and conduction cooling in the thermosiphon were sufficient for dissipating both decay-heat profiles, with the moderator cell remaining below the safe temperature of 200°C.

  18. Analysis of the electric power system of HANARO cold neutron source using ETAP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. K.; Jung, H. S.; Kim, Y. K

    2005-05-15

    The analysis of load flow is for searching the optimal operation condition by computer simulation. The analyzed items are as follows. Active and reactive power from KAERI substation. Voltage drop on Tus. Analysis of load flow of active power and reactive power on Bus The motor starting current of most ac motors is several times normal full load current. Motor starting torque varies directly as square of the applied voltage. If the terminal voltage drop is excessive, the motor may not have enough starting torque to accelerate up to running speed. Running motors may stall from excessive voltage drops. Short-circuit studies are done to determine the magnitude of the prospective currents flowing throughout the power system at various time intervals after a fault occurs. Short-circuit studies can be performed at the planning stage in order to help finalize the system layout, determine voltage levels, and size cables, transformers, and conductors. For existing systems, fault studies are necessary in the cases of installation of extra rotating loads, system layout modifications, rearrangement of protection equipment, verification of the adequacy of existing breakers. This technical report deals with the load flow study, motor starting study and short circuit study for CNS(Cold Neutron Source) power system using ETAP(Electrical Transient Analyzer Program) to determine the optimal operating condition.

  19. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  20. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  1. Characterization of European sword blades through neutron imaging techniques

    Science.gov (United States)

    Salvemini, F.; Grazzi, F.; Peetermans, S.; Gener, M.; Lehmann, E. H.; Zoppi, M.

    2014-09-01

    In the present work, we have studied two European rapier blades, dating back to the period ranging from the Late Renaissance to the Early Modern Age (about 17th to 18th century). In order to determine variation in quality and differences in technology, a study was undertaken with the purpose to observe variations in the blade microstructure (and consequently in the construction processes). The samples, which in the present case were expendable, have been investigated, preliminarily, through standard metallography and then by means of white beam and energy-selective neutron imaging. The comparison of the results, using the two techniques, turned out to be satisfactory, with a substantial quantitative agreement of the results obtained with the two techniques, and show the complementarity of the two methods. Metallography has been considered up to now the method of choice for metal material characterization. The correspondence between the two methods, as well as the non-invasive character of the neutron-based techniques and its possibility to obtain 3D reconstruction, candidate neutron imaging as an important and quantitatively reliable technique for metal characterization.

  2. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    Science.gov (United States)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  3. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Festa, G., E-mail: giulia.festa@roma2.infn.it [Università degli Studi di Roma Tor Vergata (Italy); Università degli Studi di Milano-Bicocca (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Tardino, G. [BauArt Basel, Basel (Switzerland); Pontecorvo, L. [Conservatorio di Cosenza – Cosenza Conservatory (Italy); Mannes, D.C. [Paul Scherrer Institut, Villigen (Switzerland); Senesi, R. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy); Gorini, G. [Università degli Studi di Milano-Bicocca (Italy); Andreani, C. [Università degli Studi di Roma Tor Vergata (Italy); Consiglio Nazionale delle Ricerche-IPCF, Messina (Italy)

    2014-10-01

    A set of seven musical instruments and two instruments cares from the ‘Fondo Antico della Biblioteca del Sacro Convento’ in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments’ restoration process.

  4. Neutron and Gamma Imaging for National Security Applications

    Science.gov (United States)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  5. Neutrons and music: Imaging investigation of ancient wind musical instruments

    Science.gov (United States)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D. C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-10-01

    A set of seven musical instruments and two instruments cares from the 'Fondo Antico della Biblioteca del Sacro Convento' in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments' restoration process.

  6. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    Science.gov (United States)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  7. Production of ultra cold neutrons with a solid deuterium converter; Produktion von ultrakalten Neutronen mit einem festen Deuteriumkonverter

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Andreas

    2008-10-28

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particle physics. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates for experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the neutron lifetime ({tau}{sub n}), the axial-vector coupling constant (g{sub A}), or in search of quantum effects of gravity. In this work the setup of a source for ultra cold neutrons with a solid deuterium converter is described, which serves as a prototype for a new, strong UCN source, that is currently designed and constructed at the FRMII in Garching. The prototype source has been taken into operation and important parameters have been measured. These experimental results have been compared with theoretical models to prove calculations for the performance of the new source at the FRMII. (orig.)

  8. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  9. Image enhancement using MCNP5 code and MATLAB in neutron radiography.

    Science.gov (United States)

    Tharwat, Montaser; Mohamed, Nader; Mongy, T

    2014-07-01

    This work presents a method that can be used to enhance the neutron radiography (NR) image for objects with high scattering materials like hydrogen, carbon and other light materials. This method used Monte Carlo code, MCNP5, to simulate the NR process and get the flux distribution for each pixel of the image and determines the scattered neutron distribution that caused image blur, and then uses MATLAB to subtract this scattered neutron distribution from the initial image to improve its quality. This work was performed before the commissioning of digital NR system in Jan. 2013. The MATLAB enhancement method is quite a good technique in the case of static based film neutron radiography, while in neutron imaging (NI) technique, image enhancement and quantitative measurement were efficient by using ImageJ software. The enhanced image quality and quantitative measurements were presented in this work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High-resolution neutron imaging of laser imploded DT targets

    Energy Technology Data Exchange (ETDEWEB)

    Disdier, L. E-mail: laurent.disdier@cea.fr; Rouyer, A.; Wilson, D.C.; Fedotoff, A.; Stoeckl, C.; Bourgade, J.-L.; Glebov, V.Yu.; Garconnet, J.-P.; Seka, W

    2002-08-21

    Using a penumbral technique with a biconical aperture we have obtained neutron images with the highest spatial resolution ever achieved. Implosions at the Omega laser of deuterium-tritium-filled glass microballoons with 2.5 and 4.2 {mu}m thick walls produced images with full-width at half-maximums of 78 and 62 {mu}m recorded with a resolution of 60 and 45 {mu}m, respectively. Image sizes are in good agreement with calculations when the effects of noise are included. Higher geometrical spatial resolution and a new deconvolution technique improve the previous measurements of Ress et al. (Science 241 (1988) 956) obtained with a 80 {mu}m resolution.

  11. High-resolution neutron imaging of laser imploded DT targets

    CERN Document Server

    Disdier, L; Wilson, D C; Fedotoff, A; Stoeckl, C; Bourgade, J L; Glebov, V Yu; Garconnet, J P; Seka, W

    2002-01-01

    Using a penumbral technique with a biconical aperture we have obtained neutron images with the highest spatial resolution ever achieved. Implosions at the Omega laser of deuterium-tritium-filled glass microballoons with 2.5 and 4.2 mu m thick walls produced images with full-width at half-maximums of 78 and 62 mu m recorded with a resolution of 60 and 45 mu m, respectively. Image sizes are in good agreement with calculations when the effects of noise are included. Higher geometrical spatial resolution and a new deconvolution technique improve the previous measurements of Ress et al. (Science 241 (1988) 956) obtained with a 80 mu m resolution.

  12. Signal processing system based on FPGAs for neutron imaging detectors using scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ebine, M.; Katagiri, M. E-mail: kata@stsp2a0.tokai.jaeri.go.jp; Birumachi, A.; Matsubayashi, M.; Sakasai, K.; Sato, S

    2004-08-21

    A signal processing system based on field programmable gate arrays (FPGAs) was developed for a 64 channelx64 channel neutron imaging device using a wavelength shifting fiber read-out based on a photon-counting method. Light signals detected by 64 channel multi-anode photomultipliers are amplified and converted to digital photon signals containing incident-position and time information of neutron by using high-speed amplifiers and discriminators. By using coincidence circuits made in FPGAs, the incident position of neutron is determined based on these digital signals. A neutron imaging detector composed of the signal processing system and a neutron imaging device with a ZnS:Ag/{sup 6}LiF scintillator was evaluated by using neutron beam. It was confirmed that the signal processing based on FPGAs was effective to determine a precise incident position of neutron with high speed and many channel.

  13. Large aperture fast neutron imaging detector with 10-ns time resolution

    Science.gov (United States)

    Arikawa, Y.; Matsubara, S.; Abe, Y.; Kato, Y.; Kishimoto, H.; Yogo, A.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Otake, Y.; Mima, K.; Honda, Y.

    2017-02-01

    Fast neutrons, which are neutrons with energies greater than 1 MeV, are expected to be a source of nondestructive inspection for a large-size infrastructure such as a bridge girder because of their mean free path exceeding the meter. A neutron-imaging device with 10-ns time resolution can discriminate pulsed neutrons from X-rays via time of flight. For this purpose, we require a fast-response neutron imager with large aperture and high image resolution. A neutron-imaging device with time resolution of 10 ns and aperture size of 40 cm × 60 cm was developed. It was filled with fast response liquid scintillator [1] in an aluminum honeycomb plate, which converts neutrons to optical light images. The scintillation light images were relayed using an optical lens and detected using a fast response image intensified CCD. The detector was tested at an electron linear accelerator (LINAC) facility in Osaka University. A short X-ray pulse (30 ps pulse duration) was generated using LINAC, and X-ray radiograph images were obtained with a 10- ns exposure time duration. The radiograph images were well attenuated within 10-ns from the X-ray injection. A high energy X-ray image and a neutron radiograph image of a 30-cm thick concrete block with iron blocks located behind it were successfully observed. This promising technique could facilitate nondestructive inspection of large concrete constructions.

  14. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  15. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  16. High efficiency event-counting thermal neutron imaging using Gd doped micro channel plate

    OpenAIRE

    Tian, Yang; Yang, Yigang; Pan, Jingsheng; Li, Yulan; Li, Yuanjing

    2013-01-01

    An event-counting thermal neutron imaging detector based on 3 mol % natGd2O3 doped micro channel plate (MCP) has been developed and tested. Thermal neutron imaging experiment was carried out with a low flux neutron beam. Detection efficiency of 33 % was achieved with only one doped MCP. The spatial resolution of 72 {\\mu}m RMS is currently limited by the readout anode. A detector with larger area and improved readout method is now being developed.

  17. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    Science.gov (United States)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  18. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  19. A SrBPO sub 5 Eu sup 2 sup + storage phosphor for neutron imaging

    CERN Document Server

    Sakasai, K; Toh, K; Takahashi, H; Nakazawa, M; Kondo, Y

    2002-01-01

    The phosphor material SrBPO sub 5 :Eu sup 2 sup + has been investigated for two-dimensional imaging for a pulsed-neutron source. We found that this phosphor itself shows photostimulated luminescence by illumination with 635-nm laser light after neutron irradiation without adding any neutron-sensitive materials such as Gd. The neutron sensitivity was proportional to E sup - sup 0 sup . sup 5 , where E is the neutron energy. The neutron sensitivity was also increased by using enriched boron instead of natural boron. The S subgamma/S sub n ratio of this phosphor using enriched boron was better than that of a commercially available imaging plate, where S subgamma and S sub n are the gamma and neutron sensitivities, respectively. (orig.)

  20. Development of low temperature solid state detectors for ultra-cold neutrons within superfluid sup 4 He

    CERN Document Server

    Baker, C A; Green, K; Grinten, M G D; Iaydjiev, P S; Ivanov, S N; Pendlebury, J M; Shiers, D B; Tucker, M A H; Yoshiki, H; Geltenbort, P

    2003-01-01

    As part of an R and D programme for the development of a next-generation experiment to measure the neutron electric dipole moment, in which ultra-cold neutrons (UCN) are produced and stored in superfluid sup 4 He (superthermal source), we have developed cryogenic detectors of UCN that can operate in situ within the superfluid. Surface barrier detectors and PIN diode detectors have been tested and proven to work well at temperatures as low as 80 mK. When combined with a layer of sup 6 LiF which converts neutrons to charged particles, these detectors form a reliable UCN detection system which has been tested in liquid helium down to 430 mK. The detectors have operated within superfluid helium for periods of up to 30 days with no signs of degradation. The development of this detection system has enabled us to measure the flux of UCN from a superthermal UCN source with no intervening transmission windows which can attenuate the flux. The addition of thin films of magnetically aligned iron also enables these detec...

  1. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Martin Johann

    2013-07-19

    This work is concerned with the investigation of inhomogeneities in materials with length scales of the order of micrometers by means of neutrons. In real space this is done by neutron imaging methods measuring the transmitted signal while for Ultra Small Angle Neutron Scattering (USANS) the signal of the scattered neutrons is assigned to a spatial frequency distribution in reciprocal space. The part about neutron imaging is focused on time-resolved neutron radiography on an injection nozzle similar to the ones used for modern diesel truck engines. The associated experiments have been carried out at the neutron imaging facility ANTARES at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) of the Technische Universitaet Muenchen in Garching near Munich. Especially the demands on the detector system were high. Therefore different detection methods and detector configurations have been tested. On the one hand the detector should allow for a time resolution high enough to record the injection process lasting about 900 μs. On the other hand it needed to offer a spatial resolution sufficient to resolve the test oil inside the spray hole of a maximum diameter of less than 200 μm. An advanced aim of this work is the visualization of cavitation phenomena which may occur during the injection process inside of the spray hole. In order to operate the injector at conditions as close to reality as possible a high pressure pump supplying the injector with test oil at a pressure of 1600 bar was needed in addition to the specially developed control electronics, the recuperation tank and the exhaust gas equipment for the escaping atomized spray. A second part of the work describes USANS experiments based on the idea of Dr. Roland Gaehler and carried out at the instrument D11 at the Institut Laue-Langevin in Grenoble. For this purpose a specific multi-beam geometry was applied, where a multi-slit aperture replaced the standard source aperture and the sample aperture was

  2. From X-Ray Telescopes to Neutron Focusing

    Science.gov (United States)

    Gubarev, M. V.; Khaykovich, B.; Ramsey, B.; Moncton, D. E.

    2011-01-01

    In the case of neutrons the refractive index is slightly less than unity for most elements and their isotopes. Consequently, thermal and cold neutrons can be reflected from smooth surfaces at grazing-incidence angles. Hence, the optical technologies developed for x-ray astronomy can be applied for neutron focusing. The focusing capabilities of grazing incidence neutron imaging optics have been successfully demonstrated using nickel mirrors. The mirrors were fabricated using an electroformed nickel replication process at Marshall Space Flight Center. Results of the neutron optics experiments will be presented. Challenges of the neutron imaging optics as well as possible applications of the optics will be discussed.

  3. Geant4 Analysis of a Thermal Neutron Real-Time Imaging System

    Science.gov (United States)

    Datta, Arka; Hawari, Ayman I.

    2017-07-01

    Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.

  4. Neutron imaging and tomography with Medipix2 and dental micro-roentgenography

    Energy Technology Data Exchange (ETDEWEB)

    Jakubek, J. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Granja, C. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic)]. E-mail: carlos.granja@utef.cvut.cz; Holy, T. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Lehmann, E. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Linhart, V. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Pospisil, S. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Rypar, V. [Nuclear Research Institute, Rez near Prague, CZ-25068 (Czech Republic); Uher, J. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Vacik, J. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez near Prague, CZ-25068 (Czech Republic); Vavrik, D. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Vykydal, Z. [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, CZ-12800 Prague 2 (Czech Republic); Cevallos, M. [Faculty of Medicine, Charles University Hradec Kralove (Czech Republic)

    2006-12-20

    The position-sensitive semiconductor Medipix2 detector has been adapted for high-resolution dental X-ray and neutron imaging. As a fully electronic, low-dose and high spatial resolution digital dental-imaging device the system aims to observe the bone-to-implant tissue of order of tens of microns. Neutron radiography is proposed as a complementary diagnostic method to standard X-ray radiography as it can produce contrast images of materials which are otherwise indistinguishable in X-ray images. Neutron radiography and tomography tests have been carried out. Results are compared with other techniques. A review of recent developments and current status is presented.

  5. Aperture tolerances for neutron-imaging systems in inertial confinement fusion.

    Science.gov (United States)

    Ghilea, M C; Sangster, T C; Meyerhofer, D D; Lerche, R A; Disdier, L

    2008-02-01

    Neutron-imaging systems are being considered as an ignition diagnostic for the National Ignition Facility (NIF) [Hogan et al., Nucl. Fusion 41, 567 (2001)]. Given the importance of these systems, a neutron-imaging design tool is being used to quantify the effects of aperture fabrication and alignment tolerances on reconstructed neutron images for inertial confinement fusion. The simulations indicate that alignment tolerances of more than 1 mrad would introduce measurable features in a reconstructed image for both pinholes and penumbral aperture systems. These simulations further show that penumbral apertures are several times less sensitive to fabrication errors than pinhole apertures.

  6. Characterization of a neutron sensitive MCP/Timepix detector for quantitative image analysis at a pulsed neutron source

    Science.gov (United States)

    Watanabe, Kenichi; Minniti, Triestino; Kockelmann, Winfried; Dalgliesh, Robert; Burca, Genoveva; Tremsin, Anton S.

    2017-07-01

    The uncertainties and the stability of a neutron sensitive MCP/Timepix detector when operating in the event timing mode for quantitative image analysis at a pulsed neutron source were investigated. The dominant component to the uncertainty arises from the counting statistics. The contribution of the overlap correction to the uncertainty was concluded to be negligible from considerations based on the error propagation even if a pixel occupation probability is more than 50%. We, additionally, have taken into account the multiple counting effect in consideration of the counting statistics. Furthermore, the detection efficiency of this detector system changes under relatively high neutron fluxes due to the ageing effects of current Microchannel Plates. Since this efficiency change is position-dependent, it induces a memory image. The memory effect can be significantly reduced with correction procedures using the rate equations describing the permanent gain degradation and the scrubbing effect on the inner surfaces of the MCP pores.

  7. Conversion from Film to Image Plates for Transfer Method Neutron Radiography of Nuclear Fuel

    Science.gov (United States)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.; Williams, Walter J.

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutron radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.

  8. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.; Williams, Walter J.

    2017-02-01

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutron radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.

  9. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DEFF Research Database (Denmark)

    Makowska, Malgorzata G.; Kuhn, Luise Theil; Cleemann, Lars Nilausen

    2015-01-01

    with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 ◦C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging......High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible...

  10. Lithium fluoride crystal as a novel high dynamic neutron imaging detector with microns scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, Anatoly; Pikuz, Tatiana [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); High Temperatures, Russian Academy of Sciences, Izhorskaja Street 13/19, Moscow (Russian Federation); Matsubayashi, Masahito; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Fukuda, Yuji; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Shiozawa, Masahiro [Nippon SOKEN, Inc., Iwaya 14, Shimohasumi, Nishio, Aichi 445-0012 (Japan); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan)

    2012-12-15

    Recently, a new field of application of optically stimulated luminescence of color centers (CCs) in lithium fluoride (LiF) crystals was proposed - using them for high-performance neutron imaging - and promising results were obtained (Matsubayashi et al., Nucl. Instrum. Methods A 622, 637 (2010) and Matsubayashi et al., Nucl. Instrum. Methods A 651, 90 (2011)). Here we present the overview of main findings, which clearly demonstrated that the LiF crystal performs efficiently as neutron imaging detector in areas, where a high spatial resolution with a high image gradation resolution is needed. It was shown that the obtained neutron images are almost free from granular noises, have spatial resolution of {proportional_to} 6 {mu}m, and have practically linear response with the dynamic range of at least 10{sup 3}. It was also found that the LiF crystal detector offers a fairly good sensitivity. Moreover, detailed evaluation using a standard sensitivity indicator for neutron radiography showed that two holes with less than 2% transmittance differences could be distinguished. Additionally, we recently demonstrated that the high resolution neutron imaging with LiF crystals could be useful for quantitative characterizations of neutron sources and electric devices, comprising of low-Z elements, for example, such as fuel cells. All of this gives new opportunity for microns scale spatial resolution imaging by neutrons (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Neutron penumbral imaging simulation and reconstruction for Inertial Confinement Fusion Experiments

    CERN Document Server

    Wang, Xian-You; Tang, Yun-qing; Tang, Zhi-Cheng; Xiao, Hong; Xu, Ming

    2012-01-01

    Neutron penumbral imaging technique has been successfully used as the diagnosis method in Inertial Con?ned Fusion. To help the design of the imaging systems in the future in CHINA. We construct the Monte carlo imaging system by Geant4. Use the point spread function from the simulation and decode algorithm (Lucy-Rechardson algorithm) we got the recovery image.

  12. Parameters affecting image quality with Time-Resolved Optical Integrative Neutron (TRION) detector

    Energy Technology Data Exchange (ETDEWEB)

    Mor, I., E-mail: ilanmor@yahoo.co [Soreq NRC, Yavne 81800 (Israel); Vartsky, D.; Feldman, G. [Soreq NRC, Yavne 81800 (Israel); Dangendorf, V. [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany); Bar, D.; Goldberg, M.B. [Soreq NRC, Yavne 81800 (Israel); Tittelmeier, K.; Bromberger, B.; Weierganz, M. [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany); Brandis, M. [Soreq NRC, Yavne 81800 (Israel)

    2011-06-01

    We have investigated by simulations and experimentally the parameters that affect image quality (contrast and spatial-resolution) of the fast neutron TRION detector. A scintillating fiber screen with 0.5x0.5 mm{sup 2} square fibers, few centimeters thick, provides superior spatial-resolution to that of a slab scintillator of the same thickness. A detailed calculation of the neutron interaction processes that influence the point-spread function (PSF) in the scintillating screen has been performed using the GEANT 3.21 code. The calculations showed that neutron scattering within the screen accounts for a significant loss of image contrast. The factors that limit the spatial-resolution of the image are the cross-sectional scintillating-fiber dimensions within the screen and the spatial response of the image-intensifier. A deconvolution method has been applied for restoring the contrast and the spatial-resolution of the fast neutron image.

  13. Parameters affecting image quality with Time-Resolved Optical Integrative Neutron (TRION) detector

    Science.gov (United States)

    Mor, I.; Vartsky, D.; Feldman, G.; Dangendorf, V.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Bromberger, B.; Weierganz, M.; Brandis, M.

    2011-06-01

    We have investigated by simulations and experimentally the parameters that affect image quality (contrast and spatial-resolution) of the fast neutron TRION detector. A scintillating fiber screen with 0.5×0.5 mm 2 square fibers, few centimeters thick, provides superior spatial-resolution to that of a slab scintillator of the same thickness. A detailed calculation of the neutron interaction processes that influence the point-spread function (PSF) in the scintillating screen has been performed using the GEANT 3.21 code. The calculations showed that neutron scattering within the screen accounts for a significant loss of image contrast. The factors that limit the spatial-resolution of the image are the cross-sectional scintillating-fiber dimensions within the screen and the spatial response of the image-intensifier. A deconvolution method has been applied for restoring the contrast and the spatial-resolution of the fast neutron image.

  14. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Durini, Daniel, E-mail: d.durini@fz-juelich.de [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Degenhardt, Carsten; Rongen, Heinz [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Feoktystov, Artem [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching (Germany); Schlösser, Mario; Palomino-Razo, Alejandro [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Frielinghaus, Henrich [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching (Germany); Waasen, Stefan van [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany)

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λ{sub n}=5 Å or neutron energy of E{sub n}=3.27 meV) up to a neutron dose of 6×10{sup 12} n/cm{sup 2}. The dark signals as well as the breakdown voltages (V{sub br}) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped {sup 6}Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. I{sub out}-V{sub bias} measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  15. Design, construction, and demonstration of a neutron beamline and a neutron imaging facility at a Mark-I TRIGA reactor

    Science.gov (United States)

    Craft, Aaron E.

    The fleet of research and training reactors is aging, and no new research reactors are planned in the United States. Thus, there is a need to expand the capabilities of existing reactors to meet users' needs. While many research reactors have beam port facilities, the original design of the United States Geological Survey TRIGA Reactor (GSTR) did not include beam ports. The MInes NEutron Radiography (MINER) facility developed by this thesis and installed at the GSTR provides new capabilities for both researchers and students at the Colorado School of Mines. The facility consists of a number of components, including a neutron beamline and beamstop, an optical table, an experimental enclosure and associated interlocks, a computer control system, a multi-channel plate imaging detector, and the associated electronics. The neutron beam source location, determined through Monte Carlo modeling, provides the best mixture of high neutron flux, high thermal neutron content, and low gamma radiation content. A Monte Carlo n-Particle (MCNP) model of the neutron beam provides researchers with a tool for designing experiments before placing objects in the neutron beam. Experimental multi-foil activation results, compared to calculated multi-foil activation results, verify the model. The MCNP model predicts a neutron beamline flux of 2.2*106 +/- 6.4*105 n/cm2-s based on a source particle rate determined from the foil activation experiments when the reactor is operating at a power of 950 kWt with the beam shutter fully open. The average cadmium ratio of the beamline is 7.4, and the L/D of the neutron beam is approximately 200+/-10. Radiographs of a sensitivity indicator taken using both the digital detector and the transfer foil method provide one demonstration of the radiographic capabilities of the new facility. Calibration fuel pins manufactured using copper and stainless steel surrogate fuel pellets provide additional specimens for demonstration of the new facility and offer a

  16. Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion.

    Science.gov (United States)

    Arikawa, Y; Yamanoi, K; Nakazato, T; Estacio, E S; Shimizu, T; Sarukura, N; Nakai, M; Hosoda, H; Norimatsu, T; Hironaka, Y; Azechi, H; Izumi, N; Murata, T; Fujino, S; Yoshida, H; Kamada, K; Usuki, Y; Suyama, T; Yoshikawa, A; Satoh, N; Kan, H

    2010-10-01

    A custom developed (6)Li glass scintillator (APLF80+3Pr) for down-scattered neutron diagnostics in inertial confinement fusion experiments is presented. (6)Li provides an enhanced sensitivity for down-scattered neutrons in DD fusion and its experimentally observed 5-6 ns response time fulfills the requirement for down-scattered neutron detectors. A time-of-flight detector operating in the current mode using the APLF80+3Pr was designed and its feasibility observing down-scattered neutrons was demonstrated. Furthermore, a prototype design for a down-scattered neutron imaging detector was also demonstrated. This material promises viability as a future down-scattered neutron detector for the National Ignition Facility.

  17. Down-scattered neutron imaging detector for areal density measurement of inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Arikawa, Y.; Yamanoi, K.; Nakazato, T.; Estacio, E. S.; Shimizu, T.; Sarukura, N.; Nakai, M.; Hosoda, H.; Norimatsu, T.; Hironaka, Y.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Izumi, N. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Murata, T. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan); Fujino, S. [Kyushu University, 744 Nishiku, Motooka, Fukuoka 819-0395 (Japan); Yoshida, H. [Ceramic Research Center of Nagasaki, Hiekoba, Hisami, Higashisonogi 859-3726 (Japan); Kamada, K.; Usuki, Y. [Furukawa Co. Ltd., 1-25-13 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Suyama, T. [Tokuyama Co. Ltd., 3-3-1 Shibuyaku, Shibuya, Tokyo 150-8383 (Japan); Yoshikawa, A. [Tohoku University, 2-1-1 Katahira, Aoyou, Sendai, Miyagi 980-8577 (Japan); Satoh, N. [Hamamatsu Photonics K.K., 5000 Hiraguchi, Hamakitaku, Hamamatsu, Shizuoka 434-8601 (Japan); and others

    2010-10-15

    A custom developed {sup 6}Li glass scintillator (APLF80+3Pr) for down-scattered neutron diagnostics in inertial confinement fusion experiments is presented. {sup 6}Li provides an enhanced sensitivity for down-scattered neutrons in DD fusion and its experimentally observed 5-6 ns response time fulfills the requirement for down-scattered neutron detectors. A time-of-flight detector operating in the current mode using the APLF80+3Pr was designed and its feasibility observing down-scattered neutrons was demonstrated. Furthermore, a prototype design for a down-scattered neutron imaging detector was also demonstrated. This material promises viability as a future down-scattered neutron detector for the National Ignition Facility.

  18. Resolved 200mu M images of nearby galaxies - evidence for an extended distribution of cold dust

    NARCIS (Netherlands)

    Valentijn, E; Alton, P.B.; Threwhella, M.; Davies, J.I.; Bianchi, S.; Gear, W.; Thronson, H.; Witt, A.

    1998-01-01

    We present resolved 200mu m images for 8 nearby galaxies observed with the Infrared Space Observatory (ISO). By comparing the 200mu m observations with IRAS 60mu m and 100mu m data, we find that cold dust becomes more dominant at larger radii. We infer a grain temperature of 18-21 K for this cold

  19. Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. 1. Square channels with B-10 doping

    OpenAIRE

    Tremsin, A. S.; Feller, W B; Downing, R. G.

    2005-01-01

    Microchannel plate (MCP) event-counting imaging detectors with very high spatial resolution (~10 um) and timing accuracy (~100 ps) are widely employed for the detection and imaging applications of electrons and ions, as well as UV and X-ray photons. Recently, it was demonstrated that the many advantages of MCPs are also applicable to neutron detection with high two-dimensional spatial resolution. Boron, enriched in the isotope B-10, was added to the MCP glass structure to enhance the neutron ...

  20. Efficiency optimization of microchannel plate (MCP) neutron imaging detectors: I. Square channels with 10B doping.

    OpenAIRE

    Anton S. Tremsin

    2005-01-01

    Microchannel plate (MCP) event-counting imaging detectors with very high spatial resolution (~10 µm) and timing accuracy (~100 ps) are widely employed for the detection and imaging applications of electrons and ions, as well as UV and X-ray photons. Recently it was demonstrated that the many advantages of MCPs are also applicable to neutron detection with high 2-dimensional spatial resolution. Boron, enriched in the isotope 10B, was added to the MCP glass structure to enhance the neutron inte...

  1. Design and Characterization of a Hydride-based Hydrogen Storage Container for Neutron Imaging Studies

    Science.gov (United States)

    Baruj, A.; Ardito, M.; Marín, J.; Sánchez, F.; Borzone, E. M.; Meyer, G.

    We have designed, constructed and tested a prototype hydride-based container to in-situ observe the hydride decomposition process using a neutron imaging facility. This work describes the container design parameters and the experimental setup used for the studies. The results open new possibilities for the application of the neutron imaging technique to visualize the internal state of massive hydride-based hydrogen containers, thus aiding in the design of efficient hydrogen storage tanks.

  2. Neutron dark field imaging of domain structures in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Tommy; Schulz, Michael [TU Muenchen, Forschungsneutronenquelle Heinz Maier Leibnitz (FRM II), 85747 Garching (Germany); Physik Department E21, TU Muenchen, 85747 Garching (Germany); Gruenzweig, Christian [Paul-Scherrer-Institut, CH-5232 Villigen (Switzerland); Muehlbauer, Sebastian [TU Muenchen, Forschungsneutronenquelle Heinz Maier Leibnitz (FRM II), 85747 Garching (Germany); Boeni, Peter [Physik Department E21, TU Muenchen, 85747 Garching (Germany)

    2013-07-01

    In the intermediate mixed state (IMS) of a type II superconductor (SC), the sample splits up into field-free Meissner domains and Shubnikov domains which carry the vortex lattice. The IMS is analog to the intermediate state (IS) of a type-I superconductor with normal and superconducting domains. Experiments on the topology of both states show a variety of different patterns including striped, dendritic and bubble phases, which represent typical domain morphologies also seen in various other physical contexts. A detailed investigation of domain patterns offers the possibility to study general characteristics of domain nucleation and morphology as well as the physical properties of vortex-vortex interactions. Domain structures in SC are typically investigated by surface sensitive techniques such as magneto optical imaging, but flux pinning as well as Landau branching can significantly hamper the deduction of bulk properties. In this talk we show how neutron grating interferometry (nGI) can be used as a tool for the unambiguous identification of bulk properties. The capability of this unique technique will be demonstrated on Pb and Nb single crystals, which are classical representatives of type I and type II SC respectively.

  3. Double-Scatter Fast-Neutron Imaging for National Security Applications

    Science.gov (United States)

    Polack, John

    2017-09-01

    Fast neutron imaging based on two (or more) elastic scatters provides more event-by-event information on incident neutron energy and direction than imaging based on single-scatter events. However, the requirement of two scatters in different detectors means that this information comes at the cost of lower intrinsic efficiency. Sandia National Laboratories has been involved in the development of several double-scatter neutron imagers over the past decade, including the Neutron Scatter Camera and MINER (Mobile Imager of Neutrons for Emergency Responders). Recent work has been focused on developing uncertainty quantification techniques to help leverage the rich information carried by double-scatter events and provide quantitative decision metrics for detection and diagnostic applications. Work is also underway to develop a single-volume scatter camera, based on utilizing multiple neutron scatters in a single scintillator volume, which will mitigate the typical loss in efficiency suffered by double-scatter imagers. This talk will present a brief overview of this ongoing work, with a focus on simulated response characterization of both traditional double-scatter imagers and the single-volume scatter camera. Preferred name is Kyle (middle name).

  4. New Image of Comet Halley in the Cold

    Science.gov (United States)

    2003-09-01

    VLT Observes Famous Traveller at Record Distance Summary Seventeen years after the last passage of Comet Halley , the ESO Very Large Telescope at Paranal (Chile) has captured a unique image of this famous object as it cruises through the outer solar system. It is completely inactive in this cold environment. No other comet has ever been observed this far - 4200 million km from the Sun - or that faint - nearly 1000 million times fainter than what can be perceived with the unaided eye. This observation is a byproduct of a dedicated search [1] for small Trans-Neptunian Objects, a population of icy bodies of which more than 600 have been found during the past decade. PR Photo 27a/03 : VLT image (cleaned) of Comet Halley PR Photo 27b/03 : Sky field in which Comet Halley was observed PR Photo 27c/03 : Combined VLT image with star trails and Comet Halley The Halley image ESO PR Photo 27a/03 ESO PR Photo 27a/03 [Preview - JPEG: 546 x 400 pix - 207k] [Normal - JPEG: 1092 x 800 pix - 614k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] Caption : PR Photo 27a/03 shows the faint, star-like image of Comet Halley (centre), observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures from three of the four 8.2-m VLT telescopes with a total exposure time of about 9 hours were combined to show the magnitude 28.2 object. At this time, Comet Halley was about 4200 million km from the Sun (28.06 AU) and 4080 million km (27.26 AU) from the Earth. All images of stars and galaxies in the field were removed during the extensive image processing needed to produce this unique image. Due to the remaining, unavoidable "background noise", it is best to view the comet image from some distance. The field measures 60 x 40 arcsec 2 ; North is up and East is left. Remember Comet Halley - the famous "haired star" that has been observed with great regularity - about once every 76 years - during more than two millennia? Which was visited by an

  5. Application of backscatter electrons for large area imaging of cavities produced by neutron irradiation

    Science.gov (United States)

    Pastukhov, V. I.; Averin, S. A.; Panchenko, V. L.; Portnykh, I. A.; Freyer, P. D.; Giannuzzi, L. A.; Garner, F. A.

    2016-11-01

    It is shown that with proper optimization, backscattered electrons in a scanning electron microscope can produce images of cavity distribution in austenitic steels over a large specimen surface for a depth of ˜500-700 nm, eliminating the need for electropolishing or multiple specimen production. This technique is especially useful for quantifying cavity structures when the specimen is known or suspected to contain very heterogeneous distributions of cavities. Examples are shown for cold-worked EK-164, a very heterogeneously-swelling Russian fast reactor fuel cladding steel and also for AISI 304, a homogeneously-swelling Western steel used for major structural components of light water cooled reactors. This non-destructive overview method of quantifying cavity distribution can be used to direct the location and number of required focused ion beam prepared transmission electron microscopy specimens for examination of either neutron or ion-irradiated specimens. This technique can also be applied in stereo mode to quantify the depth dependence of cavity distributions.

  6. A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion

    Science.gov (United States)

    Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl

    2017-10-01

    The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.

  7. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  8. Production of neutron-rich isotopes by cold fragmentation in the reaction {sup 197}Au + Be at 950 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Pereira, J. [Universidad de Santiago de Compostela (Spain)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Farget, F. [Institut de Physique Nucleaire, 91 - Orsay (France); Taieb, J. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Institut de Physique Nucleaire, 91 - Orsay (France)

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV {sup 179}Au beam in a beryllium target. Seven new isotopes ({sup 193}Re, {sup 194}Re, {sup 191}W, {sup 192}W, {sup 189}Ta, {sup 187}Hf and {sup 188}Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  9. Regeneration qualification of cold trap using modeling validated by radiography and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanasundaram, P. [FRTG, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Raj, Baldev [PSG Institutions, Peelamedu, Coimbatore (India); Hemanath, M.G., E-mail: hemanath@igcar.gov.in [FRTG, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Chandramouli, S. [FRTG, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Venkatraman, B. [EIRSG, Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2013-02-15

    Highlights: ► Cold trap is an online sodium purification unit used in sodium cooled Fast Reactors. ► Regeneration is the process of removal of impurities from saturated cold trap. ► The extent of impurity removal after regeneration is reveled by radiographed image. ► This paper discusses this innovative and comprehensive image processing technique. ► Results obtained from this technique is good agreement with theoretical estimation. -- Abstract: Cold trap is a purification unit used in sodium cooled Fast Spectrum Reactors (FSRs) for maintaining the oxygen and hydrogen level in sodium within acceptable limits. It works on the principle of crystallization and precipitation of oxides and hydrides of sodium in a wire mesh, when the temperature of sodium is reduced below the saturation temperature. The sodium hydride gets accumulated in the secondary cold trap as a consequence of the continuous diffusion of hydrogen in sodium and with time the trap is fully loaded and becomes inoperable. The removal of these impurity deposits at intervals by keeping the cold trap in same location of the loop is known as in situ regeneration. After regeneration cold trap is qualified by gamma radiograph technique to ensure adequate removal of impurities before bringing the cold trap back to service in sodium for purification. The numerical results predict the impurity deposition pattern in the wire mesh region of cold trap. The mathematical model has been validated with experimental data obtained from model cold trap. This paper discusses the methodologies developed for qualification of regeneration of cold trap using radiography and image processing techniques for assessing impurity deposition before and after regeneration.

  10. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  11. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K. [RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Adachi, T.; Oku, T.; Morimoto, K.; Shimizu, H.M.; Tokanai, F. [RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Gorin, A.; Manuilov, I.; Ryazantsev, A. [Institute for High Energy Physics, Protvino, Moscow region (Russian Federation); Ino, T. [KEK (High Energy Accelerator Research Organization), Tsukuba, Ibaraki 305 (Japan); Kuroda, K. [Advanced Research Inst. for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Suzuki, J. [Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)

    2002-07-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm{sup 2}. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of {proportional_to}1.0 mm was obtained. (orig.)

  12. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    Science.gov (United States)

    Sakai, K.; Adachi, T.; Oku, T.; Gorin, A.; Ino, T.; Kuroda, K.; Manuilov, I.; Morimoto, K.; Ryazantsev, A.; Shimizu, H. M.; Suzuki, J.; Tokanai, F.

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50×50 mm2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of 1.0 mm was obtained.

  13. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  14. Static response, collective frequencies, and ground-state thermodynamical properties of spin-saturated two-component cold atoms and neutron matter

    Science.gov (United States)

    Boulet, A.; Lacroix, D.

    2018-01-01

    The thermodynamical ground-state properties and static response in both cold atoms at or close to unitarity and neutron matter are determined using a recently proposed density functional theory (DFT) based on the s -wave scattering length as, effective range re, and unitary gas limit. In cold atoms, when the effective range may be neglected, we show that the pressure, chemical potential, compressibility modulus, and sound velocity obtained with the DFT are compatible with experimental observations or exact theoretical estimates. The static response in homogeneous infinite systems is also obtained and a possible influence of the effective range on the response is analyzed. The neutron matter differs from unitary gas due to the noninfinite scattering length and to a significant influence of effective range, which affects all thermodynamical quantities as well as the static response. In particular, we show for neutron matter that the latter response recently obtained in auxiliary-field diffusion Monte Carlo (AFDMC) can be qualitatively reproduced when the p -wave contribution is added to the functional. Our study indicates that the close similarity between the exact AFDMC static response and the free-gas response might stem from the compensation of the as effect by the effective range and p -wave contributions. We finally consider the dynamical response of both atoms or neutron droplets in anisotropic traps. Assuming the hydrodynamical regime and a polytropic equation of state, a reasonable description of the radial and axial collective frequencies in cold atoms is obtained. Following a similar strategy, we estimate the equivalent collective frequencies of neutron drops in anisotropic traps.

  15. Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging

    Science.gov (United States)

    2012-12-21

    provides the high flux source of neutrons. The transmission image is captured by a micro-channel plate ( MCP ) neutron counting detector with 5 µm...pixel pitch and 13.5 µm spatial resolution. Further details about the detector and facility can be found in [7, 8]. The battery fixture is mounted in...front of the detector so that the neutron beam path, which travels into the page, is parallel to the plane of the separator as shown in Figure 1. The

  16. Imaging of gamma and neutron dose distributions at LVR-15 epithermal beam by means of FGLDs

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G., E-mail: grazia.gambarini@mi.infn.it [Department of Physics, Universita degli Studi, Milan (Italy)] [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Bartesaghi, G. [Department of Physics, Universita degli Studi, Milan (Italy)] [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Carrara, M. [The Fondazione IRCCS ' Istituto Nazionale Tumori' , Milan (Italy); Negri, A. [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Paganini, L. [Department of Physics, Universita degli Studi, Milan (Italy); Vanossi, E. [INFN, Istituto Nazionale di Fisica Nucleare, Section of Milan, Milan (Italy); Burian, J.; Marek, M.; Viererbl, L.; Klupak, V.; Rejchrt, J. [Department of Reactor Physics, NRI Rez, plc (Czech Republic)

    2011-12-15

    Gamma and fast neutron dose spatial distributions have been measured at the collimator exit of the epithermal neutron beam of LVR-15 reactor (Rez). Measurements were performed by means of optically analyzed Fricke-gel-layer detectors. The separation of the two dose contributions has been achieved by suitable pixel-to-pixel elaboration of the light transmittance images of Fricke-gel-layer detectors prepared with water and heavy water.

  17. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)

    2014-04-15

    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  18. Assessment of Radiographic Image Quality by Visual Examination of Neutron Radiographs of the Calibration Fuel Pin

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    of a calibration fuel pin. The radiographs were made by the direct, transfer and tracketch methods using different film recording materials. These neutron radiographs of the calibration fuel pin were used for the assessement of radiographic image quality. This was done by visual examination of the radiographs...... and assessing their radiographic image quality on an arbitrary scale....

  19. A concept to collect neutron and x-ray images on the same line of sight at NIF.

    Science.gov (United States)

    Merrill, F E; Danly, C R; Izumi, N; Jedlovec, D; Fittinghoff, D N; Grim, G P; Pak, A; Park, H-S; Volegov, P L; Wilde, C H

    2014-11-01

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  20. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  1. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  2. Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review

    Science.gov (United States)

    Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.

    2014-02-01

    Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.

  3. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Michael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weber, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.

  4. Multi-Frame Energy-Selective Imaging System for Fast-Neutron Radiography

    CERN Document Server

    Dangendorf, Volker; Bromberger, Benjamin; Feldman, Gennady; Goldberg, Mark B; Lauck, Ronald; Mor, Ilan; Tittelmeier, Kai; Vartsky, David; Weierganz, Mathias

    2009-01-01

    A new instrument for high resolution imaging of fast-neutrons is presented here. It is designed for energy selective radiography in nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. The device presented here is based on hydrogenous scintillator screens and single- or multiple-gated intensified camera systems (ICCD). A key element is a newly developed optical amplifier which generates sufficient light for the high-speed intensified camera system, even from such faint light sources as fast plastic and liquid scintillators. Utilizing the Time-of-Flight (TOF) method, the detector incorporating the above components is capable of simultaneously taking up to 8 images, each at a different neutron energy.

  5. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dokun; Suh, Tae Suk [Catholic Univ. of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Stanford Univ., Stanford (United States)

    2014-05-15

    The resulting neutron captures in {sup 10}B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image

  6. Notes on LCW Activation Calculation for Neutron Imaging Operations in the North Cave of Building 194

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-20

    This note estimates the amount of activation that could be produced in the Facilities-provided Low Conductivity Water (LCW) that is proposed to be used for cooling of electromagnets and beam stops in the Neutron Imaging (NI) accelerator project in the North Cave of Building 194.

  7. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Sharma, Vishaldeep [ORNL

    2017-01-01

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution will have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility

  8. Simulation of Collimator for Neutron Imaging Facility of TRIGA MARK II PUSPATI Reactor

    Science.gov (United States)

    Zin, Muhammad Rawi Mohamed; Jamro, Rafhayudi; Yazid, Khairiah; Hussain, Hishamuddin; Yazid, Hafizal; Ahmad, Megat Harun Al Rashid Megat; Azman, Azraf; Mohamad, Glam Hadzir Patai; Hamzah, Nai'im Syaugi; Abu, Mohamad Puad

    Neutron Radiography facility in TRIGA MARK II PUSPATI reactor is being upgraded to obtain better image resolution as well as reducing exposure time. Collimator and exposure room are the main components have been designed for fabrication. This article focuses on the simulation part that was carried out to obtain the profile of collimated neutron beam by utilizing the neutron transport protocol code in the Monte Carlo N-Particle (MCNP) software. Particular interest is in the selection of materials for inlet section of the collimator. Results from the simulation indicates that a combination of Bismuth and Sapphire, each of which has 5.0 cm length that can significantly filter both the gamma radiation and the fast neutrons. An aperture made of Cadmium with 1.0 cm opening diameter provides thermal neutron flux about 1.8 x108 ncm-2s-1 at the inlet, but reduces to 2.7 x106 ncm-2s-1 at the sample plane. Still the flux obtained is expected to reduces exposure time as well as gaining better image resolution.

  9. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    Science.gov (United States)

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  10. Preliminary examination of a CCD camera with a scintillator coated fiber optic plate for neutron imaging

    Science.gov (United States)

    Matsubayashi, Masahito; Soyama, Kazuhiko

    2004-08-01

    A charge coupled device (CCD) camera with a scintillator coated fiber optic plate (FOP) was examined for neutron imaging. The FOP coupling and the lens coupling in terms of efficient optical coupling with a CCD, and 6LiF:ZnS(Ag) and Gd 2O 2S(Tb) in terms of light emission efficiency and spatial resolution were discussed. The spatial resolution for each imaging system was obtained as edge spread functions or observations of modulation transfer function charts.

  11. A QUANTITATIVE EVALUATION OF THE WATER DISTRIBUTION IN A SOIL SAMPLE USING NEUTRON IMAGING

    Directory of Open Access Journals (Sweden)

    Jan Šácha

    2016-10-01

    Full Text Available This paper presents an empirical method by Kang et al. recently proposed for correcting two-dimensional neutron radiography for water quantification in soil. The method was tested on data from neutron imaging of the water infiltration in a soil sample. The raw data were affected by neutron scattering and by beam hardening artefacts. Two strategies for identifying the correction parameters are proposed in this paper. The method has been further developed for the case of three-dimensional neutron tomography. In a related experiment, neutron imaging is used to record ponded-infiltration experiments in two artificial soil samples. Radiograms, i.e., two-dimensional projections of the sample, were acquired during infiltration. A calculation was made of the amount of water and its distribution within the radiograms, in the form of two-dimensional water thickness maps. Tomograms were reconstructed from the corrected and uncorrected water thickness maps to obtain the 3D spatial distribution of the water content within the sample. Without the correction, the beam hardening and the scattering effects overestimated the water content values close to the perimeter of the sample, and at the same time underestimated the values close to the centre of the sample. The total water content of the entire sample was the same in both cases. The empirical correction method presented in this study is a relatively accurate, rapid and simple way to obtain the quantitatively determined water content from two-dimensional and three-dimensional neutron images. However, an independent method for measuring the total water volume in the sample is needed in order to identify the correction parameters.

  12. Scintillating Fiber Array Characterization and Alignment for Neutron Imaging using the High Energy X-ray (HEX) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Buckles, R. A., Ali, Z. A., Cradick, J. R., Traille, A. J., Warthan, W. A.

    2009-09-04

    The Neutron Imager diagnostic at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) will produce high-resolution, gated images of neutron-generating implosions. A similar pinhole imaging experiment (PINEX) diagnostic was recently deployed at the Z facility at Sandia National Laboratories (SNL). Both the SNL and LLNL neutron imagers use similar fiber array scintillators (BCF-99-555). Despite diverse resolution and magnification requirements, both diagnostics put significant onus on the scintillator spatial quality and alignment precision to maintain optimal point spread. Characterization and alignment of the Z-PINEX scintillator and imaging system were done at NSTec/Livermore Operations in 2009, and is currently underway for the NIF Neutron Imager.

  13. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cha, B K; Lee, D H; Seo, C-W; Jeon, S; Huh, Y [Korea Electrotechnology Research Institute, Ansan 426-170 (Korea, Republic of); Kim, J Y; Cho, G [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kim, T J; Sim, C, E-mail: Goldrain99@gmail.com [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2011-01-15

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd{sub 2}O{sub 2}S:Tb and {sup 6}LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd{sub 2}O{sub 2}S:Tb and {sup 6}LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm{sup 2} active area and 48{mu}m pixel pitch was used for neutron radiography. Thermal neutron flux with 6x10{sup 6}n/cm{sup 2}/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  14. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    Science.gov (United States)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  15. Fission with cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R. G. (Rene G.)

    2002-01-01

    As NASA continues the exploration of deep space, there is a need for safe, reliable, and long-lasting source of energy. Solar cells, which are useful at the inner solar system, cannot provide adequate power for a spacecraft once it has passed beyond Jupiter's orbit. For missions to the outer planets, NASA has relied on radioisotope thermoelectric generators (RTGs) using 238Pua s a heat source. RTGs are an excellent power conversion technology but, unfortunately, 238Pu is a potential environmental hazard. In the past, the use of 238Pu has generated much controversy and turmoil. Its use in future missions is doubtful because of environmental concerns. This paper presents calculations performed with MCNP for a power source that will take advantage of the low temperatures found in deep space.

  16. SU-F-J-196: A Prototype System for Portal Imaging for Intensity Modulated Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    St James, S; Argento, D; DeWitt, D; Miyaoka, R; Stewart, R [University of Washington, Seattle, WA (United States); Moffitt, G [University of Utah, Salt Lake City, UT (United States)

    2016-06-15

    Purpose: Fast neutron therapy is offered at the University of Washington Medical Center for treatment of selected cancers. The hardware and control systems of the UW Clinical Neutron Therapy System are undergoing upgrades to enable delivery of IMNT. To clinically implement IMNT, dose verification tools need to be developed. We propose a portal imaging system that relies on the creation of positron emitting isotopes ({sup 11}C and {sup 15}O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects the annihilation photons. The pattern of activity produced in the plate provides information to reconstruct the neutron fluence map that can be compared to fluence maps from Monte Carlo (MCNP) simulations to verify treatment delivery. We have previously performed Monte Carlo simulations of the portal imaging system (GATE simulations) and the beam line (MCNP simulations). In this work, initial measurements using a prototype system are presented. Methods: Custom electronics were developed for BGO detectors read out with photomultiplier tubes (previous generation PET detectors from a CTI ECAT 953 scanner). Two detectors were placed in coincidence, with a detector separation of 2 cm. Custom software was developed to create the crystal look up tables and perform a limited angle planar reconstruction with a stochastic normalization. To test the initial capabilities of the system, PMMA squares were irradiated with neutrons at a depth of 1.5 cm and read out using the prototype system. Doses ranging from 10–200 cGy were delivered. Results: Using the prototype system, dose differences in the therapeutic range could be determined. Conclusion: The prototype portal imaging system is capable of detecting neutron doses as low as 10–50 cGy and shows great promise as a patient QA tool for IMNT.

  17. Summary of the first neutron image data collected at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Grim Gary P.

    2013-11-01

    Full Text Available A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF, Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of data and measurements made to date. Data from directly driven, DT filled microballoons, as well as indirectly driven, cryogenically layered ignition experiments are presented. The data show that the primary cores from directly driven implosions are approximately twice as large, 64 ± 3 μm, as indirectly driven cores, 25 ± 4 and 29 ± 4 μm and more asymmetric, P2/P0 = 47% vs. − 14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  18. Evaluations of the new LiF-scintillator and optional brightness enhancement films for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iikura, H., E-mail: Iikura.hiroshi@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Tsutsui, N. [Chichibu Fuji Co., Ltd., Ogano, Chichibu, Saitama 368-0193 (Japan); Nakamura, T.; Katagiri, M.; Kureta, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Kubo, J. [Nissan Motor Co., Ltd., Atsugi, Kanagawa 243-0126 (Japan); Matsubayashi, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2011-09-21

    Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/{sup 6}Li scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10 000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.

  19. Evaluations of the new LiF-scintillator and optional brightness enhancement films for neutron imaging

    Science.gov (United States)

    Iikura, H.; Tsutsui, N.; Nakamura, T.; Katagiri, M.; Kureta, M.; Kubo, J.; Matsubayashi, M.

    2011-09-01

    Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/ 6Li scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10 000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.

  20. Summary of the first neutron image data collected at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grim, G P; Archuleta, T N; Aragonez, R J; Atkinson, D P; Batha, S H; Barrios, M A; Bower, D E; Bradley, D K; Buckles, R A; Clark, D D; Clark, D J; Cradick, J R; Danly, C; Drury, O B; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Glenn, S M; Hsu, A H; Izumi, N; Jaramillo, S A; Kyrala, G A; Pape, S L; Loomis, E N; Mares, D; Martinson, D D; Ma, T; MacKinnon, A J; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Polk, P J; Schmidt, D W; Tommasini, T; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Dzenitis, J M; Felker, B; Fittinghoff, D N; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Kauffman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-11-01

    A summary of data and results from the first neutron images produced by the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, USA are presented. An overview of the neutron imaging technique is presented, as well as a synopsis of the data collected and measurements made to date. Data form directly driven, DT filled microballoons, as well as, indirectly driven, cryogenically layered ignition experiments are presented. The data presented show that the primary cores from directly driven implosions are approximately twice as large, 64 {+-} 3 {mu}m, as indirect cores 25 {+-} 4 and 29 {+-} 4 {mu}m and more asymmetric, P2/P0 = 47% vs. -14% and 7%. Further, comparison with the size and shape of X-ray image data on the same implosions show good agreement, indicating X-ray emission is dominated by the hot regions of the implosion.

  1. Method to evaluate the L/D ratio of neutron imaging beams

    Energy Technology Data Exchange (ETDEWEB)

    Pugliesi, R.; Pereira, M.A. Stanojev; Schoueri, R.M., E-mail: pugliesi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-04-01

    An alternative simple method to evaluate the L/D ratio of neutron imaging beams is proposed. It is based on the behavior of the ratio 'x/Ut', which asymptotically tends to L/D for large values of the parameter 'x', that corresponds to the distance separating a gadolinium test object to the scintillator plane, where its image is formed. The method was applied to the neutron imaging equipment of the Nuclear and Energy Research Institute IPEN/CNEN-SP and the obtained result was L/D = (104 ± 4). The consistency of the proposed method was verified by comparing this value with those ones obtained by a well - known and established procedure. (author)

  2. Neutron imaging inspections of composite honeycomb adhesive bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C., E-mail: paul.hungler@rmc.ca [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, 13 General Crerar Cres, Kingston, Ontario, K7K 7B4 (Canada); Bennett, L.G.I.; Lewis, W.J. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, 13 General Crerar Cres, Kingston, Ontario, K7K 7B4 (Canada); Schulz, M.; Schillinger, B. [FRM-II, Technische Universitaet Muenchen (Germany)

    2011-09-21

    Numerous commercial and military aircraft, including the Canadian Forces CF188 Hornet, use composite honeycomb structures in the design of their flight control surfaces (FCS). These structures provide excellent strength to weight ratios, but are often susceptible to degradation from moisture ingress. Once inside the honeycomb structure moisture causes the structural adhesive bonds to weaken, which can lead to complete failure of the FCS in flight. There are two critical structural adhesive bonds: the node bond and the filet bond. The node bond is integral to the honeycomb portion of the composite core and is located between the honeycomb cells. The filet bond is the adhesive bond located between the skin and the core. In order to asses overall structural degradation and develop repair procedures, it is important to determine the degree of degradation in each type of bond. Neutron radiography and tomography of the adhesive bonds was conducted at the Royal Military College (RMC) and FRM-II. Honeycomb samples were manufactured from FCS with in-service water ingress. The radiographs and tomograms provided important information about the degree of degradation in the core as well as about which adhesive bonds are more susceptible. The information obtained from this study will help to develop repair techniques and assess the flight worthiness of FCS.

  3. Development of the large neutron imaging system for inertial confinement fusion experiments.

    Science.gov (United States)

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  4. Development of the large neutron imaging system for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2012-03-15

    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  5. High-position-resolution scintillation neutron-imaging detector by crossed-fiber readout with novel centroid-finding method

    CERN Document Server

    Katagiri, M; Sakasai, K; Matsubayashi, M; Birumachi, A; Takahashi, H; Nakazawa, M

    2002-01-01

    Aiming at high-position-resolution and high-counting-rate neutron imaging, a novel centroid-finding method is proposed for a scintillation neutron-imaging detector with crossed-fiber readout. Crossed wavelength-shifting fibers are arranged on and under the scintillator. Luminescences generated in the scintillator are emitted and detected by a few fibers surrounding the incident point of a neutron. In the novel method, X and Y positions of the incident neutron are decided by coincidence of a central signal and neighboring signals, respectively. By fundamental experiments using a ZnS:Ag/ sup 6 LiF scintillator of 0.5-mm thickness and crossed wavelength-shifting fibers with a size of 0.5 x 0.5 mm sup 2 , it was confirmed that the position resolution is about 0.5 mm and the limitation of the neutron-counting rate is 320 kcps. (orig.)

  6. High-position-resolution scintillation neutron-imaging detector by crossed-fiber readout with novel centroid-finding method

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, M.; Toh, K.; Sakasai, K.; Matsubayashi, M.; Birumachi, A. [Advanced Science Research Center, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Takahashi, H.; Nakazawa, M. [Department of Quantum Engineering and Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2002-07-01

    Aiming at high-position-resolution and high-counting-rate neutron imaging, a novel centroid-finding method is proposed for a scintillation neutron-imaging detector with crossed-fiber readout. Crossed wavelength-shifting fibers are arranged on and under the scintillator. Luminescences generated in the scintillator are emitted and detected by a few fibers surrounding the incident point of a neutron. In the novel method, X and Y positions of the incident neutron are decided by coincidence of a central signal and neighboring signals, respectively. By fundamental experiments using a ZnS:Ag/{sup 6}LiF scintillator of 0.5-mm thickness and crossed wavelength-shifting fibers with a size of 0.5 x 0.5 mm{sup 2}, it was confirmed that the position resolution is about 0.5 mm and the limitation of the neutron-counting rate is 320 kcps. (orig.)

  7. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  8. Study on detecting spatial distribution of neutrons and gamma rays using a multi-imaging plate system.

    Science.gov (United States)

    Tanaka, Kenichi; Sakurai, Yoshinori; Endo, Satoru; Takada, Jun

    2014-06-01

    In order to measure the spatial distributions of neutrons and gamma rays separately using the imaging plate, the requirement for the converter to enhance specific component was investigated with the PHITS code. Consequently, enhancing fast neutrons using recoil protons from epoxy resin was not effective due to high sensitivity of the imaging plate to gamma rays. However, the converter of epoxy resin doped with (10)B was found to have potential for thermal and epithermal neutrons, and graphite for gamma rays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile.

  10. Preliminary examination of a CCD camera with a scintillator coated fiber optic plate for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Masahito E-mail: matsu3@popsvr.tokai.jaeri.go.jp; Soyama, Kazuhiko

    2004-08-21

    A charge coupled device (CCD) camera with a scintillator coated fiber optic plate (FOP) was examined for neutron imaging. The FOP coupling and the lens coupling in terms of efficient optical coupling with a CCD, and {sup 6}LiF:ZnS(Ag) and Gd{sub 2}O{sub 2}S(Tb) in terms of light emission efficiency and spatial resolution were discussed. The spatial resolution for each imaging system was obtained as edge spread functions or observations of modulation transfer function charts.

  11. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion.

    Science.gov (United States)

    Simpson, R; Christensen, K; Danly, C; Fatherley, V E; Fittinghoff, D; Grim, G P; Izumi, N; Jedlovec, D; Merrill, F E; Skulina, K; Volegov, P; Wilde, C

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  12. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    Science.gov (United States)

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  13. Development of monitoring method of spatial neutron distribution in neutrons-gamma rays mixed field using imaging plate for NCT-Depression of the field

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kenichi, E-mail: tanakaken@sapmed.ac.jp [Center of Medical Education, Sapporo Medical University, Chuo-ku, Sapporo (Japan); Endo, Satoru [Quantum Energy Applications, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima (Japan); Hoshi, Masaharu [Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima (Japan); Takada, Jun [Center of Medical Education, Sapporo Medical University, Chuo-ku, Sapporo (Japan)

    2011-12-15

    The degree of depression in the neutron field caused by neutron absorption in the materials of an imaging plate (IP) was investigated using MCNP-4C. Consequently, the IP doped with Gd, which reproduced the distribution of {sup 157}Gd(n,{gamma}){sup 158}Gd reaction rate in the previous study, depresses the relative distribution by about 50%. The depression for the IP in which Gd is replaced with similar amount of B atoms was estimated to be about 10%. The signal intensity for this IP is estimated to be at a similar level with that for Gd-doped IP.

  14. Development of monitoring method of spatial neutron distribution in neutrons-gamma rays mixed field using imaging plate for NCT--depression of the field.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun

    2011-12-01

    The degree of depression in the neutron field caused by neutron absorption in the materials of an imaging plate (IP) was investigated using MCNP-4C. Consequently, the IP doped with Gd, which reproduced the distribution of (157)Gd(n,γ)(158)Gd reaction rate in the previous study, depresses the relative distribution by about 50%. The depression for the IP in which Gd is replaced with similar amount of B atoms was estimated to be about 10%. The signal intensity for this IP is estimated to be at a similar level with that for Gd-doped IP. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    Czech Academy of Sciences Publication Activity Database

    Jentschel, M.; Blanc, A.; de France, G.; Koster, U.; Leoni, S.; Mutti, P.; Simpson, G. S.; Krtička, M.; Tomandl, Ivo; Valenta, S.

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku P11003. ISSN 1748-0221 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * gamma detectors * spectrometers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.220, year: 2016

  16. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    Science.gov (United States)

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  17. Neutron and proton tests of different technologies for the upgrade of the cold readout electronics of the ATLAS Hadronic End-cap Calorimeter

    CERN Document Server

    INSPIRE-00030110

    2013-01-01

    The expected increase of total integrated luminosity by a factor ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic End-cap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^{16} n/cm^2 and with 200 MeV protons up to an integrated fluence of 2.6 x 10^{14} p/cm^2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  18. Genetic algorithms applied to reconstructing coded imaging of neutrons and analysis of residual watermark.

    Science.gov (United States)

    Zhang, Tiankui; Hu, Huasi; Jia, Qinggang; Zhang, Fengna; Chen, Da; Li, Zhenghong; Wu, Yuelei; Liu, Zhihua; Hu, Guang; Guo, Wei

    2012-11-01

    Monte-Carlo simulation of neutron coded imaging based on encoding aperture for Z-pinch of large field-of-view with 5 mm radius has been investigated, and then the coded image has been obtained. Reconstruction method of source image based on genetic algorithms (GA) has been established. "Residual watermark," which emerges unavoidably in reconstructed image, while the peak normalization is employed in GA fitness calculation because of its statistical fluctuation amplification, has been discovered and studied. Residual watermark is primarily related to the shape and other parameters of the encoding aperture cross section. The properties and essential causes of the residual watermark were analyzed, while the identification on equivalent radius of aperture was provided. By using the equivalent radius, the reconstruction can also be accomplished without knowing the point spread function (PSF) of actual aperture. The reconstruction result is close to that by using PSF of the actual aperture.

  19. Development of neutron imaging quantitative data treatment to assess conservation products in cultural heritage.

    Science.gov (United States)

    Realini, Marco; Colombo, Chiara; Conti, Claudia; Grazzi, Francesco; Perelli Cippo, Enrico; Hovind, Jan

    2017-10-01

    Distribution, penetration depth and amount of new mineralogical phases formed after the interaction between an inorganic treatment and a matrix are key factors for the evaluation of the conservation treatment behaviour. Nowadays, the conventional analytical methodologies, such as vibrational spectroscopies, scanning electron microscopy and X-ray diffraction, provide only qualitative and spot information. Here, we report, for the first time, the proof of concept of a methodology based on neutron imaging able to achieve quantitative data useful to assess the formation of calcium oxalate in a porous carbonatic stone treated with ammonium oxalate. Starting from the neutron attenuation coefficient of Noto stone-treated specimens, the concentrations of newly formed calcium oxalate and the diffusion coefficient have been calculated for both sound and decayed substrates. These outcomes have been also used for a comparative study between different treatment modalities. Graphical abstract Horizontal slice at 300 mm depth and CaOx molar density profile by NEUTRA output.

  20. Theoretical and experimental study of the dark signal in CMOS image sensors affected by neutron radiation from a nuclear reactor

    Science.gov (United States)

    Xue, Yuanyuan; Wang, Zujun; He, Baoping; Yao, Zhibin; Liu, Minbo; Ma, Wuying; Sheng, Jiangkun; Dong, Guantao; Jin, Junshan

    2017-12-01

    The CMOS image sensors (CISs) are irradiated with neutron from a nuclear reactor. The dark signal in CISs affected by neutron radiation is studied theoretically and experimentally. The Primary knock-on atoms (PKA) energy spectra for 1 MeV incident neutrons are simulated by Geant4. And the theoretical models for the mean dark signal, dark signal non-uniformity (DSNU) and dark signal distribution versus neutron fluence are established. The results are found to be in good agreement with the experimental outputs. Finally, the dark signal in the CISs under the different neutron fluence conditions is estimated. This study provides the theoretical and experimental evidence for the displacement damage effects on the dark signal CISs.

  1. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Bilheux, Jean-Christophe [ORNL; Tremsin, Anton S [University of California, Berkeley; Santodonato, Louis J [ORNL; Dehoff, Ryan R [ORNL; Kirka, Michael M [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Herwig, Kenneth W [ORNL

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

  2. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Science.gov (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  3. Single photon image from PET with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jooyoung; Suh, Tae Suk [Catholic Univ. of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Stanford Univ., Stanford (United States)

    2014-05-15

    Boron neutron capture therapy (BNCT) is a radiation therapy technique for treating deep-seated brain tumors by irradiation with a thermal neutron in which boron-labelled low molecular weight compounds. Once completed, a single photon emission computed tomography (SPECT) scan is conducted to investigate for the region of therapy using an isotope exclusive to SPECT. In the case of an existing PET/SPECT combination system, at least two types of isotopes should be used for each scan with their purposes. Recently, researchers examined the effects of PET/SPECT dual modality on animal imaging systems. They reported that the PET/SPECT combination system was effective for simultaneous achievement of a single event and coincidence. The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one PET module with an insertable collimator for brain tumor treatment during the BNCT. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  4. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    Science.gov (United States)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    Water and nutrients will be the major factors limiting food production in future. Plant roots employ various mechanisms to increase the access to limited soil resources. Low molecular weight organic substances released by roots into the rhizosphere increase nutrient availability by interactions with microorganisms, while mucilage improves water availability under low moisture conditions. Though composition and quality of these substances have intensively been investigated, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging depending on drought stress. Plants were grown in rhizotrons well suited for neutron radiography and 14C imaging. Plants were exposed to various soil water contents experiencing different levels of drought stress. The water content in the rhizosphere was imaged during several drying/wetting cycles by neutron radiography. The radiographs taken a few hours after irrigation showed a wet region around the root tips showing the allocation and distribution of mucilage. The increased water content in the rhizosphere of the young root segments was related to mucilage concentrations by parameterization described in Kroener et al. (2014). In parallel 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) showed distribution of rhizodeposits including mucilage. Three days after setting the water content, plants were labeled in 14CO2 atmosphere. Two days later 14C distribution in soil was imaged by placing a phosphor-imaging plate on the rhizobox. To quantify rhizodeposition, 14C activity on the image was related to the absolute 14C activity in the soil and root after destructive sampling. By comparing the amounts of mucilage (neutron radiography) with the amount of total root derived C (14C imaging), we were able to differentiate between mucilage and root

  5. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    Science.gov (United States)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  6. Measurement of spatial distribution of neutrons and gamma rays for BNCT using multi-imaging plate system.

    Science.gov (United States)

    Tanaka, Kenichi; Sakurai, Yoshinori; Tanaka, Hiroki; Kajimoto, Tsuyoshi; Takata, Takushi; Takada, Jun; Endo, Satoru

    2015-12-01

    Quality assurance of the spatial distributions of neutrons and gamma rays was tried using imaging plates (IPs) and converters to enhance the beam components in the epithermal neutron mode of the Kyoto University Reactor. The converters used were 4mm thick epoxy resin with B4C at 6.85 weight-percent (wt%) (10)B for epithermal neutrons, and 3mm thick carbon for gamma rays. Results suggested that the IP signal does not need a sensitivity correction regardless of the incident radiation that produces it. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    Science.gov (United States)

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  8. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 505 137-701 (Korea, Republic of); Jo Hong, Key [Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, California 94305 (United States); Sil Lee, Keum [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 (United States)

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  9. In situ time-of-flight neutron imaging of NiO-YSZ anode support reduction under influence of stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata Grazyna; Strobl, Markus; Lauridsen, Erik M.

    2016-01-01

    This article reports on in situ macroscopic scale imaging of NiO-YSZ (YSZ is yttria-stabilized zirconia) reduction under applied stress - a phase transition taking place in solid oxide electrochemical cells in a reducing atmosphere of a hydrogen/nitrogen mixture and at operation temperatures of up...... of chemical and physical processes requiring controlled atmosphere and elevated temperature. The first type of measurement is based on alternating stages of short-term partial chemical reaction and longer neutron image acquisition, and the second type is a real in situ neutron imaging experiment. Results...... of applying energy-resolved neutron imaging with both approaches to the NiO-YSZ reduction investigation indicate enhancement of the reduction rate due to applied stress, which is consistent with the results of the authors’ previous research....

  10. Local characterisation of fluid flow in sandstone with localised deformation features through fast neutron imaging

    Directory of Open Access Journals (Sweden)

    Rowe S.

    2010-06-01

    Full Text Available Understanding fluid flow through rocks is of key interest in hydrocarbon production and CO2 sequestration, amongst other applications. Such fluid injection or extraction from subsurface reservoirs can be significantly modified (increased or decreased by deformation and in particular by localised deformation features (fractures, shear bands and compaction bands. How such deformation alters fluid flow is however not well characterised experimentally. Measurement of fluid-flow distributions throughout a specimen requires techniques that can, first, see inside a test specimen and, second, see the fluid distinctly from the solid part. Therefore, neutron absorption imaging is well adapted to fluid flow monitoring in rocks as water is largely opaque to neutrons (i.e., it is highly absorbing and rocks are generally less absorbing. In this paper we present initial results of neutron radiography monitoring of fluid-flow through samples of a sandstone containing localised deformation features (shear-bands. A comparison of flow through an intact specimen and flow through samples containing localised deformation features is presented that provides insight into the effect of localised deformation on the flow properties.

  11. On the impact of neutron beam divergence and scattering on the quality of transmission acquired tomographic images

    Science.gov (United States)

    Silvani, Maria Ines; Lopes, Ricardo T.; de Almeida, Gevaldo L.; Gonçalves, Marcelo José; Furieri, Rosanne C. A. A.

    2007-10-01

    The impact of the divergence of a thermal neutron beam and the scattered neutrons on the quality of tomographic images acquired by transmission have been evaluated by using a third generation tomographic system incorporating neutron collimators under several different arrangements. The system equipped with a gaseous position sensitive detector has been placed at the main channel outlet of the Argonauta Research Reactor in Instituto de Engenharia Nuclear (CNEN-Brazil) which furnishes a thermal neutron flux of 2.3 × 105 n cm-2 s-1. Experiments have then been conducted using test-objects with well-known inner structure and composition to assess the influence of the collimators arrangement on the quality of the acquired images. Both, beam divergence and scattering - expected to spoil the image quality - have been reduced by using properly positioned collimators between the neutron source and the object, and in the gap between the object and the detector, respectively. The shadow cast by this last collimator on the projections used to reconstruct the tomographic images has been eliminated by a proper software specifically written for this purpose. Improvement of the tomographic images has been observed, demonstrating the effectiveness of the proposed approach to improve their quality by using properly positioned collimators.

  12. Alternatives to argon for gas stopping volumes in the B194 neutron imager

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hall, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Johnson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ratkiewicz, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rusnak, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-17

    In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.

  13. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  14. QuBounce: the dynamics of ultra-cold neutrons falling in the gravity potential of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Abele, H.; Jenke, T. [Physik-Department E18, TU Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Stadler, D. [Physikalisches Institut, Philosophenweg 12, 69120 Heidelberg (Germany); Geltenbort, P. [Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2009-08-15

    The dynamics of a quantum mechanical wave packet bouncing off a hard surface in the gravitational field of the earth combines quantum theory with aspects of Newtonian mechanics at short distances. We realize such a quantum bouncing ball with ultracold neutrons. By quantum interference, this experiment is sensitive to gravity-like forces at a length scale below 10 {mu}m and can test speculations on large extra dimensions of submillimeter size of space-time or the origin of the cosmological constant in the universe.

  15. Medium and high spin structure in the 94Y isotope produced in fission induced by cold neutrons

    Science.gov (United States)

    Iskra, Ł. W.; Fornal, B.; Leoni, S.; Bocchi, G.; Blanc, A.; Bottoni, S.; Cieplicka-Oryńczak, N.; Jentschel, M.; Köster, U.; Michelagnoli, C.; Mutti, P.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.; Urban, W.

    2017-10-01

    The level scheme of the neutron-rich 94Y isotope has been extended up to the 5324 keV excitation energy. During the analysis, a structure above the previously known (5+) isomer, at 1202 keV, was extended by employing multifold gamma-ray coincidence relationships measured with the EXILL array. For some of the new states, the spin-parity assignment has been proposed on the basis of gamma angular correlations and shell-model considerations. The newly identified structure is characteristic of spherical or nearly spherical configurations and no evidence for new isomers and rotational patterns was found.

  16. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Yarom [ORNL; Bingham, Philip R [ORNL; Bilheux, Hassina Z [ORNL; Carmichael, Justin R [ORNL

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  17. Hot Views on Cold Crystals: The Application of Thermal Imaging in Cryocrystallography

    Science.gov (United States)

    Snell, Eddie

    2003-01-01

    We have used thermal imaging techniques to visualize the cryocooling processes of macromolecular crystals. Cryocooling is a common technique used for structural data collection to reduce radiation damage in intense X-ray beams and decrease the thermal motion of the atoms. From the thermal images it was clear that during cryocooling a cold wave progresses through a crystal starting at the face closest to the origin of the cold stream and ending at the point furthest away. As an extension to this work, we used thermal imaging to study small crystals, held in a cryo-loop, in the presence of vitrified mother liquor. The different infrared transmission and reflectance properties of the crystal in comparison to the mother liquor surrounding it are thought to be the parameter that produces the contrast that makes the crystal visible. An application of this technology may be the determination of the exact location of small crystals in a cryo-loop for automated structural genomics studies. Data from initial tests in support of application development was recorded for lysozyme crystals and for bFGF/dna complex crystals, which were cryocooled and imaged in large loops, both with visible light and with infrared radiation. The crystals were clearly distinguished from the vitrified solution in the infrared spectrum, while in the case of the bFGF/dna complex the illumination had to be carefully manipulated to make the crystal visible in the visible spectrum. These results suggest that the thermal imaging may be more sensitive than visual imaging for automated location of small crystals. However, further work on small crystals robotically mounted at SSRL did not clearly visualize those crystals. The depth of field of the camera proved to be limiting and a different cooling geometry was used, compared to the previous, successful experiments. Analysis to exploit multiple images to improve depth of field and experimental work to understand cooling geometry effects is ongoing. These

  18. X-ray micro-CT and neutron CT as complementary imaging tools for non-destructive 3D imaging of rare silicified fossil plants

    Science.gov (United States)

    Karch, J.; Dudák, J.; Žemlička, J.; Vavřík, D.; Kumpová, I.; Kvaček, J.; Heřmanová, Z.; Šoltés, J.; Viererbl, L.; Morgano, M.; Kaestner, A.; Trtík, P.

    2017-12-01

    Computed tomography provides 3D information of inner structures of investigated objects. The obtained information is, however, strongly dependent on the used radiation type. It is known that as X-rays interact with electron cloud and neutrons with atomic nucleus, the obtained data often provide different contrast of sample structures. In this work we present a set of comparative radiographic and CT measurements of rare fossil plant samples using X-rays and thermal neutrons. The X-ray measurements were performed using large area photon counting detectors Timepix at IEAP CTU in Prague and Perkin Elmer flat-panel detector at Center of Excellence Telč. The neutron CT measurement was carried out at Paul Scherrer Institute using BOA beam-line. Furthermore, neutron radiography of fossil samples, provided by National Museum, were performed using a large-area Timepix detector with a neutron-sensitive converting 6LiF layer at Research Centre Rez, Czech Republic. The obtained results show different capabilities of both imaging approaches. While X-ray micro-CT provides very high resolution and enables visualization of fine cracks or small cavities in the samples neutron imaging provides high contrast of morphological structures of fossil plant samples, where X-ray imaging provides insufficient contrast.

  19. Neutron autoradiography imaging of selective boron uptake in human metastatic tumours

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, Via Bassi 6, Pavia (Italy)], E-mail: saverio.altieri@pv.infn.it; Bortolussi, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, Via Bassi 6, Pavia (Italy); Bruschi, P.; Chiari, P.; Fossati, F.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Prati, U.; Roveda, L. [Unit of cancer surgery, Cancer Center of Excellence, Foundation T. Campanella, Catanzaro (Italy); Zonta, A.; Zonta, C.; Ferrari, C.; Clerici, A. [Department of Surgery, University of Pavia, Piazza Botta, Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, Piazza Botta, Pavia (Italy); Pinelli, T. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, Via Bassi 6, Pavia (Italy)

    2008-12-15

    The ability to selectively hit the tumour cells is an essential characteristic of an anti-tumour therapy. In boron neutron capture therapy (BNCT) this characteristic is based on the selective uptake of {sup 10}B in the tumour cells with respect to normal tissues. An important step in the BNCT planning is the measurement of the boron concentration in the tissue samples, both tumour and healthy. When the tumour is spread through the healthy tissue, as in the case of metastases, the knowledge of the different kinds of tissues in the sample being analysed is crucial. If the percentage of tumour and normal tissues cannot be evaluated, the obtained concentration is a mean value depending on the composition of the different samples being measured. In this case an imaging method that could give information both on the morphology and on the spatial distribution of boron concentration in the sample would be a fundamental support. In this paper, the results of the boron uptake analysis in the tumour and in the healthy samples taken from human livers after boron phenylalanine (BPA) infusion are shown; boron imaging was performed using neutron autoradiography.

  20. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gutsmiedl, Erwin [Technical University Munich, FRM-II (Germany)

    2001-03-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examinated in the temperature range between -256degC and 250degC. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256degC and 150degC to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of {approx}1{center_dot}10{sup 22} n/cm{sup 2} was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak

  1. Methods and applications in high flux neutron imaging; Methoden und Anwendungen fuer bildgebende Verfahren mit hohen Neutronenfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, H.

    2007-02-07

    This treatise develops new methods for high flux neutron radiography and high flux neutron tomography and describes some of their applications in actual experiments. Instead of single images, time series can be acquired with short exposure times due to the available high intensity. To best use the increased amount of information, new estimators are proposed, which extract accurate results from the recorded ensembles, even if the individual piece of data is very noisy and in addition severely affected by systematic errors such as an influence of gamma background radiation. The spatial resolution of neutron radiographies, usually limited by beam divergence and inherent resolution of the scintillator, can be significantly increased by scanning the sample with a pinhole-micro-collimator. This technique circumvents any limitations in present detector design and, due to the available high intensity, could be successfully tested. Imaging with scattered neutrons as opposed to conventional total attenuation based imaging determines separately the absorption and scattering cross sections within the sample. For the first time even coherent angle dependent scattering could be visualized space-resolved. New applications of high flux neutron imaging are presented, such as materials engineering experiments on innovative metal joints, time-resolved tomography on multilayer stacks of fuel cells under operation, and others. A new implementation of an algorithm for the algebraic reconstruction of tomography data executes even in case of missing information, such as limited angle tomography, and returns quantitative reconstructions. The setup of the world-leading high flux radiography and tomography facility at the Institut Laue-Langevin is presented. A comprehensive appendix covers the physical and technical foundations of neutron imaging. (orig.)

  2. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Jr, Jay Theodore

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 to 2.6 neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313-315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  3. Wave Effect Neutron Radiographic Imaging Origins in WCNR and Prospects for Low Cost Systems

    Science.gov (United States)

    Barton, J. P.; Rogers, J. D.

    The origins of wave effect neutron test methods for advanced neutron radiography as published in World Conference on Neutron Radiography (WCNR) series has been reviewed. They include Neutron Holography demonstrated at the Dido reactor, Harwell, UK; Neutron Refraction and Small Angle Scattering demonstrated at the IR-8 reactor, Kurchatov Institute, Moscow, Russia; and Neutron Interferometry demonstrated at the ILL reactor, Grenoble, France. Each case presents encouraging evidence that the advanced techniques currently practiced at the most advanced shared-user facilities could be built upon at some lower cost, single-user facilities if the lessons of the original low cost experiments are studied.

  4. Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging.

    Science.gov (United States)

    Borgschulte, A; Delmelle, R; Duarte, R B; Heel, A; Boillat, P; Lehmann, E

    2016-06-29

    Water adsorption enhanced catalysis has been recently shown to greatly increase the conversion yield of CO2 methanation. However, the joint catalysis and adsorption process requires new reactor concepts. We measured the spatial water distribution in a model fixed bed reactor using time resolved neutron imaging. Due to the high neutron attenuation coefficient of hydrogen, the absorbed water in the sorption catalyst gives a high contrast allowing us to follow its formation and map its distribution. At the same time, the product gas was analysed by FTIR-gas analysis. The measurements provided crucial insights into the future design of sorption reactors: during the sorption enhanced reaction, a reaction front runs through the reactor. Once the extension of the reaction front reaches the exhaust, the conversion rate of sorption enhanced methanation decreases. The existence of a reaction front running through the reactor is prerequisite for a high conversion rate. We give a simple model of the experimental results, in particular the conditions, under which a reaction front is established. In particular the latter effect must be taken into account for the dimensions of a large scale reactor.

  5. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  6. Fast-neutron and gamma-ray imaging with a capillary liquid xenon converter coupled to a gaseous photomultiplier

    Science.gov (United States)

    Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.

    2017-09-01

    Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.

  7. Quantitative analysis of γ-oryzanol content in cold pressed rice bran oil by TLC-image analysis method.

    Science.gov (United States)

    Sakunpak, Apirak; Suksaeree, Jirapornchai; Monton, Chaowalit; Pathompak, Pathamaporn; Kraisintu, Krisana

    2014-02-01

    To develop and validate an image analysis method for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. TLC-densitometric and TLC-image analysis methods were developed, validated, and used for quantitative analysis of γ-oryzanol in cold pressed rice bran oil. The results obtained by these two different quantification methods were compared by paired t-test. Both assays provided good linearity, accuracy, reproducibility and selectivity for determination of γ-oryzanol. The TLC-densitometric and TLC-image analysis methods provided a similar reproducibility, accuracy and selectivity for the quantitative determination of γ-oryzanol in cold pressed rice bran oil. A statistical comparison of the quantitative determinations of γ-oryzanol in samples did not show any statistically significant difference between TLC-densitometric and TLC-image analysis methods. As both methods were found to be equal, they therefore can be used for the determination of γ-oryzanol in cold pressed rice bran oil.

  8. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    Science.gov (United States)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  9. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  10. Probing the neutron star interior and the Equation of State of cold dense matter with the SKA

    Science.gov (United States)

    Watts, A.; Espinoza, C. M.; Xu, R.; Andersson, N.; Antoniadis, J.; Antonopoulou, D.; Buchner, S.; Datta, S.; Demorest, P.; Freire, P.; Hessels, J.; Margueron, J.; Oertel, M.; Patruno, A.; Possenti, A.; Ransom, S.; Stairs, I.; Stappers, B.

    2015-04-01

    With an average density higher than the nuclear density, neutron stars (NS) provide a unique test-ground for nuclear physics, quantum chromodynamics (QCD), and nuclear superfluidity. Determination of the fundamental interactions that govern matter under such extreme conditions is one of the major unsolved problems of modern physics, and -- since it is impossible to replicate these conditions on Earth -- a major scientific motivation for SKA. The most stringent observational constraints come from measurements of NS bulk properties: each model for the microscopic behaviour of matter predicts a specific density-pressure relation (its `Equation of state', EOS). This generates a unique mass-radius relation which predicts a characteristic radius for a large range of masses and a maximum mass above which NS collapse to black holes. It also uniquely predicts other bulk quantities, like maximum spin frequency and moment of inertia. The SKA, in Phase 1 and particularly in Phase 2 will, thanks to the exquisite timing precision enabled by its raw sensitivity, and surveys that dramatically increase the number of sources: 1) Provide many more precise NS mass measurements (high mass NS measurements are particularly important for ruling out EOS models); 2) Allow the measurement of the NS moment of inertia in highly relativistic binaries such as the Double Pulsar; 3) Greatly increase the number of fast-spinning NS, with the potential discovery of spin frequencies above those allowed by some EOS models; 4) Improve our knowledge of new classes of binary pulsars such as black widows and redbacks (which may be massive as a class) through sensitive broad-band radio observations; and 5) Improve our understanding of dense matter superfluidity and the state of matter in the interior through the study of rotational glitches, provided that an ad-hoc campaign is developed.

  11. Radiography and tomography using fission neutrons at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Lierse von Gostomski, Ch. [Inst. fuer Radiochemie, TU-Muenchen, Garching (Germany)

    2004-07-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm{sup -2} s{sup -1} for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  12. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide

    Science.gov (United States)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2017-07-01

    We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.

  13. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 11. Neutron imaging plate contributes to structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Advanced Science Research Center

    1999-11-01

    The neutron imaging plate (NIP) is an integrating detector of neutron for measuring the neutron flux by its photo-stimulated luminescence. This review with the list of references hitherto focused its application done mainly by the author to structural biology. As compared with the traditional position sensitive detector (PSD, the two-dimensionally arranged proportional counter), NIP, since it can be arranged cylindrically to surround the sample, has the data collection rate ten times as rapid as the PSD, which enabled to analyze the structure of biopolymers. There are four neutron diffractometers equipped with NIP: LADI in France which was used for the hydrogen and hydrated structures of lysozyme, BIX-II which is inappropriate for structural biology due to weak neutron intensity, BIX-LAUE with which the obtained diffraction of the above enzyme is presented in this paper and BIX-III which has the highest sensitivity and diffraction of rubredoxin is presented; all of the latter three are in the Japan Atomic Energy Research Institute. The shield against X-ray was pointed out necessary and lead plate of 1-40 mm thickness was found satisfactory. NIP, however, is not complete yet at present for structural biology but is thought promising in future. (K.H.)

  14. The use of neutron imaging for the study of honeycomb structures in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Hungler, P.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada (Canada)], E-mail: paul.hungler@rmc.ca; Bennett, L.G.I.; Lewis, W.J. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada (Canada); Brenizer, J.S.; Heller, A.K. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States)

    2009-06-21

    Highly maneuverable aircraft, such as the CF188 Hornet, have several flight control surfaces on both the leading and the trailing edges of the wing surfaces. They are composed of composite panels constructed of aluminum honeycomb core usually covered with graphite epoxy skins. Although very light and structurally stiff, they are being compromised by water ingress. The trapped water degrades their structural integrity by interacting with the adhesive. Various studies are underway to understand the movement of water in the honeycomb core as well as to determine a method of removing the water. With a vertical neutron beam tube at Royal Military College (RMC), the component can be positioned horizontally and the pooled water in each honeycomb cell can be imaged. These images have been compared with those from a horizontal beam and thus vertical placement of the structure at Pennsylvania State University Radiation Science and Engineer Center's Breazeale reactor. Thereby, both the filet bond between the honeycomb and the skin as well as the node bond between the honeycomb cells can be studied to determine their contribution to the movement of water throughout the structure. Moreover, the exit path for water has been visualized as part of developing a drying procedure for these flight control surfaces.

  15. Photoresist latent and developer images as probed by neutron reflectivity methods.

    Science.gov (United States)

    Prabhu, Vivek M; Kang, Shuhui; VanderHart, David L; Satija, Sushil K; Lin, Eric K; Wu, Wen-li

    2011-01-18

    Photoresist materials enable the fabrication of advanced integrated circuits with ever-decreasing feature sizes. As next-generation light sources are developed, using extreme ultraviolet light of wavelength 13.5 nm, these highly tuned formulations must meet strict image-fidelity criteria to maintain the expected performance gains from decreases in feature size. However, polymer photoresists appear to be reaching resolution limits and advancements in measurements of the in situ formed solid/solid and solid/liquid interface is necessary. This Review focuses on the chemical and physical structure of chemically amplified photoresists at the lithographic feature edge at length scales between 1 nm and 100 nm. Neutron reflectivity measurements provide insight into the nanometer-scale composition profiling of the chemical latent image at an ideal lithographic line-edge that separates optical resolution effects from materials processing effects. Four generations of advanced photoresist formulations were examined over the course of seven years to quantify photoresist/photoacid and photoresist/developer interactions on the fidelity of lithographic features. The outcome of these measurements complement traditional resist design criteria by providing the effects of the impacts of the photoresist and processing on the feature fidelity. These physical relations are also described in the context of novel resist architectures under consideration for next-generation photolithography with extreme-ultraviolet radiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Information and backaction due to phase contrast imaging measurements of cold atomic gases: beyond Gaussian states

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2016-01-01

    We further examine a theory of phase contrast imaging (PCI) of cold atomic gases, first introduced by us in Phys. Rev. Lett. {\\bf 112}, 233602 (2014). We model the PCI measurement by directly calculating the entangled state between the light and the atoms due to the ac Stark shift, which induces a conditional phase shift on the light depending upon the atomic state. By interfering the light that passes through the BEC with the original light, one can obtain information of the atomic state at a single shot level. We derive an exact expression for a measurement operator that embodies the information obtained from PCI, as well as the back-action on the atomic state. By the use of exact expressions for the measurement process, we go beyond the continuous variables approximation such that the non-Gaussian regime can be accessed for both the measured state and the post-measurement state. Features such as the photon probability density, signal, signal variance, Fisher information, error of the measurement, and the b...

  17. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  18. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  19. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    Science.gov (United States)

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  20. Imaging of the Li spatial distribution within V2O5 cathode in a coin cell by neutron computed tomography

    Science.gov (United States)

    Zhang, Yuxuan; Chandran, K. S. Ravi; Bilheux, Hassina Z.

    2018-02-01

    An understanding of Lithium (Li) spatial distribution within the electrodes of a Li-ion cell, during charge and discharge cycles, is essential to optimize the electrode parameters for increased performance under cycling. In this work, it is demonstrated that the spatial distribution of Li within Vanadium Pentoxide (V2O5) electrodes of a small coin cell can be imaged by neutron computed tomography. The neutron attenuation data has been used to construct the three-dimensional Li spatial images. Specifically, it is shown that there is sufficient neutron imaging contrast between lithiated and delithiated regions of V2O5 electrode making it possible to map Li distributions even in small electrodes with thicknesses <1 mm. The images reveal that the Li spatial distribution is inhomogeneous and a relatively higher C-rate leads to more non-uniform Li distribution after Li insertion. The non-uniform distribution suggests the limitation of Li diffusion within the electrode during the lithiation process under the relatively high cycling rates.

  1. Study on the imaging ability of the 2D neutron detector based on MWPC

    Science.gov (United States)

    Tian, LiChao; Chen, YuanBo; Tang, Bin; Zhou, JianRong; Qi, HuiRong; Liu, RongGuang; Zhang, Jian; Yang, GuiAn; Xu, Hong; Chen, DongFeng; Sun, ZhiJia

    2013-10-01

    A 2D neutron detector based on 3He convertor and MWPC with an active area of 200 mm×200 mm has been successfully designed and fabricated. The detector has been tested with Am/Be neutron source and with collimated neutron beam with the wavelength of λ=1.37 Å. The best spatial resolution of 1.18 mm (FWHM) and good linearity were obtained. This is in good agreement with theoretical calculations.

  2. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  3. Neutron detectors for the ESS diffractometers

    Czech Academy of Sciences Publication Activity Database

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Muller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, Jan; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    Roč. 12, JAN (2017), č. článku P01019. ISSN 1748-0221 R&D Projects: GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * neutron diffraction detectors * neutron detectors (cold, thermal, fast neutrons) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.220, year: 2016

  4. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References American ...

  5. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D{sub 2} project at the FRM-II reactor in Munich

    Energy Technology Data Exchange (ETDEWEB)

    Tortorella, D.

    2007-02-07

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g{sub A}), the neutron lifetime ({tau}{sub n}) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  6. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    Science.gov (United States)

    Fatherley, V. E.; Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L.; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H.

    2016-11-01

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  7. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    Science.gov (United States)

    Belloni, F.; Andriamonje, S.; Berthoumieux, E.; Calviani, M.; Chiaveri, E.; Colonna, N.; Giomataris, Y.; Guerrero, C.; Gunsing, F.; Iguaz, F. J.; Kebbiri, M.; Pancin, J.; Papaevangelou, T.; Tsinganis, A.; Vlachoudis, V.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Corté-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Marítnez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T. J.; Žugec, P.

    2014-05-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a 10B based neutron/charged particle converter has been extensively used at the n_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental results will be presented and compared to simulations, performed by means of the FLUKA code.

  8. Imaging many-body Coulomb interactions and ultrafast photoionization and diffraction with cold atom electron and ion sources

    Science.gov (United States)

    Scholten, Robert; Speirs, Rory; Murphy, Dene; Torrance, Joshua; Thompson, Daniel; Sparkes, Benjamin; McCulloch, Andrew

    2017-04-01

    The CAEIS cold-atom electron/ion source, based on photoionisation of laser cooled atoms, provides a powerful tool for investigating fundamental physical processes. The very low temperature of the ions has allowed us to image intra-beam Coulomb effects with unprecedented detail. With ultrafast laser excitation and streak detection we can probe competing ionization processes, particularly via Rydberg states, including sequential excitation, multiphoton excitation, resonance-enhanced multiphoton excitation and two-color multiphoton excitation. Knowledge from these studies has enabled ultrafast single-shot diffractive electron imaging with atomic resolution using a CAEIS.

  9. Microstructure and Mechanical Properties of Ti Cold-Spray Splats Determined by Electron Channeling Contrast Imaging and Nanoindentation Mapping.

    Science.gov (United States)

    Goldbaum, Dina; Chromik, Richard R; Brodusch, Nicolas; Gauvin, Raynald

    2015-06-01

    Cold spray is a thermo-mechanical process where the velocity of the sprayed particles affects the deformation, bonding, and mechanical properties of the deposited material, in the form of splats or coatings. At high strain rates, the impact stresses are converted into heat, a phenomenon known as adiabatic shear, which leads to grain re-crystallization. Grain re-crystallization and growth are shown to have a direct impact on the mechanical properties of the cold-sprayed material. The present study ties the microstructural features within the cold-sprayed Ti splats and the substrate to the bonding mechanism and mechanical properties. High-resolution electron channeling contrast imaging, electron backscatter diffraction mapping, and nanoindentation were used to correlate the microstructure to the mechanical properties distribution within the titanium cold-spray splats. The formation of nanograins was observed at the titanium splat/substrate interface and contributed to metallurgical bonding. An increase in grain re-crystallization within the splat and substrate materials was observed with pre-heating of the substrate. In the substrate material, the predominant mechanism of deformation was twinning. A good relationship was found between the hardness and distribution of the twins within the substrate and the size distribution of the re-crystallized grains within the splats.

  10. Dense cold matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2016-01-01

    Full Text Available The possibility to study cold nuclear matter with the density of neutron star core and even larger in the laboratory experiment is discussed. Special rare kinematical trigger for relativistic ion-ion collisions is proposed for such study. Expected properties of the matter in such unusual conditions and experimental program for its study is discussed. Possible experimental setup and R&D results for position sensitive neutron detector are presented.

  11. Development and characterization of a D-D fast neutron generator for imaging applications.

    Science.gov (United States)

    Adams, Robert; Bort, Lorenz; Zboray, Robert; Prasser, Horst-Michael

    2015-02-01

    The experimental characterization of a pulsed D-D fast neutron generator designed for fan-beam tomography applications is presented. Using Monte Carlo simulations the response of an LB6411 neutron probe was related to the neutron generator output. The yield was measured to be up to ∼10(7) neutrons/s. An aluminum block was moved stepwise between the source and a BC400 plastic scintillator detector in order to measure an edge response. This edge response was related to the neutron emitting spot size using Monte Carlo simulations and a simplified geometry-based model. The experimentally determined spot size of 2.2 mm agreed well with the simulated value of 1.5 mm. The time-dependence of pulsed output for various operating conditions was also measured. The neutron generator was found to satisfy design requirements for a planned fast neutron tomography arrangement based on a plastic scintillator detector array which is expected to be capable of producing 2D tomograms with a resolution of ∼1.5 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  13. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  14. SU-C-204-05: Simulations of a Portal Imaging System for Conformal and Intensity Modulated Fast Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    James, S St.; Argento, D; Stewart, R [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct the neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.

  15. Hyperventilation and cold-pressor stress echocardiography combined with automated functional imaging non-invasively detected vasospastic angina

    Science.gov (United States)

    Suzuki, Kengo; Akashi, Yoshihiro J; Mizukoshi, Kei; Kou, Seisyou; Takai, Manabu; Izumo, Masaki; Shimozato, Takashi; Hayashi, Akio; Ohtaki, Eiji; Nobuoka, Sachihiko; Miyake, Fumihiko

    2010-01-01

    A 47-year-old male presented with chest discomfort while sleeping. The patient was suspected of having vasospastic angina (VSA) and underwent hyperventilation and cold-pressor stress echocardiography. No chest pain, ECG changes or decreased wall motion was found. However, automated function imaging (AFI) showed decreased peak systolic strain at the apex and postsystolic shortening at both the apex and inferior wall, which was not found before the test. The provocation test revealed 99% stenosis in the right coronary artery #2 at a dose of 50 μg acetylcholine and 90% stenosis in the left coronary artery #8 at a dose of 100 μg. The patient was thus diagnosed as having VSA. The present case demonstrates the usefulness of AFI combined with hyperventilation and cold-pressor stress echocardiography as a screening examination for VSA. PMID:22798093

  16. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  17. Experience of the Indirect Neutron Radiography Method Based on the X-ray Imaging Plate at CARR

    Science.gov (United States)

    Wei, Guohai; Han, Songbai; Wang, Hongli; He, Linfeng; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    Indirect neutron radiography (INR) experiments by X-ray imaging plate were carried out at the China Advanced Research Reactor (CARR). The key experiment parameters were optimized, especially the exposure time of the neutron converter andimaging plate. The optimized total exposure time is 37.25 min, it is two-fifths of the timebased on the film method under the same experimental conditions. The qualitative and quantitativeinspections were tested with dummy nuclear fuel rods and a water temperaturesensor ofa motor vehicle. The spring in the sensor and the defects of the dummy fuel rod's pellets can be qualitatively detected. The thickness of the tape at one position on the cladding of the dummy nuclear fuel rodwas quantitatively calculated to be 9.57 layers with the relative error of ±4.3%.

  18. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Daniel Mietchen

    Full Text Available BACKGROUND: Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. METHODOLOGY: Given that non-destructive techniques like (1H Magnetic Resonance (MR imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. RESULTS: In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. CONCLUSIONS: These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.

  19. A suggestion for B-10 imaging during boron neutron capture therapy

    OpenAIRE

    Cortesi, M

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake ...

  20. Effects of proton escape on detection efficiency in thin scintillator elements and its consequences for optimization of fast-neutron imaging

    Science.gov (United States)

    Andersson, P.; Sjöstrand, H.; Jacobsson Svärd, S.

    2011-09-01

    Plastic scintillators are commonly used for neutron detection in the MeV energy range, based on n-p scattering and the subsequent deposition of recoil proton's kinetic energy in the detector material. This detection procedure gives a quasi-rectangular energy deposition distribution for mono-energetic neutrons, extending from zero to the neutron energy. However, if the detector sensitive element (DSE) is small, the energy deposition may be incomplete due to the recoil proton escape. In the application of neutron imaging, here exemplified by fast-neutron tomography, two conflicting requirements have been identified: (1) thin DSEs are required to obtain high spatial resolution and (2) energy discrimination may be required to reduce the influence of neutrons being scattered into the DSEs, which generally occurs at lower energies. However, at small DSE widths, the reduction of energy deposition due to recoil proton escape may cause a significant decrease in detection efficiency when energy discrimination is applied. In this work, energy deposition distributions in small-size DSEs have been simulated for Deuterium-Deuterium (DD; 2.5 MeV) and Deuterium-Tritium (DT; 14.1 MeV) fusion neutrons. The intrinsic efficiency has been analyzed as a function of energy discrimination level for various detector widths. The investigations show that proton recoil escape causes a significant drop in intrinsic detection efficiency for thin DSEs. For DT neutrons, the drop is 10% at a width of 3.2 mm and 50% at a width of 0.6 mm, assuming an energy threshold at half the incident neutron energy. The corresponding widths for a DD detector are 0.17 and 0.03 mm, respectively. Finally, implications of the proton escape effect on the design of a fast-neutron tomography device for void distribution measurements at Uppsala University are presented. It is shown that the selection of DSE width strongly affects the instrument design when optimizing for image unsharpness.

  1. Investigating phase behavior and structural changes in NiO/Ni-YSZ composite with monochromatic in-situ 2D and static 3D neutron imaging

    DEFF Research Database (Denmark)

    Makowska, Malgorzata G.; Strobl, Markus; Kardjilov, Nikolay

    2017-01-01

    oxide fuel cells, and for cathodes in solid oxide electrolysis cells). Results of in-situ 2D and ex-situ 3D measurements are presented. In-situ observation of phase transition between NiO and Ni were performed at the test Beamline for neutron Optics and other Applications (BOA) at the continuous neutron......In this work, we report neutron imaging studies of redox cycling of NiO/Ni-8YSZ (nickel/nickel oxide – yttria stabilized zirconia) composite used for electrodes in solid oxide electrochemical cells for efficient energy conversion (power-to-gas and vice versa) purposes (i.e. for anodes in solid...

  2. The Ideological, Structural Analysis of the Russian Image Representation in the Cold War Times’ Film ‘White Nights’

    Directory of Open Access Journals (Sweden)

    Alexander Fedorov

    2013-01-01

    Full Text Available This article included the ideological, structural analysis of the Russian image representation in the “cold war” times’ film ‘White nights’ (USA, 1985. Following the methodology developed by U. Eco the author selected three systems which are significant in a product: the author’s ideology, market conditions which determined the plot, the creating process and success of media text (or, at least, promoted the first, the second and the third; narrative techniques, ideological and social trends, stereotypes

  3. Development of a hybrid MSGC detector for thermal neutron imaging with a MHz data acquisition and histogramming system

    CERN Document Server

    Gebauer, B; Richter, G; Levchanovsky, F V; Nikiforov, A

    2001-01-01

    For thermal neutron imaging at the next generation of high-flux pulsed neutron sources a large area and fourfold segmented, hybrid, low-pressure, two-dimensional position sensitive, microstrip gas chamber detector, fabricated in a multilayer technology on glass substrates, is presently being developed, which utilizes a thin composite sup 1 sup 5 sup 7 Gd/CsI neutron converter. The present article focusses on the readout scheme and the data acquisition (DAQ) system. For position encoding, interpolating and fast multihit delay line based electronics is applied with up to eightfold sub-segmentation per geometrical detector segment. All signals, i.e. position, time-of-flight and pulse-height signals, are fed into deadtime-less 8-channel multihit TDC chips with 120 ps LSB via constant fraction and time-over-threshold discriminators, respectively. The multihit capability is utilized to raise the count rate limit in combination with a sum check algorithm for disentangling pulses from different events. The first vers...

  4. Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raneri, Simona; Barone, Germana; Mazzoleni, Paolo [University of Catania, Department of Biological, Geological and Environment Sciences, Catania (Italy); Rabot, Eva [Laboratoire Leon Brillouin (CNRS/CEA), Gif-Sur-Yvette (France)

    2016-11-15

    Building stones are frequently subjected to very intense degradation due to salt crystallization, often responsible for strong modifications of their pore network. These effects have a great influence on the mechanical properties and durability of the materials, and on the penetration of water. Therefore, the quantification and visualization of water absorption into the pore network of degraded stones could provide useful information to better understand the weathering process. In this study, neutron radiography has been used (1) to monitor and visualize in two dimensions the capillary water uptake in a Sicilian calcarenite widely used as building and replace stone (namely Sabucina stone) and (2) to quantify the water content distribution, as a function of time and weathering degree. Additionally, traditional experiments based on gravimetric methods have been performed, following the standard recommendations. Results demonstrated a change in the physical properties of Sabucina stones with the intensification of the degradation process, with severe effects on the capillary imbibition dynamics. The water penetration depth at the end of the experiment was substantially higher in the fresh than in the weathered stones. The water absorption kinetics was faster in the weathered samples, and the amount of water absorbed increased with the number of weathering cycles. Good agreement between classical and neutron imaging data has also been evidenced. However, neutron radiography has allowed retrieving additional spatial information on the water absorption process, and to better understand how salt weathering affects the petrophysical properties of the studied stone and how it influences then the stone response against water. (orig.)

  5. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Suh, T; Yoon, D; Jung, J; Shin, H; Kim, M [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.

  6. New Type of Neutron Image Scintillator based on H310BO3/ZnS(Ag)

    Science.gov (United States)

    Wang, Yu; Han, Songbai; Hao, Lijie; He, Linfeng; Wei, Guohai; Wu, Meimei; Wang, Hongli; Liu, Yuntao; Chen, Dongfeng

    In this contribution we present a system of converter (H3 10BO3) and phosphor (ZnS:Ag) which were fabricated by spraying method. The particle sizes and the mass ratio of the neutron converter and phosphor materials were optimized by simulation and experimental methods, respectively. Furthermore, the spatial resolution of scintillators at thicknesses of 0.40 nm and 0.35 mm were1.11 lp/mm (MTF = 0.1) and 1.33 lp/mm (MTF = 0.1), respectively. The results indicated that H3 10BO3/ZnS(Ag) scintillator have potential application in thermal neutron radiography.

  7. Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan

    Science.gov (United States)

    Hsu, Ho-Han; Liu, Char-Shine; Morita, Sumito; Tu, Shu-Lin; Lin, Saulwood; Machiyama, Hideaki; Azuma, Wataru; Ku, Chia-Yen; Chen, Song-Chuen

    2017-12-01

    Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This "gas reservoir" is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.

  8. Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm.

    Science.gov (United States)

    Cheng, Weiwei; Sun, Da-Wen; Pu, Hongbin; Wei, Qingyi

    2018-01-15

    The study investigated the possibility of using hyperspectral imaging (HSI) in the spectral range of 1000-2200nm to characterize myofibrils cold structural deformation degrees of frozen pork samples. The HSI images of pork samples frozen under different freezing rates were acquired in the frozen state without thawing. The myofibrils cold structural deformation degrees were evaluated by surface hydrophobicity (S0ANS) and Ca(2+)-ATPase activity. Spectral angle mapping (SAM) algorithm was used for the first time to extract the spectral information for regression. Compared with the optimized partial least square regression (PLSR) models based on selected wavebands by successive projections algorithm (SPA), the optimized PLSR models developed based on the spectral angles calculated by the SAM algorithm achieved comparable or even better performance with R(2)P of 0.896 for S0ANS and 0.879 for Ca(2+)-ATPase activity, respectively. The implications of the frozen meat spectrum were also analyzed in the current study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Novel Scanning Land Mine Detector Based on the Technique of Neutron Back Scattering Imaging

    NARCIS (Netherlands)

    Bom, V.; Osman, A.M.; Monem, A.M.A.

    2008-01-01

    The neutron back-scattering (NBS) technique is a well established method to find hydrogen in objects. It can be applied in land mine detection taking advantage of the fact that land mines are abundant in hydrogen. The NBS technique is suitable for land mine scanning e.g., seeking for land mines with

  10. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  11. How does the wetting dynamics affect capillary trapping in heterogeneous soil: Neutron imaging study

    Science.gov (United States)

    Sacha, Jan; Snehota, Michal; Trtik, Pavel; Vontobel, Peter

    2017-04-01

    The wetting dynamics of the water infiltration into a porous soil system has a strong influence on the amount of entrapped air inside the soil. Simultaneously, a higher volume of entrapped air obstructs a water flow in the medium. This effect is more noticeable in soils with preferential pathways because the soil matrix has a higher capillary forces and therefore the air is accumulated in preferential pathways. In the presented study, two experiments were conducted on the same sample. The first experiment was performed under the constant water level condition (CWL) and the second experiment was carried out under the constant water flux condition (CWF) at the top of the sample. The sample was composed of coarse and medium coarse fractions of sand and fine porous ceramics. Materials were packed into the quartz glass column of the inner diameter of 29 mm. The coarse sand represented a highly conductive region connected from the top to the bottom of the sample with the exception of three thin (2-3 mm) separation layers made up of the medium coarse sand. Three discs of fine ceramics formed slow flow regions. Infiltration experiments were monitored by neutron radiography at two different beamlines to produce two-dimensional (2D) projections. The CWL experiment was monitored at NEUTRA station with an acquisition time of 16 seconds per projection and the CWF experiment was visualized at BOA station with an acquisition time of 0.25 seconds per projection. Both stations are located at the Paul Scherrer Institut, Switzerland. The acquired radiograms of the dry sample were subtracted from all subsequent radiograms to determine the water thickness in projections. From series of corrected radiograms taken at the different angles three-dimensional (3D) image was reconstructed for steady state stage of the CWL experiment and for the entire CWF experiment. Then the series of 3D images mapped the wetting of the porous system over the corresponding phase of infiltration process. The

  12. "m=1" coatings for neutron guides

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt

    2014-01-01

    the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and thermal neutrons and when a neutron is absorbed it emits a lot of gamma rays, some with energies above 9 MeV...

  13. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  14. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  15. Imaging Cold Gas to 1 kpc scales in high-redshift galaxies with the ngVLA

    Science.gov (United States)

    Casey, Caitlin; Narayanan, Desika; Dave, Romeel; Hung, Chao-Ling; Champagne, Jaclyn; Carilli, Chris Luke; Decarli, Roberto; Murphy, Eric J.; Popping, Gergo; Riechers, Dominik; Somerville, Rachel S.; Walter, Fabian

    2017-01-01

    The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will provide crucial insight on dominant physical drivers for star-formation in high redshift galaxies, including the exchange of gas from scales of the circumgalactic medium down to resolved clouds on mass scales of ~10^5 M_sun. In this study, we employ a series of high-resolution, cosmological, hydrodynamic zoom simulations from the MUFASA simulation suite and a CASA simulator to generate mock ngVLA observations. Based on a direct comparison between the inferred results from our mock observations and the cosmological simulations, we investigate the capabilities of ngVLA to constrain the mode of star formation, dynamical mass, and molecular gas kinematics in individual high-redshift galaxies using cold gas tracers like CO(1-0) and CO(2-1). Using the Despotic radiative transfer code that encompasses simultaneous thermal and statistical equilibrium in calculating the molecular and atomic level populations, we generate parallel mock observations of high-J transitions of CO and C+ from ALMA for comparison. The factor of 100 times improvement in mapping speed for the ngVLA beyond the Jansky VLA and the proposed ALMA Band 1 will make these detailed, high-resolution imaging and kinematic studies routine at z=2 and beyond.

  16. Neutron Activated Samarium-153 Microparticles for Transarterial Radioembolization of Liver Tumour with Post-Procedure Imaging Capabilities

    Science.gov (United States)

    Hashikin, Nurul Ab. Aziz; Yeong, Chai-Hong; Abdullah, Basri Johan Jeet; Ng, Kwan-Hoong; Chung, Lip-Yong; Dahalan, Rehir; Perkins, Alan Christopher

    2015-01-01

    Introduction Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy. Methods The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620–830 μm), which were reduced to 20–40 μm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 1012 n.cm-2.s-1 neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g-1. Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles. Results Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%. Conclusion The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization. PMID:26382059

  17. High-Speed Imaging of a Water Droplet Impacting a Super Cold Surface

    KAUST Repository

    Khaled, Narimane

    2016-08-01

    Frost formation is of a major research interest as it can affect many industrial processes. Frost appears as a thin deposit of ice crystals when the temperature of the surface is below the freezing point of the liquid. The objective of this research is to study icing with hope to propose new anti-icing and deicing methods. In the beginning of the research, cracking of the ice layer was observed when a deionized water droplet impacts a ?50 oC cooled sphere surface that is in contact with dry ice. To further investigate the cracks occurrence, multiple experiments were conducted. It was observed that the sphere surface temperature and droplet temperature (ranges from 10-80 oC) have no effect on the crack formation. On the other hand, it was observed that formation of a thin layer of frost on the sphere before the drop impact leads the lateral cracking of the ice. Thus, attempts to reproduce the cracks on clean super cold sphere surfaces were made using scratched and sandblasted spheres as well as superhydrophobized and polymer particle coated spheres. Furthermore, innovative methods were tried to initiate the cracks by placing epoxy glue bumps and ice-islands coatings on the surface of the spheres. All of these attempts to reproduce the crack formation without the presence of frost, failed. Nonetheless, the adding of isolated frost on the sphere surfaces always leads to the crack formation. Generally, frost forms on the small spheres faster than it does on the bigger ones. Additionally, the cold water droplet produces thicker water and ice layer compared to a hot water droplet; and the smaller the sphere the larger its water and ice layer thicknesses.

  18. In operando visualization of hydride-graphite composites during cyclic hydrogenation by high-resolution neutron imaging

    Science.gov (United States)

    Pohlmann, Carsten; Herbrig, Kai; Gondek, Łukasz; Kardjilov, Nikolay; Hilger, André; Figiel, Henryk; Banhart, John; Kieback, Bernd; Manke, Ingo; Röntzsch, Lars

    2015-03-01

    Hydrogen solid-state storage in metal hydrides has attracted remarkable attention within the past decades due to their high volumetric storage densities at low operating pressures. In particular, recently emerged hydride-graphite composites (HGC) can enable a safe, reliable and very compact hydrogen storage solution for various applications. In this regard, only little is known about the activation behavior of such HGC, their cycle stability and degradation effects. Because of the high sensitivity to hydrogen, neutron imaging offers a distinctive approach to examine in operando reaction fronts, swelling effects and microstructural changes of hydrogen absorbing materials with high spatial and temporal resolution. In this contribution, a comprehensive analysis of various phenomena during activation and cycling of HGC based on a Ti-Mn hydrogen absorbing alloy and expanded natural graphite is reported for the first time. A neutron radiography and tomography set-up with a spatial resolution down to 7 μm was utilized allowing highest detection precision. During initial hydrogenation, regions with enhanced reactivity are observed which contradicts a theoretically expected homogeneous reactivity inside the HGC. These active regions grow with the number of hydrogenation-dehydrogenation cycles until the whole HGC volume uniformly participates in the hydrogen sorption reaction. With regard to long-term hydrogenation-dehydrogenation cycling, inhomogeneous swelling effects were observed from which essential conclusions for technical HGC-based tank systems can be derived.

  19. 3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-08-01

    here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the

  20. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  1. Phase Transition Mapping by Means of Neutron Imaging in SOFC Anode Supports During Reduction Under Applied Stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, M.; Lauridsen, E. M.

    2015-01-01

    the microstructure and in particular the internal stresses in the Ni-YSZ layer and thereby the cell performance. Spatially resolved observation of the phase transition during reduction can provide information on how parameters like temperature and external load influence the reaction progress. This information......Mechanical and electrochemical performance of layers composed of Ni-YSZ cermet in solid oxide fuel and electrolysis cells (SOC) depends on their microstructure and initial internal stresses. After sintering, the manufacturing conditions, i.e. temperature, atmosphere and loads, can influence...... is crucial for optimization of the SOC performance. In this work the measurements with energy resolved neutron imaging of the phase transition during the NiOYSZ reduction performed at different temperatures with and without applied load, are presented. The results indicate a link between reduction rate...

  2. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging

    Science.gov (United States)

    Hendriks, J. N.; Gregg, A. W. T.; Wensrich, C. M.; Tremsin, A. S.; Shinohara, T.; Meylan, M.; Kisi, E. H.; Luzin, V.; Kirsten, O.

    2017-10-01

    Technological developments in high-resolution time-of-flight neutron detectors have raised the prospect of tomographic reconstruction of elastic strain fields from Bragg-edge strain images. This approach holds the potential to provide a unique window into the full triaxial stress field within solid samples. Recent work has provided an algorithm to achieve tomographic reconstruction for systems subject to in situ loads in the absence of residual stress. This paper details an experimental proof of concept for this algorithm involving the full reconstruction of a biaxial strain field within a nontrivial steel sample. Aside from a small systematic error present within individual measurements, the experiment was a success and now serves as a practical demonstration of Bragg-edge transmission strain tomography for systems under in situ loads.

  3. Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imaging

    DEFF Research Database (Denmark)

    Makowska, Malgorzata Grazyna; Kuhn, Luise Theil; Frandsen, Henrik Lund

    2017-01-01

    Ni-YSZ (nickel - yttria stabilized zirconia) is a material widely used for electrodes and supports in solid oxide electrochemical cells. The mechanical and electrochemical performance of these layers, and thus the whole cell, depends on their microstructure. During the initial operation of a cell....... This phenomenon is referred to as accelerated creep and is expected to have a significant influence on the microstructure development and stress field present in the Ni-YSZ in solid oxide electrochemical cells (SOCs), which is highly important for the durability of the SOC. In this work we present energy...... selective neutron imaging studies of the accelerated creep phenomenon in Ni/NiO-YSZ composite during reduction and also during oxidation. This approach allowed us to observe the phase transition and the creep behavior simultaneously in-situ under SOC operation-like conditions....

  4. Three-dimensional imaging of trapped cold atoms with a light field microscope.

    Science.gov (United States)

    Lott, Gordon E; Marciniak, Michael A; Burke, John H

    2017-11-01

    This research images trapped atoms in three dimensions, utilizing light field imaging. Such a system is of interest in the development of atom interferometer accelerometers in dynamic systems where strictly defined focal planes may be impractical. In this research, a light field microscope was constructed utilizing a Lytro Development Kit micro lens array and sensor. It was used to image fluorescing rubidium atoms in a magneto optical trap. The three-dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration that the low magnification (1.25) of the system changed typical assumptions used in the optics model for the PSF. The 3D reconstruction is analyzed with respect to a standard off-axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100 μm accuracy in a 3 mm deep volume, with a 16 μm in-focus standard resolution with a 3.9 mm by 3.9 mm field of view. Optical axis spreading is observed in the reconstruction and discussed. The 3D information can be used to determine properties of the atom cloud with a single camera and single image, and can be applied anywhere 3D information is needed but optical access may be limited.

  5. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  6. Imaging cold-induced vasodynamic behaviour in skin using OCT for microangiography (Conference Presentation)

    Science.gov (United States)

    Casper, Malte; Schulz-Hildebrandt, Hinnerk; Evers, Michael; Nguyen, Cuc; Birngruber, Reginald; Hüttmann, Gereon; Manstein, Dieter

    2017-02-01

    In dermatology the reflexes of vasoconstriction and vasodilation are known as important mechanisms of thermoregulation of the inner body. Imaging the physiology of microvasculature of the skin with high spatial resolution in three dimensions while reacting to changes in temperature is crucial for understanding the complex processes of vasodynamics, which result in constriction and dilation of vessels. However, previous studies using Laser-Doppler flowmetry and -imaging could not provide reliable angiographic images which allow to quantify changes in blood vessel diameter. Here, we report a different approach for angiographic imaging of microvasculature of a anaesthetized rodent model using speckle variance optical coherence tomography (svOCT) during and after localized cooling. Therefore a commercial OCT with a center wavelength of 1.3 μm and a spatial resolution of 13µm was used in combination with a custom built cooling device to image such reflexes at the mouse ear pinna and dorsal skinfold. Cooling was applied in steps of 2-5° C starting at the baseline temperature of 27° C down to -10° C. To our surprise and in contrast to the general opinion in literature, we were able to observe that the majority of vessels with a diameter larger than 20 μm maintain perfused with a constant diameter when the tissue is cooled from baseline to subzero temperatures. However, vasoconstriction was observed very rarely and only in veins, which led to their occlusion. The results of this experiment lead us to reconsider essential aspects of previous understanding of temperature-induced vasodynamics in cutaneous microvasculature.

  7. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma.

    Science.gov (United States)

    Bekeschus, Sander; Schmidt, Anke; Kramer, Axel; Metelmann, Hans-Robert; Adler, Frank; von Woedtke, Thomas; Niessner, Felix; Weltmann, Klaus-Dieter; Wende, Kristian

    2018-02-08

    Promising cold physical plasma sources have been developed in the field of plasma medicine. An important prerequisite to their clinical use is lack of genotoxic effects in cells. During optimization of one or even different plasma sources for a specific application, large numbers of samples need to be analyzed. There are soft and easy-to-assess markers for genotoxic stress such as phosphorylation of histone H2AX (γH2AX) but only few tests are accredited by the OECD with regard to mutagenicity detection. The micronucleus (MN) assay is among them but often requires manual counting of many thousands of cells per sample under the microscope. A high-throughput MN assay is presented using image flow cytometry and image analysis software. A human lymphocyte cell line was treated with plasma generated with ten different feed gas conditions corresponding to distinct reactive species patterns that were investigated for their genotoxic potential. Several millions of cells were automatically analyzed by a MN quantification strategy outlined in detail in this work. Our data demonstrates the absence of newly formed MN in any feed gas condition using the atmospheric pressure plasma jet kINPen. As positive control, ionizing radiation gave a significant 5-fold increase in micronucleus frequency. Thus, this assay is suitable to assess the genotoxic potential in large sample sets of cells exposed chemical or physical agents including plasmas in an efficient, reliable, and semiautomated manner. Environ. Mol. Mutagen., 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  9. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  10. Common Cold

    Science.gov (United States)

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  11. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  12. Convergent beam neutron crystallography

    Science.gov (United States)

    Gibson, Walter M.; Schultz, Arthur J.; Richardson, James W.; Carpenter, John M.; Mildner, David F. R.; Chen-Mayer, Heather H.; Miller, M. E.; Maxey, E.; Prask, Henry J.; Gnaeupel-Herold, Thomas H.; Youngman, Russell

    2004-01-01

    Applications of neutron diffraction for small samples (small fiducial areas are limited by the available neutron flux density. Recent demonstrations of convergent beam electron and x-ray diffraction and focusing of cold (λ>1 Å) neutrons suggest the possibility to use convergent beam neutron diffraction for small sample crystallography. We have carried out a systematic study of diffraction of both monoenergetic and broad bandwidth neutrons at the NIST Research Reactor and at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. Combining convergent beams with time-of-flight Laue diffraction is particularly attractive for high efficiency small sample diffraction studies. We have studied single crystal and powder diffraction of neutrons with convergence angles as large as 15° and have observed diffracted peak intensity gains greater than 20. The convergent beam method (CBM) shows promise for crystallography on small samples of small to medium size molecules (potentially even for proteins), ultra-high pressure samples, and for mapping of strain and texture distributions in larger samples.

  13. Optimization of neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B.

    1993-11-09

    I consider here the optimization of the two component neutron source, allowing beam species and energy to vary. A simple model is developed, based on the earlier publications, that permits the optimum to be obtained simply. The two component plasma, with one species of hot ion (D{sup +} or T{sup +}) and the complementary species of cold ion, is easy to analyze in the case of a spatially uniform cold plasma, as to good approximation the total number of hot ions is important but not their spatial distribution. Consequently, the optimization can ignore spatial effects. The problem of a plasma with both types of hot ions and cold ions is rather more difficult, as the neutron production by hot-hot interactions is sensitive to their spatial distributions. Consequently, consideration of this problem will be delayed to a future memorandum. The basic model is that used in the published articles on the two-component, beam-plasma mirror source. I integrate the Fokker-Planck equation analytically, obtaining good agreement with previous numerical results. This simplifies the optimization, by providing a functional form for the neutron production. The primary result is expressed in terms of the power efficiency: watts of neutrons/watts of primary power. The latter includes the positive ion neutralization efficiency. At 150 keV, the present model obtains an efficiency of 0.66%, compared with 0.53% of the earlier calculation.

  14. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    Science.gov (United States)

    Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  15. Solid polystyrene and deuterated polystyrene light output response to fast neutrons.

    Science.gov (United States)

    Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  16. Elimination of ghosting artifacts from wavelength-shifting fiber neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. L.; Diawara, Y.; Hannan, B. W.; Hodges, J. P. [Instrument and Source Design Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Clonts, L. G. [Research Accelerator Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-01-15

    Misassignment of neutron position (ghosting) produces artifacts which have been observed in wavelength-shifting (WLS) fiber detectors developed for time-of-flight (TOF) neutron powder diffraction. In position-sensitive detectors (PSDs) with WLS fiber encoding, thermal and cold neutrons interact with a monolithic {sup 6}LiF/ZnS:Ag scintillator screen, and scintillation photons are generated and transported through the crossed fibers to photomultipliers (PMTs). The neutron position is determined by photon counts in the PMTs within a preset time window. Ghosting occurs when neutrons hit the group boundaries of two neighboring PMTs for x-position multiplexing, which is modeled as resulting from a long travel length (about 3-5 mm) of a small number of scintillation photons. This model is supported by the change observed in aperture images when the threshold number for photon-pulses was adjusted for neutron event determination. When the threshold number of photon-pulses was set above 10 for each PMT, the ghost peaks in the aperture images and TOF spectra of powder diffraction were strongly suppressed or completely eliminated, and the intrinsic background levels of the WLS detectors were significantly reduced. Our result indicates that WLS fiber detector is a promising alternative for {sup 3}He PSDs for neutron scattering.

  17. Elimination of ghosting artifacts from wavelength-shifting fiber neutron detectors.

    Science.gov (United States)

    Wang, C L; Clonts, L G; Diawara, Y; Hannan, B W; Hodges, J P

    2013-01-01

    Misassignment of neutron position (ghosting) produces artifacts which have been observed in wavelength-shifting (WLS) fiber detectors developed for time-of-flight (TOF) neutron powder diffraction. In position-sensitive detectors (PSDs) with WLS fiber encoding, thermal and cold neutrons interact with a monolithic (6)LiF/ZnS:Ag scintillator screen, and scintillation photons are generated and transported through the crossed fibers to photomultipliers (PMTs). The neutron position is determined by photon counts in the PMTs within a preset time window. Ghosting occurs when neutrons hit the group boundaries of two neighboring PMTs for x-position multiplexing, which is modeled as resulting from a long travel length (about 3-5 mm) of a small number of scintillation photons. This model is supported by the change observed in aperture images when the threshold number for photon-pulses was adjusted for neutron event determination. When the threshold number of photon-pulses was set above 10 for each PMT, the ghost peaks in the aperture images and TOF spectra of powder diffraction were strongly suppressed or completely eliminated, and the intrinsic background levels of the WLS detectors were significantly reduced. Our result indicates that WLS fiber detector is a promising alternative for (3)He PSDs for neutron scattering.

  18. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    Energy Technology Data Exchange (ETDEWEB)

    Zarebanadkouki, Mohsen

    2013-05-08

    Where and how fast do roots take up water? Despite its importance in plant and soil sciences, there is limited experimental information on the location of water uptake along the roots of transpiring plants growing in soil. The answer to this question requires direct and in-situ measurement of the local flow of water into the roots. The aim of this study was to develop and apply a new method to quantify the local fluxes of water into different segments of the roots of intact plants. To this end, neutron radiography was used to trace the transport of deuterated water (D{sub 2}O) into the roots of lupines. Lupines were grown in aluminum containers filled with sandy soil. The soil was partitioned into different compartments using 1 cm-thick layers of coarse sand as capillary barriers. These barriers limited the diffusion of D{sub 2}O within the soil compartments. D{sub 2}O was locally injected into the selected soil compartments during the day (transpiring plants) and night (non-transpiring plants). Transport of D{sub 2}O into roots was then monitored by neutron radiography with spatial resolution of 100 μm and time intervals of 10 seconds. Neutron radiographs showed that: i) transport of D{sub 2}O into roots was faster during the day than during the night; 2) D{sub 2}O quickly moved along the roots towards the shoots during the day, while at night this axial transport was negligible. The differences between day and night measurements were explained by convective transport of D{sub 2}O into the roots. To quantify the net flow of water into roots, a simple convection-diffusion model was developed, where the increase rate of D{sub 2}O concentration in roots depended on the convective transport (net root water uptake) and the diffusion of D{sub 2}O into roots. The results showed that water uptake was not uniform along the roots. Water uptake was higher in the upper soil layers than in the deeper ones. Along an individual roots, the water uptake rate was higher in the

  19. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.

    Science.gov (United States)

    Sawada, Hidetaka; Tanishiro, Yasumasa; Ohashi, Nobuhiro; Tomita, Takeshi; Hosokawa, Fumio; Kaneyama, Toshikatsu; Kondo, Yukihito; Takayanagi, Kunio

    2009-12-01

    A spherical aberration-corrected electron microscope has been developed recently, which is equipped with a 300-kV cold field emission gun and an objective lens of a small chromatic aberration coefficient. A dumbbell image of 47 pm spacing, corresponding to a pair of atomic columns of germanium aligned along the [114] direction, is resolved in high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) with a 0.4-eV energy spread of the electron beam. The observed image was compared with a simulated image obtained by dynamical calculation.

  20. Neutron Imaging of Lithium Concentration for Validation of Li-Ion Battery State of Charge Estimation

    Science.gov (United States)

    2010-12-01

    imaging facilities by NIST ( Hussey et al., 2010) and PSI (Lehmann et al., 2009), and advanced our understanding of the water dy- namics and associated...Plate (MCP) detectors (Tremsin et al., 2005; Siegmund et al., 2009; Hussey et al., 2010). Prior attempts to investigate Lithium ion batteries using...point spread function (PSF), to simulate the blurring of the detec- tor, and imaging optics ( Hussey et al., 2010). Deconvolu- tion of the data, to

  1. Neutron detection in the frame of spatial magnetic spin resonance

    OpenAIRE

    Jericha, Erwin; Bosina, Joachim; Geltenbort, Peter; Hino, Masahiro; Mach, Wilfried; Oda, Tatsuro; Badurek, Gerald

    2016-01-01

    This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection al...

  2. Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors

    Science.gov (United States)

    Treimer, Wolfgang; Ebrahimi, Omid; Karakas, Nursel; Prozorov, Ruslan

    2012-05-01

    Polarized neutron radiography was used to study the three-dimensional magnetic flux distribution inside of single-crystal and polycrystalline Pb cylinders with large (cm3) volume and virtually zero demagnetization. Experiments with single crystals being in the Meissner phase (T

  3. Simulations of neutron deceleration in a multistage UCN turbine using a multilayer monochromator

    CERN Document Server

    Kawabata, Y

    2000-01-01

    A neutron turbine is a neutron decelerator with neutron reflectors on a rotor. The multistage neutron turbine using multilayer monochromators has three rotors to decelerate very cold neutrons to ultra-cold neutrons. Reflecting blades on the rotors are flat and the incident direction of neutrons is perpendicular to the mirror surface. The use of a multistage turbine makes the incident velocity to be about 150 m/s which is faster than the existing neutron turbines and the three rotors make the velocity change smaller in one stage than the Doppler shifter employing Bragg reflection. It simultaneously improves the neutron extraction efficiency from a cold neutron source and the neutron deceleration. The peak deceleration efficiency assuming unit reflectivity in this three-stage turbine is about 0.71 from 150 m/s to UCN, and that of the final stage is about 0.81 from 50 m/s to UCN.

  4. Characterization of solid D{sub 2} as a source material for ultra cold neutrons (UCN) and development of a detector concept for the detection of protons from the neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel Reimer

    2008-12-09

    In the first part of this thesis, properties of the UCN-converter material solid deuterium (sD{sub 2}) are studied. A series of investigations of various sD{sub 2} crystals by means of optical spectroscopy and neutron scattering resulted in: (i) a freezing technique suitable for UCN sources (ii) an efficient method to achieve a high ortho concentration, (iii) a direct way to calculate the UCN production cross-section from the dynamic structure factor S(q, {omega}), (iv) the identification of six excitations responsible for UCN production (v) the interpretation of one excitation at E=12 meV as a multi-phonon process (vi) the discovery of an additional spin-dependent UCN loss mechanism at q=2.1A{sup -1} and E=1.8 meV. A complementary series of experiments was performed at the FRMII, testing the production of UCN with the studied sample preparation after different the characterization mentioned above. Besides establishing a technique for annealing sD{sub 2} crystals to improve the UCN production rate, an additional loss cross section ({sigma}{sub x}=8 barn at 4.5 K indirect proportional to the ortho concentration) was found. Based on these findings, a new conceptual layout of the miniD{sub 2} source was developed. In the second part, the diffuse scattering probability f and the loss probability per wall collision {mu} were measured for differently prepared UCN guides using the storageand the so called two-hole method. Electropolished, rough stainless steel and Al tubes with different coatings at temperature variation and surface conditions were measured. The third part deals with the development of a proton detector for the neutron lifetime experiment PENeLOPE, which is based on gravitational and magnetic UCN storage and counting of the protons from the decay. A concept for a large-area proton detector based on thin scintillation counters operating in cryogenic environment was developed based on simulations and experimental studies. In addition to the characterization

  5. European Neutrons form Parasitic Research to Global Strategy: Realizing Plans for a Transnational European Spallation Source in the Wake of the Cold War

    Science.gov (United States)

    Kaiserfeld, Thomas

    2016-03-01

    Studies of Big Science have early on focused on instrumentation and scientific co-operation in large organizations, later on to take into account symbolic values and specific research styles while more recently also involving the relevance of commercial interests and economic development as well as the assimilation of research traditions. In accordance with these transformed practices, this presentation will analyze how an organization with the purpose of realizing a Big-Science facility, The European Spallation Source, has successfully managed to present the project as relevant to different national and international policy-makers, to the community of European neutron researchers as well as to different industrial interests. All this has been achieved in a research-policy environment, which has been the subject to drastic transformations, from calls to engage researchers from the former eastern bloc in the early 1990s via competition with American and Asian researchers at the turn of the century 2000 to intensified demands on business applications. During this process, there has also been fierce competition between different potential sites in the U.K., Germany, Spain, Hungary and Sweden, not once, but twice. The project has in addition been plagued by withdrawals of key actors as well as challenging problems in the field of spallation-source construction. Nevertheless, the European Spallation Source has survived from the early 1990s until today, now initiating the construction process at Lund in southern Sweden. In this presentation, the different measures taken and arguments raised by the European Spallation Source project in order to realize the facility will be analysed. Especially the different designs of the European Spallation Source will be analysed as responses to external demands and threats.

  6. Spontaneous imbibition of water and determination of effective contact angles in the Eagle Ford Shale Formation using neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, Victoria H.; Cheshire, Michael C.; McFarlane, Joanna; Kolbus, Lindsay M.; Hale, Richard E.; Perfect, Edmund; Bilheux, Hassina Z.; Santodonato, Louis J.; Hussey, Daniel S.; Jacobson, David L.; LaManna, Jacob M.; Bingham, Philip R.; Starchenko, Vitaliy; Anovitz, Lawrence M.

    2017-10-01

    Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although, the modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron imaging to measure the spontaneous imbibition of water into fractures of Eagle Ford Shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order differential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective contact angles were slightly higher than static contact angles due to effects of in-situ changes in velocity, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that average fracture widths are not satisfactory for modeling imbibition in natural systems.

  7. Dipole-dipole dispersion interactions between neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)

    2017-06-15

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)

  8. Dipole-dipole dispersion interactions between neutrons

    Science.gov (United States)

    Babb, James F.; Higa, Renato; Hussein, Mahir S.

    2017-06-01

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J^{π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ˜ 50 fm up to ˜ 103 fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed.

  9. Pulse shape discrimination characteristics of stilbene crystal, pure and 6Li loaded plastic scintillators for a high resolution coded-aperture neutron imager

    Science.gov (United States)

    Cieślak, M. J.; Gamage, K. A. A.; Glover, R.

    2017-07-01

    Pulse shape discrimination performances of single stilbene crystal, pure plastic and 6Li loaded plastic scintillators have been compared. Three pulse shape discrimination algorithms have been tested for each scintillator sample, assessing their quality of neutron/gamma separation. Additionally, the digital implementation feasibility of each algorithm in a real-time embedded system was evaluated. Considering the pixelated architecture of the coded-aperture imaging system, a reliable method of simultaneous multi-channel neutron/gamma discrimination was sought, accounting for the short data analysis window available for each individual channel. In this study, each scintillator sample was irradiated with a 252Cf neutron source and a bespoke digitiser system was used to collect the data allowing detailed offline examination of the sampled pulses. The figure-of-merit was utilised to compare the discrimination quality of the collected events with respect to various discrimination algorithms. Single stilbene crystal presents superior neutron/gamma separation performance when compared to the plastic scintillator samples.

  10. Visualization of embolism formation in the xylem of liana stems using neutron radiography.

    Science.gov (United States)

    Tötzke, Christian; Miranda, Tatiana; Konrad, Wilfried; Gout, Julien; Kardjilov, Nikolay; Dawson, Martin; Manke, Ingo; Roth-Nebelsick, Anita

    2013-04-01

    Cold neutron radiography was applied to directly observe embolism in conduits of liana stems with the aim to evaluate the suitability of this method for studying embolism formation and repair. Potential advantages of this method are a principally non-invasive imaging approach with low energy dose compared with synchrotron X-ray radiation, a good spatial and temporal resolution, and the possibility to observe the entire volume of stem portions with a length of several centimetres at one time. Complete and cut stems of Adenia lobata, Aristolochia macrophylla and Parthenocissus tricuspidata were radiographed at the neutron imaging facility CONRAD at the Helmholtz-Zentrum Berlin für Materialien und Energie, with each measurement cycle lasting several hours. Low attenuation gas spaces were separated from the high attenuation (water-containing) plant tissue using image processing. Severe cuts into the stem were necessary to induce embolism. The formation and temporal course of an embolism event could then be successfully observed in individual conduits. It was found that complete emptying of a vessel with a diameter of 100 µm required a time interval of 4 min. Furthermore, dehydration of the whole stem section could be monitored via decreasing attenuation of the neutrons. The results suggest that cold neutron radiography represents a useful tool for studying water relations in plant stems that has the potential to complement other non-invasive methods.

  11. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  12. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series...... of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  13. QPO Constraints on Neutron Stars

    Science.gov (United States)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  14. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  15. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  16. In situ diagnostics of the crystal-growth process through neutron imaging

    DEFF Research Database (Denmark)

    Tremsin, Anton S.; Makowska, Malgorzata Grazyna; Perrodin, Didier

    2016-01-01

    .g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole......, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼ 0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change...

  17. Neutron Star Mass-Radius Constraints Using Evolutionary Optimization

    NARCIS (Netherlands)

    Stevens, A.L.; Fiege, J.D.; Leahy, D.A.; Morsink, S.M.

    2016-01-01

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron

  18. Regge Poles in Neutron Scattering by a Cylinder

    Directory of Open Access Journals (Sweden)

    K. V. Protasov

    2014-01-01

    Full Text Available We establish asymptotic expressions for the positions of Regge poles for cold neutron scattering on mesoscopic cylinder mirror as well as for the S-matrix residuals. We outline the correspondence between Regge poles and near-surface quasi-stationary neutron states. Such states are of practical importance for studying subtle effects of neutron-surface interaction.

  19. Particle physics with slow neutrons; a personal and biased outlook

    CERN Document Server

    Byrne, J

    2000-01-01

    This review is devoted to recent advances in the physics of cold and ultra-cold neutrons reported at this workshop, in so far as they bear on current problems in particle physics both within and beyond the Standard Model. Attention is directed primarily to developments in the experimental study of neutron decay and to searches for the breakdown of T-invariance, either through the detection of a finite neutron electric dipole moment, or through the observation of T-violating asymmetries in selected neutron scattering processes. The review concludes with a brief resume of some fundamental studies in the field of neutron interferometry.

  20. The method of neutron imaging as a tool for the study of the dynamics of water movement in wet aramid-based ballistic body armour panels

    Science.gov (United States)

    Reifler, Felix A.; Lehmann, Eberhard H.; Frei, Gabriel; May, Hans; Rossi, René

    2006-07-01

    A new non-destructive method based on neutron imaging (neutron radiography) to determine the exact water content in aramid-based soft body armour panels is presented. While investigating the ballistic resistance of aramid-based body armour panels under a wet condition, it is important to precisely determine their water content and its chronological development. Using the presented method, the influence of water amount and location on impact testing as well as its time dependence was shown. In the ballistic panels used, spreading of water strongly depended on the kind of quilting. Very fast water migration could be observed when the panels were held vertically. Some first results regarding the water distribution in wet panels immediately after the impact are presented. On the basis of the presented results, requirements for a standard for testing the performance of ballistic panels in the wet state are deduced.

  1. First tests of the applicability of $\\gamma$-ray imaging for background discrimination in time-of-flight neutron capture measurements

    CERN Document Server

    Magán, D L Pérez; Domingo-Pardo, C; Agramunt-Ros, J; Albiol, F; Casanovas, A; González, A; Guerrero, C; Lerendegui-Marco, J; Tarifeño-Saldivia, A

    2016-01-01

    In this work we explore for the first time the applicability of using $\\gamma$-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr$_3$ scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a $^{197}$Au sample have been carried out at n\\_TOF, achieving an enhancement of a factor of 2 in the signal-to-background ratio when selecting only those events coming from the direction of the sample.

  2. Can Neutron Beam Components and Radiographic Image Quality be determined by the Use of Beam Purity and Sensitivity Indicators?

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    In the Euratom Neutron Radiography Working Group Test Program beam purity and s e n s i t i v i t y indicators, as prescribed by the ASTM E 545-81 were used together with the NRWG beam purity i n d i c a t o r - f u e l and c a l i b r a t i o n fuel pin. They were radiographed together at neutron...

  3. The production and storage of ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiki, Hajime [Kure University, Hiroshima (Japan); Shimizu, Hirohiko; Sakai, Kenji [and others

    1998-01-01

    The electric dipole measurement done on the ultracold neutron till now shows that its quantity is minute, not more than 10{sup -25}e.cm. It is purpose of this particular research program to produce such very slow neutrons, or so-cold ultracold neutrons in great quantity. Then, it was investigated what was the ultracold neutron important for, how is the ultracold neutron made, and how is very pure superfluid liquid helium made. As a result of these investigations, it was found that the validity of ultracold neutron production by superfluid liquid helium was established, that its efficiency is high enough to improve the neutron electric dipole moment detection sensitivity by at least one order of magnitude, and so forth. (G.K.)

  4. Time reversal tests in nuclear and neutron beta decay

    CERN Document Server

    Sromicki, J

    1999-01-01

    Motivation for time reversal violation studies in nuclear and neutron weak decay is discussed with an emphasis on searches for the exotic tensor and scalar weak interaction. The results of the experiment with polarized sup 8 Li are updated. A new experiment with the aim to determine the transverse polarization of electrons emitted by free, polarized neutrons, is proposed. A facility for neutron decay studies with polarized cold neutrons is under construction at the spallation source SINQ-PSI.

  5. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  6. The Image of the West on the Soviet Screen in the Era of the “Cold War”: Case Studies

    Directory of Open Access Journals (Sweden)

    Alexander V. Fedorov

    2013-01-01

    Full Text Available This article analyzes the Soviet films of the "cold war" period about Western world and western characters – in terms of their ideology, social and cultural context. As examples from movies and detective fiction genre – "The Mystery of Two Oceans", "Amphibian Man", "The Case of Corporal Kochetkov", "Gardens of the Scorpion."

  7. Performance of the Commercial PP/ZnS:Cu and PP/ZnS:Ag Scintillation Screens for Fast Neutron Imaging

    Directory of Open Access Journals (Sweden)

    Malgorzata G. Makowska

    2017-12-01

    Full Text Available Fast neutron imaging has a great potential as a nondestructive technique for testing large objects. The main factor limiting applications of this technique is detection technology, offering relatively poor spatial resolution of images and low detection efficiency, which results in very long exposure times. Therefore, research on development of scintillators for fast neutron imaging is of high importance. A comparison of the light output, gamma radiation sensitivity and spatial resolution of commercially available scintillator screens composed of PP/ZnS:Cu and PP/ZnS:Ag of different thicknesses are presented. The scintillators were provided by RC Tritec AG company and the test performed at the NECTAR facility located at the FRM II nuclear research reactor. It was shown that light output increases and the spatial resolution decreases with the scintillator thickness. Both compositions of the scintillating material provide similar light output, while the gamma sensitivity of PP/ZnS:Cu is significantly higher as compared to PP/ZnS:Ag-based scintillators. Moreover, we report which factors should be considered when choosing a scintillator and what are the limitations of the investigated types of scintillators.

  8. Powder neutron diffractometers HRPT and DMCG

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.; Doenni, A.; Staub, U.; Zolliker, M. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Basic properties and applications of SINQ powder neutron diffractometers are described. For optimum use of the continuous neutron beams these instruments are equipped with position sensitive detectors, and both high-intensity and high-resolution modes of operation are possible. HRPT attaining resolutions {delta}d/d{<=}10{sup -3}, d=lattice spacing, at a thermal neutron channel of the target station and DMCG at a cold neutron guide coated with m=2 supermirrors, are complementary concerning the applications: the former will be mainly used for structural studies and the latter to investigate magnetic ordering phenomena. (author) figs., tabs., refs.

  9. Detection Optimization for Prompt Gamma Ray Imaging during Boron Neutron Capture Therapy (BNCT): A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Sub; Yoon, Do Kun; Suh, Tae Suk [Catholic University of Korea, Seoul (Korea, Republic of)

    2016-05-15

    The purpose of this study was the statistical analysis of the prompt gamma ray peak induced by the boron neutron capture therapy (BNCT) from spectra using Monte Carlo simulation. For the simulation, the information of the sixteen detector materials was used to simulate spectra by the neutron capture reaction. The results in this study are the first reported data regarding the peak discrimination of 478 keV energy prompt gamma ray using the many cases. (sixteen detector materials). The reliable data based on the Monte Carlo method and statistical method with the identical conditions was deducted. Our results are important data in the BNCT study for the peak detection within actual experiments.

  10. Euratom Neutron Radiography Working Group

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear...... reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups or. different topics within the field of neutron...... radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups....

  11. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  12. SU-E-J-104: Single Photon Image From PET with Insertable SPECT Collimator for Boron Neutron Capture Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Yoon, D; Suh, T [The catholic University of Korea, College of Medicine/Graduate School of Medicine, Seoul (Korea, Republic of); Hong, K [Molecular Imaging Program at Stanford (MIPS), Palo Alto, CA (United States)

    2014-06-01

    Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full width at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No

  13. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  14. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  15. Application of Diamond Nanoparticles in Low-Energy Neutron Physics

    Directory of Open Access Journals (Sweden)

    Alexander Strelkov

    2010-03-01

    Full Text Available Diamond, with its exceptionally high optical nuclear potential and low absorption cross-section, is a unique material for a series of applications in VCN (very cold neutron physics and techniques. In particular, powder of diamond nanoparticles provides the best reflector for neutrons in the complete VCN energy range. It allowed also the first observation of quasi-specular reflection of cold neutrons (CN from disordered medium. Effective critical velocity for such a quasi-specular reflection is higher than that for the best super-mirror. Nano-diamonds survive in high radiation fluxes; therefore they could be used, under certain conditions, in the vicinity of intense neutron sources.

  16. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  17. Neutron Stars

    Science.gov (United States)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  18. Cold Sore

    Science.gov (United States)

    ... pain Headache Cold sore Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  19. Cold Urticaria

    Science.gov (United States)

    ... management of physical urticaria. Annals of Allergy, Asthma & Immunology. 2013;111:235. Nov. 21, 2014 Original article: http://www.mayoclinic.org/diseases-conditions/cold-urticaria/basics/definition/CON-20034524 . Mayo Clinic Footer Legal Conditions ...

  20. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  1. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model.

    Science.gov (United States)

    Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki

    2015-07-01

    Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Nested Focusing Optics for Compact Neutron Sources

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  3. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  4. Overview of Spallation Neutron Source Physics

    Science.gov (United States)

    Russell, G. J.; Pitcher, E. J.; Muhrer, G.; Mezei, F.; Ferguson, P. D.

    In December 1971 , the world's most advanced steady-state research reactor, the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble, France, reached full power operation. The reactor has recently undergone an extensive renovation, is equipped with hot and cold sources, and has a complement of word class instruments. As such, the ILL reactor is the worldwide center for neutron research at a reactor installation. With present technology, the constraints of heat removal and fuel cost place a limit on the available flux of a steadystate research reactor at levels not much higher than that of the ILL reactor. There has been extensive progress worldwide to realize new high-flux neutron facilities using the technology of spallation. When coupled with the spallation process in appropriate target materials, highpower accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation technology has recently become increasingly focussed on pulsed spallation neutron sources. Pulsed spallation neutron sources avoid the limitations of high time-average heat removal by producing neutrons for only a small fraction of the time. Also, the amount of energy deposited per useful neutron produced from spallation is less than that from fission. During the pulse, the available neutron flux from a pulsed spallation source can be much more intense than that obtainable in a steady-state reactor. Furthermore, pulsed neutron sources have certain unique features, which open up qualitatively new areas of science, which are not accessible to steady-state reactors. We discuss here the spallation process and spallation neutron sources. We compare the qualitative differences between fission and spallation and provide absolute neutron intensities for cold neutron production from a liquid H2, moderator at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) short-pulse pulsed spallation

  5. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  6. Cold-treated centrosome: isolation of centrosomes from mitotic sea urchin eggs, production of an anticentrosomal antibody, and novel ultrastructural imaging.

    Science.gov (United States)

    Thompson-Coffe, C; Coffe, G; Schatten, H; Mazia, D; Schatten, G

    1996-01-01

    A novel isolation of centrosomes is described and it was used to both generate a centrosome-specific monoclonal antibody and to image with high-resolution low-voltage scanning electron microscopy the surface details of the isolated centrosome. At first mitotic prometaphase, sea urchin zygotes are chilled on ice overnight. While most of the microtubules disassemble, the mitotic centrosomes collapse into aggregated masses. These centrosomes have been isolated, and used to generate a monoclonal antibody, designated 4D2, which is reactive with interphase and mitotic centrosomes. 4D2 staining of centrosomes is similar, but not identical, to that of other centrosomal antibodies like Ah6 and 5051. Centrosomal material is detected as a compact sphere after cold treatment; upon recovery the sphere expands and undergoes the shape changes previously described [Mazia et al., 1987: J. Cell Biol. 105:206a] to eventually reorganize a normal mitotic apparatus.

  7. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  8. Nondiffractive applications of neutrons at the spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author`s special interest and research field. (author) 7 figs., 2 tabs., 9 refs.

  9. Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@chemistry.uoc.g [University of Crete, Department of Chemistry (Greece)

    2010-05-15

    Two Gadolinium nanostructured materials, Gd{sub 2}(OH){sub 5}NO{sub 3} nanoparticles and Gd(OH){sub 3} nanorods, were synthesized and extensively characterized by various techniques. In addition to the potential use of Gd{sub 2}(OH){sub 5}NO{sub 3} in magnetic resonance imaging (MRI) and Neutron-capture therapy (NCT) application, it could also be used in targeted drug delivery. An antibiotic (nalidixic acid), two amino acids (aspartic and glutamic acid), a fatty acid and a surfactant (SDS) were intercalated in the nanoparticles. The surface of the nanoparticles was modified with folic acid in order to be capable of targeted delivery to folate receptor expressing sites, such as tumor human cells.

  10. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)

    2017-05-11

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  11. Neutron detection in the frame of spatial magnetic spin resonance

    Science.gov (United States)

    Jericha, Erwin; Bosina, Joachim; Geltenbort, Peter; Hino, Masahiro; Mach, Wilfried; Oda, Tatsuro; Badurek, Gerald

    2017-02-01

    This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection allowed us to characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-flight spectra, assess and minimise neutron background and provide for normalisation of the spectra owing to variations in reactor power and ambient conditions at the same time.

  12. Neutron detection in the frame of spatial magnetic spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, Erwin, E-mail: jericha@ati.ac.at [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Bosina, Joachim [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Austrian Academy of Sciences, Stefan Meyer Institute, Boltzmanngasse 3, 1090 Wien (Austria); Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Geltenbort, Peter [Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Hino, Masahiro [Kyoto University, Research Reactor Institute, Kumatori, Osaka 590-0494 (Japan); Mach, Wilfried [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Oda, Tatsuro [Kyoto University, Department of Nuclear Engineering, Kyoto 615-8540 (Japan); Badurek, Gerald [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria)

    2017-02-11

    This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection allowed us to characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-flight spectra, assess and minimise neutron background and provide for normalisation of the spectra owing to variations in reactor power and ambient conditions at the same time.

  13. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  14. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  15. A final report for Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    CERN Document Server

    Vernon, S M

    1999-01-01

    This SBIR Phase I developed neutron detectors made FR-om gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the FR-ont surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed FR-om a layer of Al sub x Ga sub 1 sub - sub x As. Schottky-barrier diodes formed FR-om the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10 sup - sup 1 sup 2 amps at -1 V o...

  16. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; hide

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  17. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kuthala, Naresh; Vankayala, Raviraj; Li, Yi-Nan; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2017-08-01

    Glioblastoma multiforme (GBM) is a very common type of "incurable" malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented 10 B-enriched (96% 10 B enrichment) boron nanoparticle nanomedicine (10 BSGRF NPs) surface-modified with a Fluorescein isothiocyanate (FITC)-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg 10 B g-1 cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The 10 BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging-guided BNCT, prolonging the half-life of mice from 22 d (untreated group) to 39 d. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Science.gov (United States)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  19. Neutron diffraction from superparamagnetic colloidal crystals

    Science.gov (United States)

    Ličen, M.; Drevenšek-Olenik, I.; Čoga, L.; Gyergyek, S.; Kralj, S.; Fally, M.; Pruner, C.; Geltenbort, P.; Gasser, U.; Nagy, G.; Klepp, J.

    2017-11-01

    We fabricated a superparamagnetic ordered structure via self-assembly of a colloidal crystal from a suspension of maghemite nanoparticles and polystyrene beads. Such crystals are potential candidates for novel polarizing beam-splitters for cold neutrons, complementing the available methods of neutron polarization. Different bead sizes and nanoparticle concentrations were tested to obtain a crystal of reasonable quality. Neutron diffraction experiments in the presence of an external magnetic field were performed on the most promising sample. We demonstrate that the diffraction efficiency of such crystals can be controlled by the magnetic field. Our measurements also indicate that the Bragg diffraction regime can be reached with colloidal crystals.

  20. Synthesis of superheavy elements by cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    2011-07-01

    The new elements from Z = 107 to 112 were synthesized in cold fusion reactions based on targets of lead and bismuth. The principle physical concepts are presented which led to the application of this reaction type in search experiments for new elements. Described are the technical developments from early mechanical devices to experiments with recoil separators. An overview is given of present experiments which use cold fusion for systematic studies and synthesis of new isotopes. Perspectives are also presented for the application of cold fusion reactions in synthesis of elements beyond element 113, the so far heaviest element produced in a cold fusion reaction. Further, the transition of hot fusion to cold fusion is pointed out, which occurs in reactions for synthesis of elements near Z = 126 using actinide targets and beams of neutron rich isotopes of elements from iron to germanium. (orig.)

  1. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Suk Yong; You, Jae Jun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author).

  2. Common cold

    Science.gov (United States)

    ... many health problems, including colds. DO NOT use antibiotics if they are not needed. Breastfeed infants if possible. Breast milk is known to protect against respiratory tract infections in children, even years after you stop breastfeeding. Drink plenty of fluids to help your immune ...

  3. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    Science.gov (United States)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  4. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.

    Science.gov (United States)

    Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan

    2008-05-01

    An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.

  5. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  6. Coping with Cold Sores

    Science.gov (United States)

    ... Skating Living With Stepparents Be a Green Kid Cold Sores KidsHealth > For Kids > Cold Sores Print A ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  7. Neutron Tomography at the Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  8. Multiple-wavelength neutron holography with pulsed neutrons.

    Science.gov (United States)

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  9. Assessment of (10)B concentration in boron neutron capture therapy: potential of image-guided therapy using (18)FBPA PET.

    Science.gov (United States)

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of (10)B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The (10)B concentration in normal organs after loading with (10)B, however, has not been established in humans. In this study, we performed 4-borono-2-[(18)F]-fluoro-phenylalanine ((18)FBPA) PET in healthy volunteers and estimated the chronological changes in the (10)B concentrations of normal organs. In 6 healthy volunteers, whole-body (18)FBPA PET scans were repeated 7 times during 1 h, and the mean (18)FBPA distributions of 13 organs were measured. Based on the (18)FBPA PET data, we then estimated the changes in the (10)B concentrations of the organs when the injection of a therapeutic dose of (10)BPA-fructose complex ((10)BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean (18)FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean (18)FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of (10)BPA-fr was assumed, the estimated mean (10)B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean (10)B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean (10)B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. (18)FBPA PET has a potential to estimate (10)B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  10. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  11. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  12. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  13. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  14. Magnetic small-angle neutron scattering on bulk metallic glasses: A feasibility study for imaging displacement fields

    Science.gov (United States)

    Mettus, Denis; Deckarm, Michael; Leibner, Andreas; Birringer, Rainer; Stolpe, Moritz; Busch, Ralf; Honecker, Dirk; Kohlbrecher, Joachim; Hautle, Patrick; Niketic, Nemanja; Fernández, Jesús Rodríguez; Barquín, Luis Fernández; Michels, Andreas

    2017-12-01

    Magnetic-field-dependent small-angle neutron scattering (SANS) has been utilized to study the magnetic microstructure of bulk metallic glasses (BMGs). In particular, the magnetic scattering from soft magnetic Fe70Mo5Ni5P12.5B2.5C5 and hard magnetic (Nd60Fe30Al10) 92Ni8 alloys in the as-prepared, aged, and mechanically deformed state is compared. While the soft magnetic BMGs exhibit a large field-dependent SANS response with perturbations originating predominantly from spatially varying magnetic anisotropy fields, the SANS cross sections of the hard magnetic BMGs are only weakly dependent on the field, and their angular anisotropy indicates the presence of scattering contributions due to spatially dependent saturation magnetization. Moreover, we observe an unusual increase in the magnetization of the rare-earth-based alloy after deformation. Analysis of the SANS cross sections in terms of the correlation function of the spin misalignment reveals the existence of field-dependent anisotropic long-wavelength magnetization fluctuations on a scale of a few tens of nanometers. We also give a detailed account of how the SANS technique relates to unraveling displacement fields on a mesoscopic length scale in disordered magnetic materials.

  15. Radiography and tomography with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang, E-mail: treimer@helmholtz-berlin.de [University of Applied Sciences, Beuth Hochschule für Technik Berlin, Department Mathematics Physics and Chemistry, Luxemburgerstr. 10, D-13353 Berlin (Germany); Helmholtz Zentrum für Materialien und Energie, Department G – GTOMO, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-01-15

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm{sup 3} in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified.

  16. Compound Refractive Lenses for Thermal Neutron Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles K.

    2013-11-12

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  17. New application of scintillator ZnSe(Te) in scintielectronic detectors for detection of neutrons, medical imaging, explosive detection, and NDT

    Science.gov (United States)

    Ryzhikov, Volodymyr D.; Opolonin, Oleksandr D.; Fedorov, Alexander G.; Lysetska, Olena K.; Kostioukevitch, Sergey A.

    2008-08-01

    Scintillators on the basis of AIIBVI compounds, such as ZnSe(Te), can be used for detection of secondary charged particles coming from nuclear reactions in which neutrons interact with target nuclei of atoms present in transparent materials of dispersion scintillation detectors matrices. Using unique properties of scintillator ZnSe(Te) we show possibility of increase detection efficiency for soft x-ray radiation (20 - 90 keV). The amorphous silicon flat panels and the photodiode arrays wide used for non-destructive testing and medical imaging (spatial resolution 20 - 400 mkm). By our estimations, using of such detectors in combination with thin film of ZnSe(Te) can increase efficiency of registration of x-ray radiation (for the source of 60-140kV) in 1,2 - 2 times. We obtained thin films (10-450mkm) of scintillator ZnSe(Te) on the different substrate materials and estimated the relative light yield of the layers deposited on the graphite and Al2O3 ceramic substrates and the bulk ZnSe(Te) crystal. Use of ZnSe(Te) in the low-energy "scintillator - photodiode" type detector allowed to increase accuracy of authentication of explosives (HEIMANN X-RAY INSPECTION SYSTEM EDtS10080). Using the dual energy digital radiography system prototype we obtained the x-ray images (60 projections of each object). These images are basic data for computer tomography and three-dimensional reconstruction of density and effective atomic number. The color identification palette provides clearly show variations of effective atomic number in biological and inorganic objects. So, for example, changes of calcium concentration in a bone. The research described in this publication was supported by STCU #4115 and NATO SfP-982823.

  18. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  19. Imaging of Gastrin-Releasing Peptide Receptor-Expressing Prostate Tumor using a {sup 68}Ga-Labeled Bombesin Analog

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Cheong; Dho, So Hee; Cho, Eun Ha; Lee, So Young; Kim, Soo Yong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected. The imaging efficacy of {sup 68}Ga-DOTA-gluBBN was evaluated in the PC-3- peritoneal metastasized model. These results suggest that {sup 68}Ga-labeled bombesin derivative has promising characteristics as a novel nuclear medicine, especially for the imaging of GRPR over-expressing prostate tumors. A target for irradiation was produced using 99% Ni-62 metal power concentrate. Ni-62 target of 1 g was irradiated in MARIA reactor operated in Poland for 470 hours at neutron flux of 2.5 x 10{sup 14}n/cm{sup 2}s, and estimated production of Ni-63 was calculated. Irradiated Ni-63 pellets were dissolved in HCl solution, and Ni-63 coatings were deposited by DC electroplating at current density of 20 mA/cm{sup 2}.

  20. Detection of diminished response to cold pressor test in smokers: assessment using phase-contrast cine magnetic resonance imaging of the coronary sinus.

    Science.gov (United States)

    Kato, Shingo; Kitagawa, Kakuya; Yoon, Yeonyee E; Nakajima, Hiroshi; Nagata, Motonori; Takase, Shinichi; Nakamori, Shiro; Ito, Masaaki; Sakuma, Hajime

    2014-04-01

    The purposes of this study were to evaluate the reproducibility for measuring the cold pressor test (CPT)-induced myocardial blood flow (MBF) alteration using phase-contrast (PC) cine MRI, and to determine if this approach could detect altered MBF response to CPT in smokers. After obtaining informed consent, ten healthy male non-smokers (mean age: 28±5 years) and ten age-matched male smokers (smoking duration ≥5 years, mean age: 28±3 years) were examined in this institutional review board approved study. Breath-hold PC cine MR images of the coronary sinus were obtained with a 3T MR imager with 32 channel coils at rest and during a CPT performed after immersing one foot in ice water. MBF was calculated as coronary sinus flow divided by the left ventricular (LV) mass which was given as a total LV myocardial volume measured on cine MRI multiplied by the specific gravity (1.05 g/mL). In non-smokers, MBF was 0.86±0.25 mL/min/g at rest, with a significant increase to 1.20±0.36 mL/min/g seen during CPT (percentage change of MBF (∆MBF (%)); 39.2%±14.4%, pcine MRI can be used to reproducibly quantify MBF response to CPT and to detect impaired flow response in smokers. This MR approach may be useful for monitoring the sequential change of coronary blood flow in various potentially pathologic conditions and for investigating its relationship with cardiovascular risk. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  2. Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification : a simulation study

    NARCIS (Netherlands)

    Biegun, Aleksandra K.; Seravalli, Enrica; Lopes, Patricia Cambraia; Rinaldi, Ilaria; Pinto, Marco; Oxley, David C.; Dendooven, Peter; Verhaegen, Frank; Parodi, Katia; Crespo, Paulo; Schaart, Dennis R.

    2012-01-01

    Therapeutic proton and heavier ion beams generate prompt gamma photons that may escape from the patient. In principle, this allows for real-time, in situ monitoring of the treatment delivery, in particular, the hadron range within the patient, by imaging the emitted prompt gamma rays. Unfortunately,

  3. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  4. The application of neutron activation analysis, scanning electron microscope, and radiographic imaging for the characterization of electrochemically deposited layers of lanthanide and actinide elements

    Science.gov (United States)

    Liebe, D.; Eberhardt, K.; Hartmann, W.; Häger, T.; Hübner, A.; Kratz, J. V.; Kindler, B.; Lommel, B.; Thörle, P.; Schädel, M.; Steiner, J.

    2008-06-01

    Lanthanide and actinide targets are prepared at the University of Mainz by molecular plating, an electrochemical deposition from an organic solvent, for heavy-ion reaction studies at GSI. To acquire information about deposition yield, target thickness, and target homogeneity, the following analysis methods are applied. With neutron activation analysis (NAA) the deposition yield and the average thickness of the deposited material is determined. We report on the analytical procedure of NAA performed subsequent to the molecular plating process. Scanning electron microscope (SEM) is used to determine the morphology of the target surfaces. In combination with energy dispersive X-ray spectrometer (EDS), we also could obtain qualitative information about the chemical form of the deposited material. So far, gadolinium, samarium, holmium, and uranium targets have been investigated with SEM/EDS. With radiographic imaging (RI), targets of uranium prepared by molecular plating and by vacuum vaporization are investigated. This method is suitable to obtain information about the spatial distribution, the homogeneity, and the thickness of the target layer deposition.

  5. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study

    Science.gov (United States)

    García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.

    2017-08-01

    Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.

  6. Material identification based upon energy-dependent attenuation of neutrons

    Science.gov (United States)

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  7. The neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Wolfgang [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The neutron lifetime τ{sub n}=880.3±1.1 s is an important parameter in the Standard Model of particle physics and in Big Bang cosmology. Several systematic corrections of previously published results reduced the PDG world average by several σ in the last years and call for a new experiment with complementary systematics. The experiment PENeLOPE, currently under construction at the Physik-Department of Technische Universitaet Muenchen, aims to determine the neutron lifetime with a precision of 0.1 s. It will trap ultra-cold neutrons in a magneto-gravitational trap using a large superconducting magnet and will measure their lifetime by both neutron counting and online proton detection. This presentation gives an overview over the latest developments of the experiment.

  8. The status of neutron beam utilization in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hae-Seop; Lee, Chang-Hee; Seong, Baek-Seok; Lee, Jeong-Soo [Neutron Beam Application Project, HANARO Center, Korea Atomic Energy Research Institute., Taejon (Korea)

    1999-10-01

    HANARO (30 MWth) at Korea Atomic Energy Research Institute (KAERI), which reached its first criticality on February 1995, is the multi-purpose research reactor for the application of reactor radiation in a variety of fields such as physics and materials science, irradiation technology, biomedical technology, and neutron activation analysis. For the neutron beam research, seven horizontal beam tubes of different types are available, and HANARO has performed its development plan for a basic set of neutron beam instruments since 1992. A High Resolution Powder Diffractometer (HRPD) and a Neutron Radiography Facility (NRF) has been installed and operated since 1997 and 1996 each. A Four Circle Diffractometer (FCD) and a Small Angle Neutron Spectrometer (SANS) will be operational on 1999 and in 2000 respectively, and a Polarized Neutron Spectrometer (PNS) in 2001. SANS at CN (Cold Neutron) beam tube will be operated using liquid nitrogen cooled Be filter until the cold neutron source is made available. Then, it will be moved to a guide laboratory with proper modification. Research works using the instruments in operation started by internal and external users since their full operation and have been rapidly increasing. Most in-house resources available are being used for on-going development of instruments due to rapidly increasing demands of external users nationwide. In addition to above instruments, a Triple Axis Spectrometer (TAS) and a Neutron Reflectometer which have been strongly requested by external users from universities and industries are under discussion. Then, HANARO will provide the best combination of neutron instruments to meet national research demands and international collaborations, and will be well prepared for future researches by cold neutrons. (author)

  9. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  10. Boron nitride nanotubes for boron neutron capture therapy as contrast agents in magnetic resonance imaging at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L., E-mail: luca.menichetti@ifc.cnr.it [CNR-National Research Council of Italy, Institute of Clinical Physiology, via G. Moruzzi 1, 56124 Pisa (Italy); De Marchi, D. [Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e la Sanita Pubblica, CNR-Regione Toscana, via Trieste 41, 56126 Pisa (Italy); Calucci, L. [CNR-National Research Council of Italy, ICCOM-Institute of OrganoMetallic Chemistry, via G. Moruzzi 1, 56124 Pisa (Italy); Ciofani, G.; Menciassi, A. [Italian Institute of Technology c/o Scuola Superiore Sant' Anna, viale R. Piaggio 34, 56025 Pontedera (Italy); Forte, C. [CNR-National Research Council of Italy, ICCOM-Institute of OrganoMetallic Chemistry, via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-12-15

    The applicability of boron nitride nanotubes (BNNTs) containing Fe paramagnetic impurities as contrast agents in magnetic resonance imaging (MRI) was investigated. The measurement of longitudinal and transverse relaxation times of water protons in homogeneous aqueous dispersions of BNNTs wrapped with poly(L-lysine) at different concentrations allowed longitudinal (r{sub 1}) and transverse (r{sub 2}) relaxivities to be determined at 3 T. The r{sub 2} value was comparable to those of commercial superparamagnetic iron oxide nanoparticles, indicating that Fe-containing BNNTs have the potential to be used as T{sub 2} contrast-enhancement agents in MRI at 3 T.

  11. Development of fast neutron profiling method

    CERN Document Server

    Miura, T; Sanami, T; Yamazaki, T; Ibaraki, M; Hirasawa, Y; Hiroishi, T; Aoki, T; Yamadera, A; Nakamura, T

    2002-01-01

    We discuss the effects of neutron scattering and gamma-ray background in fast neutron imaging and the method to reduce them. As a profiling device, a combination of an imaging plate (IP) and a polypropylene film (CH sub 2) has been employed in this study. Good profiles were obtained by employing appropriate neutron energy, a CH sub 2 thickness and geometry for accelerator-based fast neutrons (5-14 MeV). The neutron flux was approx 3.5x10 sup 4 cm sup - sup 2 s sup - sup 1 in the CH sub 2 -IP position. Furthermore, we are designing the device using a position-sensitive photomultiplier in order to improve the signal-to-noise ratio by obtaining the information of pulse height for particle selection together with position.

  12. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis

    Directory of Open Access Journals (Sweden)

    Adele Carradò

    2013-11-01

    Full Text Available Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM-calculation and the neutron stress determination.

  13. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis.

    Science.gov (United States)

    Palkowski, Heinz; Brück, Sebastian; Pirling, Thilo; Carradò, Adele

    2013-11-08

    Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE)-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France) on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM)-calculation and the neutron stress determination.

  14. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  15. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  16. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... to Your Parents - or Other Adults Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  17. Cold antihydrogen and CPT

    CERN Document Server

    Gabrielse, G; Bowden, N S; Oxley, P; Storry, C H; Wessels, M; Speck, A K; Estrada, J; Yesley, P S; Grzonka, D; Oelert, Walter; Schepers, G; Sefzick, T; Walz, J

    2002-01-01

    Progress in the quest for cold antihydrogen includes the first substantial accumulation of cold positrons and the first demonstration of positron cooling. Stacking of cold antiprotons is key to using the new antiproton decelerator facility at CERN. (22 refs).

  18. An image-based skeletal model for the ICRP reference adult male-specific absorbed fractions for neutron-generated recoil protons

    Energy Technology Data Exchange (ETDEWEB)

    Jokisch, D W [Department of Physics and Astronomy, Francis Marion University, Florence, SC 29502-0547 (United States); Rajon, D A [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Bahadori, A A; Bolch, W E, E-mail: djokisch@fmarion.edu [Department of Biomedical Engineering, University of Florida, Gainesville, FL (United States)

    2011-11-07

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  19. ORNL Neutron Sciences Annual Report for 2007

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  20. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  1. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  2. Neutron moderators for the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Zanini, L.; Batkov, K.

    to have access to cold and thermal neutrons with highest possible source brightness. Different design and configuration options were evaluated. The final configuration accepted for construction foresees two moderators with identical para-hydrogen (so-called "butterfly") shape, but different heights......The design of the neutron moderators for the European Spallation Source, intended to be installed at the start of operations of the facility in 2019 has now been finalized and the moderators are being fabricated. Among the driving principles in the design have been flexibility for instruments...

  3. Cold energy

    Science.gov (United States)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  4. NECTAR-A fission neutron radiography and tomography facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Breitkreutz, H.; Jungwirth, M.; Wagner, F.M. [Technische Universitaet Muenchen, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2011-09-21

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  5. Non destructive testing and neutron radiography in 1994; Les controles non destructifs et la neutronographie en 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G.

    1994-12-31

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs.

  6. Superfluid neutron stars

    OpenAIRE

    Langlois, David

    2001-01-01

    Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  8. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  9. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  10. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  11. The hidden cost of housing practices: using noninvasive imaging to quantify the metabolic demands of chronic cold stress of laboratory mice.

    Science.gov (United States)

    David, John M; Chatziioannou, Arion F; Taschereau, Richard; Wang, Hongkai; Stout, David B

    2013-10-01

    Laboratory mice routinely are housed at 20 to 22 °C-well below the murine thermoneutral zone of 29 to 34 °C. Chronic cold stress requires greater energy expenditure to maintain core body temperature and can lead to the failure of mouse models to emulate human physiology. We hypothesized that mice housed at ambient temperatures of 20 to 22 °C are chronically cold-stressed, have greater energy expenditure, and have high glucose utilization in brown adipose tissue. To test our hypotheses, we used indirect calorimetry to measure energy expenditure and substrate utilization in C57BL/6J and Crl:NU-Foxn1(nu) nude mice at routine vivarium (21 °C), intermediate (26 °C), and heated (31 °C) housing temperatures. We also examined the activation of interscapular brown adipose tissue, the primary site of nonshivering thermogenesis, via thermography and glucose uptake in this region by using positron emission tomography. Energy expenditure of mice was significantly higher at routine vivarium temperatures compared with intermediate and heated temperatures and was associated with a shift in metabolism toward glucose utilization. Brown adipose tissue showed significant activation at routine vivarium and intermediate temperatures in both hirsuite and nude mice. Crl:NU-Foxn1(nu) mice experienced greater cold stress than did C57BL/6J mice. Our data indicate mice housed under routine vivarium conditions are chronically cold stress. This novel use of thermography can measure cold stress in laboratory mice housed in vivaria, a key advantage over classic metabolic measurement tools. Therefore, thermography is an ideal tool to evaluate novel husbandry practices designed to alleviate murine cold stress.

  12. Detection of fast neutrons with the Medipix-2 pixel detector

    Science.gov (United States)

    Uher, J.; Jakubek, J.; Koster, U.; Lebel, C.; Leroy, C.; Pospisil, S.; Skoda, R.; Vykydal, Z.

    2008-06-01

    Neutron radiography using thermal and fast neutrons is becoming increasingly important for scientific, technical, security and other applications. In the past, the Medipix-2 imaging detector was successfully adapted for thermal neutron imaging by our group by adding a 6LiF neutron converter covering the surface of the active part of the detector. Recently, the Medipix-2 detector was also adapted and used for fast neutron imaging. Fast neutrons are detected through proton recoil from a 1 mm thick polyethylene layer placed on the detector surface. Basic detection and imaging properties of the detector were calculated, simulated and measured. The measurements were done using an AmBe neutron source, as well as external neutron beams of the Sparrow reactor at the Czech Technical University in Prague and of the high-flux reactor at the Institut Laue-Langevin (ILL) in Grenoble. The detector provided a reasonable signal-to-background ratio of about eight at the neutron beam of ILL's Neutrograph neutron radiography and tomography station. The estimated spatial resolution was at a level of 100 μm.

  13. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  14. Neutron Therapy in the 21st Century

    CERN Document Server

    Kroc, Thomas K

    2014-01-01

    The question of whether or not neutron therapy works has been answered. It is a qualified yes, as is the case with all of radiation therapy. But, neutron therapy has not kept pace with the rest of radiation therapy in terms of beam delivery techniques. Modern photon and proton based external beam radiotherapy routinely implements image-guidance, beam intensity-modulation and 3-dimensional treatment planning. The current iteration of fast neutron radiotherapy does not. Addressing these deficiencies, however, is not a matter of technology or understanding, but resources. The future of neutron therapy lies in better understanding the interaction processes of radiation with living tissue. A combination of radiobiology and computer simulations is required in order to optimize the use of neutron therapy. The questions that need to be answered are: Can we connect the macroscopic with the microscopic? What is the optimum energy? What is the optimum energy spectrum? Can we map the sensitivity of the various tissues of...

  15. NEUTRONIC REACTORS

    Science.gov (United States)

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  16. DIANE: Advanced system for mobile neutron radiology

    Science.gov (United States)

    Dance, W. E.; Huriet, J. R.; Cluzeau, S.; Mast, H.-U.; Albisu, F.

    1989-04-01

    Development of a new neutron radiology system, DIANE, is underway which will provide a ten-fold improvement in image-acquisition speed over presently operating mobile systems, insuring greater inspection throughput for production applications. Based on a 10 12 n/s sealed-tube (D-T) neutron generator under development by Sodern, on LTV's neutron moderator/collimator and electronic imaging systems and on robotic and safety systems being developed by IABG and Sener, the DIANE concept is that of a complete facility for on-site neutron radiography or radioscopy. The LTV components, which provide film or electronic imaging, including digital processing of 12-bit images, have been demonstrated in three basic systems now operating with Kaman A-711 neutron generators, including one operating in IABG's facilities. Sodern has fabricated a prototype neutron generator tube, the TN 46, for emission of 10 11 n/s over 1000 to 1500 hours, at 250 kV and 2 mA in the ion beam.

  17. Cold Signaling and Cold Response in Plants

    OpenAIRE

    Kenji Miura; Tsuyoshi Furumoto

    2013-01-01

    Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold respons...

  18. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  19. Neutron Stars and Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  20. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  1. Time reversal invariance in polarized neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Eric G. [Harvard Univ., Cambridge, MA (United States)

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10-4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10-5 is ultimately expected. The decay of free polarized neutrons (n → p + e + $\\bar{v}$e) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σn • pp x pe). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  2. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  3. Automatic scanning of NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At the European Laboratory for Particle Physics CERN, personal neutron monitoring for over 4000 collaborators is performed with Kodak NTA film, one of the few suitable dosemeters in the stray radiation environment of a high energy accelerator. After development, films are scanned with a projection microscope. To overcome this lengthy and strenuous procedure an automated analysis system for the dosemeters has been developed. General purpose image recognition software, tailored to the specific needs with a macro language, analyses the digitised microscope image. This paper reports on the successful automatic scanning of NTA films irradiated with neutrons from a /sup 238/Pu-Be source (E approximately=4 MeV), as well as on the extension of the method to neutrons of higher energies. The question of detection limits is discussed in the light of an application of the method in routine personal neutron monitoring. (9 refs).

  4. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  5. Cold Stress and the Cold Pressor Test

    Science.gov (United States)

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  6. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  7. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  8. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  9. Neutronic Reactor Design to Reduce Neutron Loss

    Science.gov (United States)

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  10. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  11. Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids

    CERN Document Server

    Bulgac, Aurel; Wlazłowski, Gabriel

    2016-01-01

    Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...

  12. Cold wave lotion poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...

  13. Paroxysmal cold hemoglobinuria (PCH)

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000557.htm Paroxysmal cold hemoglobinuria (PCH) To use the sharing features on this page, please enable JavaScript. Paroxysmal cold hemoglobinuria (PCH) is a rare blood disorder in ...

  14. Cold-induced metabolism

    NARCIS (Netherlands)

    van Marken Lichtenbelt, W.D.; Daanen, A.M.

    2003-01-01

    Cold-induced metabolism. van Marken Lichtenbelt WD, Daanen HA. Department of Human Biology, Maastricht University, Maastricht, The Netherlands. PURPOSE OF REVIEW: Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering

  15. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  16. Low-Mode Variations of the Cold-Fuel Distribution in Cryogenic DT Implosions on OMEGA

    Science.gov (United States)

    Forrest, C. J.; Anderson, K. S.; Glebov, V. Yu.; Goncharov, V. N.; Mannion, O. M.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2017-10-01

    The neutron energy spectrum generated from cryogenic DT direct-drive implosions in inertial confinement fusion experiments is used to interpret the cold-fuel distribution at peak compression. At the Omega Laser Facility, measurements are used to extract the neutron spectrum utilizing a high-dynamic-range neutron time-of-flight spectrometer. The shape of the energy spectrum is fully determined by the neutron elastic scattering cross section for spherically symmetric target configurations. Significant differences from the expected shape have been measured for some recent implosions, which indicate a deviation from a spherically symmetric fuel assembly. Neutron scattering in the DT cold-fuel assembly has been modeled in radiation-hydrodynamic codes. The experimental data show reasonable agreement with the model when the mass distribution of the compressed DT shell has low-mode perturbations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Fast and epithermal neutron radiography using neutron irradiator

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Karol A.M. de; Crispim, Verginia R., E-mail: amon@ufrrj.br, E-mail: vrcrispim@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil).Programa de Engenharia Nuclear; Ferreira, Francisco J.O., E-mail: francisco@ien.br [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisao de Reatores

    2013-07-01

    The neutron radiography technique (NR) with neutrons in the energy range fast to epithermal is a powerful tool used in no-destructive inspection of bulky objects of diverse materials, including those rich in hydrogen, oxygen, nitrogen ad carbon. Thus, it can be used to identify, inclusions, voids and thickness differences in materials such as explosive artifacts and narcotics. Aiming at using NR with fast and epithermal neutrons, an Irradiator was constructed by: a {sup 241}Am-Be source, with 5 Ci activity, a collimator with adjustable collimation rate, L/D; and a shield device composed by plates of borated paraffin and iron. The test specimens chosen were a Beam Purity Indicator (BPI) and an Indicator of Visual Resolution (IVR). The neutron radiography images obtained had a resolution of 444.4 μm and 363.6 μm respectively when registered in: 1) the sheet of the nuclear track solid detector, CR-39 type, through X (n,p) Y nuclear reaction; and 2) Kodak Industrex M radiographic film plate in close contact with a boron converter screen, both stored in a Kodak radiographic cassette. (author)

  18. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  19. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...

  20. Reactors and neutron-scattering instruments in Western Europe -an update on continuous neutron sources

    Science.gov (United States)

    Bauer, G. S.; Thamm, G.

    1991-10-01

    Research reactors as sources of continuous neutron beams have been operational in Western Europe since the late fifties and have triggered a series of successful developments in reactor technology and in particular in neutron-scattering instrumentation. The culmination point so far was the construction and operation of the high-flux reactor at the ILL in Grenoble. Although only one new reactor has been built since then, there were-and still are-efforts going on especially in Germany to provide a modern substitute for the older multi-purpose reactors still in operation or shut down already. Substantial effort also went into the modernization of the scattering instruments and experiment infrastructure (cold neutron sources, neutron guides, etc.) at several locations, showing that the scientific merits of neutron scattering are well recognized also on the political level. The ongoing construction of a cw-spallation neutron source in Switzerland might constitute an important step on the way to a new generation of high-flux sources.