WorldWideScience

Sample records for cold neutron guide

  1. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  2. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  3. Production and guide tube transmission of very cold neutrons from pulsed cold source

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Okumura, Kiyoshi

    1982-01-01

    The intensity and the energy spectra of Very Cold Neutrons (VCN) transmitted through a curved guide tube were measured by using the time-of-flight method of VCN. In the measurements, the curved guide tube having a characteristic neutron velocity of about 70 m/s is combined to a pulsed cold source of an electron linac in an internal target geometry. A space dependence of the VCN spectra was observed on the radial positions of a detector at the guide tube exit. A simple theoretical analysis on the transmission of VCN in the curved guide tube is also presented with taking into consideration about the effects of a finite size and a finite distance of the VCN-emitting source, and simple analytical formulas for the exit spectra of the guide tube are given. Comparisons between the experimental results and the theoretical calculations show good agreements, and the satisfactory performance of the present VCN guide tube assembly was ascertained. These results present also instructive features for understanding the structures and the space dependence of the exit spectra of a neutron guide tube. The VCN spectra at the guide tube exit can be divided into a few energy regions according to the transmission processes of VCN. Thus, the present study provides useful informations for the preparations of a VCN source with a curved guide tube. (author)

  4. Development of In-pile Plug Assembly and Primary Shutter for Cold Neutron Guide System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Won; Cho, Yeong Garp; Ryu, Jeong Soo; Lee, Jung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This report describes the mechanical design, fabrication, and installation procedure of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. A special tool and procedure for a replacement of in-pile plug and guide cassette is also presented with the interface condition in the reactor hall.

  5. Monte-Carlo simulation on the cold neutron guides at CARR

    International Nuclear Information System (INIS)

    Guo Liping; Wang Hongli; Yang Tonghua; Cheng Zhixu; Liu Yi

    2003-01-01

    The designs of the two cold neutron guides to be built at China Advanced Research Reactor (CARR) are simulated with Monte-Carlo simulation software VITESS. Various parameters of the guides, e.g. transmission efficiency, neutron flux, divergence, etc., are obtained. (author)

  6. Simulation study on the cold neutron guides in China advanced research reactor

    International Nuclear Information System (INIS)

    Guo Liping; Yang Tonghua; Wang Hongli; Sun Kai; Zhao Zhixiang

    2003-01-01

    The designs of the two cold neutron guides, CNG1 and CNG2, to be built in China advanced research reactor (CARR) are studied with Monte-Carlo simulation technique. The neutron flux density at the exit of the both guides can reach above 1 x10 9 cm -2 ·s -1 under the assumed flux spectrum of the cold neutron source. The transmission efficiency is 50% and 42%, and the maximum divergence is about 2.2 degree and 1.9 degree, respectively for CNG1 and CNG2. Neutron distribution along horizontal direction is quite uniform for both guides, with maximum fluctuation of less than 3%. Gravity can affect neutron distribution along vertical direction considerably

  7. Prompt gamma-ray analysis using JRR-3M cold and thermal neutron guide beams

    International Nuclear Information System (INIS)

    Yonezawa, C.; Haji Wood, A.K.; Magara, M.; Hoshi, M.; Tachikawa, E.; Sawahata, H.; Ito, Y.

    1993-01-01

    A permanent and stand-alone neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M has been constructed. Neutron flux at the sample positions were 1.4x10 8 and 2.4x10 7 n cm -2 s -1 for the cold and thermal neutrons, respectively. The γ-ray spectrometer is equipped to acquire three modes of spectra simultaneously: single mode, Compton suppression mode and pair mode, in an energy range up to 12 MeV. Owing to the cold neutron guide beam and the low γ-ray background system, analytical sensitivities and detection limits better than those in other PGA systems have been achieved. Analytical sensitivity and detection limit for 73 elements were measured. Boron, Gd, Sm and Cd are the most sensitive elements with detection limits down to 1 to 10 ng. For some elements such as F, Al, V, Eu and Hf, decay γ-rays are more sensitive compared to their respective prompt γ-ray. Analytical sensitivity of several heavy elements through detection of characteristic X-rays was higher than that through the prompt γ-ray detection. Analytical applicability of some sensitive elements such as B, H, Gd and Sm were examined. Isotopic analysis of Ni and Si were also examined. (author)

  8. A newly developed technique of wireless remote controlled visual inspection system for neutron guides of cold neutron research facilities at HANARO

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2012-01-01

    KAERI developed a neutron guide system for cold neutron research facilities at HANARO from 2003 to 2010. In 2008, the old plug shutter and instruments were removed, and a new plug and primary shutter were installed as the first cold neutron delivery system at HANARO. At the beginning of 2010, all the neutron guides and accessories had been successfully installed as well. The neutron guide system of HANARO consists of the in pile plug assembly with in pile guides, the primary shutter with in shutter guides, the neutron guides in the guide shielding room with secondary shutter, and the neutron guides in the neutron guide hall. Three kinds of glass materials were selected with optimum lengths by considering their lifetime, shielding, maintainability and cost as well. Radiation damage of the guides can occur on the coating and glass by neutron capturing in the glass. It is a big challenge to inspect a guide failure because of the difficult surrounding environment, such as high level radiation, limited working space, and massive hard work for removing and reinstalling the shielding blocks as shown in Fig 1. Therefore, KAERI has developed a wireless remote controlled visual inspection system for neutron guides using an infrared light camera mounted on the vehicle moving in the guide

  9. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  10. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  11. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  12. The University of Texas Cold Neutron Source

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Rios-Martinez, Carlos; Wehring, B.W.

    1994-01-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50x15 mm cross-section, 58 Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS. ((orig.))

  13. Activation analysis opportunities using cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Rossbach, M

    1987-05-01

    Guided beams of cold neutrons being installed at a number of research reactors may become increasingly available for analytical research. A guided cold beam will provide higher neutron fluence rates and lower background interferences than in present facilities. In an optimized facility, fluence rates of 10/sup 9/ nxcm/sup -2/xs/sup -1/ are obtainable. Focusing a large area beam onto a small target will further increase the neutron intensity. In addition, the shift to lower neutron energy increases the effective cross sections. The absence of fast neutrons and gamma rays permits detectors to be placed near the sample without intolerable background, and thus the efficiency for counting prompt gamma rays can be much higher than in present systems. Measurements made at the hydrogen cold source of the FRJ-2 (DIDO) reactor at the KFA provide a numerical evaluation of the improvements in PGAA with respect to signal-to-background ratios of important elements and matrices. (author) 15 refs.

  14. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  15. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  16. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Soyama, K.; Suzuki, J. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  17. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  18. The cold neutron facility of the JRR-3M

    International Nuclear Information System (INIS)

    Kumai, T.; Suzuki, M.; Kakefuda, K.

    1992-01-01

    A description is given of a cold neutron source and neutron guide tubes of the JRR-3M. The installation of the cold neutron source (CNS) together with the neutron guide system is one of the principal objectives of the remodeling project of the JRR-3 and this CNS is the first one that was installed in the high neutron flux reactors of 14 orders of magnitude in Japan. The CNS is a liquid hydrogen moderator and vertical thermosyphon type. It mainly consists of a hydrogen plant for liquid hydrogen and helium refrigerator plant for cold helium gas. Five neutron guide tubes are installed to get thermal and cold neutron beams in the beam hall. The CNS and the guide tubes have been operated very well since August 1990. (author)

  19. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  20. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  1. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  2. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K.

    2005-09-01

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  3. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  4. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  5. NANODIAMOND - diamond nano-powder reflectors for very cold neutrons

    International Nuclear Information System (INIS)

    Nesvizhevsky, V.V.

    2011-01-01

    The present proposal is based on recent observation of two new phenomena, related to the interaction of neutrons with nano-dispersed medium, in particular from powder of diamond nanoparticles with a characteristic size of ∼ 5 nm: -) efficient (close to 100%) reflection of slow neutrons (above 10-20 Angstroms) at any incidence angle; -) quasi-specular reflection of cold neutrons (above ∼ 5 Angstroms) at small grazing angles. We propose to implement such diamond nano-powder reflectors into sources of cold neutrons (where appropriate) as well as around upstream sections of neutron guides in order to increase fluxes of slow neutrons available for experiments. (authors)

  6. "m=1" coatings for neutron guides

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over...... the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and thermal neutrons and when a neutron is absorbed it emits a lot of gamma rays, some with energies above 9 Me...... of diamond coatings to show the potential for using these coatings in neutron guides....

  7. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  8. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  9. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  10. Neutron guide shielding for the BIFROST spectrometer at ESS

    OpenAIRE

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, Carsten P.; Lefmann, K.; Klinkby, E. B.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometerat ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. T...

  11. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  12. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  13. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  14. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  15. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  16. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  17. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  18. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  19. Basic physics with ultra cold neutrons

    International Nuclear Information System (INIS)

    Protasov, K.

    2007-01-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  20. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  1. Very-cold-neutron optics and interferometry at ILL

    International Nuclear Information System (INIS)

    Eder, K.; Zeilinger, A.; Gruber, M.; Rasel, E.; Gaehler, R.; Mampe, W.; Drexel, W.

    1994-01-01

    At the vertical neutron guide from the cold source of the Institut Laue-Langevin (ILL) an optical bench with vibration isolation has been installed. The beam of very cold neutrons has a nominal wavelength of 100 A. An interferometer using three transmission phase gratings sputter-etched into quartz glass plates has been developed. Extensive experiments on the diffraction of very cold neutrons at these large area gratings with grating constants d = 2 μm and d = 1 μm were carried out. The experimental results were compared with Fresnel-Kirchhoff calculations showing agreement in great detail. A prototype interferometer with an overall length of 50 cm has been tested for λ = 105 A (ν = 38.7 m/s) neutrons. Finally we list the experiments envisaged. (author)

  2. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  3. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  4. Development of Cold Neutron Depth Profiling System at HANARO

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.; Sun, G. M.

    2012-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. A number of analytical techniques for depth profiling have been developed. Neutron Depth Profiling (NDP) system which was developed by Ziegler et al. is one of the leading analytical techniques. In NDP, a thermal or cold neutron beam passes through a material and interacts with certain isotopes that are known to emit monoenergetic-charged particle remaining a recoil nucleus after neutron absorption. The depth is obtained from the energy loss of those charged particles escaping surface of substrate material. For various applications of NDP technique, the Cold Neutron Depth Profiling System (CN-NDP) was developed at a neutron guide CG1 installed at the HANARO cold neutron source. In this study the design features of the cold neutron beam and target chamber for the CN-NDP system are given. Also, some experiments for the performance tests of the CN-NDP system are described

  5. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs

  6. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  7. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  8. Cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    Larsen, J.E.

    1980-01-01

    Cold neutron radiography may be improved by matching neutron temperature to the specific material to be analyzed. It is possible to bombard the material with neutrons having the precise average temperature necessary to realize the minimum attenuation coefficient, or to choose a neutron temperature that would increase the attenuation by inclusions, defects, etc., or to choose a neutron temperature that provides a good balance between sample transmission and defect attenuation. Other neutron temperatures might also be chosen for other reasons. This may be done by having a source of neutrons embedded in a moderator material, such as solid methane, and cooling the moderator material to the desired temperature by a cryogenic refrigerator. In another embodiment, neutrons from a nuclear reactor are passed through a moderator cooled by a cryogenic refrigerator. Since the neutron temperature is matched to the material being radiographically inspected, improved contrast and resolution can be obtained through thicker materials than it has heretofore been possible to analyze by cold neutron radiography. More optimum filtering of a neutron beam is also achieved by using a cryogenic refrigerator to cool the neutron beam filter. (auth)

  9. Improved cold neutron radiographic apparatus and method

    International Nuclear Information System (INIS)

    1981-01-01

    An improved cold neutron radiography technique is described in which the neutron temperature is matched to the specific material to be analyzed. In addition to a beam source and detector the apparatus incorporates a cryogenic refrigerator which enables the moderator material to be cooled to a predetermined adjustable temperature below the Bragg edge temperature of the sample. (U.K.)

  10. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  11. Particle physics with cold neutrons

    International Nuclear Information System (INIS)

    Dubbers, D.

    1991-01-01

    Slow neutrons are used in a large number of experiments to study the physics of particles and their fundamental interactions. Some of these experiments search for manifestations of ''new physics'' like baryon- or lepton-number nonconservation, time reversal nonconservation, new particles, right-handed currents, nonzero neutron charge, nonlinear terms in the Schrodinger equation, exotic e + e - states, and others. Other slow neutron experiments test the present Standard Model. The parity nonconserving weak neutron-nucleon interaction is studied in a variety of experiments. Free neutron beta decay gives precise values for the weak vector and axialvector coupling constants, which allow precise tests of basic symmetries like the conservation of the weak vector current, the unitarity of the weak quark mixing matrix, SU(3) flavour symmetry, and right-handed currents. Neutron beta decay data are further needed to calculate weak cross-sections, for applications, in big bang cosmology, in astrophysics, in solar physics and the solar neutrino problem, and in such mundane things as neutrino detection efficiencies in neutrino oscillation or proton decay experiments. Neutron-nucleon, neutron-nucleus and neutron-electron scattering lengths are determined in high precision experiments, which use methods like neutron interferometry or neutron gravity spectrometry. The experiments give information on quantities like the neutron charge radius or the neutron electric polarizability. Precision measurements of other fundamental constants lead to a better, model-independent value of the fine structure constant. Finally, the fundamental experiments on quantum mechanics, like spinor 4π -rotation, Berry's phase, dressed neutrons, Aharanov - Casher effect, or gravitational effects on the neutron's phase will be briefly discussed. (author)

  12. Development of the RRR cold neutron beam facility

    International Nuclear Information System (INIS)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel

    2002-01-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  13. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  14. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  15. Neutron cooling and cold-neutron sources (1962)

    International Nuclear Information System (INIS)

    Jacrot, B.

    1962-01-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [fr

  16. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  17. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  18. The cold neutron source in DR 3

    International Nuclear Information System (INIS)

    Jensen, K.; Leth, j.A.

    1980-09-01

    A description of the cold neutron source in DR 3 is given. The moderator of the cold neutron source is supercritical hydrogen at about 30degK and 15 bar abs. The necessary cooling capacity is supplied by two Philips Stirling B20 cryogenerators. The hydrogen is circulated between the cryogenerators and the in-pile moderator chamber by small fans. The safety of the facility is based on the use of triple containment preventing contact between hydrogen and air. The triple containment is achieved by enclosing the high vacuum system, surrounging the hydrogen system, in a helium blanket. The achieved spectrum of the thermal neutron flux and the gain factor are given as well as the experience from more than 5 years of operation. Finally some work on extension of the facility to operate two cold sources is reported. (author)

  19. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  20. The GKSS cold neutron source

    International Nuclear Information System (INIS)

    Knop, W.; Wedderien, T.; Krull, W.

    1995-01-01

    The FRG-1 research reactor, in operation since 1958 at 5 MW power, is upgraded and refurbished many times to follow the changing demands on safe operation and the today needs for scientific research. This requires during the lifetime of the reactor many measures to follow these demands. Within the last years many additional activities have been made to overcome the ageing of the experiments, to change the experimental facilities and to increase the neutron flux and adapt the neutron spectrum to ensure good scientific utilization of the research reactor for the next 15 to 20 years. (orig./HP)

  1. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  2. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  3. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  4. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  5. Optimization of elliptic neutron guides for triple-axis spectroscopy

    International Nuclear Information System (INIS)

    Janoschek, M.; Boeni, P.; Braden, M.

    2010-01-01

    In the last decade the performance of neutron guides for the transport of neutrons has been significantly increased. The most recent developments have shown that elliptic guide systems can be used to focus neutron beams while simultaneously reducing the number of neutron reflections, hence, leading to considerable gains in neutron flux. We have carried out Monte-Carlo simulations for a new triple-axis spectrometer that will be built at the end position of the conventional cold guide NL-1 in the neutron guide hall of the research reactor FRM-II in Munich, Germany. Our results demonstrate that an elliptic guide section at the end of a conventional guide can be used to at least maintain the total neutron flux onto the sample, while significantly improving the energy resolution of the spectrometer. The simulation further allows detailed insight how the defining parameters of an elliptic guide have to be chosen to obtain optimum results. Finally, we show that the elliptic guide limits losses in the neutron flux that generally arise at the gaps, where the monochromator system of the upstream instrument is situated.

  6. Development of cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Park, K. N. and others

    1999-05-01

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  7. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  8. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.

    2016-01-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...... solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide...... in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...

  9. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  10. Assessment of cold neutron radiography capability

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Roberts, J.A.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry

  11. Performance of an elliptically tapered neutron guide

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-01-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics

  12. Design of the Mechanical Parts for the Neutron Guide System at HANARO

    International Nuclear Information System (INIS)

    Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S.

    2008-01-01

    The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented

  13. A simulation report for the neutron guide development at HANARO

    International Nuclear Information System (INIS)

    Cho, S. J.; Soo, J. Y.; Seong, B. S.; Lee, C. H.; Kim, H. R.

    2006-04-01

    Lately, a demand of the measurement technique on atomic scale has been exceedingly increased over the whole field of the basic and technical science such as biotechnology, nano-technology, solid state physics, solid chemistry etc. Therefore a project called 'infrastructure construction for cold neutron research and utilization technique development' was launched in KAERI in July 2003, in order to raise a domestic basic science with an international level and elevate a international competitiveness for the bio-, nano- and informatics technology area through a wide contribution in a material structure research field. In order to accomplish this project until 2008, some important developments were launched at a same time such as a cold neutron source which shifts neutrons from a short wavelength range to a long wavelength, a system driving part for a smooth operation of a cold neutron source, and a neutron guide tube to be able to send neutrons to spectrometers located over a long distance. The guide simulation should be preferentially performed for an effective use of expensive neutron to meet the requirements such as wavelengths and type of instruments, experimental space, interferences with other instruments. The objective of this study was to decide guide shape, dimension, amount, curvature and instrument layout

  14. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  15. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  16. The Advanced Neutron Source liquid deuterium cold source

    International Nuclear Information System (INIS)

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy

  17. Upgrade of the neutron guide system at the OPAL Neutron Source

    International Nuclear Information System (INIS)

    Rodriguez, D Martin; Kennedy, S J; Klose, F

    2010-01-01

    The new research reactor at ANSTO (OPAL) is operating with seven neutron beam instruments in the user programme and three more under construction. The reactor design provides for expansion of the facility to eighteen instruments, and much of the basic infrastructure is already in place. However, an expansion of the neutron guide system is needed for further beam instruments. For this purpose, several possibilities are under consideration, such as insertion of multi-channel neutron benders in the existing cold guides or the construction of a new elliptic cold guide. In this work Monte Carlo (MC) simulations have been used to evaluate performance of these guide configurations. Results show that these configurations can be competitive with the best instruments in the world.

  18. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  19. Cold fusion produces more tritium than neutrons

    International Nuclear Information System (INIS)

    Rajagopalan, S.R.

    1989-01-01

    The results of the major cold fusion experiments performed in various laboratories of the world and attempts to explain them are reviewed in brief. Particular reference is made to the experiments carried out in the Bhabha Atomic Research Centre (BARC), Bombay. In BARC experiments, it is found that tritium is the primary product of cold fusion. Author has put forward two hypothetical pictures of D-D fusion. (1) When a metal like Pd or Ti is loaded with D 2 , a crack forms. Propogation of such a crack accelerates deuterons which bombard Pd D 2 /D held by Pd or Ti leading to neutron capture or tritium formation with the release of protons and energy. The released protons might transfer its energy to some other deuteron and a chain reaction is started. This chain reaction terminates when a substantial portion of D in the crack tip is transmuted. This picture explains fusion reaction bursts and the random distribution of reaction sites, but does not explain neutron emission. (2) The deuterons accelerated by a propogating crack may hit a Pd/Ti nucleus instead of a deuterium nucleus and may transmute Pd/Ti. (M.G.B.). 18 refs

  20. Characterization of a focusing parabolic guide using neutron radiography method

    International Nuclear Information System (INIS)

    Kardjilov, Nikolay; Boeni, Peter; Hilger, Andre; Strobl, Markus; Treimer, Wolfgang

    2005-01-01

    The aim of the investigation was to test the focusing properties of a new type of focusing neutron guide (trumpet) with parabolically shaped walls. The guide has a length of 431mm with an entrance area of 16x16mm 2 and an output area of 4x4mm 2 . The interior surfaces were coated with a supermirror-surface m=3 and due to their parabolic shape it was expected that an incident parallel beam can be focused in the focal point of the parabolas. To prove this statement the neutron intensity distribution at different distances behind the guide was recorded by means of a standard, high-resolution radiography detector. The experiments were performed at the V12b instrument at HMI with different levels of beam monochromatization demonstrating maximum intensity gains of about 25. The consideration for using the focusing guide for the purposes of cold neutron radiography will be presented

  1. Initial performance of the Cornell cold neutron beam

    International Nuclear Information System (INIS)

    Clark, D.D.; Spern, S.A.; Atwood, A.G.

    1997-01-01

    The cold source for a guided neutron beam has been installed in a Cornell TRIGA beamport and has successfully undergone thermal tests up to full power (normally 480 kW). Tests to date (8/1/96) include spectral and yield measurements at 10 kW with the first three meters of the 2-cm by 5-cm Ni-on-glass guide in place. A 110-cm 3 Al chamber, located 17 cm from the core, contains solid mesitylene and is cooled by conduction through a 269-cm long Cu rod connected to a cryorefrigerator outside the reactor shield. Distributions of flux per unit velocity have been measured at 10 kW by time-of-flight. Anticipated properties of the complete 13 m long beam at full power are discussed. (author)

  2. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  3. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  4. Developments of high-performance moderator vessel for JRR-3 cold neutron source

    International Nuclear Information System (INIS)

    Arai, Masaji; Tamura, Itaru; Hazawa, Tomoya

    2015-05-01

    The cold neutron source (CNS) facility converts thermal neutrons into cold neutrons to moderate neutrons with liquid hydrogen. The cold neutron beam at Japan Research Reactor No. 3 (JRR-3) is led to the beam experimental devices in the beam hall through neutron guide tubes. High intensities of the cold neutron beam are always demanded for increasing the experimental effectiveness and accuracy. In the Department of Research Reactor and Tandem Accelerator, developments of high-performance CNS moderator vessel that can produce cold neutron intensity about two times higher compared to the existing vessel have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the design and manufacture of new vessel. In the present study, design strength evaluation, mockup test, simulation for thermo-fluid dynamics of the liquid hydrogen and strength evaluation of the different-material-bonding were studied. By these evaluation results, we verified that the developed new vessel can be applied to CNS moderator vessel of JRR-3. (author)

  5. Simulation report for neutron guide and spectrometer layout at HANARO

    International Nuclear Information System (INIS)

    Cho, S. J.; Cho, Y. G.; Ryu, J. S.; Seong, B. S.; Lee, C. H.; Shin, J. W.

    2006-01-01

    A project called 'infrastructure construction for cold neutron research and utilization technique development' was launched in KAERI in July 2003, in order to raise a domestic basic science with an international level and elevate a international competitiveness for the bio-, nano- and informatics technology area. At the end of this project, 3 new instruments and 3 instruments to be moved will be installed in the guide hall. In order to accomplish this project until 2008, guide simulation should be performed for an effective use of expensive neutron to meet the requirements such as wavelengths and type of instruments, experimental space, interferences with other instruments

  6. Neutron guides and scientific neutron equipment at CILAS/GMI

    International Nuclear Information System (INIS)

    Gautier-Picard, P.

    2003-01-01

    CILAS company is the world's leading supplier of complete neutron guides systems. The neutron optics with multilayer coatings produced by CILAS have become an international standard for neutron beam transportation in the modern research institutes. During the last 30 years, CILAS designed, produced and installed more than 5000 meters of guides in many European, American and Asian countries. To reinforce its leadership and presence in neutron research, CILAS acquired the company Grenoble Modular Instruments (GMI), a leading company in high precision mechanics, engineering and manufacturing of spectrometers and scientific equipment for neutron and synchrotron research. (author)

  7. Conventional sources of fast neutrons in 'cold fusion' experiments

    International Nuclear Information System (INIS)

    Cribier, M.; Spiro, M.; Favier, J.

    1989-04-01

    In 'cold fusion' experiments with heavy water a source of neutrons is the dissociation of deuterium induced by alpha particles emitted by natural occurring radioisotopes. We evaluate the rate of fast neutron emission as a function of the concentration of U, Th, Rn in contact with deuterium and discuss the possibility that the neutrons claimed to have been observed in 'cold fusion' experiments could be due to this conventional source

  8. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  9. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  10. Monte Carlo modelling for neutron guide losses

    International Nuclear Information System (INIS)

    Cser, L.; Rosta, L.; Toeroek, Gy.

    1989-09-01

    In modern research reactors, neutron guides are commonly used for beam conducting. The neutron guide is a well polished or equivalently smooth glass tube covered inside by sputtered or evaporated film of natural Ni or 58 Ni isotope where the neutrons are totally reflected. A Monte Carlo calculation was carried out to establish the real efficiency and the spectral as well as spatial distribution of the neutron beam at the end of a glass mirror guide. The losses caused by mechanical inaccuracy and mirror quality were considered and the effects due to the geometrical arrangement were analyzed. (author) 2 refs.; 2 figs

  11. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    International Nuclear Information System (INIS)

    Rosta, L.; Cser, L.; Revay, Z.

    2002-01-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  12. Current status for TRR-II Cold Neutron Source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Wang, C.H.; Chan, Y.K.; Shieh, D.J.

    2001-01-01

    The Taiwan Research Reactor (TRR) project (TRR-II) is carrying out at Institute of Nuclear Energy Research (INER) from October 1998 to December 2006. The purpose of Cold Neutron Source (CNS) project is to build entire CNS facility to generate cold neutrons within TRR-II reactor. The objective of CNS design is to install CNS facility with a competitive brightness of cold neutron beam to other facilities in the world. Based on the TRR-II CNS project schedule, the conceptual design for TRR-II CNS facility has been completed and the mock-up test facility for full-scale hydrogen loop has been designed. (author)

  13. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  14. Study of influence of transport performance of the neutron guide

    International Nuclear Information System (INIS)

    Li Xinxi; Wang Yan; Huang Chaoqiang; Chen Bo; Chen Liang

    2009-01-01

    For the sake of improving the performance of the neutron scattering instrument, usually we need use the neutron guide, it's very important to select the right type and optimizing of neutron guide. The papers calculate the focus neutron guide and the single channel neutron guide by numeric method. The results shows that the choice of neutron guide should consult the resolution requirement of neutron scattering instrument, and the length of the neutron guide should be optimized. The calculation results can be the theoretical reference for the design of neutron scattering instrument. (authors)

  15. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  16. Sonoluminescence: an IRaser creating cold fusion neutrons?

    International Nuclear Information System (INIS)

    Prevenslik, T.V.

    1996-01-01

    Sonoluminescence can be explained by treating the bubbles as IRasers with standing waves in resonance with the bubble dimensions. Since the IRaser resonant radiation is required to satisfy wave boundary conditions, the water molecules lining the bubble walls undergo a continuous population inversion as the bubble collapses. By stimulated processes, the Planck energy accumulates as the K b T energy of radiation photons is pumped from the surroundings through the rotational state of the water molecule. Bubble collapse occurs almost isothermally with the high IR absorptivity of the water molecule permitting the Planck energy to accumulate to 2∼6 eV only to be released by VIS-UV photon emission because of the low absorptivity of water at VIS-UV frequencies. As the IRaser cavity dimensions collapse to the spacing between water molecules at liquid density, soft x-rays at about 2 keV are predicted. But, this is less than 10 keV necessary for cold fusion so that no neutrons is directly expected yet. Therefore, it is suggested that UV laser enhancement is used to accumulate further bubble collapse energy

  17. Design and safety aspects of the Cornell cold neutron source

    International Nuclear Information System (INIS)

    Ouellet, Carol G.; Clark, David D.

    1992-01-01

    The cold neutron beam facility at the Cornell University TRIGA Mark II reactor will begin operational testing in early 1993. It is designed to provide a low background subthermal neutron beam that is as free as possible of fast neutrons and gamma rays for applied research and graduate-level instruction. The Cornell cold neutron source differs from the more conventional types of cold sources in that it is inherently safer because it uses a safe handling material (mesitylene) as the moderator instead of hydrogen or methane, avoids the circulation of cryogenic fluids by removing heat from the system by conduction through a 99.99% pure copper rod attached to a cryogenic refrigerator, and is much smaller in its size and loads. The design details and potential hazards are described, where it is concluded that no credible accident involving the cold source could cause damage to the reactor or personnel, or cause release of radioactivity. (author)

  18. The world’s first pelletized cold neutron moderator at a neutron scattering facility

    Energy Technology Data Exchange (ETDEWEB)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  19. Use of a neutron guide in industrial neutron radiography

    International Nuclear Information System (INIS)

    Zaccheo, M.; Berthon, J.; Uzureau, G.; Laporte, A.

    1983-01-01

    This paper describes the neutron radiography facility associated with the Orphee high flux reactor at the Saclay Nuclear Research Centre. Following a brief background review, the paper deals with: the presentation of the facility, with emphasis on all the mechanical systems involved; description of the control and monitoring console; a non-exhaustive list of the facility's potentialities; the advantages and drawbacks of the use of a neutron guide to carry out industrial neutron radiography. (Auth.)

  20. Neutron gain for converging guide tubes

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1982-01-01

    The method of acceptance diagrams is used to obtain analytical expressions for the neutron gain of a one-dimensional converging guide tube. It is found that the results are more easily expressed by analyzing the acceptance diagram at the exit of the funnel. The results are compared with those for the straight guide. When both guides have the same dimensions at the guide exit, the converging guide has higher transmitted intensity but with greater divergence of the beam. This analytical method is useful to assess the performance of a converging guide, though numerical computations may be required for detailed analysis of a guide system. (orig.)

  1. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  2. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  3. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  4. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  5. Performance of the advanced cold neutron source and optics upgrades at the NIST Research Reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Cook, J.C.; Rowe, J.M.

    2003-01-01

    On March 6, 2002, the NIST Research Reactor resumed routine operation following a six-month shutdown for facility upgrades and maintenance. During the shutdown, the original liquid hydrogen cold neutron source was removed, and the advanced cold source was installed. An optical filter was installed on one of the neutron guides, NG-3, replacing a crystal filter for the 30-m SANS instrument and the guide used between the chopper disks of the Disk Chopper time-of-flight Spectrometer (DCS) installed on NG-4 has been recently reconfigured. Additional improvements in the neutron optics of various instruments are being made. The advanced liquid hydrogen cold neutron source performs as expected, nearly doubling the flux available to most instruments. The measured gains range from about 1.4 at 2 A, to over a factor of two at 15 A. Also as expected, the heat load in the new source increased to 1200 watts, but the previously existing refrigerator has easily accommodated the increase. With intensity gains of a factor of two in the important long wavelength region of the spectrum, the advanced cold source significantly enhances the measurement capability of the cold neutron scattering instrumentation at NIST. The optical filter on NG-3 is also very successful; the 30-m SANS has an additional gain of two at 17 A. A system of refracting lenses and prisms near the SANS sample position has made possible measurements at low Q (0.0005 A -1 ) that were previously not feasible. The DCS has also seen additional intensity gain factors in excess of two for the majority of experiments and at short neutron wavelengths the gains exceed three. In addition, two new triple axis spectrometers will feature double-focusing monochromators in order to exploit the full size of the available thermal and cold neutron beam tubes. The success of the advanced cold source and enhanced neutron optics contributed to the recognition of the NIST Center for Neutron Research as 'the premiere neutron scattering

  6. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  7. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  8. Moving converter as the possible tool for producing ultra-cold neutrons on pulsed neutron sources

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1991-01-01

    A method is proposed for producing ultra-cold neutrons (UCN) at aperiodic pulse neutron sources. It is based on the use of the fast moving cooled converter of UCN in the time of the neutron pulse and includes the trapping of generated UCN's in a moving trap. 6 refs.; 2 figs

  9. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-01-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  10. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kiyanagi, Y.; Kosugi, N.; Iwasa, H.; Furusaka, M.; Watanabe, N.

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  11. Neutron guides and scientific neutron equipment at CILAS/GMI

    International Nuclear Information System (INIS)

    Gautier-Picard, P.

    2001-01-01

    The French company CILAS is the world's leading supplier of complete neutron guide systems. The neutron optics with multilayer coatings produced by CILAS has become an international standard for neutron beam transportation at modern research institutes. During the last 30 years, CILAS designed, produced and installed more than 5000 meters of guides in many European, American and Asian countries. By these projects the company has acquired a very strong experience with: conception, design, manufacturing, setting up of Neutron Guides. In most cases, CILAS was in charge of the design, as well as the manufacturing of the whole system, comprising optical and mechanical components, vacuum system, shutter and shielding definition. By our long experience we have also acquired good knowledge of the materials used in this specific nuclear environment and their behavior under radiation such as glass, borated or not, coatings, glue or metal. To reinforce its leadership and presence in neutron research, CILAS acquired the company Grenoble Modular Instruments (GMI) a leading company in high precision mechanics, engineering and manufacturing of spectrometers and scientific equipment for neutron and synchrotron research. This merger allows us to design and to supply a complete range of high precision optical and mechanical eqipment for neutron research. CILAS and GMI have designed, manufactured and installed a High Resolution Powder Diffractometer for the 30MW Korean Hanaro Reactor. This project included the calculation, design and supply of the complete biological shielding of the instrument as well as for the primary beam shutter on the thermal beamport. (author)

  12. Device for guiding a subthermal neutron beam and focussing device made of micro-neutron guides

    International Nuclear Information System (INIS)

    Marx, D.

    1977-01-01

    The invention concerns a device for guiding, in particular for diverting, a subthermal neutron beam with curved boundary surfaces at least in one level, whose sides towards the neutron beam are covered with at least one coating which reflects the subthermal neutrons completely. (orig./RW) [de

  13. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  14. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  15. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  16. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  17. Storage of cold and thermal neutrons with perfect crystals at the pulsed source

    International Nuclear Information System (INIS)

    Jericha, E.

    1996-12-01

    The possibility of storing cold neutrons by sequential Bragg reflections between two parallel perfect crystal plates in backscattering geometry has been implemented as the parasitic instrument VESTA at the pulsed neutron source ISIS. Filling the neutrons into and releasing them from the storage cavity is accomplished by applying a short-pulsed magnetic field at the crystal plates. The method takes advantage of the conservation of the axial component of the neutron wave vector after Bragg reflection and its Zeeman shift in a magnetic field. The setup at ISIS is presented where a monochromatic neutron beam with wavelength 6.27 A and 2.9 x 10 4 n/scm 2 flux is taken out of the neutron guide leading to the IRIS backscattering spectrometer by a pyrolytic graphite crystal monochromator. The longest storage period obtained with the setup was 2.655 s which corresponds to 1574 consecutive Bragg reflections and a distance traveled of 1675 n. The measurements are analyzed by heuristic methods developed for neutron storage experiments. The apparatus is seen as a passive resonator system and characteristics like stored neutron intensity, the efficiency of the storage process, the probability to remain in the system, the mirror reflectivity, the dispersion of the stored distribution, the penetration depth of a neutron into a crystal mirror and the figure of merit of the resonator system are discussed. Monte Carlo simulations of the extracted beam and of the stored neutron distribution were performed to deepen the understanding of the experimental results. (author)

  18. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  19. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  20. Progress on the Magnetic Trapping of Ultra-cold Neutrons

    Science.gov (United States)

    Doyle, John M.

    1998-04-01

    Ultra-cold neutrons (UCN) have been instrumental in making improved measurements of the neutron beta-decay lifetime and in searches for a permanent electric dipole moment.(R. Golub, D. Richardson and S.K. Lamoreaux, Ultra-cold Neutrons), Adam Hilger, 1991 The most accurate experiments have taken place using in-core devices at ILL (Grenoble, France) and PNPI (St. Petersburg, Russia). Superthermal techniques offer the promise of high-density sources of UCN via scattering of cold neutrons. Cold neutron beams are available at many neutron facilities. We are currently working on the development of a superfluid helium UCN source using the Cold Neutron Research Facility at the NIST Research Reactor (Gaithersburg) . Our first experiment plans to use superthermal scattering of neutrons in superfluid helium to produce UCN within a magnetic trapping volume. A magnetic trap 30 cm long and 4 cm diameter will be filled with helium at about 100 mK. Cold neutrons (around 11 K) will be introduced into the trapping region where some of them scatter to low enough energies (around 1 mK) so that they are magnetically trapped. Once trapped the UCN travel undisturbed; they have a very small probability of upscattering. Detection will be accomplished as the UCN beta-decay. The resultant high-energy electron creates excited molecular helium dimers, a portion which decay in less than 10 ns and emit radiation in the XUV (50-100 nm). We have developed techniques to measure these scintillations. Analysis indicates that a high accuracy measurement of the neutron beta decay lifetime should be possible using our techniques. An apparatus has been constructed and initial runs are underway. An overview of the experiment, discussion of systematic errors and recent experimental progress will be presented. This work is done in collaboration with C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, D. McKinsey, M. Cooper, G. Greene, S. Lamoreaux, R. Golub, K. Habicht, K. Coakley, S. Dewey, D

  1. Material characterization using cold neutron transmission spectroscopy

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Kamiyama, Takashi; Nagata, Toshiyuki; Hiraga, Fujio; Suzuki, Shun

    2006-01-01

    Transmission data using a pulsed neutron source have information on neutron cross-section that reflects the crystal structure of the object, and combined with area detector we can obtain the structural change depending on the position in the object. We performed several experimental studies to observe the change of the structure. We demonstrate position-dependent structural change of the lead in solid. It was indicated that the structure changed largely within few millimeters region. Furthermore, we observed the cross-section change of stainless steel (SS) samples with different treatments, which may be the effect of crystal grain structure of the SS samples caused by different treatment

  2. Cold neutron fluoroscopy of operating automotive engines

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Heritage, J.

    1983-01-01

    The application of neutron fluoroscopy in the automotive industry is a natural extension of previous studies with aircraft engines. This paper describes investigations with two sub-compact car engines. The extent and manner in which lubricants reached the various parts of the engines are compared and contrasted. The paper goes on to describe a study of the deposits inside turbochargers and postulates future topics worthy of investigation. The authors confirm that there is a place for neutron fluoroscopy both as a design tool and for investigations of ''in-service'' phenomena. (Auth.)

  3. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  4. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  5. One-phonon scattering of ultra cold neutrons in copper

    International Nuclear Information System (INIS)

    Holas, A.

    1977-01-01

    Experiments with ultra cold neutrons (UCN) showed that their lifetime in a closed vessel is much smaller than expected. In order to explain this phenomenon, many different mechanisms leading to heating of UCN were proposed, among other things one-phonon coherent inelastic scattering (with phonon absorption). This paper shows quantitatively the contribution of this process to the total heating of UCN

  6. Studies of magnetism with inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    Jacrot, B.

    1964-01-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr

  7. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  8. Time-grated energy-selected cold neutron radiography

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Brun, T.O.; Claytor, T.N.; Farnum, E.H.; Greene, G.L.; Morris, C.

    1998-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as Time-Gated Energy-Selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross section drops significantly. This difference in scattering characteristics can be recorded in the TGES radiography and, because the Bragg cutoff occurs at different energy levels for various materials, the approach can be used to differentiate among these materials. This paper outlines the TGES radiography technique and shows an example of radiography using the approach

  9. Diffusion theory model for optimization calculations of cold neutron sources

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations

  10. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  11. Interphase microstress measurements in IN 718 by cold neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Repper, J.; Link, P.; Hofmann, M.; Petry, W. [TU Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Garching (Germany); Krempaszky, C. [TU Muenchen, Christian-Doppler-Labor fuer Werkstoffmechanik von Hochleistungslegierungen, Garching (Germany); Werner, E. [TU Muenchen, Lehrstuhl fuer Werkstoffkunde und Werkstoffmechanik, Garching (Germany)

    2010-06-15

    Thermal neutron diffraction is an important and reliable method for the investigation of microscopic stresses. The measurement of Bragg reflections caused by phases of small volume fractions, however, is often intricate due to low intensities and overlapping peaks. The wavelength range of cold neutrons allows to shift the Bragg reflections to larger scattering angles resulting in an increase of relative distances between Bragg reflections. The high resolution of cold neutron diffraction technique is demonstrated by in-situ load tests in which selected Bragg reflections caused by precipitates with small volume fractions in the precipitation strengthened alloy IN 718 are observed. The accumulated microstrains show marked differences in dependence of the precipitated phases within the matrix phase. (orig.)

  12. Polycrystalline Materials as a Cold Neutron and Gamma Radiation Filter

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The total neutron cross-section of polycrystalline beryllium, graphite and iron has been calculated beyond their cut-off wavelength using a general formula. The computer Cold Filter code was developed in order to provide the required calculations. The code also permits the calculation of attenuation of reactor gamma radiation, The calculated neutron transmissions through polycrystalline Be graphite and iron at different temperatures were compared with the experimental data measured at the ETRR-1 reactor using two TOF spectrometers. An overall agreement is obtained between the formula fits and experimental data at different temperatures. A feasibility study is carried on using polycrystalline Be, graphite and iron an efficient filter for cold neutrons and gamma radiation.

  13. Consideration of LH2 and LD2 cold neutron sources in heavy water reactor reflector

    International Nuclear Information System (INIS)

    Potapov, I.A.; Serebrov, A.P.

    2001-01-01

    The reactor power, the required CNS dimensions and power of the cryogenic equipment define the CNS type with maximized cold neutron production. Cold neutron fluxes from liquid hydrogen (LH 2 ) and liquid deuterium (LD 2 ) cold neutron sources (CNS) are analyzed. Different CNS volumes, presents and absence of reentrant holes inside the CNS, different adjustment of beam tube and containment are considered. (orig.)

  14. Transmission efficiency of neutron guide tube with alignment errors

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Suzuki, Masatoshi; Sakamoto, Masanobu; Harami, Taikan; Takahashi, Hidetake; Onishi, Nobuaki

    1990-01-01

    The experimental studies on the neutron transmission efficiencies of neutron guide tubes were carried out by using thermal neutrons from the JAERI electron linac. The neutron guide tube facility on a large scale have been planned on the reconstructed JRR-3 in JAERI. The neutron efficiencies of the 1/10 scale neutron guide tube, which is 2 mm width and 1.8 m length, with and without appreciable alignment errors were studied to evaluate the efficiencies of the planned ones. Calculated results by the Neutron Guide Tube Analysis Code 'NEUGT' were also assessed by these neutron experiments. The experimental results agree well with the calculated results by 'NEUGT' even with alignment errors. From this experimental study, the efficiency of the planned neutron guide tubes is estimated to be good enough for the neutron beam experiments. (author)

  15. Non-dispersive method for measuring longitudinal neutron coherence length using high frequency cold neutron pulser

    International Nuclear Information System (INIS)

    Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.

    1999-01-01

    Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)

  16. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    International Nuclear Information System (INIS)

    Oku, T.; Morita, S.; Moriyasu, S.; Yamagata, Y.; Ohmori, H.; Takizawa, Y.; Shimizu, H.M.; Hirota, T.; Kiyanagi, Y.; Ino, T.; Furusaka, M.; Suzuki, J.

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 -4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material

  17. Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Vincent, D H; Greenberg, R R; Stone, C A; Mackey, E A [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Anderson, D L [Food and Drug Administration, Washington, DC (United States); Clark, D D [Cornell Univ., Ithaca, NY (United States)

    1993-01-01

    An instrument for neutron capture prompt gamma-ray activation analysis (PGAA) has been constructed as part of the Cold Neutron Research Facility at the 20 MW National Institute of Standards and Technology Research Reactor. The neutron fluence rate (thermal equivalent) is 1.5*10[sup 8] n*cm[sup -2]*s[sup -] [sup 1], with negligible fast neutrons and gamma-rays. With compact geometry and hydrogen-free construction, the sensitivity is sevenfold better than an existing thermal instrument. Hydrogen background is thirtyfold lower. (author) 17 refs.; 2 figs.

  18. Study on the transmission efficiency of curved neutron guide

    International Nuclear Information System (INIS)

    Wang Hongli; Zhang Li; Guo Liping; Yang Tonghua; Zhao Zhixiang

    2004-01-01

    Monte-Carlo simulation program NGT2002 is used to study the transmission efficiency of curved neutron guide from character wavelength, film reflectivity, film material, geometry adjustment error, gap between guides and guide fabricate error, the authors get the transmission efficiency curves of the Ni, supper mirror curved neutron guides, also we have a discuss of how to choose the curved neutron guide's character wavelength. By the simulation results, the authors determine the proper film reflectivity value, guide horizontal geometry adjustment error range, optimized gap value between guide elements and guide width fabricate geometry error range. (authors)

  19. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  20. An ultra-cold neutron source at the MLNSC

    International Nuclear Information System (INIS)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science

  1. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  2. Laser guiding of cold atoms in photonic crystals

    International Nuclear Information System (INIS)

    Tarasishin, A V; Magnitskiy, Sergey A; Shuvaev, V A; Zheltikov, Aleksei M

    2000-01-01

    The possibility of using photonic crystals with a lattice defect for the laser guiding of cold atoms is analysed. We have found a configuration of a photonic-crystal lattice and a defect ensuring the distribution of a potential in the defect mode of the photonic crystal allowing the guiding of cold atoms along the defect due to the dipole force acting on atoms. Based on quantitative estimates, we have demonstrated that photonic crystals with a lattice defect permit the guiding of atoms with much higher transverse temperatures and a much higher transverse localisation degree than in the case of hollow-core fibres. (laser applications and other topics in quantum electronics)

  3. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  4. The proposed cold neutron irradiation facility at the Breazeale reactor

    International Nuclear Information System (INIS)

    Dimeo, R. M.; Sokol, P. E.; Carpenter, J. M.

    1997-01-01

    We discuss the design considerations of a Cold Neutron Irradiation Facility (CNIF) originally to have been installed at the Penn State Breazeale Reactor (PSBR). The goal of this project was to study the effects of radiation-induced damage to cryogenic moderators and, in particular, solid methane. This work evolved through the design stage undergoing a full safety analysis and received tentative approval from the PSBR Safeguards Committee but was discontinued due to budgetary constraints. (auth)

  5. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  6. Neutron excitation function guide for reactor dosimetry

    International Nuclear Information System (INIS)

    Gritzay, O.; Vlasov, M.; Chervonna, L.; Klimova, N.; Kolota, G.; Zerkin, V.

    2002-01-01

    Neutron Excitation Function Guide for Reactor Dosimetry (NEFGRD) has been prepared in the Ukrainian Nuclear Data Center (UKRNDC) using ZVV 9.2 code for graphical data presentation. The data can be retrieved through Web or obtained on CD-ROM or as hard copy report. NEFGRD contains graphical and text information for 56 nuclides (81 dosimetry reactions). Each reaction is provided by the information part and several graphical function blocks (from one to nine). (author)

  7. Development of a high efficient conventional type cold neutron source using a non-explosive material

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Satoh, S.

    1999-01-01

    An efficient cold moderator that can be used easily at a small neutron source would be useful for neutron radiography, prompt gamma ray analysis and so on. Non-explosive materials are chosen for a cold moderator since explosive materials such as hydrogen and methane require a safety system. Neutronic performances of coupled moderators of various non-explosive materials are studied so as to develop such a cold moderator since the coupled moderator system is the best to obtain high intensity of cold neutrons. Effect of premoderator is studied and neutron spectra from methanol, ethanol, benzene, mesitylene and benzene methanol are measured around 20 K. The premoderator increased the cold neutron intensity by about 50∼70%. Methanol and mesitylene gave the highest cold neutron intensity. Effect of Be filter-reflector is also studied and a intensity gain of about 20% was obtained below about 5 MeV. (author)

  8. Cold neutron PGAA facility developments at university research reactors in the USA

    International Nuclear Information System (INIS)

    Uenlue, K.; Rios-Martinez, C.

    2005-01-01

    The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by a helium cryorefrigerator via copper cold fingers to maintain the moderator below 30 K at full power reactor operation. Texas Cold Neutron Source (TCNS) also uses mesitylene moderator that is cooled by a cryorefrigerator via a neon thermosiphon. The operation of the TCNS is based on a helium cryorefrigerator, which liquefies neon gas in a 3-m long thermosiphon. The thermosiphon cools and maintains mesitylene moderator at about 30 K in a chamber. Neutrons streaming through the mesitylene chamber are moderated and thus reduce their energy to produce a cold neutron distribution. (author)

  9. Detailed design of neutron guide tubes at the upgraded JRR-3, (1)

    International Nuclear Information System (INIS)

    Harami, Taikan; Umemura, Mutsumi; Ebisawa, Tohru.

    1985-07-01

    JRR-3, currently a heavy water moderated and cooled 10 MW reactor, is to be upgraded to a light water moderated and cooled, heavy water reflected 20 MW reactor. Two guide tubes for thermal neutron and three for cold will be installed in the reactor to transport thermal and cold neutrons from the reactor hall to the experiment hall. This describes the neutron guide tube transmission analysis program, NEUGT, which was developed to assess the design of the neutron guide tubes. The input data plotting program, PLOPINE and the output data plotting program, NEUPLOT are presented in the appendix. The NEUGT program not only calculates a neutron transmission and neutron spectra, assuming the Maxwellian spectra at the entrance of a guide tube, but also analyses the effect of abutment errors. This reports the description and the input data manual of the program in the text. Examples of analysis are given in the appendixes. The program is written in the FORTRAN 77 language for FACOM 380. (author)

  10. Performance of the prototype LANL solid deuterium ultra-cold neutron source

    CERN Document Server

    Hill, R E; Bowles, T J; Greene, G L; Hogan, G; Lamoreaux, S; Marek, L; Mortenson, R; Morris, C L; Saunders, A; Seestrom, S J; Teasdale, W A; Hoedl, S; Liu, C Y; Smith, D A; Young, A; Filippone, B W; Hua, J; Ito, T; Pasyuk, E A; Geltenbort, P; García, A; Fujikawa, B; Baessler, S; Serebrov, A

    2000-01-01

    A prototype of a solid deuterium (SD sub 2) source of Ultra-Cold Neutrons (UCN) is currently being tested at LANSCE. The source is contained within an assembly consisting of a 4 K polyethylene moderator surrounded by a 77 K beryllium flux trap in which is embedded a spallation target. Time-of-flight measurements have been made of the cold neutron spectrum emerging directly from the flux trap assembly. A comparison is presented of these measurements with results of Monte Carlo (LAHET/MCNP) calculations of the cold neutron fluxes produced in the prototype assembly by a beam of 800 MeV protons incident on the tungsten target. A UCN detector was coupled to the assembly through a guide system with a critical velocity of 8 m/s ( sup 5 sup 8 Ni). The rates and time-of-flight data from this detector are compared with calculated values. Measurements of UCN production as a function of SD sub 2 volume (thickness) are compared with predicted values. The dependence of UCN production on SD sub 2 temperature and proton beam...

  11. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.

  12. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  13. Optimal shape of a cold-neutron triple-axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K., E-mail: lefmann@fys.ku.d [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden); Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Treue, F. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Kirkensgard, J.J.K. [Institute of Nature and Models, Roskilde University (Denmark); Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen (Denmark); Plesner, B. [Institute of Nature and Models, Roskilde University (Denmark); Hansen, K.S. [Institute of Nature and Models, Roskilde University (Denmark); Mid-Greenland High School, Nuuk, Greenland (Denmark); Kleno, K.H. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden)

    2011-04-01

    We have performed a McStas optimization of the primary spectrometer for a generic 40 m long, cold-neutron triple-axis spectrometer with a doubly focusing monochromator. The optimal design contains an elliptically focusing guide, a virtual source point before a low-grade PG monochromator, and non-equidistant focusing at the monochromator. The flux at 5 meV shows a gain factor 12 over the 'classical' design with a straight 12x3cm{sup 2}, m=2 guide and a vertically focusing PG monochromator. In addition, the energy resolution was found to be improved. This unexpectedly large design improvement agrees with the Liouville theorem and can be understood as the product of many smaller gain factors, combined with a more optimal utilization of the beam divergence within the guide. Our results may be relevant for a possible upgrade of a number of cold-neutron triple-axis spectrometers-and for a possible triple-axis spectrometer at the European Spallation Source.

  14. Aspects of ultra-cold neutron production in radiation fields at the FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wlokka, Stephan Albrecht

    2016-08-17

    Neutrons are called ''ultra-cold'', if they are reflected by a material surface under all angles of incident. They can then be stored for long times (ca. 1000s). In the new UCN source at the FRM II, Deuterium will be used to produce the UCN. Its behaviour under irradiation was investigated. Additionally the transport properties of new UCN guides were tested. Also, the helium-3 content of purified helium samples was examined, because using this type of helium greatly reduces the tritium production when used at the reactor.

  15. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    Science.gov (United States)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  16. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  17. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  18. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2001-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D2O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10deg from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very importable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H2) to the deuterium (D2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. The new reactor will have 13 beam tubes, 4 of which are looking at the cold neutron source (CNS), including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments foreseen in the new neutron research facility will use cold neutrons from the CNS. The mounting of the hardware components of the CNS into the reactor has started in the spring of 2000. The CNS will go into trial operation in the end of year 2000. (J.P.N.)

  19. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gobrecht, K.

    1999-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2 O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4000 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 deg from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2 ) to the deuterium (D 2 ) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long term change of the hydrogen content in the deuterium is avoided be storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3 Ni 2 , the other one with 150 kg of ZrCo(0.8)Ni(0.2). Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in less than 6 minutes at a pressure < 3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the cold neutron source (CNS), including two for very cold (VCN) and ultra-cold neutron (UCN

  20. Structural Analysis and Seismic Design for Cold Neutron Laboratory Building

    International Nuclear Information System (INIS)

    Wu, Sangik; Kim, Y. K.; Kim, H. R.

    2007-05-01

    This report describes all the major results of the dynamic structural analysis and seismic design for the Cold Neutron Laboratory Building which is classified in seismic class II. The results are summarized of the ground response spectrum as seismic input loads, mechanical properties of subsoil, the buoyancy stability due to ground water, the maximum displacement of the main frame under the seismic load and the member design. This report will be used as a basic design report to maintenance its structural integrity in future

  1. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  2. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  3. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  4. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    Aghajani-Talesh, Anoush

    2014-01-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  5. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  6. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.C.; Barker, J.G.; Rowe, J.M.; Williams, R.E. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States); Gagnon, C. [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Lindstrom, R.M. [Scientist Emeritus, Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8395, Gaithersburg, MD 20899-8395 (United States); Ibberson, R.M.; Neumann, D.A. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States)

    2015-08-21

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  7. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  8. Status of TRR-II cold neutron source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Chan, Y.K.; Wang, C.H.; Chen, S.K.

    2001-01-01

    The Taiwan research reactor improvement and the utilization promotion project (TRR-II) with a vertical cold neutron source (CNS) is carrying out at the Institute of Nuclear Energy Research (INER). The CNS with a two-phase thermosiphon loop consists of an annular cylindrical moderator cell, a single moderator transfer tube and a condenser. A cylindrical annulus moderator cell with boiling liquid hydrogen at 1.2 bar and 20.7 K gives an optimum moderation for cold neutrons in the wavelength range between 4 A and 15 A. The moderator cell lies around 400 mm away from the core center. Its perturbed thermal flux is about 1.4 x 10 14 cm -2 s -1 . It is close to the maximum thermal neutron flux area in D 2 O tank to get the maximum possible brightness about 1 x 10 12 n cm -2 s -1 A -1 sterad -1 at 4 A. An experimental study for thermal-hydraulic characteristics of the two-phase thermosiphon loop has been performed on a full-scale mockup loop using a Freon-11 as a working fluid. The objective of the mockup testing is to validate operation and heat removal capacity in CNS hydrogen loop design. Moreover, this loop will be used to demonstrate no onset of flooding and flow oscillations in a single transfer tube under CNS normal and abnormal conditions. The flooding limitation, the liquid level, and the void fraction in the moderator cell as a function of the initial Freon-11 inventory, the heat load, and the moderator cell geometry are also reported. (orig.)

  9. The upgrade of the cold neutron three-axis spectrometer IN12 at the ILL

    Energy Technology Data Exchange (ETDEWEB)

    Schmalzl, K., E-mail: schmalzl@ill.fr [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Schmidt, W. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at ILL, BP 156, 38042 Grenoble (France); Raymond, S. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Feilbach, H. [Forschungszentrum Jülich, Peter Grünberg Institut PGI 6, D-52425 Jülich (Germany); Mounier, C. [Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Vettard, B. [Université Grenoble Alpes and CEA Grenoble, INAC MEM, 38054 Grenoble (France); Brückel, T. [Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2016-05-21

    After nearly 40 years of successful operation the cold three-axis spectrometer IN12 at the Institut Laue-Langevin, Grenoble, France, has been relocated to a new position and the primary spectrometer has been upgraded. Latest modern optical components are employed. A new guide in combination with a virtual source concept and a double focusing monochromator guarantee highest flux. With its high unpolarized and polarized neutron flux IN12 allows for demanding experiments. A velocity selector in the guide ensures a clean beam and a very low background. A gain in flux of about an order of magnitude at the sample position has been achieved compared to the previous instrument and IN12's wavelength range now extends far into the warmish region.

  10. Constraining neutron guide optimizations with phase-space considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen, Mads, E-mail: mads.bertelsen@gmail.com; Lefmann, Kim

    2016-09-11

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  11. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    Science.gov (United States)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments

  12. Report on polarised and inelastic cold neutron scattering at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    2004-01-01

    The ANSTO's Instrument Workshop on Polarised and Inelastic Cold Neutron Scattering, was held at Lucas Heights on 27-28 January. 30 participants attended, from 6 Australian Universities, 3 ANSTO Divisions, and 5 overseas countries in Asia, Europe and North America. All participants had the opportunity to give their vision for work in 2005 and beyond. The recommendation was that ANSTO proceed with a monochromator/ shield/ polariser system and appropriate dance floor on a cold guide, in such a way that alternative secondary spectrometers (3-axis, LONGPOL-type, reflectometry) can be installed. If the National Science Council of Taiwan proceeds with its cold 3-axis project, ANSTO should then implement the LONGPOL / polarised-beam reflectometry option. If not, ANSTO should implement the cold 3-axis spectrometer. The workshop came to the following additional conclusions: There was a strong sense that any 3-axis spectrometer should have a multi-analyser/multidetector combination, or at least an upgrade path to this. At this stage, there is no case for 2 cold-neutron triple-axis spectrometers at the RRR. The desired Q-range is 0.02-5 Angstroms -1 ; with an energy transfer range of 20 μeV - 15 meV. The instrument is likely to run unpolarised for 2/3 of the time and polarised for the remainder, and the instrument(s) should be designed to allow easy changeover between polarised and unpolarised operation. We expect roughly equal interest/demand in studying single crystals, powders, surfaces/interfaces and naturally disordered systems. There was a strong sense that the facility should eventually have a cold-neutron time-of-flight spectrometer of the IN5 or IN6 type, with a polarised incident beam option, and designed in such a way that polarisation analysis could be implemented if inexpensive large-area analysers become available. This should be a high priority for the next wave of instruments that ANSTO plans to build after 2005

  13. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  14. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  15. Report on the international workshop on cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.

    1999-01-01

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance

  16. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  17. Neutron-optical effects at very cold neutrons scattering on the spherical particles of different sizes

    International Nuclear Information System (INIS)

    Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.

    2006-01-01

    Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ

  18. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  19. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I.

    2006-01-01

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year

  20. Investigation of neutron guide systems: Analysis techniques and an experiment

    International Nuclear Information System (INIS)

    Kudryashev, V.A.

    1991-01-01

    This paper discusses the in-depth study of the specific characteristics of the physical processes associated with the total reflection of neutrons from actual reflective coatings; the study of the process whereby neutrons transit a nonideal image channel with allowance for the aforementioned characteristics, and; the development of physical criteria and techniques for calculating the optimum geometry of a neutron guide source system based on the laws found to govern this transit process

  1. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  2. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  3. Development of the RRR Cold Neutron Source facility

    International Nuclear Information System (INIS)

    Masriera, N.; Lecot, C.; Hergenreder, D.; Lovotti, O.; Serebrov, A.; Zakharov, A.; Mityukhlyaev, V.

    2003-01-01

    This paper describes some general design issues on the Cold Neutron Source (CNS) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspects of the design: the requirements that lead to an innovative design, the overall design itself and the definition of a technical approach in order to develop the necessary design solutions. The RRR-CNS has liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation Thermosiphon loop. The Thermosiphon is surrounded by a CNS Vacuum Containment made of zirconium alloy, that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The applied design approach allows ensuring that the RRR-CNS, in spite of being innovative, will meet all the design, performance and quality requirements. (author)

  4. Cryogenic technology review of cold neutron source facility for localization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Cheol; Park, D. S.; Moon, H. M.; Soon, Y. P. [Daesung Cryogenic Research Institute, Ansan (Korea); Kim, J. H. [United Pacific Technology, Inc., Ansan (Korea)

    1998-02-01

    This Research is performed to localize the cold neutron source(CNS) facility in HANARO and the report consists of two parts. In PART I, the local and foreign technology for CNS facility is investigated and examined. In PART II, safety and licensing are investigated. CNS facility consists of cryogenic and warm part. Cryogenic part includes a helium refrigerator, vacuum insulated pipes, condenser, cryogenic fluid tube and moderator cell. Warm part includes moderator gas control, vacuum equipment, process monitoring system. Warm part is at high level as a result of the development of semiconductor industries and can be localized. However, even though cryogenic technology is expected to play a important role in developing the 21st century's cutting technology, it lacks of specialists and the research facility since the domestic market is small and the research institutes and government do not recognize the importance. Therefore, it takes a long research time in order to localize the facility. The safety standard of reactor for hydrogen gas in domestic nuclear power regulations is compared with that of the foreign countries, and the licensing method for installation of CNS facility is examined. The system failure and its influence are also analyzed. 23 refs., 59 figs., 26 tabs. (Author)

  5. Design and tests of an adaptive focusing neutron guide

    International Nuclear Information System (INIS)

    Valicu, Roxana Georgiana

    2012-01-01

    This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive focusing neutron guide for creating a focus that does not depend on the wavelength of the incoming neutrons. All known neutron guides consist of a rectangular shape, built out of four glass plates. The inner side of the guide is coated with a complex structure of metal layers. This reflects and guides the neutrons (in analogy with the reflection of the light). For beam focusing neutron guides with fixed curvature can be built. For most experiments it is important that the beam is focused on to a small surface of the sample. In the case of focusing guides with fixed curvature it has been observed that the focusing (dimension and position of the beam focus) is wavelength dependent. This is why for measurements that are performed with different wavelengths it is very important to change the curvature of the neutron guide in order to obtain optimal results. In this work we have designed, constructed and tested a guide where we can change the curvature during the experiment. In this way we can obtain a variable curvature in horizontal as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not necessary to move all four walls, only two of the opposed plates. The element that changes the curvature of the guide consists of an acting element (piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a lever onto the plate. The action of a force and a consecutive torsion momentum at the free end of the plate changes the curvature of the whole plate in an almost parabolic way. Making use of the Monte Carlo simulations we were able to determine the optimal curvature for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with an adaptive focusing guide one can gain up to a factor three in intensity at

  6. Design and tests of an adaptive focusing neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Roxana Georgiana

    2012-08-23

    This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive focusing neutron guide for creating a focus that does not depend on the wavelength of the incoming neutrons. All known neutron guides consist of a rectangular shape, built out of four glass plates. The inner side of the guide is coated with a complex structure of metal layers. This reflects and guides the neutrons (in analogy with the reflection of the light). For beam focusing neutron guides with fixed curvature can be built. For most experiments it is important that the beam is focused on to a small surface of the sample. In the case of focusing guides with fixed curvature it has been observed that the focusing (dimension and position of the beam focus) is wavelength dependent. This is why for measurements that are performed with different wavelengths it is very important to change the curvature of the neutron guide in order to obtain optimal results. In this work we have designed, constructed and tested a guide where we can change the curvature during the experiment. In this way we can obtain a variable curvature in horizontal as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not necessary to move all four walls, only two of the opposed plates. The element that changes the curvature of the guide consists of an acting element (piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a lever onto the plate. The action of a force and a consecutive torsion momentum at the free end of the plate changes the curvature of the whole plate in an almost parabolic way. Making use of the Monte Carlo simulations we were able to determine the optimal curvature for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with an adaptive focusing guide one can gain up to a factor three in intensity at

  7. Measuring hydrogen by cold-neutron prompt-gamma activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Paul, R L; Greenberg, R R [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    By irradiating with cold neutrons and avoiding hydrogenous materials of construction, a PGAA instrument was developed at the Cold Neutron Research Facility at NIST with hydrogen detection limits in the microgram range in many materials. Quantities of 5-10 [mu]g H/g are presently measurable in gram-sized samples of silicon or quartz, and of order 0.01 wt % can be quantitatively measured in complex silicate rocks. (author) 19 refs.; 1 fig.; 1 tab.

  8. Study of cold neutron sources: Implementation and validation of a complete computation scheme for research reactor using Monte Carlo codes TRIPOLI-4.4 and McStas

    International Nuclear Information System (INIS)

    Campioni, Guillaume; Mounier, Claude

    2006-01-01

    The main goal of the thesis about studies of cold neutrons sources (CNS) in research reactors was to create a complete set of tools to design efficiently CNS. The work raises the problem to run accurate simulations of experimental devices inside reactor reflector valid for parametric studies. On one hand, deterministic codes have reasonable computation times but introduce problems for geometrical description. On the other hand, Monte Carlo codes give the possibility to compute on precise geometry, but need computation times so important that parametric studies are impossible. To decrease this computation time, several developments were made in the Monte Carlo code TRIPOLI-4.4. An uncoupling technique is used to isolate a study zone in the complete reactor geometry. By recording boundary conditions (incoming flux), further simulations can be launched for parametric studies with a computation time reduced by a factor 60 (case of the cold neutron source of the Orphee reactor). The short response time allows to lead parametric studies using Monte Carlo code. Moreover, using biasing methods, the flux can be recorded on the surface of neutrons guides entries (low solid angle) with a further gain of running time. Finally, the implementation of a coupling module between TRIPOLI- 4.4 and the Monte Carlo code McStas for research in condensed matter field gives the possibility to obtain fluxes after transmission through neutrons guides, thus to have the neutron flux received by samples studied by scientists of condensed matter. This set of developments, involving TRIPOLI-4.4 and McStas, represent a complete computation scheme for research reactors: from nuclear core, where neutrons are created, to the exit of neutrons guides, on samples of matter. This complete calculation scheme is tested against ILL4 measurements of flux in cold neutron guides. (authors)

  9. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  10. Cold neutron interaction with a classical electric field: Some basic theoretical and experimental considerations

    International Nuclear Information System (INIS)

    Bruce, S.; Diaz-Valdes, J.; Bennun, L.; Minning, P.C.

    2008-01-01

    We explore the feasibility of performing an experiment to measure the interaction of cold neutrons with a given classical electric field. Bound and scattering states could be detected by means of an approximate Aharonov-Casher configuration. The theoretical background is presented and then some primary elements for building a neutron detector of this nature are proposed

  11. Aharonov-Bohm and gravity experiments with the very-cold-neutron interferometer

    CERN Document Server

    Zouw, G V D; Felber, J; Gähler, R; Geltenbort, P; Zeilinger, Anton

    2000-01-01

    We report on the specific techniques associated with experiments with the interferometer for very-cold neutrons at the Institute Laue-Langevin (ILL). Two recent experiments are presented: one to measure the gravitational phase shift to high precision and one to demonstrate the non-dispersivity of the scalar Aharonov-Bohm effect for neutrons.

  12. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  13. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  14. Conceptual design of facilities and systems for cold neutron source in HANARO

    International Nuclear Information System (INIS)

    Kim, Y. K.; Jung, H. S.; Wu, S. I.; Ahn, S. H.; Park, Y. C.; Cho, Y. G.; Ryu, J. S.; Kim, Y. J.

    2004-05-01

    The systems and facilities for the HANARO cold neutron source consist of hydrogen handling system, vacuum system, gas blanket system, helium refrigeration system and electrical and instrumentation and control system. The overriding safety goal in the system design is to prevent the escape of hydrogen from the system boundary or the ingress of air into the hydrogen boundary. Of primary concern is the release of hydrogen (or intrusion of oxygen) into an area where any subsequent reaction could possibly result in damage to the reactor building or safety systems or components, as well as jeopardize personnel safety. It has been an general rule that all aspects of the system design were based on the demonstrated technology of long standing world-wide. In some cases, other options are also suggested for the flexibility of independent review process. This report hopefully serves as basis for the coming detail design and engineering. This report is mainly concentrated on the conceptual system design performed during the first project year. It includes the key safety design requirements in the beginning, followed by the description of the preliminary system design. At the rear part, building layout and equipment arrangement are briefly introduced for easy understanding of the whole pictures. The design status for the In-Pool Assembly including safety analysis and neutron guide and instruments will be discussed in another report

  15. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  16. Optical effects on neutron guide tubes produced by collimation

    International Nuclear Information System (INIS)

    Margaca, F.M.A.; Falcao, A.N.; Sequeira, A.D.; Salgado, J.F.

    1991-01-01

    The collimation of a neutron beam carried by a guide tube is shown to procedure extensive regions of umbra and penumbra on the inner walls of the guide tube whenever a diaphragm is used at the exit. The region of umbra renders useless a certain length of the guide-tube end while in the region of penumbra the guide exhibits a faint luminosity. These optical effects are particularly important for stringent collimation. It is shown that these effects render impossible the implementation of the 'equal-flight-paths' design currently used for small-angle neutron scattering instruments, which use guide segments and a diaphragm in the collimation assembly. As a consequence, these operate most of the time in strongly unmatched configurations. It is shown that the optimized design formerly proposed by the authors, in which, whenever possible, the full luminous source area is used, not only avoids the optical effects mentioned but also guarantees the highest detector count rate. (orig.)

  17. Basic design of the HANARO cold neutron source using MCNP code

    International Nuclear Information System (INIS)

    Yu, Yeong Jin; Lee, Kye Hong; Kim, Young Jin; Hwang, Dong Gil

    2005-01-01

    The design of the Cold Neutron Source (CNS) for the HANARO research reactor is on progress. The CNS produces neutrons in the low energy range less than 5meV using liquid hydrogen at around 21.6 K as the moderator. The primary goal for the CNS design is to maximize the cold neutron flux with wavelengths of around 2 ∼ 12 A and to minimize the nuclear heat load. In this paper, the basic design of the HANARO CNS is described

  18. Industrial applications at the new cold neutron radiography and tomography facility of the HMI

    International Nuclear Information System (INIS)

    Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Treimer, W.; Banhart, J.

    2005-01-01

    The new cold neutron radiography and tomography facility at the Hahn-Meitner-Institut Berlin is suited for the investigation of components and materials from different industrial fields. The high-flux measuring position of the facility allows real-time imaging of fast dynamical processes. Cold neutrons interact stronger with the matter compared to thermal neutrons, which leads to a much better radiography contrast. Some examples of different industry applications like investigations on discharging of a Lithium battery or on oil sediments in a vent pipe are presented

  19. Characterization of a scintillating lithium glass ultra-cold neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, B.; Rebenitsch, L.A.; Hansen-Romu, S.; Mammei, R.; Martin, J.W. [University of Winnipeg, Department of Physics, Winnipeg (Canada); Lauss, B. [Paul Scherrer Institute, Laboratory for Particle Physics, Villigen (Switzerland); Lindner, T. [TRIUMF, Vancouver (Canada); University of Winnipeg, Department of Physics, Winnipeg (Canada); Pierre, E. [TRIUMF, Vancouver (Canada); Osaka University, Research Centre for Nuclear Physics, Osaka (Japan)

    2017-01-15

    A {sup 6}Li-glass-based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7±0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7{sup +1.3}{sub -1.9}%. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI. (orig.)

  20. Neutron polarizing Fe-Al supermirror on a Si crystal substrate and its applications for thermal and cold neutrons

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Shchebetov, A.F.; Soroko, Z.N.

    1994-01-01

    Experimental data are presented for an Fe-Al neutron polarizing supermirror on a Si crystal substrate with an antireflecting Cd layer. The polarizing efficiency of this supermirror is P≥qslant0.8 for the range of glancing angles θ/λ=0.25-1.7 /nm and P≥qslant0.95 for θ/λ=0.34-1.7 /nm. Some applications of this supermirror for thermal and cold neutrons are considered. ((orig.))

  1. Neutron guide geometries for homogeneous phase space volume transformation

    International Nuclear Information System (INIS)

    Stüßer, N.; Bartkowiak, M.; Hofmann, T.

    2014-01-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender

  2. Neutron guide geometries for homogeneous phase space volume transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.

    2014-06-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.

  3. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    International Nuclear Information System (INIS)

    Gutsmiedl, E.; Gobrecht, K.

    2001-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universitaet Muenchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D2O-reflector tank at 400 mm from the reactor core axis, close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 litres of liquid deuterium at 25 K, and in the structures, is evacuated by a two phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the life time of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H2) to the deuterium (D2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long term change of the hydrogen content in the deuterium is avoided be storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo3Ni2, the other one with 150 kg of ZrCo(0.8)Ni(0.2). Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in less than 6 minutes at a pressure < 3 bar. (orig.)

  4. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  5. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  6. Interaction of thermal and cold neutrons with solids

    International Nuclear Information System (INIS)

    Kilany, M.M.A.

    1986-01-01

    The present thesis deals with total neutron cross-section measurements carried out for germanium - single crystal in the energy range from 2.2 eV to 2.5 MeV, at liquid nitrogen temperature (80 K), room temperature and (440 ± 3) K. Moreover, it includes the transmitted reactor spectrum through the Ge - single crystal with different orientations w.r.t. the neutron beam direction. This thesis also deals with the cross - section measurements of polycrystalline graphite in the energy range from 0.5 eV to 1.3 MeV (neutron wavelength from 0.4 A to 7.8 A). The work also presents the neutron transmission measurements of pyrolytic graphite (P.G) crystal in a neutron wavelength band from 0.3 A to 5.0 A , at different orientations of the crystal w.r.t. the beam direction

  7. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  8. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    International Nuclear Information System (INIS)

    Iga, Kiminori; Takada, Hiroshi; Nagao, Tadashi.

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B 4 C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  9. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  10. Cold neutron prompt gamma activation analysis at NIST; A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R L; Lindstrom, R M [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Div. of Inorganic Analytical Research; Vincent, D H [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1994-05-01

    An instrument for prompt gamma-ray activation analysis is now in operation at the NIST Cold Neutron Research Facility (CNRF). The cold neutron beam is relatively free of contamination by fast neutrons and reactor gamma rays, and the neutron fluence rate is 1.5 x 10 [sup 8] cm [sup -2] x s [sup -1] (thermal equivalent). As a result of a compact target-detector geometry the sensitivity is better by a factor of as much as seven than that obtained with an existing thermal instrument, and hydrogen background is a factor of 50 lower. This instrument was applied to multielement analysis of the Allende meteorite and other materials. (author) 14 refs.; 2 figs.; 1 tab.

  11. Simulation and analysis of the transmission properties of curved-straight neutron guide systems

    International Nuclear Information System (INIS)

    Copley, J.R.D.; Mildner, D.F.R.

    1992-01-01

    This paper reports that the spatial intensity distribution of neutrons emerging from a curved guide is far from uniform, particularly at short wavelengths, and curved guides are sometimes followed by a straight section of guide to make the intensity distribution more uniform. The behavior of neutrons within curved-straight neutron guide systems is examined using both ray-tracing and analytical approaches to the problem. The intensity distribution within the straight guide tends to wash from one side of the guide to the other. The amplitude of this transverse wave decreases with increasing guide length, and the characteristic length of the wave decreases with increasing neutron wavelength

  12. ASIC Development for Three-Dimensional Silicon Imaging Array for Cold Neutrons

    International Nuclear Information System (INIS)

    Britton, C.L.; Jagadish, U.; Bryan, W.L.

    2004-01-01

    An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-(micro)m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported

  13. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    Cantargi, F; Sbaffoni, M; Granada, R

    2004-01-01

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed [es

  14. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  15. A prestorage method to measure neutron transmission of ultracold neutron guides

    International Nuclear Information System (INIS)

    Blau, B.; Daum, M.; Fertl, M.; Geltenbort, P.; Göltl, L.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Schmidt-Wellenburg, P.; Zsigmond, G.

    2016-01-01

    There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the experiment is therefore of great importance. We have developed a method using prestored UCN in order to quantify UCN transmission in tubular guides. This method simulates the final installation at the Paul Scherrer Institute's UCN source where neutrons are stored in an intermediate storage vessel serving three experimental ports. This method allowed us to qualify UCN guides for their intended use and compare their properties.

  16. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  17. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  18. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  19. Behavior under irradiation of super-mirror for neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-10-01

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  20. Diamond-like carbon coated ultracold neutron guides

    International Nuclear Information System (INIS)

    Heule, S.; Atchison, F.; Daum, M.; Foelske, A.; Henneck, R.; Kasprzak, M.; Kirch, K.; Knecht, A.; Kuzniak, M.; Lippert, T.; Meier, M.; Pichlmaier, A.; Straumann, U.

    2007-01-01

    It has been shown recently that diamond-like carbon (DLC) with a sp 3 fraction above 60% is a better wall coating material for ultracold neutron applications than beryllium. We report on results of Raman spectroscopic and XPS measurements obtained for diamond-like carbon coated neutron guides produced in a new facility, which is based on pulsed laser deposition at 193 nm. For diamond-like carbon coatings on small stainless steel substrates we find sp 3 fractions in the range from 60 to 70% and showing slightly increasing values with laser pulse energy and pulse repetition rate

  1. Systematic study on the performance of elliptic focusing neutron guides

    International Nuclear Information System (INIS)

    Martin Rodriguez, D.; DiJulio, D.D.; Bentley, P.M.

    2016-01-01

    In neutron scattering experiments there is an increasing trend towards the study of smaller volume samples, which make the use of focusing optics more important. Focusing guide geometries based on conic-sections, such as those with parabolic and elliptic shapes, have been extensively used in both recently built neutron instruments and upgrades of existing hardware. A large fraction of proposed instruments at the European Spallation Source feature the requirement of good performance when measuring on small samples. The optimised design of a focusing system comes after time consuming Monte-Carlo (MC) simulations. Therefore, in order to help reduce the time needed to design such focusing systems, it is necessary to study systematically the performance of focusing guides. In the present work, we perform a theoretical analysis of the focusing properties of neutron beams, and validate them using a combination of Monte-Carlo simulations and Particle Swarm Optimisations (PSOs), where there is a close correspondence between the maximum divergence of the beam and the shape of the guide. The analytical results show that two limits can be considered, which bound a range of conic section shapes that provide optimum performance. Finally, we analyse a more realistic guide example and we give an assessment of the importance of the contribution from multiple reflections in different systems.

  2. Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams

    Science.gov (United States)

    Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria

    2018-05-01

    We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.

  3. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  4. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  5. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  6. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  7. Humidity Control System In The Neutron Detector Of Guide Tube

    International Nuclear Information System (INIS)

    Alibasya Harahap, Sentot

    2001-01-01

    The probable symptom neutron detector damage as cause decrease resistivity and corrosion in the electrical terminal, further more occasion to voltage failure and leak current in the isolation. The prevent of voltage failure in detector a needed humidity controller's with dry air supply to guide tube with 2 kg/cm exp.2 air pressure and 7 l/min, air flow as soon as continuity dryer process in the guide tube. Reactor shutdown and operation condition of diffusion rate is 0,476 cm exp.3/year and 6,46 cm exp.3/year

  8. On the design of a cold neutron irradiator (CNI) for quantitative materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Alexander Grover [Cornell Univ., Ithaca, NY (United States)

    1997-08-01

    A design study of a cold neutron irradiator (CNI) for materials characterization using prompt gamma-ray neutron activation analysis (PGNAA) is presented. Using 252Cf neutron sources in a block of moderator, a portion of which is maintained at a cryogenic temperature, the CNI employs cold neutrons instead of thermal neutrons to enhance the neutron capture reaction rate in a sample. Capture gamma rays are detected in an HPGe photon detector. Optimization of the CNI with respect to elemental sensitivity (counts per mg) is the primary goal of this design study. Monte Carlo simulation of radiation transport, by means of the MCNP code and the ENDF/B cross-section libraries, is used to model the CNI. A combination of solid methane at 22 K, room-temperature polyethylene, and room-temperature beryllium has been chosen for the neutron delivery subsystem of the CNI. Using four 250-microgram 252Cf neutron sources, with a total neutron emission rate of 2.3 x 109 neutrons/s, a thermal-equivalent neutron flux of 1.7 x 107 neutrons/cm2-s in an internally located cylindrical sample space of diameter 6.5 cm and height 6.0 cm is predicted by MCNP calculations. A cylindrical port with an integral annular collimator composed of bismuth, lead, polyethylene, and lithium carbonate, is located between the sample and the detector. Calculations have been performed of gamma-ray and neutron transport in the port and integral collimator with the objective of optimizing the statistical precision with which one can measure elemental masses in the sample while also limiting the fast neutron flux incident upon the HPGe detector to a reasonable level. The statistical precision with which one can measure elemental masses can be enhanced by a factor of between 2.3 and 5.3 (depending on the origin of the background gamma rays) compared with a neutron irradiator identical to the CNI except for the replacement of the cryogenic solid methane by room

  9. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  10. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  11. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  12. Neutron spectrum measurements from a neutron guide tube facility at the ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R M.A.; El-Sayed, L A.A.; El-Kady, A S.I. [Reactor and Neutron Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The present work deals with measurements of the neutron spectrum emitted from a neutron guide tube (NGT) recently installed at one of the ETRR-1 reactor horizontal channels designed to deliver thermal neutrons, free from fast neutrons and gamma ray background, to a fourier reverse-time-of-flight (RTOF) diffractometer. The measurements were performed using a {sup 6} Li glass scintillation detector combined with a multichannel analyzer set at channel width 4 M sec and installed at 3.4 m from a disc Fermi chopper. Also a theoretical model was specially developed for the neutron spectrum calculations. According to the model developed, the spectrum calculated was found to be in good agreement with the measured one. It was found, both from measurements and calculations, that the spectrum emitted from the NGT covers, after transmission through a fourier chopper, neutron wavelengths from 1-4 A adequate for neutron diffraction measurements at D values between 0.71-2.9 A respectively. 6 FIGS.

  13. Development of Cold Neutron Scattering Kernels for Advanced Moderators

    International Nuclear Information System (INIS)

    Granada, J. R.; Cantargi, F.

    2010-01-01

    The development of scattering kernels for a number of molecular systems was performed, including a set of hydrogeneous methylated aromatics such as toluene, mesitylene, and mixtures of those. In order to partially validate those new libraries, we compared predicted total cross sections with experimental data obtained in our laboratory. In addition, we have introduced a new model to describe the interaction of slow neutrons with solid methane in phase II (stable phase below T = 20.4 K, atmospheric pressure). Very recently, a new scattering kernel to describe the interaction of slow neutrons with solid Deuterium was also developed. The main dynamical characteristics of that system are contained in the formalism, the elastic processes involving coherent and incoherent contributions are fully described, as well as the spin-correlation effects.

  14. The increase of the subthermal neutron flux by using a cold neutron source at the FRG-1

    International Nuclear Information System (INIS)

    Krueger, A.; Turgut, M.H.

    1986-01-01

    The increase of the subthermal neutron flux (wavelength range 4-6 A by a cold neutron source (CNS) at a radial beam tube of the FRG-1 reactor is investigated in combination with different reflectors (H 2 O, C, Be, D 2 O). Advantage factors on the basis of the directed neutron flux, resulting from the use of the CNS, are calculated for various configurations. In addition, the influence of different scattering models (gas, Koppel/Young) for the CNS, group structure, and structural materials are described. Finally, the CNS assembly which is going to be installed at the FRG-1 is treated in detail. For the calculations the transport code NEUTRA and the spectral code GGC-4 are used. (orig.) [de

  15. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  16. Development of instrumentation for imaging scattered cold neutrons. Phase 1 report

    International Nuclear Information System (INIS)

    Walter, J.

    1988-01-01

    The project involves the development of a cold neutron imaging array consisting of a neutron to charged particle convertor and an array of Si detector pixels. Each detector pixel has its own preamplifier/signal conditioning chain and its own data storage registers. The parallel processing capability will be contained on WSI-ASIC sub-array wafers with 196 channels per wafer. Such sub-arrays can be assembled into large focal plane arrays. The high speed of the silicon detectors and signal conditioning chains makes 100,000 cps per pixel a realistic goal. Calculations and experimental measurements of neutron detection efficiency as a function of neutron wavelength are very encouraging. Preliminary design studies of the preamplifier/signal conditioning chain appear to present no insurmountable technical problems

  17. The upgraded cold neutron triple-axis spectrometer FLEXX – enhanced capabilities by new instrumental options

    Directory of Open Access Journals (Sweden)

    Habicht Klaus

    2015-01-01

    Full Text Available The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  18. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  19. JRR-3 cold neutron source facility H2-O2 explosion safety proof testing

    International Nuclear Information System (INIS)

    Hibi, T.; Fuse, H.; Takahashi, H.; Akutsu, C.; Kumai, T.; Kawabata, Y.

    1990-01-01

    A cold Neutron Source (CNS) will be installed in Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) during its remodeling project. This CNS holds liquid hydrogen at a temperature of about 20 K as a cold neutron source moderator in the heavy water area of the reactor to moderate thermal neutrons from the reactor to cold neutrons of about 5 meV energy. In the hydrogen circuit of the CNS safety measures are taken to prevent oxygen/hydrogen reaction (H 2 -O 2 explosion). It is also designed in such manner that, should an H 2 -O 2 explosion take place, the soundness of all the components can be maintained so as not to harm the reactor safety. A test hydrogen circuit identical to that of the CNS (real components designed by TECHNICATOME of France) was manufactured to conduct the H 2 -O 2 explosion test. In this test, the detonation that is the severest phenomenon of the oxygen/hydrogen reaction took place in the test hydrogen circuit to measure the exerted pressure on the components and their strain, deformation, leakage, cracking, etc. Based on the results of this measurement, the structural strength of the test hydrogen circuit was analyzed. The results of this test show that the hydrogen circuit components have sufficient structural strength to withstand an oxygen/hydrogen reaction

  20. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  1. Computational investigations on a catenary-shaped double-reflecting neutron guide

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.

    1983-01-01

    The results of Monte-Carlo calculations of the neutron transmission of a vertical catenary-shaped neutron guide are presented. A two-dimensional problem was considered. Focussing and special coatings are investigated. (orig.) [de

  2. Investigation of neutron emission in a cold fusion experiment in palladium

    International Nuclear Information System (INIS)

    Szustakowski, M.; Farny, J.; Muniak, M.; Nowak, A.; Parys, P.; Skrzeczanowski, W.; Socha, R.; Teter, J.; Wolski, J.; Wolowski, J.; Woryna, E.

    1989-01-01

    This paper reports on the experiments dealing with performance of nuclear fusion at room temperature actually which create a great sensation and are carried out in various laboratories. This interest arises from the results achieved by Fleischmann and Pons, and it results from their paper that there exists a possibility of obtaining an ignition owing to nuclear fusion reactions during usual electrochemical process--namely the electrolysis of D O with use of the system of Pd-Pt electrodes. From this reason the measurements of the yield and behavior of neutron emission give the information about processes of interest. At the IPPLM the cold fusion experiments have been conducted from the beginning of April 1989. In the first experiment the reliable evidence of neutron emission was obtained. A number of irregularly repeated neutron pulses of the level of 10 5 per pulse was recorded. The measurements of the neutron emission, in this experiment, were performed with the use of three independent methods employing the 2.5 MeV neutron spectrometer, the scintillation neutron detector as well as the nuclear track detector. neutron emission had been first recorded after 106 hours of the electrolysis process of D 2 O

  3. Thermal hydraulic tests of a liquid hydrogen cold neutron source. NISTIR 5026

    International Nuclear Information System (INIS)

    Siegwarth, J.D.; Olson, D.A.; Lewis, M.A.; Rowe, J.M.; Williams, R.E.; Kopetka, P.

    1995-01-01

    Liquid hydrogen cold neutron source designed at NBSR contains neutron moderator chamber. The NIST-B electrically heated glass moderator chamber used to test the NBSR chamber testing showed the following results: Stable operation possible up to at least 2200 watts with two-phase flow; LH 2 mass quickly reaches new, stable value after heat load change; Void fraction well below 20 at anticipated power and pressure; Restart of H 2 flow verified after extending supply line; Visual inspection showed no dryout or unexpected voids

  4. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  5. Development of a new superfluid helium ultra-cold neutron source and a new magnetic trap for neutron lifetime measurements

    International Nuclear Information System (INIS)

    Leung, Kent Kwan Ho

    2013-01-01

    The development of an Ultra-Cold Neutron (UCN) source at the Institut Laue-Langevin (ILL) based on super-thermal down-scattering of a Cold Neutron (CN) beam in superfluid 4 He is described. A continuous flow, self-liquefying 3 He cryostat was constructed. A beryllium coated prototype converter vessel with a vertical, window-less extraction system was tested on the PF1b CN beam at the ILL. Accumulation measurements with a mechanical valve, and continuous measurements with the vessel left open, were made. The development of a new magnetic UCN trap for neutron lifetime (τ β ) measurements is also described. A 1.2 m long octupole made from permanent magnets, with a bore diameter of 94 mm and surface field of 1.3 T, was assembled. This will be combined with a superconducting coil assembly and used with vertical confinement of UCN by gravity. A discussion of the systematic effects, focussing on the cleaning of above-threshold UCNs, is given. The possibility of detecting the charged decay products is also discussed. UCN storage experiments with the magnetic array and a fomblin-coated piston were performed on PF2 at the ILL. These measurements studied depolarization, spectrum cleaning, and loss due to material reflections in the trap experimentally.

  6. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1989-01-01

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  7. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  8. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1977-02-01

    Results from a study of the resistivity recovery of neutron-irradiated and cold-worked thorium on isochronal annealing, activation energies, and isothermal annealing and kinetics are discussed. The nature and extent of radiation effects on the resistivity of thorium at 80 0 K, interpretation of stage II recovery above 80 0 K, and activation energy and interpretation of stage III recovery are also discussed. There are 79 references

  9. Looking for spectral changes occurring during storage of ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Steyerl, A; Malik, S S [Rhode Island Univ., Kingston, RI (United States); Geltenbort, P [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France)

    1997-04-01

    It seems that the spectrum of ultra-cold neutrons does change. The measured data indicate with 5{sigma} reliability, that a small heating by about 2{center_dot}10{sup -10} eV ({approx} 2 mm of rise height against the earth`s gravity) occurred during the initial {approx} 10{sup 3} wall reflections, and no change thereafter. The reason of this effect is searched for. (author). 3 refs.

  10. A 3-D Thermal Analysis of the HANARO Cold Neutron Moderator Cell

    International Nuclear Information System (INIS)

    Han, Gee Y.; Kim, Heo Nil

    2007-01-01

    Fundamental studies on a thermal analysis of a cryogenic system such as a cold neutron source (CNS) have increased significantly for a successful CNS design in cold neutron research during recent years. A three-dimensional (3-D) thermal analysis model for the HANARO CNS was developed and used to accurately predict a temperature distribution between the hydrogen inside and the entire inner and outer surfaces of a moderator cell, whose moderator and cell walls are heated differently, under a steady-state operating condition by using the HEATING 7 code. The objective of this study is primarily to predict a temperature distribution through a heat flow in a cold neutron moderator cell heated from a nuclear heating and cooled by a cryogenic coolant. This paper presents satisfactory results of a steady-state temperature distribution in a cryogenic moderator cell. They are used to support the thermal stress analysis of the moderator cell walls and to provide a safe operation for the HANARO CNS facility

  11. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  12. Compact High Resolution SANS using very cold neutrons (VCN-SANS)

    International Nuclear Information System (INIS)

    Kennedy, S.; Yamada, M.; Iwashita, Y.; Geltenbort, P.; Bleuel, M.; Shimizu, H.

    2011-01-01

    SANS (Small Angle Neutron Scattering) is a popular method for elucidation of nano-scale structures. However science continually challenges SANS for higher performance, prompting exploration of ever-more exotic and expensive technologies. We propose a compact high resolution SANS, using very cold neutrons, magnetic focusing lens and a wide-angle spherical detector. This system will compete with modern 40 m pinhole SANS in one tenth of the length, matching minimum Q, Q-resolution and dynamic range. It will also probe dynamics using the MIEZE method. Our prototype lens (a rotating permanent-magnet sextupole), focuses a pulsed neutron beam over 3-5 nm wavelength and has measured SANS from micelles and polymer blends. (authors)

  13. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Cao, Chao; Huo, Heyong; Wang, Sheng; Wu, Yang; Yin, Wei; Sun, Yong; Liu, Bin; Tang, Bin [Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang (China); Key Laboratory of Neutron Physics, Chinese Academy of Engineering Physics, Mianyang (China)

    2017-04-11

    The inspection of the process of gas pressure change is important for some applications (e.g. gas tank stockpile or two phase fluid model) which need quantitative and non-touchable measurement. Neutron radiography provides a suitable tool for such investigations with nice resolution. The quantitative cold neutron radiography (CNR) is developed at China Mianyang Research Reactor (CMRR) to measure the hydrogen gas pressure with metal shield. Because of the high sensitivity to hydrogen, even small change of the hydrogen pressure can be inspected by CNR. The dark background and scattering neutron effect are both corrected to promote measurement precision. The results show that CNR can measure the hydrogen gas pressure exactly and the pressure value average relative error between CNR and barometer is almost 1.9%.

  14. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  15. Optimization of a neutron guide facility for the ET-RR-1 reactor. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R M.A.; El-Kady, A S [Reactor and Nutron Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    This work deals with the optimization calculations carried out for a neutron guide facility at the ET-RR-1 reactor. The facility is intended for delivering slow neutrons, emitted from one of the ET-RR-1 reactor horizontal channels, to a Fourier RTOF diffractometer. Accordingly, wavelength-dependent neutron reflectivity calculations were carried out for Cu, Ge, natural Ni, and {sup 58} Ni; materials which are usually used as reflecting surfaces of the neutron guide mirror channel walls. The results of calculations were in favour of {sup 58} Ni as the best coating of the neutron guide mirror channel walls. {sup 58} Ni gives a characteristic wavelength {lambda}{sup *}=1.36 A degree of the neutron guide. This also leads to a value of the neutron flux, at the neutron guide output, 1.4 times more than that one resulting from coating the mirror channel walls with natural nickel. The optimized neutron guide, for effective luminosity value 2.4 x 10{sup 6}, was found to be 22 m in length with mirror channel walls coated with {sup 58} Ni. Such optimization of the neutron guide length, along which a curvature 3345 m in radius, leads to a strong suppression of the background of gamma quanta and fast neutrons. Besides, the neutron wavelength range, 1.O{Alpha} degree -4.O{Alpha} degree, produced by the optimized neutron guide facility allows for neutron diffraction measurements at D values between 0.71{Alpha} degree -2.33 {Alpha} degree. 5 figs., 1 tab.

  16. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  17. A New Approach to Measuring the Neutron Decay Correlations with Cold Neutrons at LANSCE

    International Nuclear Information System (INIS)

    Wilburn, W.S.; Bowman, J.D.; Greene, G.L.; Jones, G.L.; Kapustinsky, J.S.; Penttila, S.I.

    1999-01-01

    Precision measurements of the neutron beta-decay correlations A, B, a, and b provide important tests of the standard model of electroweak interactions: a test of the unitarity of the first row of the CKM matrix, a search for new weak interactions, a test of the theory of nuclear beta decays, and a test of the conserved-vector-current hypothesis. The authors are designing an experiment at the LANSCE short-pulse spallation source to measure all four correlations to an order of magnitude better accuracy than the existing measurements. The accuracy of the previous measurements was limited by systematics. The design of the proposed experiment makes use of the pulsed nature of the LANSCE source to reduce systematic errors associated with the measurement of the neutron polarization as well as other systematic errors. In addition, the authors are developing silicon strip detectors for detecting both the proton and electron from the neutron decay

  18. qBounce - a realization of the quantum bouncer with ultra-cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Abele, Hartmut; Bittner, Thomas; Cronenberg, Gunther; Filter, Hanno; Jenke, Tobias; Mitsch, Kevin; Thalhammer, Martin [Atominstitut TU Wien, Wien (Austria); Geltenbort, Peter [Institut Laue-Langevin, Grenoble (France)

    2012-07-01

    We present the observation of a quantum bouncing ball in the gravitational field of the Earth. Quantum states in the Earth's gravitational field can be observed, when ultra-cold neutrons fall under gravity. In our previous experiment in collaboration with the Institute Laue-Langevin/Grenoble, the lowest stationary quantum state of neutrons in the Earth's gravitational field was clearly identified. In the new experiment qBounce, we use this technique to prepare a neutron in the ground state and then to let it fall and bounce off a neutron mirror. Oscillations in time similar to the harmonic oscillator system described by Glauber states have been observed. Such a quantum particle bouncing in a linear gravitational field is known as the quantum bouncer. The motivation of this activity is also the investigation of quantum phases and quantum decoherence. For that matter we have developed position-sensitive neutron detectors with an extra-high spatial resolution.

  19. Measurement of cold neutron spectra at a model of cryogenic moderator of the IBR-2M reactor

    International Nuclear Information System (INIS)

    Kulikov, S.A.; Chernikov, A.N.; Shabalin, E.P.; Kalinin, I.V.; Morozov, V.M.; Novikov, A.G.; Puchkov, A.V.

    2010-01-01

    The article is dedicated to methods and results of experimental determination of cold neutron spectra from solid mesitylene at neutron moderator temperatures 10-50 K. Experiments were fulfilled at the DIN-2PI spectrometer of the IBR-2 reactor. The main goals of this work were to examine a system of constants for Monte Carlo calculation of cryogenic moderators of the IBR-2M reactor and to determine the temperature dependence of cold neutron intensity from the moderator. A reasonable agreement of experimental and calculation results for mesitylene at 20 K has been obtained. The cold neutron intensity at temperature of moderator 10 K is about 1.8 times higher than at T=50 K

  20. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  1. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  2. Cold War Arms Control Motivations and Techniques - A Guide for the Future?

    National Research Council Canada - National Science Library

    White, Elmer

    1996-01-01

    .... This paper provides a brief historical account of some of the arms control agreements between the U.S. and the Soviet Union, examines their major motivations to enter into negotiations, and illustrates some successful negotiation techniques. The author hypothesizes on the utility of this Cold War arms control experience as a useful guide for arms control in a single superpower world.

  3. Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.

    Science.gov (United States)

    Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong

    2018-02-28

    The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.

  4. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    International Nuclear Information System (INIS)

    Rothrock, Benjamin G.; Farrar, Mike B.

    2009-01-01

    In June 1961, construction was started on the High Flux Isotope Reactor (HFIR) facility inside the Oak Ridge National Laboratory (ORNL), at the recommendation of the U.S. Atomic Energy Commission (AEC) Division of Research. Construction was completed in early 1965 with criticality achieved on August 25, 19651. From the first full power operating cycle beginning in September 1966, the HFIR has achieved an outstanding record of service to the scientific community. In early 1995, the ORNL deputy director formed a group to examine the need for upgrades to the HFIR following the cancellation of the Advanced Neutron Source Project by DOE. This group indicated that there was an immediate need for the installation of a cold neutron source facility in the HFIR to produce cold neutrons for neutron scattering research uses. Cold neutrons have long wavelengths in the range of 4-12 angstroms. Cold neutrons are ideal for research applications with long length-scale molecular structures such as polymers, nanophase materials, and biological samples. These materials require large scale examination (and therefore require a longer wavelength neutron). These materials represent particular areas of science are at the forefront of current research initiatives that have a potentially significant impact on the materials we use in our everyday lives and our knowledge of biology and medicine. This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  5. Development of Low-Cost Method for Fabrication of Metal Neutron Guides

    Energy Technology Data Exchange (ETDEWEB)

    Engelhaupt, Darell [Dawn Research Inc., Madison, AL (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Romaine, Suzanne [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2017-12-19

    Neutron scattering is one of the most useful methods of studying the structure and dynamics of matter. US DOE neutron scattering research facilities at Oak Ridge National Laboratory are among the World’s most advanced, providing researchers with unmatched capabilities for probing the structure and properties of materials, including engineering and biological systems. This task is to develop a lower cost process to optimize and produce the required neutron guides capable of efficiently delivering neutron beams for tens of meters between neutron moderators and instruments. Therefore, our effort is to improve the performance and lower the production cost of neutron guides. Our approach aims at improving guide quality while controlling their rising costs by adopting a novel electroforming replication approach to their fabrication. These guides will be especially advantageous when used near the neutron source since the radiation resistance of nickel is superior to glass. Additionally, we are depositing low-stress nickel from an extremely low impurity solution completely free of stress-reducing agents, which nominally contain and impart sulfur, carbon and other elements that potentially activate in the neutron environment. This is achieved by using a pulsed periodically reversed current methodology. The best guides quote waviness of 0.1 mrad. It is reasonable to prepare just one mandrel of about 0.5 m long, for production of tens of guide segments, saving both the cost and supply time of guides to neutron facilities. We estimate that we can fabricate a single mandrel for the current cost of an individual one-meter guide, but from this, we can produce tens of meters of guide very inexpensively without mandrel refurbishment. While a multilayer coating will add to the overall cost, we expect this will be less than that of commercially available guides today. Therefore, we will produce higher quality guides, which are less susceptible to radiation damage, at the lower cost

  6. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    International Nuclear Information System (INIS)

    Cronert, T; Zakalek, P; Rücker, U; Brückel, T; Dabruck, J P; Doege, P E; Nabbi, R; Bessler, Y; Hofmann, M; Butzek, M; Klaus, M; Lange, C; Hansen, W

    2016-01-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D 2 O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H 2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H 2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H 2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement. (paper)

  7. Cold-neutron multi-chopper spectrometer for MLF, J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Kajimoto, Ryoich; Nakamura, Mistutaka; Arai, Masatoshi; Sato, Taku J.; Osakabe, Toyotaka; Matsuda, Masaaki; Metoki, Naoto; Kakurai, Kazuhisa; Itoh, Shinichi

    2005-01-01

    We are planning to construct a cold-neutron multi-chopper spectrometer for a new spallation neutron source at Materials and Life Science Facility (MLF) at J-PARC, which is dedicated to investigation of low energy excitations and quasi-elastic excitations in the field of solid state physics, chemistry, materials science, soft matter science and biomaterial science. The planned spectrometer will be installed at a H 2 -coupled moderator and will be equipped with a pulse-shaping disk-chopper in addition to a monochromating disk-chopper, and realizes both high-energy resolution (ΔE/E i ≥1%) and high-intensity (one order of magnitude higher than the present state-of-the-art chopper spectrometers)

  8. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    CERN Document Server

    Fiori, F

    2002-01-01

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (ten...

  9. Thermodynamic considerations on self-regulating characteristics of a cold neutron source with a closed thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Ogino, Fumimaru.

    1991-01-01

    The present report describes that a cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a self-regulating characteristic under thermal disturbances if the effect of the moderator transfer tube is negligible. Due to this property, the liquid level in the moderator cell is kept almost constant under thermal disturbances. The thermodynamic meaning of the self-regulating property in the idealized closed-thermosiphon and the effect of the moderator transfer tube to the self-regulation are described. (author)

  10. Cold dilute neutron matter on the lattice. II. Results in the unitary limit

    International Nuclear Information System (INIS)

    Lee, Dean; Schaefer, Thomas

    2006-01-01

    This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature

  11. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1976-01-01

    Recovery of neutron-irradiated and cold-worked thorium was studied using electrical resistivity measurements. Thorium wires containing 30 and 300 wt ppM carbon were irradiated to fast neutron fluence of 1.3 x 10 18 n/cm 2 (E greater than 0.1 MeV). Another group of thorium wires containing 45, 300 and 600 wt ppM carbon were laterally compressed 5 to 40 percent. Both irradiation and cold-working were performed at liquid nitrogen temperature. The induced resistivity was found to increase with carbon content for both treatments. Isochronal recovery studies were performed in the 120--420 0 K temperature range. Two recovery stages (II and III) were found for both cold-worked and irradiated samples. In all cases the activation energies were determined by use of the ratio-of-slope method. Consistent results were observed for both irradiated and cold-worked specimens within the experimental error in the two stages. Other methods were also used in determining the activation energy of stage III for irradiated samples. All analysis methods indicated that the activation energies decreased with increasing carbon content for differently treated specimens. Possible reasons for such behavior are discussed. The annealing data obtained do not fit a simple chemical rate equation but follow the empirical exponential equation proposed by Avrami. A model of detrapping of interstitials from impurities is suggested for stage II recovery. On the basis of the observed low activation energy and high retention of defects above stage III, a divacancy migration model is proposed for stage III recovery

  12. Design of a cold-neutron source for the Bariloche LINAC with solid mesitylene as moderator material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, J.R.

    2006-01-01

    We present the results of calculations performed with the code MCNP-4C relative to the neutron-field behaviour within the moderator for the Bariloche-LINAC cold-neutron source, using mesitylene at 89 K as moderating material. Throughout the design calculations we used preliminary nuclear-data libraries for that material that were previously generated and partially validated. The optimum dimensions for a slab and a cylindrical moderator were obtained, with and without a premoderator, from the point of view of neutron production and time-width of the neutron pulse

  13. Mechanical strength evaluation of the glass base material in the JRR-3 neutron guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-02-01

    The lifetime of the thermal neutron guide tube installed JRR-3 was investigated after 6 years from their first installation. And it was confirmed that a crack had been piercing into the glass base material of the side plate of the neutron guide tube. The cause of the crack was estimated as a static fatigue of the guide tube where an inside of the tube had been evacuated and stressed as well as an embrittlement of the glass base material by gamma ray irradiation. In this report, we evaluate the mechanical strength of the glass base material and estimate the time when the base material gets fatigue fracture. Furthermore, we evaluate a lifetime of the neutron guide tube and confirm the validity of update timing in 2000 and 2001 when the thermal neutron guide tubes T1 and T2 were exchanged into those using the super mirror. (author)

  14. A combined system for the generation of an intense cold neutron beam with a medium power research reactor

    International Nuclear Information System (INIS)

    Utsuro, M.; Okumura, K.

    1989-01-01

    A system consisting of a very cold moderator and a neutron-accelerating high speed turbine is proposed for the intensification of a cold neutron beam in a medium power research reactor up to the level applicable to inelastic neutron scattering spectrometers. A numerical result for 5 cm thick solid ortho-deuterium at a temperature of about 4 K and a turbine with a blade velocity of about 350 m/s gives an output intensity of monochromatic neutrons of about 10 7 n/cm 2 at an energy of about 3.5 meV with an energy width of about 0.2 meV for a typical case of a 5 MW reactor. (orig.)

  15. Inelastic neutron scattering and spectral measurements of advanced cold moderator materials

    International Nuclear Information System (INIS)

    Conrad, H.; Prager, M.; Nuenighoff, K.; Pohl, C.; Kuhs, W.F.

    2004-01-01

    Inelastic neutron scattering with emphasis on energetically low lying modes as well as cold neutron leakage measurements have been performed on four prospective advanced cold moderator materials. Employing the time-of-flight instrument SV29 at the Juelich FRJ-2 reactor, spectra have been obtained from synthetic methane clathrate, tetrahydro-furane (THF) clathrate, 1,3,5-trimethyl-benzene (mesitylene) and light water ice at several temperatures between 2 K and 70 K. Clearly separated excitations at energy transfers of ±1 meV, +2 meV and +3 meV have been observed with synthetic methane clathrate. In mesitylene a wealth of low lying excitations have been observed. In the quenched phase we found lines at 4.7, 7.2, 9.6, 13.6, 15.4, 18.4, 19.0, 23.0, 29.5 and 34.3 meV, respectively. In the annealed phase, we observed significant shifts with the majority of lines. The lowest lying lines now are located at 7.0, 8.5 and 10.5 meV, respectively. In hexagonal ice at T=2 K up to now unreported low lying energy levels were found at energy transfers of 1.8 meV and 2.8 meV. An additional line at about 10 meV could be detected in THF clathrate. Mesitylene, synthetic methane clathrate and water ice, all at T=20 K, have been tested as moderators at the Juelich spallation mock-up JESSICA. The expected gain in neutron leakage current at energies around 2 meV as compared to conventional liquid hydrogen moderators has been observed for methane clathrate and mesitylene. (orig.)

  16. Treatment of benign cold thyroid nodule: efficacy and safety of US-guided percutaneous ethanol injection

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Lee, Ho Kyu; Lee, Myung Joon; Choi, Choong Gon; Suh, Dae Chul; Ahn, Il Min

    1998-01-01

    The purpose of this study was to evaluate the efficacy and safety of US-guided percutaneous ethanol injection for the treatent of benign cold thyroid nodules. Twenty-five patients with benign cold thyroid nodules (volume of each at least 2ml proven by PCNA to be adenomatous hyperplasia, and cold nodule by thyroid scan) underwent a total of one to three percutaneous ethanol injections (PEI) at intervals of one or two months. The mean amount of ethanol used was 6.2(range, 1.5-8)ml, depending on the volume of the nodule. Follow up ultrasonography was performed one to four months after the final session. The initial volume of nodules was 11.4±4.1(range, 2.5-41.4)ml, and in all cases this fell by 56.1±22.3%(range, 10.9-92.1%);in all cases, follow-up ultrasonography showed that echogeneity was lower and its pattern was heterogeneous. There were no important longstanding complications;the most common side effect was acute pain at the injection site(n=3D9), and in one case, transient vocal cord palsy occurred. Our results show that US-guided percutaneous injection of ethanol is an effective and a safe procedure for the treatment of benign cold thyroid nodules, and is thus an alternative to surgery or hormone therapy.=20

  17. Dynamic response of thermal neutron measurements in electrochemically produced cold fusion subject to pulsed current

    International Nuclear Information System (INIS)

    Granada, Jose; Converti, Jose; Mayer, Roberto; Guido, German; Florido, Pablo; Patino, Nestor; Sobehart, Leonardo; Gomez, Silvia; Larreteguy, Axel

    1988-01-01

    The present work shows the results of measurements performed on electrolytic cells using a high efficiency (22%) neutron detection system in combination with a procedure involving a non-stationary current through the cell's circuit. Cold fusion was produced in electrolytic cells containing LiH dissolved in heavy water with a palladium cathode. The dynamic response to low frequency current pulses was measured. Characteristic patterns showing one or two bumps were obtained in a repeatable fashion. These patterns are strongly dependent on the previous charging history of the cathode. The technique employed seems to be very convenient as a research tool for a systematic study of the different variables governing the phenomenon. (Author)

  18. A study of some temperature effects on the phonons in aluminium by use of cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, K E; Dahlborg, U; Holmryd, S

    1960-04-15

    Using the cold neutron scattering technique about 300 phonons have been determined in a single aluminium crystal at room temperature to define 10 pairs of dispersion curves, Investigations have been made of the variation of frequencies, phonon line widths and multi-phonon spectra in the temperature range 293 < T < 932 K. For a particular direction in the crystal lattice it is shown that the frequencies vary about 15 % over this temperature range The line widths are of such a magnitude that the derived phonon mean free paths vary from about 5 phonon wave lengths at 600 K to about 1.5 phonon wave lengths at 930 K. The observed multiphonon spectra are found to agree with calculated differential cross sections in the incoherent approximation.

  19. An advanced hadron facility: A combined kaon factory and cold-neutron source

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1987-01-01

    A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H - linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 μAmp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed

  20. Detail design and manufacturing result of the HANARO cold neutron source moderator cell

    International Nuclear Information System (INIS)

    Hwang, Dong Gil; Han, Young Soo; Kim, Soo Sung; Lee, Kye Hong; Kim, Young Jin

    2005-01-01

    Moderator cell which is on the process of developing is the core of the Cold Neutron Source(CNS) and operates at cryogenic of 20K and made of aluminum. When infer from experience in all nuclear reactors that use moderator cell, Aluminum has a proper nature to use at cryogenic that use hydrogen. And a lot of data was already published for the Aluminum characters which are in the investigative state. Because performance of moderator cell is getting better when thickness is thinner, moderator was designed to double cylinder type of thin plate style. Aluminum is excellent both manufacturing and welding. If the plate is less than 3.0mm, manufacturing and welding are difficult. Because of this, after making a moderator cell, manufacture and integrity are evaluated. In this paper, detailed design of moderator cell and manufacturing result are described

  1. The effect of, within the sphere confined, particle diffusion on the line shape of incoherent cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.

    1999-01-01

    Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)

  2. The Design of a Moderator for a Cold Neutron Source for the LINAC of the Centro Atomico Bariloche

    International Nuclear Information System (INIS)

    Torres, Lourdes; Gilette, Victor

    2003-01-01

    The results obtained in the design of a moderator to a cold neutron source for LINAC are given. Light water ice at 100 deg K was used as a moderator and we calculated its optimum dimension.We also calculated a grid moderator

  3. On the form invariant volume transformation in phase space by focusing neutron guides: An analytic treatment

    International Nuclear Information System (INIS)

    Stüßer, N.; Hofmann, T.

    2013-01-01

    Tapered guides with supermirror coating are frequently used to focus neutron beams on specimens. The divergence distribution in the focused beam is of a great importance for the quality of neutron instrumentation. Using an analytic approach we derive the tapering which is needed to achieve a form invariant phase space transformation of a rectangular phase volume. In addition we consider the effect of beam attenuation by the finite reflectivity of supermirrors. -- Highlights: • Form invariant volume transformation in phase space. • Focusing modules for neutron beams. • Analytical approach. • Attenuation effects in linearly and nonlinearly tapered guides

  4. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  5. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  6. Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding

    Science.gov (United States)

    Fiori, F.; Marcantoni, M.

    Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.

  7. Optimization of the SNS magnetism reflectometer neutron-guide optics using Monte Carlo simulations

    CERN Document Server

    Klose, F

    2002-01-01

    The magnetism reflectometer at the spallation neutron source SNS will employ advanced neutron optics to achieve high data rate, improved resolution, and extended dynamic range. Optical components utilized will include a multi-channel polygonal curved bender and a tapered neutron-focusing guide section. The results of a neutron beam interacting with these devices are rather complex. Additional complexity arises due to the spectral/time-emission profile of the moderator and non-perfect neutron optical coatings. While analytic formulae for the individual components provide some design guidelines, a realistic performance assessment of the whole instrument can only be achieved by advanced simulation methods. In this contribution, we present guide optics optimizations for the magnetism reflectometer using Monte Carlo simulations. We compare different instrument configurations and calculate the resulting data rates. (orig.)

  8. Optimization of focusing supermirror neutron guides for low γ-background

    International Nuclear Information System (INIS)

    Szakal, A.; Czifrus, Sz.; Marko, M.; Fuezi, J.; Rosta, L.; Cser, L.

    2011-01-01

    Supermirror coating is a significant source of γ-radiation in neutron guide systems, which can cause serious problems at instruments by increasing the γ-background. This problem is more stringent in case of γ-sensitive signal detection, like PGAA or in-beam Moessbauer spectroscopy. Shielding possibilities close to the sample are limited, but guide shape has significant effect on the number of γ-photons produced in this region. To develop good γ-shielding and guide system we have to understand the source and transport of γ-radiation in neutron guides and surrounding shieldings. We have developed a program which integrate VITESS and MCNPX to calculate the γ-background. We compared the simulated γ-background and guide performance with measurements on real focusing guide configurations.

  9. Virtual design of the neutron guide for the TOF spectrometer NEAT

    International Nuclear Information System (INIS)

    Izaola, Zunbeltz; Russina, Margarita

    2010-01-01

    We present the results of a virtual design study based on Monte-Carlo neutron ray tracing techniques for the neutron guide of the time of flight (TOF) spectrometer NEAT. We studied several configurations with linearly or elliptically tapered compressors with different degrees of focusing and different guide coatings. The calculations were performed and crosschecked using two software packages which produced similar results. The geometrical arrangement of selected guide components was optimised with the Particle Swarm Optimisation algorithm. The results of the Monte Carlo simulations confirm an expected intensity gain factor of approximately 5, that can be achieved by the optimal configuration.

  10. Virtual design of the neutron guide for the TOF spectrometer NEAT

    Science.gov (United States)

    Izaola, Zunbeltz; Russina, Margarita

    2010-11-01

    We present the results of a virtual design study based on Monte-Carlo neutron ray tracing techniques for the neutron guide of the time of flight (TOF) spectrometer NEAT. We studied several configurations with linearly or elliptically tapered compressors with different degrees of focusing and different guide coatings. The calculations were performed and crosschecked using two software packages which produced similar results. The geometrical arrangement of selected guide components was optimised with the Particle Swarm Optimisation algorithm. The results of the Monte Carlo simulations confirm an expected intensity gain factor of approximately 5, that can be achieved by the optimal configuration.

  11. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  12. Studies of magnetism with inelastic scattering of cold neutrons; Etudes de magnetisme realisees a l'aide de la diffusion inelastique de neutrons froids

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [French] La technique de diffusion inelastique des neutrons froids est utilisee pour etudier certains aspects du magnetisme: ondes de spins, integrales d'echange, etude au voisinage du point de Curie, etc. Apres une description de l'appareillage, on analyse diverses experiences effectuees dans les domaines enumeres plus haut. (auteur)

  13. Neutron Research in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho

    2005-01-01

    monochromators, collimators, and precision motion units with its motion controller specific to heavy load neutron instruments, etc. The development and application of position sensitive detector (PSD) was a great success. In 2003, we started development of neutron mirror techniques and devices, which would be successfully utilized to develop neutron guides for the cold neutron research facility project. All of these efforts together make us enable to develop high performance neutron instruments and researches in cost-effective way. The project of constructing the cold neutron research facility (CNRF) at HANARO was re-initiated in July 2003. The first phase duration of CNRF project is five years, and the project envisions installation of cold neutron source, related systems, 3 neutron guides, and 6 cold neutron scattering instruments to satisfy the imminent needs of cold neutron beam. 6 neutron instruments include the relocation of 3 reactor hall instruments (8m-SANS, REF-V, REF-H) and the installation of 3 new instruments (40M-SANS, Cold-TAS, DC-TOF). The Ni guide manufacturing technology has been developed, and the super-mirror and the large area 2D detector are being developed. The design of the cold neutron laboratory building has been completed, of which safety analysis report has been submitted to the regulatory body, too

  14. The Phase-Space Transformer Instrument (PASTIS) and the Phase-Space Transformation on Ultra-Cold Neutrons

    International Nuclear Information System (INIS)

    Henggeler, W.; Boehm, M.

    2003-11-01

    Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)

  15. Method and device for monitoring vibration of incore neutron detector guide tube

    International Nuclear Information System (INIS)

    Enomoto, Mitsuhiro; Naito, Norio; Oda, Akira.

    1978-01-01

    Purpose: To easily detect the vibration of an incore neutron detector guide tube and to prevent the occurrence of such accidents that the guide tube comes into contact with the fuel channel box arranged around the periphery thereof to break the channel box. Method: A neutron detector guide tube is disposed within a channel box, and the neutron detector is arranged at the center of the guide tube. Now, when the guide tube vibrates at an inherent number of vibration and a predetermined amplitude, the guide tube moves in the radial direction by the predetermined amplitude part to come into contact with the channel box. Upon this occasion, the detector similarity vibrates, and the output signal is varied by the predetermined neutron flux variation part. This output signal is sent to a comparator through an analyser, and compared with the output signal produced from a device wherein the result analysed at normal time, and the output signal is sent to an alarm device and an indicator, respectively. (Aizawa, K.)

  16. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  17. Technical review and evaluation for the installation of cold neutron source facility at HANARO

    International Nuclear Information System (INIS)

    Choi, Chang Woong; Kim, Dong Hoon; Lee, Mu Woong; Cho, Man Soon; Oh, Yun Woo; Park, Sun Hee; Park, Kuk Nam; Lee, Chang Hee

    1996-01-01

    The principle subjects of this study are to analyze the technical characteristics of cold neutron source(CNS) and take measures to cope with the matters regarding the installation of CNS facility at HANARO. This report, thus, reviews the current status of the CNS facilities that are now in operation worldwide and classifies the system and equipment to select the appropriate type for HANARO and provides advice and guidance for the future basic and detail design. As we have none of CNS facility here and very few experienced persons yet, this report provides some information for domestic users through the investigation of the utilization fields and experimental facilities of CNS, and presents the estimated total cost for the project based on JRR-3M. In addition, the work scope of the conceptual design, which will be performed in advance of the basic and detail design, and cooperative program with the countries having the advanced technology of CNS is presented in this report. 43 tabs., 57 figs., 22 refs. (Author)

  18. Standard Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Need for Neutronics Calculations—An accurate calculation of the neutron fluence and fluence rate at several locations is essential for the analysis of integral dosimetry measurements and for predicting irradiation damage exposure parameter values in the pressure vessel. Exposure parameter values may be obtained directly from calculations or indirectly from calculations that are adjusted with dosimetry measurements; Guide E944 and Practice E853 define appropriate computational procedures. 1.2 Methodology—Neutronics calculations for application to reactor vessel surveillance encompass three essential areas: (1) validation of methods by comparison of calculations with dosimetry measurements in a benchmark experiment, (2) determination of the neutron source distribution in the reactor core, and (3) calculation of neutron fluence rate at the surveillance position and in the pressure vessel. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is th...

  19. Cold neutron beam studies of parity-violation in the n-α and n-p systems

    International Nuclear Information System (INIS)

    Markoff, D.M.

    2001-01-01

    Long wavelength neutrons (λ>1 A) in a cold neutron beam provide a valuable probe to study the strong and weak nuclear forces in hadronic systems, where the description is complicated by the quark structure of the particles. As a consequence of parity-violation (PV) arising from the weak interaction, the low-energy neutron transverse spin-polarization vector rotates as the neutrons transverse a medium. The magnitude of the PV spin-rotation observable in the n-α system provides important new data to determine the strength of the neutron-nucleus weak interaction. Measurement of the spin-rotation in the bare neutron-proton system with a parahydrogen target, will provide important constraints on the weak nucleon-nucleon (NN) interaction including the neutral current contribution, and will increase our understanding of the strong NN interaction. This paper will review the recent spin-rotation measurement in a liquid helium target, and the proposed measurement in a parahydrogen target

  20. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  1. Optimized design of the chopper disks and the neutron guide in a disk chopper neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Copley, J.R.D.

    1990-01-01

    We consider important aspects of the performance of a disk chopper neutron time-of-flight spectrometer. The intensity at the sample position, and the contributions of the choppers to the resolution of the instrument, are evaluated as a function of the widths of the slots in the chopper disks and the width of the neutron guide between the disks. We find that there is an optimum choice of the ratios of these widths and that this choice depends on a single parameter which, for elastic scattering, is a simple ratio of distances. When pairs of counter-rotating disks are employed, the widths of the slots can be modified by grossly changing the phase relationship between the members of a chopper pair. If the slot widths are changed, the width of the guide should also be altered in order to maintain the spectrometer in an optimized state. This change in the guide width may be effectively achieved using an arrangement of nested guides. Resolution and intensity calculations demonstrate the important gains which may be realized using this approach. (orig.)

  2. Study of liquid hydrogen and liquid deuterium cold neutron sources; Etude de sources de neutrons froids a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Harig, H D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10{sup 15} n/cm{sup 2}s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10{sup 12} n/cm{sup 2}s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [French] En vue de l'installation d'une source a neutrons froids dans un reacteur a haut flux (flux thermique maximal environ 10{sup 15} n/cm{sup 2}s), nous avons fait une etude neutronique experimentale de differentes sources froides a hydrogene et a deuterium liquides aupres d'un reacteur a faible puissance (100 kW environ 10{sup 12} n/cm{sup 2}s). Nous avons etudie: des couches annulaires de differentes epaisseurs d'hydrogene liquide normal et d'hydrogene a grand pourcentage para, des cellules cylindriques de 18 et 38 cm de diametre, remplies de deuterium liquide et placees a differentes positions dans le reflecteur D{sub 2}O. Ce travail traite l'implantation de l'installation cryogenique et donne une description generale de l'experience. L'interpretation des resultats fait etat entre autres d'une comparaison entre l'experience et une etude theorique portant sur les memes moderateurs. (auteurs)

  3. Polycapillary neutron lenses

    International Nuclear Information System (INIS)

    Mildner, D.F.R.

    1997-01-01

    The principle of multiple mirror reflection from smooth surfaces at small grazing angles enables the transport and guiding of high intensity slow neutron beams to locations of low background for neutron scattering and absorption experiments and to provide facilities for multiple instruments. Curved guides have been widely used at cold neutron facilities to remove the unwanted radiation (fast neutrons and gamma rays) from the beam without the use of filters. A typical guide has transverse dimensions of 50 mm and, with a radius of curvature of 1 km, transmits wavelengths longer than 5 A. Much tighter curves requires narrower transverse dimensions, otherwise there is little transmission. Typical neutron benders have a number of slots with transverse dimensions of ∼5 mm. Based on the same principle but using a different technology, recent developments in glass polycapillary fibers have produced miniature versions of neutron guides. Fibers with many thousands of channels having sizes of ∼ 10 μm enable beams of long wavelength neutrons (λ > 4 A) to be transmitted efficiently in a radius of curvature as small as a fraction of 1 m. A large collection of these miniature versions of neutron guides can be used to bend the neutron trajectories such that the incident beam can be focused. (author)

  4. Optimization of multi-channel neutron focusing guides for extreme sample environments

    International Nuclear Information System (INIS)

    Di Julio, D D; Lelièvre-Berna, E; Andersen, K H; Bentley, P M; Courtois, P

    2014-01-01

    In this work, we present and discuss simulation results for the design of multichannel neutron focusing guides for extreme sample environments. A single focusing guide consists of any number of supermirror-coated curved outer channels surrounding a central channel. Furthermore, a guide is separated into two sections in order to allow for extension into a sample environment. The performance of a guide is evaluated through a Monte-Carlo ray tracing simulation which is further coupled to an optimization algorithm in order to find the best possible guide for a given situation. A number of population-based algorithms have been investigated for this purpose. These include particle-swarm optimization, artificial bee colony, and differential evolution. The performance of each algorithm and preliminary results of the design of a multi-channel neutron focusing guide using these methods are described. We found that a three-channel focusing guide offered the best performance, with a gain factor of 2.4 compared to no focusing guide, for the design scenario investigated in this work.

  5. Density gradient instabilities in a neutron inhomogeneous guiding-centre plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The guiding-centre equations for a plasma of cold ions and thermal electrons admit neutral and non-neutral inhomogeneous equilibrium solutions, and the linear stability of these solutions has been recently investigated numerically by Shoucri and Knorr (1975). With arbitrary density profiles, numerical techniques appear to be the only practical way to study the linear stability of the inhomogeneous equilibrium solutions for the guiding centre plasma. However, analytical methods can be applied to some simple types of density profiles. The purpose of the present note is to present some analytical results on the linear instabilities of an inhomogeneous neutral guiding centre plasma. (U.K.)

  6. Multi-beam neutron guide system at IRI, Delft

    Energy Technology Data Exchange (ETDEWEB)

    Well, A.A. van; Gibcus, H.P.M.; Gommers, R.M.; Haan, V.O. de; Labohm, F.; Verkooijen, A.H.M. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Schebetov, A.; Pusenkov, V. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation)

    2001-07-01

    One of the main facilities of the Interfaculty Reactor Institute (IRI) at the Delft University of Technology is the swimming-pool type research reactor HOR. In 1963 it was critical for the first time. The power raised from 100 kW in 1963 to 500 kW in 1965. In 1968, forced cooling was introduced. From that time on, the reactor is operated at 2 MW, 5 days per week. The reactor comprises a variety of irradiation facilities, used among others for radioisotope production and neutron activation analysis. It is equipped with six horizontal radial beam tubes, originally used for neutron-scattering experiments. Throughout the years, the research activities have grown steadily, both in the development of new techniques and in applying these techniques in new research areas. (orig.)

  7. Production of ultra cold neutrons with a solid deuterium converter; Produktion von ultrakalten Neutronen mit einem festen Deuteriumkonverter

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Andreas

    2008-10-28

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particle physics. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates for experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the neutron lifetime ({tau}{sub n}), the axial-vector coupling constant (g{sub A}), or in search of quantum effects of gravity. In this work the setup of a source for ultra cold neutrons with a solid deuterium converter is described, which serves as a prototype for a new, strong UCN source, that is currently designed and constructed at the FRMII in Garching. The prototype source has been taken into operation and important parameters have been measured. These experimental results have been compared with theoretical models to prove calculations for the performance of the new source at the FRMII. (orig.)

  8. Measurement of 241Am Ground State Radiative Neutron Capture Cross Section with Cold Neutron Beam. Progress Report on Research Contract HUN14318 for the CRP on Minor Actinide Neutron Reaction Data (MANREAD)

    International Nuclear Information System (INIS)

    Belgya, T.; Szentmiklosi, L.; Kis, Z.; Nagy, N.M.; Konya, J.

    2012-01-01

    The ground state cross section of 242 Am has been measured with beams of cold neutrons at the Budapest Research Reactor using the X-ray emission of the decay product of 242 Pu. This methodology avoids the uncertainty caused by resonance neutrons in the pile activations. The target was characterized with gamma and X-ray spectrometry. The obtained ground state cross section is 540 ± 32 b, which is at the low end of the most recent literature values, but agrees with most of them within their uncertainty. (author)

  9. Aging under irradiation of super-mirrors used in neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-01-01

    The aim of this work is to study the aging of NiC x /Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50 % hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, then mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  10. Curved-straight neutron guide system with uniform spatial intensity distribution

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Cook, J.C.

    2008-01-01

    The spatial intensity distribution of neutrons emerging from a curved guide is asymmetric, and straight guide sections are sometimes appended to curved guides to make the intensity distribution more nearly uniform. For idealized uniform illumination and in the perfect reflectivity approximation, the spatial-angular acceptance at the exit of the combination can be made exactly uniform for a range of long wavelengths by using a sufficiently long straight section, together with a curved guide whose outer wall coating has a critical angle slightly greater than those of the other guide walls. We refer to this as a 'phase space tailoring guide' where the coatings on the inner wall and straight section are used to define the required divergence at the end of the guide. Increasing the critical angle of the outer wall of the curved section reduces the characteristic wavelength of the curved guide as well as the wavelength at which ideal uniformity can be obtained. The outer wall coating need only be of sufficiently high critical angle to fill the transmittable phase space area of the straight guide uniformly to adequately short wavelength

  11. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  12. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  13. Consequences of the conversion of research reactor cores on experimental facilities at the example of a cold neutron source

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Goebs, H.; Stroemich, A.

    1985-01-01

    The consequences for and specifically the potential reduction of the performance of research reactors have been in discussions very often within the last five years as one of the draw-backs which has to be paid for the reduction of the proliferation risk at research reactor plants. Up to now and up to our knowledge the available results are restricted to unperturbated fluxes. Thus, this contribution makes the attempt to demonstrate the consequence of core conversion on an example of a real experimental facility and - at the same time - on one that is going to be used in the next decade a lot, i.e. a cold neutron source (CNS). (author)

  14. Numerical simulation on self-regulating characteristics of a cold neutron source with a closed-thermosiphon

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Utsuro, Masahiko; Okamoto, Sunao

    1989-01-01

    A cold neutron source (CNS) having a closed-thermosiphon cooling loop shows a characteristic of self-regulation to the heat load fluctuations if the moderator transfer tube fulfills certain conditions. A dynamical equation of the closed-thermosiphon type CNS having such a property has been presented on the basis of the non-equilibrium thermodynamics. Kyoto University Reactor (KUR) CNS is investigated by numerical simulation of this equation. The numerical predictions for the self-regulating characteristics are in agreement with available experimental data. (author)

  15. User's guide for the small-angle neutron scattering facility

    International Nuclear Information System (INIS)

    Vlak, W.A.H.M.; Werkhoven, E.J.

    1989-04-01

    This report serves as a manual for the users of the small-angle neutron scattering instrument located at beamport HB3 of the High Flux Reactor in Petten. The main part of the text is devoted to the control of the facility and the data handling by means of a μVAX computer. Also, the various possibilities to access the facility across computer networks are discussed. A collection of menu-driven and command-driven programs, which utilize the flexibility of the VMS operating system without requiring detailed knowledge of the user about the computer environment, enables to control the instrument. For the convenience of the experienced user, who might wish to update or extend the software, a technical supplement is included. 15 figs.; 8 refs

  16. Simulating pasta phases by molecular dynamics and cold atoms. Formation in supernovae and superfluid neutrons in neutron stars

    International Nuclear Information System (INIS)

    Watanabe, Gentaro

    2010-01-01

    In dense stars such as collapsing cores of supernovae and neutron stars, nuclear 'pasta' such as rod-like and slab-like nuclei are speculated to exist. However, whether or not they are actually formed in supernova cores is still unclear. Here we solve this problem by demonstrating that a lattice of rod-like nuclei is formed from a bcc lattice by compression. We also find that the formation process is triggered by an attractive force between nearest neighbor nuclei, which starts to act when their density profile overlaps, rather than the fission instability. We also discuss the connection between pasta phases in neutron star crusts and ultracold Fermi gases. (author)

  17. Preliminary design of the cold neutron source for the Centro Atomico Bariloche Electron LINAC Facility. I. Solid benzene as moderating material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, Jose R.

    2004-01-01

    We present the results of preliminary calculations performed with the code MCNP-4C relative to the neutron field behavior within the moderator for the CAB-LINAC cold neutron source, using benzene at 89 K as moderating material. Throughout the design calculations nuclear data libraries previously generated and validated were used. The optimum dimensions for a slab and a grid moderator were calculated, with and without a pre moderator, from the point of view of neutron production and the time-width of the neutron pulse. (author)

  18. Development of cold moderator vessel for the spallation neutron source. Flow field measurements and thermal hydraulic analyses in cold moderator vessel

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute is developing a several MW-scale spallation target system under the High-Intensity Accelerator Project. A cold moderator using supercritical hydrogen is one of the key components in the target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the recirculation and stagnant flows which cause hot spots. In order to develop the conceptual design of the moderator structure in progress, the flow field was measured using a PIV (Particle Image Velocimetry) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow field such as recirculation flows, stagnant flows etc. was clarified. The hydraulic analytical results using the standard k-ε model agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out under liquid hydrogen conditions. Based on these results, we clarified the possibility of suppressing the local temperature rise within 3 K under 2 MW operating condition. (author)

  19. The upgraded cold neutron three-axis spectrometer FLEXX at BER II at HZB

    DEFF Research Database (Denmark)

    Duc Le, Manh; Skoulatos, Markos; Quintero-Castro, Diana Lucía

    2014-01-01

    Larmor labeling is seen as one of the key ingredients in the development of novel neutron instrumentation. FLEXX puts special emphasis on exploiting the neutron resonance spin echo (NRSE) technique for high-resolution spectroscopy on dispersive quasi-particle excitations. This enables unique...

  20. Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.

    2018-02-01

    Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.

  1. Installation for vacuum vapour deposition of nickel, more particularly for manufacturing neutron guides

    International Nuclear Information System (INIS)

    Samuel, F.

    1986-01-01

    The present invention proposes an installation for vacuum vapour deposition of Ni of the type including in a vacuum chamber a device for heating a mass of at least one Ni isotope to be evaporated, and a surface to be covered with deposited Ni facing the heater, is claimed, in which the heater includes a ribbon of W conformed in a middle part into a container in which is placed a refractory crucible in which is placed the Ni to be evaporated, and adapted to be connected at two terminal zones to an electrical circuit. The crucible is Al203. The invention finds an application in neutron guide fabrication, more particularly for Ni58 vapour deposition on the surfaces of the neutron guide [fr

  2. Neutron scattering instrumentation. A guide to future directions

    International Nuclear Information System (INIS)

    Crawford, R.K.

    2001-01-01

    Many of the neutron scattering instruments being designed or built now are the first generation of pulsed source instruments to provide nearly optimal scattering angle coverage with good spatial resolution in a single setting of the instrument while making full use of modern optics to maximize the useful flux on the sample. Spectacular gains have resulted from such optimization, but in most of these cases there is little room for further large improvements. However, other types of pulsed source instruments are currently less well optimized, and there is room for significant improvements in these types of pulsed source instruments. Several examples will illustrate these points. In the longer term, we can expect source strengths to continue to increase, but only slowly. However, we can expect new science and new ways of doing experiments to emerge. Many of these changes will be driven by enhancements in sample environment capabilities leading to more innovative sample conditions and to efficient parametric studies. Kinetic studies and parametric studies will take on much greater roles with the high data rates now available. Implications of these trends will be discussed. (author)

  3. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    Westbrook, J.L.; DeVore, J.R.

    1995-08-01

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  4. A new method to determine in situ the transmission of a neutron-guide system at a reactor source

    CERN Document Server

    Haan, V O D; Gommers, R M; Labohm, F; Well, A A V; De Leege, P F A; Schebetov, A; Pusenkov, V

    2002-01-01

    In this paper, a description of a new method to determine the transmission of neutron guides after they are installed in a beam-tube at a reactor source is given. The method is based on activation measurements of gold foils at the entrance of the beam-tube and at the exit of the neutron guides compared to Monte-Carlo calculations. In this method, a quality factor is defined as the ratio between the actual transmission and the theoretical maximum attainable transmission. This method is used to determine the quality of an optimised neutron-guide system developed for beam-tube R2 of the HOR. The HOR is a pool-type nuclear research reactor at the Interfaculty Reactor Institute of the Delft University of Technology. It is shown that the quality factors of the newly installed neutron guides are between 0.49 and 0.63.

  5. A new method to determine in situ the transmission of a neutron-guide system at a reactor source

    International Nuclear Information System (INIS)

    Haan, V.O. de; Gibcus, H.P.M.; Gommers, R.M.; Labohm, F.; Well, A.A. van; Leege, P.F.A. de; Schebetov, A.; Pusenkov, V.

    2002-01-01

    In this paper, a description of a new method to determine the transmission of neutron guides after they are installed in a beam-tube at a reactor source is given. The method is based on activation measurements of gold foils at the entrance of the beam-tube and at the exit of the neutron guides compared to Monte-Carlo calculations. In this method, a quality factor is defined as the ratio between the actual transmission and the theoretical maximum attainable transmission. This method is used to determine the quality of an optimised neutron-guide system developed for beam-tube R2 of the HOR. The HOR is a pool-type nuclear research reactor at the Interfaculty Reactor Institute of the Delft University of Technology. It is shown that the quality factors of the newly installed neutron guides are between 0.49 and 0.63

  6. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

    2011-02-01

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  7. Installation for Studying the Scattering of Cold Neutrons; Installation pour l'etude de la diffusion des neutrons thermiques; Ustanovka dlya izucheniya rasseyaniya kholodnykh nejtronov; Instalacion para estudiar la dispersion de neutrones frios

    Energy Technology Data Exchange (ETDEWEB)

    Golikov, V V; Shapiro, F L; Shkatula, A; Yanik, E A [Ob' edinennyj institut yadernykh issledovanij, Dubna, Union of Soviet Socialist Republics (Russian Federation)

    1963-01-15

    Using the pulsed fut reactor in the Joint Institute for Nuclear Research, an installation was set up to investigate the spectrometry of cold neutrons. The moderator, adjoining the reactor reflector, and the beryllium filter were at the temperature of liquid nitrogen. The scatterer, located at a distance of about 0. 6 m from the moderator, was irradiated by flashes of cold neutrons, whose duration was determined by the lifetime of the neutrons in the moderator and the dispersion of the times-of-flight over a distance of 0. 6 m. The frequency of the flashes was 8/s. The steep beryllium edge of the spectrum, lying around 200 {mu}s, was used for spectrometry in the quasi-elastic range. The energy of the scattered neutrons was determined by the time-of-flight over the distance between scatterer and detector, which was about 10-40 m. ZnS + 10{sub 2}{sup 10} O{sub 3} scintillation detectors with surfaces of 300 and 2 000 cm{sup 2} were used and the efficiency, for fast neutrons, was about 60%. (author) [French] A l'aide du reacteur a flux pulse de neutrons rapides de l'Institut unifie de recherches nucleaires, les auteurs ont mis au point une installation pour la spectrometrie des neutrons thermiques. Le ralentisseur contigu au reflecteur du reacteur et le filtre deberyllium sont maintenus a la temperature de l'azote liquide. Le diffuseur, place a environ 60 cm du ralentisseur, est irradie par une bouffee de neutrons thermiques dont la duree est determinee par la vie moyenne des neutrons dans le ralentisseur et par l'etalement des temps de vol necessaires pour parcourir la distance de 60 cm. La frequence des bouffees est de 8/s. Pour la spectrometrie dans la region quasi-elastique, on utilise la bande en bordure du spectre qui correspond au beryllium et s'etale sur environ 200 {mu}s. L'energie des neutrons diffuses est determinee par la duree du parcours entre le diffuseur et le detecteur. Les auteurs ont utilise des detecteurs a scintillation a ZnS + 10{sub 2}{sup 10} O

  8. Skyrme interaction and the properties of cold and hot neutron matter

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Hassan, M.Y.M.; Ramadan, S.

    1986-08-01

    The binding energy per particle, effective mass, magnetic susceptibility, etc for neutron matter are calculated using the Skyrme interaction SKII. Relativistic corrections to the non-relativistic Skyrme effective interaction to order 1/C 2 are also used to calculate the corrections for the binding energy of neutron matter. The correction is very small for small values of k h and increases as k n is increased. The thermal properties of neutron matter are calculated also using SKII force. The temperature dependences of the volume and spin pressure are determined. The results obtained show a similar trend as previous theoretical estimates by different methods of calculation. (author)

  9. Effects of sample and spectrum characteristics on cold and thermal neutron prompt gamma activation analysis in environmental studies of plants

    International Nuclear Information System (INIS)

    Robinson, L.; Zhao, L.

    2009-01-01

    Previous studies including the development of methods for the determination of carbon, nitrogen, and phosphorus in cattail using cold neutron prompt gamma activation (CNPGAA) and thermal neutron prompt gamma activation analysis (TNPGAA); evaluation of the precision and accuracy of these methods through the analysis of Standard Reference Materials (SRMs); and comparison of the sensitivity of CNPGAA to TNPGAA have been done in the CNPGAA and TNPGAA facilities at the National Institute of Standards and Technology (NIST). This paper integrates the findings from all of these prior studies and presents recommendations for the application of CNPGAA and TNPGAA in environmental studies of plants based on synergistic considerations of the effects of neutron energy, matrix factors such as chlorine content, Compton scattering, hydrogen content, sample thickness, and spectral interferences from Cl on the determination of C, N, and P. This paper also provides a new approach that simulates a sensitivity curve for an element of interest (S), which is a function of hydrogen content (X) and sample thickness (Y) as follows: S = aX + bY + c (where a, b, and c are constants). This approach has provided more accurate results from the analysis of SRMs than traditional methods and an opportunity to use models to optimize experimental conditions. (author)

  10. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    Science.gov (United States)

    Pattie, R. W.; Adamek, E. R.; Brenner, T.; Brandt, A.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S. A.; Geltenbort, P.; Ito, T. M.; Lauer, T.; Liu, C. Y.; Majewski, J.; Makela, M.; Masuda, Y.; Morris, C. L.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Schroffenegger, J.; Tang, Z.; Wei, W.; Wang, Z.; Watkins, E.; Young, A. R.; Zeck, B. A.

    2017-11-01

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50 μm thick NiP coatings on stainless steel and aluminum substrates was measured to be VF = 213(5 . 2) neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1 . 3(1) × 10-4. We also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.

  11. Simulation study for the influences of fluid physical properties on void fraction of moderator cell of cold neutron source

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Quanke; Bi Qincheng; Chen Tingkuan; Du Shejiao

    2004-01-01

    The void fraction at different heights in the annular channel of moderator cell mockup was measured with a differential pressure transducer. The tests proved that the ratio of surface tension to density of liquid phase is the main factor that determines the physical properties on void fraction. The larger the ratio, the smaller the void fraction. The ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen. Therefore, Freon 113 can be used as working fluid to study the void fraction in the hydrogen two-phase thermo-siphon loop in the cold neutron source (CNS) of China Advanced Research Reactor (CARR), and the results are conservative

  12. Neutron and proton tests of different technologies for the upgrade of cold readout electronics of the ATLAS Hadronic Endcap Calorimeter

    CERN Document Server

    Nagel, Martin

    2012-01-01

    The expected increase of total integrated luminosity by a factor of ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 \\cdot 10^{16} n/cm2 and with 200 MeV protons up to an integrated fluence of 2.6 \\cdot 10^{14} p/cm2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  13. Residual stresses in cold-coiled helical compression springs for automotive suspensions measured by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Brand, P. C.; Drews, A. R.; Krause, A.; Lowe-Ma, C.

    2004-01-01

    Roč. 367, 1-2 (2004), s. 306-311 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z2043910 Keywords : residual stress, automotive springs, neutron diffraction Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.445, year: 2004

  14. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  15. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Durini, Daniel, E-mail: d.durini@fz-juelich.de [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Degenhardt, Carsten; Rongen, Heinz [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Feoktystov, Artem [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching (Germany); Schlösser, Mario; Palomino-Razo, Alejandro [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Frielinghaus, Henrich [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, D-85748 Garching (Germany); Waasen, Stefan van [Central Institute of Engineering, Electronics and Analytics ZEA-2 – Electronic Systems, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany)

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λ{sub n}=5 Å or neutron energy of E{sub n}=3.27 meV) up to a neutron dose of 6×10{sup 12} n/cm{sup 2}. The dark signals as well as the breakdown voltages (V{sub br}) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped {sup 6}Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. I{sub out}-V{sub bias} measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  16. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  17. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    Science.gov (United States)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre

  18. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules - a randomised study

    DEFF Research Database (Denmark)

    Døssing, Helle; Bennedbaek, Finn Noe; Hegedüs, Laszlo

    2005-01-01

    AIM: To evaluate the efficacy of ultrasound (US)-guided interstitial laser photocoagulation (ILP) on thyroid function, nodule size and patient satisfaction in benign solitary solid cold thyroid nodules by comparing one ILP session with no treatment in a prospective randomised study. MATERIALS...... and thyroid function was determined by routine assays before and during follow-up. Pressure and cosmetic complaints before and at 6 months were evaluated on a visual analogue scale. ILP was performed under US guidance and with an output power of 2.5-3.5 W. RESULTS: In the ILP group, the nodule volume...

  19. Analysis of neutron spectra and fluxes obtained with cold and thermal moderators at IBR-2 reactor: experimental and computer modeling studies at small-angle scattering YuMO setup

    International Nuclear Information System (INIS)

    Kuklin, A.I.; Rogov, A.D.; Gorshkova, Yu.E.; Kovalev, Yu.S.; Kutuzov, S.A.; Utrobin, P.K.; Rogachev, A.V.; Ivan'kov, O.I.; Solov'ev, D.V.; Gordelij, V.I.

    2011-01-01

    Results of experimental and computer modeling investigations of neutron spectra and fluxes obtained with cold and thermal moderators at the IBR-2 reactor (JINR, Dubna) are presented. The studies are done for small-angle neutron scattering (SANS) spectrometer YuMO (beamline number 4 of the IBR-2). The measurements of neutron spectra for two methane cold moderators are done for the standard configuration of the SANS instrument. The data from both moderators under different conditions of their operation are compared. The ratio of experimentally determined neutron fluxes of cold and thermal moderators at different wavelength is shown. Monte Carlo simulations are done to determine spectra for cold methane and thermal moderators. The results of the calculations of the ratio of neutron fluxes of cold and thermal moderators at different wavelength are demonstrated. In addition, the absorption of neutrons in the air gaps on the way from the moderator to the investigated sample is presented. SANS with the protein apoferritin was done in the case of cold methane as well as a thermal moderator and the data were compared. The perspectives for the use of the cold moderator for a SANS spectrometer at the IBR-2 are discussed. The advantages of the YuMO spectrometer with the thermal moderator with respect to the tested cold moderator are shown

  20. EXFOR Basics. A short guide to the neutron reaction data exchange format

    International Nuclear Information System (INIS)

    McLane, V.; NUCLEAR DATA CENTER NETWORK

    2000-01-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data

  1. A combined H2/CH4 cold moderator for a short pulsed neutron source

    International Nuclear Information System (INIS)

    Williamson, K.D.; Lucas, A.T.

    1989-01-01

    Both the ISIS (Rutherford-Appleton Laboratory) spallation source and the Los Alamos Neutron Scattering Center (LANSCE) were designed to produce neutrons as a result of an 800-MeV proton beam being incident on a target. Both systems are intended to accept beam intensities up to 200 μA. Cryogenic moderators of liquid hydrogen and methane are either in use or are planned for service at both facilities. Very low temperature methane would be an ideal moderating material as it has a high hydrogen density and many low frequency modes, which facilitate thermalization. Such moderators are in service at two major world facilities, KEK (Japan) and Argonne National Laboratory (USA). Unfortunately, solid methane has very low thermal conductivity and is subject to radiation damage making a moderator of this type impractical for use in high-intensity beam, such as indicated above. This report outlines a possible alternative using small spheres of solid methane in a matrix of supercritical hydrogen at 25 K. 4 figs

  2. Simulations and measurements of the performance of a channeled neutron guide for a time-of-flight spectrometer at the NIST Center for Neutron Research

    International Nuclear Information System (INIS)

    Cook, Jeremy C.; Copley, John R.D.

    2004-01-01

    We describe the identification and analysis of the principal sources of intensity loss within the five-channeled neutron guide tube that was originally installed in the chopper section of the Disk Chopper Spectrometer at the National Institute of Standards and Technology Center for Neutron Research. (The purpose of the five channels was to optimize intensity and resolution in three different modes of operation known as ''resolution modes.'') By combining measurements, Monte Carlo simulations, and analytical calculations, we have developed a model that successfully explains performance losses in the original guide. We have used this model to quantify expected returns in performance using a replacement guide in which the principal contributions to the intensity loss are reduced to the minimum achievable with current technology. We have also estimated the intensity gains that would be achieved if one of the limited number of options were adopted for modifying the original guide in a manner likely to produce such gains. We describe factors that affect the performance of the original guide and compare the measured and predicted performance of the modified guide against predictions for the optimal replacement guide. The simulations indicate that the modified guide (which has three channels rather than the original five) produces greater intensity gains over a large incident wavelength band for the low and medium resolution modes, whereas a high quality replacement guide greatly improves performance in the high resolution mode of operation. Because the low and medium resolution modes are most heavily demanded, we opted to modify the guide rather than replace it. We describe the nature of this modification and present intensity measurements that meet or exceed predictions in all resolution modes with no detectable change in the energy resolution nor increase in the instrumental background

  3. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  4. Characteristics of poly- and mono-crystalline BeO and SiO{sub 2} as thermal and cold neutron filters

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Mansy, M.S., E-mail: drmohamedmansy88@hotmail.com [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt)

    2015-09-01

    Highlights: • Neutron filtering features of BeO and SiO{sub 2} poly- and mono-crystals. • Calculations of the cold and thermal neutron cross sections and transmission with the code “HEXA-FILTERS”. • Optimal mosaic spread, thicknesses and cutting planes for BeO and SiO{sub 2} mono-crystals. - Abstract: A simple model along with a computer code “HEXA-FILTERS” is used to carry out the calculation of the total cross-sections of BeO and SiO{sub 2} having poly or mono-crystalline form as a function of neutron wavelength at room (R.T.) and liquid nitrogen (L.N.) temperatures. An overall agreement is indicated between the calculated neutron cross-sections and experimental data. Calculation shows that 25 cm thick of polycrystalline BeO cooled at liquid nitrogen temperature was found to be a good filter for neutron wavelengths longer than 0.46 nm. While, 50 cm of SiO{sub 2}, with much less transmission, for neutrons with wavelengths longer than 0.85 nm. It was also found that 10 cm of BeO and 15 cm SiO{sub 2} thick mono-crystals cut along their (0 0 2) plane, with 0.5° FWHM on mosaic spread and cooled at L.N., are a good thermal neutron filter, with high effect-to-noise ratio.

  5. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  6. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  7. New polarizing guide for neutron wavelengths above 2.5 A

    Energy Technology Data Exchange (ETDEWEB)

    Krist, Th; Pappas, C; Teichert, A; Fehr, C; Clemens, D; Steichele, E; Mezei, F, E-mail: krist@helmholtz-berlin.de

    2010-11-01

    We present a new polarizing system built for the relocated wide angle Neutron Spin Echo instrument SPAN. The new instruments at the second Guide Hall of BENSC and the relocation of SPAN to this hall of BENSC required a new beam extraction system and a new polarizer for SPAN, which replaced the old beam splitter produced in 1994 with FeCo-Si supermirrors with m=2. The new polarizer uses Fe-Si supermirrors, which do not run the risk to become activated as the old FeCo-Si supermirrors and was designed to deliver a polarized beam for wavelengths above 2.5 A. The final polarizing cavity has a length of 9 m with a cross section of 60 mm x 100 mm. Si wafers coated on both sides with m=2.5 Fe-Si polarizing supermirrors are glued into the guide at an angle of 0.38{sup 0} to the walls. The guide was installed during the second half year of 2006 and the first tests in early 2007 revealed excellent polarization efficiency over the whole wavelength range of the spectrometer of 2.5 A to 9 A, amounting to above 95% at 4.5 A.

  8. An optional focusing SELENE extension to conventional neutron guides: A case study for the ESS instrument BIFROST

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.B., E-mail: uhansen@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Bertelsen, M. [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Stahn, J. [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Lefmann, K. [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark)

    2017-04-21

    The high brilliance at the European Spallation Source (ESS) will allow for performing experiments with much smaller samples than at present neutron facilities and in much more complex sample environments. However the higher flux also results in higher background from unwanted neutrons not originating from scattering of the sample. We here present a new design idea for beam delivery, where a 165 m ballistic guide system with good transport properties is followed by a 4–8 m SELENE guide system similar to Montel optics used for X-ray optics. We have investigated the system by detailed Monte-Carlo simulations using McStas. We show that under certain conditions, this set-up works surprisingly well, with a brilliance transfer of 20–60% for neutrons of wavelength 4 Å and above. We demonstrate that the guide system is able to focus the beam almost perfectly onto samples sizes in the range of 0.1–2 mm. We furthermore show that our SELENE system is insensitive to gravity and to realistic values of guide waviness. We argue that this guide system can be useful as an optional guide insert when small samples are used in the vicinity of bulky sample environment, e.g. for high-field or high-pressure experiments.

  9. Verification of neutron pad and 17 x 7 guide tube designs by preoperational tests on the Trojan I power plant

    International Nuclear Information System (INIS)

    Bloyd, C.N.; Singleton, N.R.; Ciaramitaro, W.

    1976-05-01

    The internals vibration measurement program carried out on the Trojan-1 reactor during preoperational testing is described. The flow induced response of a 17 x 17 guide tube and the neutron pad core barrel were deduced from the plant test data and compared with the expected responses. The results showed good agreement with expected vibration levels

  10. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  11. Powder neutron diffractometers HRPT and DMCG

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P; Doenni, A; Staub, U; Zolliker, M [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Basic properties and applications of SINQ powder neutron diffractometers are described. For optimum use of the continuous neutron beams these instruments are equipped with position sensitive detectors, and both high-intensity and high-resolution modes of operation are possible. HRPT attaining resolutions {delta}d/d{<=}10{sup -3}, d=lattice spacing, at a thermal neutron channel of the target station and DMCG at a cold neutron guide coated with m=2 supermirrors, are complementary concerning the applications: the former will be mainly used for structural studies and the latter to investigate magnetic ordering phenomena. (author) figs., tabs., refs.

  12. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  13. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  14. IAEA activities to prepare safety codes and guides for thermal neutron nuclear power plants

    International Nuclear Information System (INIS)

    Iansiti, E.

    1977-01-01

    In accordance with the programme presented to, and endorsed by, the eighteenth General Conference in September 1974, the IAEA is now developing a complete set of safety codes and guides that will represent recommendations for the safety of thermal neutron power plants. The safety codes outline the minimum requirements for achieving this safety, and the safety guides set forth the criteria, procedures and methods to implement the safety codes. The whole programme is directed towards the five areas of Governmental Organization, Siting, Design, Operation, and Quality Assurance. One Scientific Secretary from the Agency Secretariat is responsible for each of these areas and a Co-ordinator takes care of common problems. For the development of each of these documents a working group of a few world experts is first convened which prepare a preliminary draft. This draft is then reviewed by a larger, international Technical Review Committee (one for each of the five areas) and a subsequent review by the Senior Advisory Group - with representatives from 20 states - ensures that the document is well coordinated within the programme. At this stage, it is sent to Member States for comments. The Technical Review Committee concerned is reconvened to integrate these comments into the document, and, after a final review by the Senior Advisory Group, the document is ready for transmission to the Director General of the Agency for endorsement and publication. A preliminary to this procedure is the collation by the Secretariat of large amounts of information submitted by Member States so that the first draft is really based on a very complete knowledge of what is done in each area all over the world. This collation frequently reveals differences in approach which are not random but due, rather, to the local conditions and the types of reactors. These differences must be harmonized in the documents produced without detracting from the effectiveness of the code or guide. The whole

  15. Detection of 10B distributions in histological samples by NCAR using thermal and cold neutrons and photoluminiscent imaging plates. New results

    International Nuclear Information System (INIS)

    Rant, J.; Skvarc, J.; Ilic, R.; Gabel, D.; Bayon, G.; Yanagie, H.; Kobayashi, H.; Lehmann, E.; Kuehne, G.

    1999-01-01

    The Neutron Capture Autoradiography (NCAR) using various Solid State Nuclear Track Detectors (SSNTDs) is a well established and accurate method to detect and measure the distributions of 10 B in the ppm range on macroscopic and microscopic level in biological samples, such as histological sections of tumours loaded with 10 B compounds used for BNCT (e.g. 1,2). recently a new technique of NCAR using sensitive photoluminescent Imaging Plates (IP) has been proposed to detect 10 B distributions in histological sections (3), exploiting excellent detection properties of IP systems such as very high detection sensitivity and quantum detection efficiency, broad linear response and dynamic range, very small image distortion, reusability of IP and possibilities of digital autoradiography. The advantage of IP-NCAR vs. NCAR with SSNTDs should be the much lower neutron fluence (10 7 10 9 vs. 10 10 10 13 n/cm 2 with SSNTDs), no intermediate chemical treatment (track etching) and direct and fast compuitational handling and evaluation of the digitized autoradiographic image. However, the spatial resolution of the present available IP detection systems is somewhat lower (∼ 0,04 mm) than with SSNTDs (∼ 0,01 mm). Another problem with IP NCAR is rather high sensitivity of IP to all types of ionizing radiations. Therefore the background of direct and induced gamma-rays as well as of epithermal and fast neutrons has to be filtered out of thermal neutron beam to be used for IP-NCAR. To improve the signal/background ratio and to increase the detectibility of 10 B we propose to use clean cold neutron beams for the IP-NCAR of 10 B distributions in histological samples in BNCT experiments (4,5). In the present work the recent results of experiments in IP-NCAR with cold neutrons from the neutron radiographic channel of the ORPHEE reactor in Saclay and with the rather clean thermal neutron beam of the NEUTRA neutron radiography facility of the PSI (Villingen) will be presented. For the

  16. Designing new guides and instruments using McStas

    DEFF Research Database (Denmark)

    Farhi, E.; Hansen, T.; Wildes, A.

    2002-01-01

    of guides, neutron optics and instruments [1]. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers...

  17. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle

    International Nuclear Information System (INIS)

    Zboray, Robert; Kickhofel, John; Damsohn, Manuel; Prasser, Horst-Michael

    2011-01-01

    Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.

  18. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules

    DEFF Research Database (Denmark)

    Døssing, Helle; Bennedbaek, Finn Noe; Hegedüs, Laszlo

    2006-01-01

    with a cytologically benign solitary solid and scintigraphically cold thyroid nodule causing local discomfort were assigned to one session of ILP (ILP-1) (n = 15) or three monthly ILP sessions (ILP-3) (n = 15) and followed for 6 months. ILP was performed under continuous ultrasound (US)--guidance and with an output...... power of 2.5-3.5 W. Thyroid nodule volume was assessed by US. Pressure and cosmetic complaints were evaluated on a visual analogue scale. MAIN OUTCOME: In the ILP- 1 group, thyroid nodule volume decreased from 10.1 +/- 4.3 mL (mean +/- standard deviation [SD]) to 5.7 +/- 3.2 mL (p = 0...

  19. Characterisation of neutron beam and gamma spectrometer for PGAA

    International Nuclear Information System (INIS)

    Revay, Zs.; Molnar, G.L.

    2001-01-01

    In the second project year great efforts have been devoted in Budapest to the development of methods and procedures for neutron beam characterisation and spectrometer calibration. These are described here to provide recipes for other laboratories. Some illustrative results obtained on the former thermal guide, and partly on the new cold neutron guide are also given. Preliminary results from the benchmark experiments on flux monitors titanium standard and an unknown sample are also reported. New k o factors for elements of highest priority will be measured on the cold beam only in the near future. (author)

  20. Simulated production rates of exotic nuclei from the ion guide for neutron-induced fission at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Kaj; Al-Adili, Ali; Nilsson, Nicklas; Norlin, Martin; Solders, Andreas [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2017-12-15

    An investigation of the stopping efficiency of fission products, in the new ion guide designed for ion production through neutron-induced fission at IGISOL in Jyvaeskylae, Finland, has been conducted. Our simulations take into account the new neutron converter, enabling measurements of neutron-induced fission yields, and thereby provide estimates of the obtained yields as a function of primary proton beam current. Different geometries, targets, and pressures, as well as models for the effective charge of the stopped ions were tested, and optimisations to the setup for higher yields are suggested. The predicted number of ions stopped in the gas lets us estimate the survival probability of the ions reaching the downstream measurements stations. (orig.)

  1. Evaluation of Two Passes Cold Pilgering Property for PLUS7TM Guide Thimble and Instrumentation Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Park, Ki Bum; Kim, In Kyu; Lee, Young Hee; Kahng, Jong Yeol [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2015-05-15

    The thermo-mechanical property of zirconium alloy tube is well known to be influenced by pilgering pass schedule and its tooling; thus the control of its microstructure and mechanical property in the final tube production stage for nuclear fuel applications is a major concern of tube manufacture. To fabricate final tube, the 3 passes pilgering is applied in general by using TREX(Tube Reduced EXtrusion), 63.5mm outer diameter(OD), in KEPCO NF and most of Zr tube manufacturing companies. They are also taking big efforts to reduce pilgering step for the sake of increasing the efficiency of production in the forming stage of tube. The objective of this study is to develop two passes of pilgering schedule from the conventional three passes of pilgering schedule for manufacturing the Guide Thimble and Instrumentation tube conforming to specification, which are newly developing component for the advanced nuclear fuel assembly in KEPCO NF. CSR, hydride orientation, and structural integrity are well conformed to the desired targets so it is expected that both die and mandrel were newly designed for the PLUS7TM guide thimble and instrumentation tube with higher Q factor for two passes of pilgering at 50LC and 25LC pilger machine, instead of three passes of pilgering, are able to be applicable to this design of fuel component. If developed two passes pilgering is applied to current manufacturing process, it would improve not only productivity but also yield rate by reducing 3 steps(pilgering, heat-treatment, pickiling and cleaning) of manufacturing process. But additional tests(including in-pile test) should be performed in order to evaluate integrity in reactor.

  2. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  3. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  4. A coupled diffusion-transport computational method and its application for the determination of space dependent angular flux distributions at a cold neutron source

    International Nuclear Information System (INIS)

    Turgut, M.H.

    1985-01-01

    A fast calculation program ''BRIDGE'' was developed for the calculation of a Cold Neutron Source (CNS) at a radial beam tube of the FRG-I reactor, which couples a total assembly diffusion calculation to a transport calculation for a certain subregion. For the coupling flux and current boundary values at the common surfaces are taken from the diffusion calculation and are used as driving conditions in the transport calculation. 'Equivalence Theorie' is used for the transport feedback effect on the diffusion calculation to improve the consistency of the boundary values. The optimization of a CNS for maximizing the subthermal flux in the wavelength range 4 - 6 A is discussed. (orig.) [de

  5. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  6. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  7. Neutron detection system for extremely low count rate. Calculation, construction and employment in search for 'cold fusion'

    International Nuclear Information System (INIS)

    Mayer, R.E.; Patino, N.E.; Florido, P.C.; Gomez, S.E.; Granada, J.R.; Gillette, V.H.

    1993-01-01

    A 22% efficiency thermal neutron detection system was designed for the investigation of neutron emission from pulsed D 2 O electrolysis. Reasons are discussed for the choice of 10 atm 3 He proportional counters. Optimization calculations carried out through standard reactor code system (AMPX-II) are presented along with construction details and characteristics of the associated electronics. Experimental verification of calculated efficiency and examples of measurements performed with the detector are included. (orig.)

  8. Construction of the neutron beam facility at Australia's OPAL research reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2006-01-01

    Australia's new research reactor, OPAL, has been designed principally for neutron beam science and radioisotope production. It has a capacity for 18 neutron beam instruments, located at the reactor face and in a neutron guide hall. The neutron beam facility features a 20 l liquid deuterium cold neutron source and cold and thermal supermirror neutron guides. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, when criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. This paper will outline the key features of the OPAL reactor, and will describe the neutron beam facility in particular. The status of the construction and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed

  9. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  10. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  11. Application of the guiding centre approximation to the transport of injected fast ions in a mirror based plasma neutron source

    International Nuclear Information System (INIS)

    Kumpf, H.; Noack, K.

    1996-01-01

    The guiding centre approximation for the motion of charged particles in axially symmetric magnetic and electric fields is formulated and stopping as well as small angle scattering on a multicomponent plasma are included. The developed code has been applied to the design of a 14-MeV neutron source according to the concept of the Budker Institute Novosibirsk. It is demonstrated that the self-interaction of injected D and T ions by stopping, scattering and induced internal fields has to be taken into account, if the injected power exceeds a few megawatt. (orig.)

  12. Current status and future development of neutron scattering in CIAE

    International Nuclear Information System (INIS)

    Chen, D.F.; Gou, C.; Ye, C.T.; Guo, L.P.; Sun, K.

    2003-01-01

    Currently, the 15 MW Heavy Water Research Reactor (HWRR) at China Institute of Atomic Energy (CIAE) in Beijing is the only neutron source available for neutron scattering experiments in China. A 60 MW tank-in-pool inverse neutron trap-type research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. According to design, the maximum unperturbed thermal neutron flux would be expected to be 8x10 14 n/cm 2 .s in the reflector region. Seven out of nine tangential horizontal beam tubes will be dedicated for neutron scattering experiments. A cold source, a hot source and a 30x60 m 2 guide tube hall will also be constructed. In this paper, a brief introduction of HWRR, the existing neutron scattering facilities and research activities at HWRR, CARR, and the facilities to be built at CARR are presented. (author)

  13. Characterization of the new neutron imaging and materials science facility IMAT

    Science.gov (United States)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  14. Observation of stars produced during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1992-01-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed

  15. Mockup tests of void fraction in moderator cell and two-phase thermosiphon loop of cold neutron source in China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Du Shejiao; Bi Qincheng; Chen Tingkuan; Feng Quanke; Li Xiaoming

    2004-01-01

    Full-scale mockup tests were carried out using freon-113 as a working fluid to verify the design of China Advanced Research Reactor (CARR) Cold neutron Source (CNS), which is a two-phase hydrogen thermosiphon loop consisting of an annular cylindrical moderator cell, two separated hydrogen transfer tubes and a condenser. The circulation characteristics, liquid level and void fraction in the moderator cell against the variation of the heat load were studied. The density ratio and the volumetric evaporating rate of the mockup test are kept the same as those of CARR CNS. The test results show that the mockup loop can establish stable circulation and has a self-regulating characteristic. Within the moderator cell, the inner shell contains only vapor and the outer shell contains the mixture of vapor-liquid with void fraction in a certain range. (authors)

  16. Neutron and proton tests of different technologies for the upgrade of the cold readout electronics of the ATLAS Hadronic End-cap Calorimeter

    CERN Document Server

    INSPIRE-00030110

    2013-01-01

    The expected increase of total integrated luminosity by a factor ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic End-cap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^{16} n/cm^2 and with 200 MeV protons up to an integrated fluence of 2.6 x 10^{14} p/cm^2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  17. Probing the neutron star interior and the Equation of State of cold dense matter with the SKA

    NARCIS (Netherlands)

    Watts, A.; Xu, R.; Espinoza, C.; Andersson, N.; Antoniadis, J.; Antonopoulou, D.; Buchner, S.; Dai, S.; Demorest, P.; Freire, P.; Hessels, J.; Margueron, J.; Oertel, M.; Patruno, A.; Possenti, A.; Ransom, S.; Stairs, I.; Stappers, B.

    2015-01-01

    With an average density higher than the nuclear density, neutron stars (NS) provide a unique testground for nuclear physics, quantum chromodynamics (QCD), and nuclear superfluidity. Determination of the fundamental interactions that govern matter under such extreme conditions is one of the major

  18. EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility

    Czech Academy of Sciences Publication Activity Database

    Jentschel, M.; Blanc, A.; de France, G.; Koster, U.; Leoni, S.; Mutti, P.; Simpson, G. S.; Krtička, M.; Tomandl, Ivo; Valenta, S.

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku P11003. ISSN 1748-0221 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * gamma detectors * spectrometers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  19. JRR-3 neutron radiography facility

    International Nuclear Information System (INIS)

    Matsubayashi, M.; Tsuruno, A.

    1992-01-01

    JRR-3 neutron radiography facility consists of thermal neutron radiography facility (TNRF) and cold neutron radiography facility (CNRF). TNRF is installed in JRR-3 reactor building. CNRF is installed in the experimental beam hall adjacent to the reactor building. (author)

  20. On possible contribution of standing wave like spacer dynamics in polymer liquid crystals to quasi-elastic cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Jecl, R.; Cvikl, B.

    1998-01-01

    The quasi-elastic cold neutron incoherent scattering law, QNS, for the assumed case of transversal standing wave type of motion of the linear chain a spacer-of the polyacrylate polymer liquid crystal, based upon the random walk of the particle between two perfectly potential barriers, is derived. The spacer protons are taken to vibrate (within the stationary plane) transversely to the line joining the oxygen atoms in a way where they are all simultaneously displaced in the same direction with amplitudes of the standing wave fundamental mode of the vibration excited. The calculated relevant incoherent scattering law is found to be a non-distinct function of the scattering vector Q, in the sense that the postulated dynamical effect of the spacer protons causes the peak value of the calculated incoherent scattering law, S(Q,ω), to remain constant throughout the experimentally accessible range of the scattering vector Q. It appears that, when the experimental resolution broadening effects is taken into account, the contribution of the postulated dynamical behavior to the measured QNS spectra might be small, particularly so, if dome additional motion of the scatters is present, and consequently the standing wave like spacer dynamics in polymer liquid crystals will be very difficult to be identified uniquely in the quasielastic neutron scattering experiments.(author)

  1. Internal friction measurement with a kilohertz range test facility of cold-worked and neutron-irradiated gold

    International Nuclear Information System (INIS)

    Grandchamp, Pierre-Andre

    1970-02-01

    The author studies properties of the Bordoni peak in 99,999 % gold. The following features are considered: - influence of type and rate of cold-work on relaxation strength. After traction cold-work, the height of the Bordoni peak is roughly proportional to the rate of plastic deformation, - relaxation features. The relaxation energies and attempt frequencies of the Bordoni peak are determined for poly - and single crystals. The broadening of experimental peaks is studied, - effect of dislocation pinning on the Bordoni peak. One shows that the experience leads to a relation: Q"-"1_m_a_x ∼ Λl"2 where Q"-"1_m_a_x is the height of the peak, Λ the dislocation density and l the mean loop length of dislocations which are implied in the phenomenon [fr

  2. EXILL—a high-efficiency, high-resolution setup for γ-spectroscopy at an intense cold neutron beam facility

    Science.gov (United States)

    Jentschel, M.; Blanc, A.; de France, G.; Köster, U.; Leoni, S.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.; Ahmed, S.; Astier, A.; Augey, L.; Back, T.; Baczyk, P.; Bajoga, A.; Balabanski, D.; Belgya, T.; Benzoni, G.; Bernards, C.; Biswas, D. C.; Bocchi, G.; Bottoni, S.; Britton, R.; Bruyneel, B.; Burnett, J.; Cakirli, R. B.; Carroll, R.; Catford, W.; Cederwall, B.; Celikovic, I.; Cieplicka-Oryńczak, N.; Clement, E.; Cooper, N.; Crespi, F.; Csatlos, M.; Curien, D.; Czerwiński, M.; Danu, L. S.; Davies, A.; Didierjean, F.; Drouet, F.; Duchêne, G.; Ducoin, C.; Eberhardt, K.; Erturk, S.; Fraile, L. M.; Gottardo, A.; Grente, L.; Grocutt, L.; Guerrero, C.; Guinet, D.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Ilieva, S.; Ivanova, D.; John, B. V.; John, R.; Jolie, J.; Kisyov, S.; Krticka, M.; Konstantinopoulos, T.; Korgul, A.; Krasznahorkay, A.; Kröll, T.; Kurpeta, J.; Kuti, I.; Lalkovski, S.; Larijani, C.; Leguillon, R.; Lica, R.; Litaize, O.; Lozeva, R.; Magron, C.; Mancuso, C.; Ruiz Martinez, E.; Massarczyk, R.; Mazzocchi, C.; Melon, B.; Mengoni, D.; Michelagnoli, C.; Million, B.; Mokry, C.; Mukhopadhyay, S.; Mulholland, K.; Nannini, A.; Napoli, D. R.; Olaizola, B.; Orlandi, R.; Patel, Z.; Paziy, V.; Petrache, C.; Pfeiffer, M.; Pietralla, N.; Podolyak, Z.; Ramdhane, M.; Redon, N.; Regan, P.; Regis, J. M.; Regnier, D.; Oliver, R. J.; Rudigier, M.; Runke, J.; Rzaca-Urban, T.; Saed-Samii, N.; Salsac, M. D.; Scheck, M.; Schwengner, R.; Sengele, L.; Singh, P.; Smith, J.; Stezowski, O.; Szpak, B.; Thomas, T.; Thürauf, M.; Timar, J.; Tom, A.; Tomandl, I.; Tornyi, T.; Townsley, C.; Tuerler, A.; Valenta, S.; Vancraeyenest, A.; Vandone, V.; Vanhoy, J.; Vedia, V.; Warr, N.; Werner, V.; Wilmsen, D.; Wilson, E.; Zerrouki, T.; Zielinska, M.

    2017-11-01

    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 108 n s-1cm-2 at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 105 Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of 133Ba, 60Co and 152Eu as well as data from the reactions 27Al(n,γ)28Al and 35Cl(n,γ)36Cl in the energy range from 30 keV up to 10 MeV.

  3. NPDGamma: A Measurement of the Parity Violating Directional γ-Ray Asymmetry in Polarized Cold Neutron Capture on Hydrogen

    International Nuclear Information System (INIS)

    Fomin, Nadia

    2009-01-01

    The NPDGamma experiment aims to measure the correlation between the neutron spin and the direction of the emitted photon in neutron-proton capture at low momentum transfer. An up-down parity violating asymmetry from this process can be related to the strength of the hadronic weak interaction between nucleons.The first phase of the experiment was completed in 2006 at LANSCE. The methodology will be discussed and preliminary results will be presented. The next run will start in 2009 at the SNS at ORNL with many improvements that will yield a measurement with a projected statistical error of 1x10 -8 , 20% of the predicted value for the asymmetry. This will allow the determination of the long range n contribution in the weak interaction between nucleons.

  4. Study of cold and hot sources in a research reactor. (Physics, specifications, operation, utilization)

    International Nuclear Information System (INIS)

    Safieh, J.

    1982-10-01

    A brief description of the reactor, sources and experimental channels (ORPHEE being taken as example) is first given. The first part deals with the hot neutron source, mainly made of a graphite block to be carried at a temperature of 1500 0 K by nuclear heating. The present study focused on the determination, with the code MERCURE IV, of heat sources generated in the graphite block. From these results the spatial distribution of temperatures have been calculated with two different methods. Mechanical and thermal stresses have been calculated for the hot points. Then, the outlet neutron spectra is determined by means of the code APOLLO. Finally, the operation of the device is presented and the risks and the safety measures are given. The second part deals with cold neutron sources comprising mainly a cold moderator (liquid hydrogen 20.4 0 K). The helium coolant circuit liquefies the hydrogen by means of heat exchange in a condenser. Cold neutron yields calculations are developed by means of the code THERMOS in the plane and cyclindrical geometries. Heat sources generated by nuclear radiations are calculated. A detailed description of the device and its coolant circuit is given, and a risk analysis is finally presented. The third part deals with the part of thermal cold and hot neutrons in the study of matter and its dynamics. Technical means needed to obtain a monochromatic beam, for diffraction experiments, are recalled emphasizing on the interest of these neutrons with regard to X radiation. Then, one deals with cold neutron guides. Finally, the efficiency of two neutron guides is calculated. 78 refs [fr

  5. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  6. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  7. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  8. Advanced Neutron Source: The designer's perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is a research facility based on a 350 MW beam reactor, to be brought into service at the Oak Ridge National Laboratory at the end of the century. The primary objective is to provide high-flux neutron beams and guides, with cold, thermal, hot, and ultra-cold neutrons, for research in many fields of science. Secondary objectives include isotopes production, materials irradiation and activation analysis. The design of the ANS is strongly influenced by the historical development of research and power reactor concepts, and of the regulatory infrastructure of the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). Current trends in reactor safety also impact the climate for the design of such a reactor

  9. Flu and Colds: In Depth

    Science.gov (United States)

    ... to prevent colds or relieve cold symptoms. Andrographis (Andrographis paniculata) Chinese herbal medicines Green tea Guided imagery Hydrotherapy ... measurements (VAS) to assess the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of ...

  10. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  11. Eliminating line of sight in elliptic guides using gravitational curving

    International Nuclear Information System (INIS)

    Kleno, Kaspar H.; Willendrup, Peter K.; Knudsen, Erik; Lefmann, Kim

    2011-01-01

    Eliminating fast neutrons (λ<0.5A) by removing direct line of sight between the source and the target sample is a well established technique. This can be done with little loss of transmission for a straight neutron guide by horizontal curving. With an elliptic guide shape, however, curving the guide would result in a breakdown of the geometrical focusing mechanism inherent to the elliptical shape, resulting in unwanted reflections and loss of transmission. We present a new and yet untried idea by curving a guide in such a way as to follow the ballistic curve of a neutron in the gravitational field, while still retaining the elliptic shape seen from the accelerated reference frame of the neutron. Analytical calculations and ray-tracing simulations show that this method is useful for cold neutrons at guide lengths in excess of 100 m. We will present some of the latest results for guide optimization relevant for instrument design at the ESS, in particular an off-backscattering spectrometer which utilizes the gravitational curving, for 6.66 A neutrons over a guide length of 300 m.

  12. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  13. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  14. Burnable absorber-integrated Guide Thimble (BigT) - 1. Design concepts and neutronic characterization on the fuel assembly benchmarks

    International Nuclear Information System (INIS)

    Yahya, Mohd-Syukri; Yu, Hwanyeal; Kim, Yonghee

    2016-01-01

    This paper presents the conceptual designs of a new burnable absorber (BA) for the pressurized water reactor (PWR), which is named 'Burnable absorber-integrated Guide Thimble' (BigT). The BigT integrates BA materials into standard guide thimble in a PWR fuel assembly. Neutronic sensitivities and practical design considerations of the BigT concept are points of highlight in the first half of the paper. Specifically, the BigT concepts are characterized in view of its BA material and spatial self-shielding variations. In addition, the BigT replaceability requirement, bottom-end design specifications and thermal-hydraulic considerations are also deliberated. Meanwhile, much of the second half of the paper is devoted to demonstrate practical viability of the BigT absorbers via comparative evaluations against the conventional BA technologies in representative 17x17 and 16x16 fuel assembly lattices. For the 17x17 lattice evaluations, all three BigT variants are benchmarked against Westinghouse's existing BA technologies, while in the 16x16 assembly analyses, the BigT designs are compared against traditional integral gadolinia-urania rod design. All analyses clearly show that the BigT absorbers perform as well as the commercial BA technologies in terms of reactivity and power peaking management. In addition, it has been shown that sufficiently high control rod worth can be obtained with the BigT absorbers in place. All neutronic simulations were completed using the Monte Carlo Serpent code with ENDF/B-VII.0 library. (author)

  15. Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)

    International Nuclear Information System (INIS)

    Kirk, B.L.; West, J.T.

    1984-06-01

    The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided

  16. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    Science.gov (United States)

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  17. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Scheuer, A.; Gutsmiedl, E.

    1999-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256 deg. C and 250 deg. C. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was take into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256 deg. C and 150 deg. C to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to take into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼ 1x10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture

  18. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Gutsmiedl, Erwin

    2001-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256degC and 250degC. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256degC and 150degC to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼1·10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture criteria of

  19. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  20. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the µs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  1. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  2. A Cold Neutron Monochromator and Scattering Apparatus; Monochromateur et appareillage pour la diffusion de neutrons lents; Monokhromator dlya ''kholodnykh'' nejtronov i pribor dlya rasseyaniya; Monocromador y aparato de dispersion para neutrones frios

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D; Cocking, S J; Egelstaff, P A; Webb, F J [Nuclear Physics Division, Aere, Harwell, Didcot, Berks (United Kingdom)

    1963-01-15

    A narrow band of neutron wavelengths (4 A and greater) is selected from a collimated neutron beam obtained from the Dido reactor at Harwell. These neutrqps are scattered by various samples and the energy transfer of the scattered neutrons measured using time-of-flight techniques. The neutrons, moderated by a liquid hydrogen source in the reactor pass through first a liquid nitrogen- cooled filter, then a single crystal of bismuth and finally they are ''chopped'' by a magnesium-cadmium high- speed curved slot rotor. In this apparatus the wavelength spread of 0. 3 A at 4 . 1 A is determined primarily by the Be-Bi filter, while the time spread (8 {mu}s) is determined by the rotor. The monochromated neutron bursts from this rotor are scattered by a sample and detected in one of two counter arrays. When studying liquid or polycrystalline samples an array of six BF{sub 3}, counter assemblies (each 2 inches x 24 inches in area)are used covering scatter angles from 20{sup o} to 90{sup o}. This array is placed below the neutron beam. Above the line of the neutron beam is a second array consisting of three scintillators 2 inches in diameter, which is used for the study of single crystal samples. The output of each counter is fed into a tape recording system which has 500 time channels available for each counter. This apparatus has been used to study neutron scattering from several gaseous, liquid and crystalline samples and the most recent measurements are presented in other papers in these proceedings. [French] Les auteurs extraient une bande etroite de neutrons ( 4 A et plus) d'un faisceau collimate de neutrons produits par le reacteur Dido de Harwell. On fait diffuser ces neutrons au moyen de divers echantillons et on mesure le transfert d'energie des neutrons diffuses par la methode du temps de vol. Les neutrons ralentis par de l'hydrogene liquide place dans le reacteur passent d'abord dans un filtre refroidi a l'azote liquide, puis dans un monocristal de bismuth

  3. Advanced Neutron Source Dynamic Model (ANSDM) code description and user guide

    International Nuclear Information System (INIS)

    March-Leuba, J.

    1995-08-01

    A mathematical model is designed that simulates the dynamic behavior of the Advanced Neutron Source (ANS) reactor. Its main objective is to model important characteristics of the ANS systems as they are being designed, updated, and employed; its primary design goal, to aid in the development of safety and control features. During the simulations the model is also found to aid in making design decisions for thermal-hydraulic systems. Model components, empirical correlations, and model parameters are discussed; sample procedures are also given. Modifications are cited, and significant development and application efforts are noted focusing on examination of instrumentation required during and after accidents to ensure adequate monitoring during transient conditions

  4. Metal impurities profile in a 450kg multi-crystalline silicon ingot by Cold Neutron Prompt Gamma-ray Activation Analysis

    International Nuclear Information System (INIS)

    Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh

    2014-01-01

    Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process

  5. Stress relaxation and activation volume at the yield point of cold worked and neutron irradiated copper single crystals

    International Nuclear Information System (INIS)

    Brunner, D.; Diehl, J.

    1979-01-01

    The effective activation volume of slip is studied after neutron irradiation in as-grown crystals as well as in predeformed ones by means of stress relaxation tests between 20 K and 200 K. The activation volume corresponding to the initial strain rate is found to be always higher in predeformed crystals than in as-grown ones. During stress relaxation the flow stress tau decreases linearly with ln(-dtau/dt) (indicating a constant activation volume) only in rare cases. Depending on predeformation and temperature several types of deviations from straight lines are observed: monotoneously bent curves, strong scattering of data points not fitting smooth curves or systematic deviations from straight lines at the beginning of relaxation. Accordingly the effective activation volumes and their dependences on stress seem to behave in a strange manner. By the aid of a previously proposed model for the deformation within the yield point elongation the results can be interpreted qualitatively by taking into account the inhomogeneity of slip and work hardening, allowing a more reliable judgement on the real activation volumes, on which a better understanding of the superposition of the two hardening mechanisms involved here can be based. (author)

  6. The status of neutron beam utilization in Korea

    International Nuclear Information System (INIS)

    Shim, Hae-Seop; Lee, Chang-Hee; Seong, Baek-Seok; Lee, Jeong-Soo

    1999-01-01

    HANARO (30 MWth) at Korea Atomic Energy Research Institute (KAERI), which reached its first criticality on February 1995, is the multi-purpose research reactor for the application of reactor radiation in a variety of fields such as physics and materials science, irradiation technology, biomedical technology, and neutron activation analysis. For the neutron beam research, seven horizontal beam tubes of different types are available, and HANARO has performed its development plan for a basic set of neutron beam instruments since 1992. A High Resolution Powder Diffractometer (HRPD) and a Neutron Radiography Facility (NRF) has been installed and operated since 1997 and 1996 each. A Four Circle Diffractometer (FCD) and a Small Angle Neutron Spectrometer (SANS) will be operational on 1999 and in 2000 respectively, and a Polarized Neutron Spectrometer (PNS) in 2001. SANS at CN (Cold Neutron) beam tube will be operated using liquid nitrogen cooled Be filter until the cold neutron source is made available. Then, it will be moved to a guide laboratory with proper modification. Research works using the instruments in operation started by internal and external users since their full operation and have been rapidly increasing. Most in-house resources available are being used for on-going development of instruments due to rapidly increasing demands of external users nationwide. In addition to above instruments, a Triple Axis Spectrometer (TAS) and a Neutron Reflectometer which have been strongly requested by external users from universities and industries are under discussion. Then, HANARO will provide the best combination of neutron instruments to meet national research demands and international collaborations, and will be well prepared for future researches by cold neutrons. (author)

  7. Diagnostic value of sonography, ultrasound-guided fine-needle aspiration cytology, and diffusion-weighted MRI in the characterization of cold thyroid nodules

    Energy Technology Data Exchange (ETDEWEB)

    Schueller-Weidekamm, Claudia [Department of Diagnostic Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: claudia.schueller-weidekamm@meduniwien.ac.at; Schueller, Gerd [Department of Diagnostic Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Kaserer, Klaus [Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Scheuba, Christian [Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Ringl, Helmut; Weber, Michael; Czerny, Christian; Herneth, Andreas M. [Department of Diagnostic Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2010-03-15

    Introduction: The purpose of this prospective study was to assess the diagnostic value of different modalities for the characterization of cold thyroid nodules. Methods: In 35 patients with cold nodules, thyroid carcinoma was suspected on scintigraphy. These patients were prospectively investigated with sonography, ultrasound-guided fine-needle aspiration (USgFNA), and quantitative diffusion-weighted imaging magnetic resonance imaging (DWI) (navigated echo-planar imaging; maximum b-value 800 s/mm{sup 2}) prior to surgery. The sonographic findings, USgFNA cytology, and the apparent diffusion coefficient (ADC) values of DWI were correlated with the postoperative histology of benign and malignant lesions. Statistical analysis was performed with the Kruskal-Wallis test and the Fisher's exact test. P < .05 denoted statistical significance. Results: The accuracy of sonography and USgFNA was 64% and 68.8%, respectively. The sensitivity was 86.7% and 80%, respectively. Specificity was only 57.2% and 50%, respectively. The median ADC values for carcinoma and adenoma were 2.73 x 10{sup -3} mm{sup 2}/s and 1.93 x 10{sup -3} mm{sup 2}/s, respectively (P < .001). There was no significant difference between the median ADC value for Hashimoto thyroiditis (3.46 x 10{sup -3} mm{sup 2}/s) and carcinoma. An ADC value of 2.25 x 10{sup -3} mm{sup 2}/s or higher was proven to be the cut-off value for differentiating between benign and malignant cold thyroid nodules, with an accuracy of 88%, a sensitivity of 85%, and a specificity of 100%. Conclusions: These results show that quantitative DWI is a more reliable diagnostic method for differentiation between benign and malignant thyroid lesions than sonography or USgFNA. However, further studies including a larger study population are necessary to confirm our study results.

  8. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  9. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  10. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  11. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  12. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  13. Updated users' guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes' equation

    International Nuclear Information System (INIS)

    Larson, N.M.

    1989-06-01

    In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has undergone significant modifications: user-friendly options have been incorporated to streamline common operations and to protect a run from common user errors; the Reich-Moore formalism has been extended to include an optional logarithmic parameterization of the external R-matrix, for which any or all parameters may be varied; the ability to vary sample thickness, effective temperature, matching radius, and/or resolution-broadening parameters has been incorporated; to avoid loss of information (i.e., computer round-off errors) between runs, the ''covariance file'' now includes precise values for all variables; and unused but correlated variables may be included in the analysis. Because of these and earlier changes, the 1980 SAMMY manual is now hopelessly obsolete. This report is intended to be complete documentation for the current version of SAMMY. Its publication in looseleaf form will permit updates to the manual to be made concurrently with updates to the code itself, thus eliminating most of the time lag between update and documentation. 28 refs., 54 tabs

  14. Updated user's guide for SAMMY: multilevel R-matrix fits to neutron data using Bayes' equation

    International Nuclear Information System (INIS)

    Larson, N.M.

    1996-01-01

    In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has undergone significant modifications: (1) User-friendly options have been incorporated to streamline common operations and to protect a run from common user errors, (2) The Reich-Moore formalism has been extended to include an optional logarithmic parameterization of the external R-matrix, for which any or all parameters may be varied, (3) the ability to vary sample thickness, effective temperature, matching radius, and/or resolution-broadening parameters has been incorporated, (4) to avoid loss of information (i.e. computer round-off errors) between runs, the ''covariance file'' now includes precise values for al variables, (5) Unused but correlated variables may be included in the analysis. Because of these and earlier changes, the 1980 SAMMY manual is now hopelessly obsolete. This report is intended to be complete documentation for the current version of SAMMY. Its publication in looseleaf form will permit updates to the manual to be made concurrently with updates to the code itself, thus eliminating most of the time lag between update and documentation

  15. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO2-A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    International Nuclear Information System (INIS)

    Matsushima, U.; Kardjilov, N.; Hilger, A.; Manke, I.; Shono, H.; Herppich, W.B.

    2009-01-01

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D 2 O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO 2 in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO 2 was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H 2 O and D 2 O in the plant container were exchanged every 30 min to observe water uptake. D 2 O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D 2 O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO 2 as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency (F v /F m ), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  16. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  17. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  18. Designing new guides and instruments using McStas

    CERN Document Server

    Farhi, E; Wildes, A R; Ghosh, R; Lefmann, K

    2002-01-01

    With the increasing complexity of modern neutron-scattering instruments, the need for powerful tools to optimize their geometry and physical performances (flux, resolution, divergence, etc.) has become essential. As the usual analytical methods reach their limit of validity in the description of fine effects, the use of Monte Carlo simulations, which can handle these latter, has become widespread. The McStas program was developed at Riso National Laboratory in order to provide neutron scattering instrument scientists with an efficient and flexible tool for building Monte Carlo simulations of guides, neutron optics and instruments. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers. In this paper, we present some simulation results concerning different guide geometries that may be used in the future at th...

  19. Updated users' guide for SAMMY: multilevel R-matrix fits to neutron data using Bayes' equations. Revision 1

    International Nuclear Information System (INIS)

    Larson, N.M.

    1985-04-01

    In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has undergone significant modifications: (1) User-friendly options have been incorporated to streamline common operations and to protect a run from common user errors. (2) The Reich-Moore formalism has been extended to include an optional logarithmic parameterization of the external R-matrix, for which any or all parameters may be varied. (3) The ability to vary sample thickness, effective temperature, matching radius, and/or resolution-broadening parameters has been incorporated. (4) To avoid loss of information (i.e., computer round-off errors) between runs, the ''covariance file'' now includes precise values for all variables. (5) Unused but correlated variables may be included in the analysis. Because of these and earlier changes, the 1980 SAMMY manual is now obsolete. This report is intended to be complete documentation for the current version of SAMMY. In August of 1984 the users' guide for version P of the multilevel multichannel R-matrix code SAMMY was published. Recently, major changes within SAMMY have led to the creation of version O, which is documented in this report. Among these changes are: (1) an alternative matrix-manipulation method for use in certain special cases; (2) division of theoretical cross-section generation and broadening operations into separate segments of the code; (3) an option to use the multilevel Breit-Wigner approximation to generate theoretical cross sections; (4) new input options; (5) renaming all temporary files as SAM...DAT; (6) more sophisticated use of temporary files to maximize the number of data points that may be analyzed in a single run; and (7) significant internal restructing of the code in preparation for changes described here and for planned future changes

  20. Guide design study for the high-resolution backscattering spectrometer FIRES

    Energy Technology Data Exchange (ETDEWEB)

    Pelley, C; Kargl, F; Sakai, V Garcia; Telling, M T F; Fernandez-Alonso, F; Demmel, F, E-mail: franz.demmel@stfc.ac.uk

    2010-11-01

    Different options are considered to transport cold neutrons along 90 m for the proposed new spectrometer FIRES at the ISIS facility. Monte Carlo simulations using the McStas programme package are used to assess the performance of various guide designs from the biological shield to the sample position. By employing a curved geometry, to avoid the direct line of sight, a hybrid design which combines a curved ballistic guide and an elliptic focusing section appears to be the best solution.

  1. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D{sub 2} project at the FRM-II reactor in Munich

    Energy Technology Data Exchange (ETDEWEB)

    Tortorella, D.

    2007-02-07

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g{sub A}), the neutron lifetime ({tau}{sub n}) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  2. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D2 project at the FRM-II reactor in Munich

    International Nuclear Information System (INIS)

    Tortorella, D.

    2007-01-01

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g A ), the neutron lifetime (τ n ) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  3. Frequency Spectrum of Liquids and Cold Neutron Scattering; Spectre de frequences des liquides et diffusion de neutrons froids; Chastotnyj spektr zhidkostej i rasseyanie kholodnykh nejtronov; Espectro de frecuencias de los liquidos y dispersion de neutrones frios

    Energy Technology Data Exchange (ETDEWEB)

    Singwi, K S; Sjolander, A; Rahman, A [Argonne National Laboratory, Argonne, IL (United States)

    1963-01-15

    An important question which arises in connection with slow neutron scattering by liquids is: does there exist a frequency spectrum tor liquids analogous to that in solids? The answer to this question is given by showing that the width function {gamma}(t) of the Gaussian space-time self-correlation function G{sub s}(r,t) can be expressed, by using the frequency spectrum of the velocity auto-correlation function, in a form which is formally identical with that of a harmonic solid. Thus a knowledge of the frequency spectrum of the velocity auto-correlation function should enable one to calculate slow neutron scattering by liquids as has been emphasized by Egelstaff and co-workers. Using a stochastic model of a liquid, the frequency spectrum f({omega}) of the velocity auto-correlation function is calculated for water at 300{sup o}K and for liquid lead at 620{sup o}K. In the case of water a maximum in f({omega}) corresponding to {Dirac_h} 75{sup o}K is predicted. For lead the maximum also occurs at nearly the same {omega}-value. There also occurs a minimum in f({omega})in both cases. Larsson and Dahlborg have observed a maximum in f({omega}) at the above predicted {omega}-value. A recent observation in liquid lead of Cotter et al. probably confirms our prediction too. (author) [French] Dans le domaine de la diffusion des neutrons lents par des liquides une question importante se pose: existe-t-il un spectre de frequences pour les liquides analogue au spectre pour les solides? On peut repondre d cette quesnon en montrant que la fonction de largeur {gamma}(t) de la fonction gaussienne spatio-temporelle d'auto-correlation G{sub s}(r,t) peut etre exprimee, en employant le spectre de frequences de la fonction d'auto-correlation des vitesses, sous uune forme qui presente le membe aspect formel que celle d'un solide harmonique. par consequent, la connaissance du spectre de frequences de la fonction d'auto-correlation des vitesses devrait permettre de calculer la diffusion des

  4. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  5. Basic Design Report of DC-TOF Inelastic Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong; Park, Je Geun; Moon, Myung Kook; Cho, Sang Jin; Choi, Yung Hyun; Lee, Chang Hee

    2006-04-15

    We made Basic designs of neutron guide, choppers, and detectors in order to optimize the design parameters of DC-TOF to be built in the HANARO Cold Neutron Guide Hall. In addition, we calculated the expected performance of DC-TOF using Monte Carlo simulations and evaluated the properties of neutron beam. Based on the results we obtained, we have compared the expected performance of the DC-TOF with those of existing instruments overseas. In conclusion, we believe that we will be able to construct the DC-TOF at HANARO as one of the best instruments of its kinds and it will become an invaluable instrument to researchers in the related field.

  6. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  7. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Bilheux, Jean-Christophe [ORNL; Tremsin, Anton S [University of California, Berkeley; Santodonato, Louis J [ORNL; Dehoff, Ryan R [ORNL; Kirka, Michael M [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Herwig, Kenneth W [ORNL

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

  8. Neutron scattering research at JAERI reactors - past, present and future -

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Morii, Yukio; Minakawa, Nobuaki

    1992-01-01

    It was in 1961 that the first neutron scattering experiment was performed in Japan at JRR-2. The start of JRR-3 in 1964 accelerated the neutron scattering activities in Japan. The research in this field in Japan grew up by using these two research reactors. Among them JRR-2 has played an important role because its neutron flux was about seven times higher than that of the old JRR-3. The completion of the new JRR-3M in 1990 made an epoch to the neutron scattering activities in Japan. The long-waited JRR-3M came up to the expectations of the scientists of Japan. It is a realization of the ideal reactor with tangential beam holes, cold source and neutron guides in a large guide hall. The flux at the neutron scattering instruments is about five times higher than that of JRR-2. Utilization of JRR-3M has just started. Twelve neutron scattering machines are running there. The number will increase up to close twenty in a couple of years. (author)

  9. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  10. Determination of boron in ceramic reference materials by prompt gamma activation analysis using focused neutron guided beam of JRR-3M

    International Nuclear Information System (INIS)

    Miura, T.; Kuroiwa, T.; Chiba, K.; Matsue, H.

    2008-01-01

    Prompt gamma activation analysis using a focused thermal neutron guided beam at JAEA JRR-3M was applied to the determination of B in ceramic certified reference materials (BAM CRM S-003 Silicon Carbide Powder and NMIJ CRM 8004-a Silicon Nitride Powder). Cl and Si were used as internal standards to obtain linear calibration curves of B. The analytical result of B in BAM CRM S-003 was in good agreement with the certified value. The relative expanded measurement uncertainties (k = 2) were 4.8% for BAM CRM S-003 and 4.9% for NMIJ CRM 8004-a. (author)

  11. Characterization of solid D{sub 2} as a source material for ultra cold neutrons (UCN) and development of a detector concept for the detection of protons from the neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Axel Reimer

    2008-12-09

    In the first part of this thesis, properties of the UCN-converter material solid deuterium (sD{sub 2}) are studied. A series of investigations of various sD{sub 2} crystals by means of optical spectroscopy and neutron scattering resulted in: (i) a freezing technique suitable for UCN sources (ii) an efficient method to achieve a high ortho concentration, (iii) a direct way to calculate the UCN production cross-section from the dynamic structure factor S(q, {omega}), (iv) the identification of six excitations responsible for UCN production (v) the interpretation of one excitation at E=12 meV as a multi-phonon process (vi) the discovery of an additional spin-dependent UCN loss mechanism at q=2.1A{sup -1} and E=1.8 meV. A complementary series of experiments was performed at the FRMII, testing the production of UCN with the studied sample preparation after different the characterization mentioned above. Besides establishing a technique for annealing sD{sub 2} crystals to improve the UCN production rate, an additional loss cross section ({sigma}{sub x}=8 barn at 4.5 K indirect proportional to the ortho concentration) was found. Based on these findings, a new conceptual layout of the miniD{sub 2} source was developed. In the second part, the diffuse scattering probability f and the loss probability per wall collision {mu} were measured for differently prepared UCN guides using the storageand the so called two-hole method. Electropolished, rough stainless steel and Al tubes with different coatings at temperature variation and surface conditions were measured. The third part deals with the development of a proton detector for the neutron lifetime experiment PENeLOPE, which is based on gravitational and magnetic UCN storage and counting of the protons from the decay. A concept for a large-area proton detector based on thin scintillation counters operating in cryogenic environment was developed based on simulations and experimental studies. In addition to the characterization

  12. Characterization of solid D2 as a source material for ultra cold neutrons (UCN) and development of a detector concept for the detection of protons from the neutron decay

    International Nuclear Information System (INIS)

    Mueller, Axel Reimer

    2008-01-01

    In the first part of this thesis, properties of the UCN-converter material solid deuterium (sD 2 ) are studied. A series of investigations of various sD 2 crystals by means of optical spectroscopy and neutron scattering resulted in: (i) a freezing technique suitable for UCN sources (ii) an efficient method to achieve a high ortho concentration, (iii) a direct way to calculate the UCN production cross-section from the dynamic structure factor S(q, ω), (iv) the identification of six excitations responsible for UCN production (v) the interpretation of one excitation at E=12 meV as a multi-phonon process (vi) the discovery of an additional spin-dependent UCN loss mechanism at q=2.1A -1 and E=1.8 meV. A complementary series of experiments was performed at the FRMII, testing the production of UCN with the studied sample preparation after different the characterization mentioned above. Besides establishing a technique for annealing sD 2 crystals to improve the UCN production rate, an additional loss cross section (σ x =8 barn at 4.5 K indirect proportional to the ortho concentration) was found. Based on these findings, a new conceptual layout of the miniD 2 source was developed. In the second part, the diffuse scattering probability f and the loss probability per wall collision μ were measured for differently prepared UCN guides using the storageand the so called two-hole method. Electropolished, rough stainless steel and Al tubes with different coatings at temperature variation and surface conditions were measured. The third part deals with the development of a proton detector for the neutron lifetime experiment PENeLOPE, which is based on gravitational and magnetic UCN storage and counting of the protons from the decay. A concept for a large-area proton detector based on thin scintillation counters operating in cryogenic environment was developed based on simulations and experimental studies. In addition to the characterization of CsI(Tl) and CsI scintillators, a

  13. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  14. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  15. Neutron optics using transverse field neutron spin echo method

    International Nuclear Information System (INIS)

    Achiwa, Norio; Hino, Masahiro; Yamauchi, Yoshihiro; Takakura, Hiroyuki; Tasaki, Seiji; Akiyoshi, Tsunekazu; Ebisawa, Toru.

    1993-01-01

    A neutron spin echo (NSE) spectrometer with perpendicular magnetic field to the neutron scattering plane, using an iron yoke type electro-magnet has been developed. A combination of cold neutron guider, supermirror neutron polarizer of double reflection type and supermirror neutron analyser was adopted for the spectrometer. The first application of the NSE spectrometer to neutron optics by passing Larmor precessing neutrons through gas, solid and liquid materials of several different lengths which are inserted in one of the precession field have been examined. Preliminary NSE spectra of this sample geometry are discussed. (author)

  16. First results of micro-neutron tomography by use of a focussing neutron lens

    CERN Document Server

    Masschaele, B; Cauwels, P; Dierick, M; Jolie, J; Mondelaers, W

    2001-01-01

    Since the appearance of high flux neutron beams, scientists experimented with neutron radiography. This high beam flux combined with modern neutron to visible light converters leads to the possibility of performing fast neutron micro-tomography. The first results of cold neutron tomography with a neutron lens are presented in this article. Samples are rotated in the beam and the projections are recorded with a neutron camera. The 3D reconstruction is performed with cone beam reconstruction software.

  17. Precision Measurement of the Position-Space Wave Functions of Gravitationally Bound Ultracold Neutrons

    Directory of Open Access Journals (Sweden)

    Y. Kamiya

    2014-01-01

    Full Text Available Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  18. Characteristics of poly- and mono-crystalline BeO and SiO2 as thermal and cold neutron filters

    Science.gov (United States)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2015-09-01

    A simple model along with a computer code "HEXA-FILTERS" is used to carry out the calculation of the total cross-sections of BeO and SiO2 having poly or mono-crystalline form as a function of neutron wavelength at room (R.T.) and liquid nitrogen (L.N.) temperatures. An overall agreement is indicated between the calculated neutron cross-sections and experimental data. Calculation shows that 25 cm thick of polycrystalline BeO cooled at liquid nitrogen temperature was found to be a good filter for neutron wavelengths longer than 0.46 nm. While, 50 cm of SiO2, with much less transmission, for neutrons with wavelengths longer than 0.85 nm. It was also found that 10 cm of BeO and 15 cm SiO2 thick mono-crystals cut along their (0 0 2) plane, with 0.5° FWHM on mosaic spread and cooled at L.N., are a good thermal neutron filter, with high effect-to-noise ratio.

  19. The synthetic scattering function and application to the design of cold moderators for pulsed neutron sources: a fast response methane based array

    International Nuclear Information System (INIS)

    Granada, J. R.; Mayer, R. E.; Gillette, V. H.

    1997-09-01

    The Synthetic Scattering Function (SSF) allows a simple description of the incoherent interaction of slow neutrons with hydrogenous materials. The main advantages of this model reside in the analytical expressions that it produces for double-differential cross sections, energy-transfer kernels, and total cross sections, which in turn permit the fast evaluation of neutron scattering and transport properties. In this work we briefly discuss basic features of the SSF, review some previous applications to a number of moderating materials, and present new Monte Carlo results for a fast time-response moderator concept based on methane at low temperatures. (auth)

  20. Cold moderators at pulsed spallation sources: A personal view

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    When Maier-Leibnitz built the ILL, he came first to the US and to Canada where there were several prominent neutron scattering centers. He asked what instruments he should build. The reply was unanimous: 'First you build some three-axis machines to form the base program and then you see what else you can thin of.' Maier-Leibnitz's reply was equally characteristic: 'Thank you very much hor-ellipsis there will be no three-axis spectrometers at my institute.' He wasn't quite right - there was one at the beginning. But the point is that, instead of following conventional wisdom, Maier-Leibnitz hired a bunch of young scientists who didn't know as much about neutron scattering as their colleagues on the American continent and who therefore did not know what was 'impossible.' So, they built the impossible - a cold source integrated into the reactor, several hundred meters of guides, a 40-meter SANS machine, a back-scattering spectrometer, a hedgehog - the whole works. And they changed the face of neutron scattering forever. The author is going to adopt the same philosophy - because he knows very little about cold moderators at spallation sources, he doesn't know what is possible or what is stupid. So he is going to make some outrageous comments to stimulate Peter Egelstaff's discussion session. He makes these remarks, not as Director of LANSCE, but as a research scientist looking well beyond his ares of expertise

  1. Neutron monitoring for radiological protection

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1985-01-01

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  2. Time-of-flight spectrometer for slow neutrons in use at the reactor in Saclay. Its application for the study of the inelastic diffusion of cold neutrons; L'appareillage de spectrometrie a temps-de-vol pour neutrons lents en service a la pile de Saclay. Son application a l'etude de la diffusion inelastique des neutrons froids

    Energy Technology Data Exchange (ETDEWEB)

    Jacsot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    The time-of-flight spectrometers is constituted of a mechanic swivel obturator which absorbs neutrons until energies above 1 KeV, a mechanic filter which allow to retain only high wave length components and a delayed pulses selector with 100 channels. Its main application field is the thermic region where it allowed to measure the inelastic scattering of neutrons using various materials as H{sub 2}O, D{sub 2}O, Be, BeO, etc... (M.P.)

  3. Problems and prospects of neutron imaging

    International Nuclear Information System (INIS)

    Kobayashi, Hisao

    2008-01-01

    Technical problems and future prospects of neutron imaging and neutron radiography are reviewed and discussed for further development. For technical problems, neutron sources together with cold neutron, ultra-cold neutron, epithermal and fast-neutron beams, energy converters, and the intensity of neutron beam, dynamic range associated with imaging procedure, etc, are reviewed. As standardization, such indicators as beam purity, sensitivity, image quality, and beam quality are discussed and limitation of neutron radiography is also presented. As neutron imaging has developed as a nondestructive testing technique in industrial applications, further problems and prospects of quality control and qualification to perform neutron radiography, standardization and international cooperation of neutron imaging are discussed. (S. Ohno)

  4. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  5. Neutron spin echo spectrometer at JRR-3M

    International Nuclear Information System (INIS)

    Takeda, Takayoshi; Komura, Shigehiro; Seto, Hideki; Nagai, Michihiro; Kobayashi, Hideki; Yokoi, Eiji; Ebisawa, Tooru; Tasaki, Seiji.

    1993-01-01

    We have designed and have been constructing at C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimized magnets for neutron spin precession, a position sensitive detector (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.01 A -1 to 0.3 A -1 and that of energy E from 30neV to 0.1meV. This spectrometer makes it possible to study a mesoscopic spatial structure of the order of 1-100nm combined with a nanosecond temporal structure of the order of 0.1-100ns corresponding to dynamical behavior of large molecules such as polymer. A test experiment shows that the homogeneity condition of the precession magnet is loosened by means of PSD. (author)

  6. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  7. Level gauge using neutron radiation

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1985-01-01

    Apparatus for determining the level of a solid or liquid material in a container comprises: a vertical guide within or alongside the container; a sensor positioned within the guide; means for moving the sensor along the guide; and means for monitoring the position of the sensor. The sensor comprises a source of fast neutrons, a detector for thermal neutrons, and a body of a neutron moderating material in close proximity to the detector. Thermal neutrons produced by fast neutron irradiation of the solid or liquid material, or thermal neutrons produced by irradiation of the neutron-moderating material by fast or epithermal neutrons reflected by the solid or liquid material, are detected when the sensor is positioned at or below the level of the material in the container

  8. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  9. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  10. Applications guide to the RSIC-distributed version of the MCNP code (coupled Monte Carlo neutron-photon Code)

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1985-09-01

    An overview of the RSIC-distributed version of the MCNP code (a soupled Monte Carlo neutron-photon code) is presented. All general features of the code, from machine hardware requirements to theoretical details, are discussed. The current nuclide cross-section and other libraries available in the standard code package are specified, and a realistic example of the flexible geometry input is given. Standard and nonstandard source, estimator, and variance-reduction procedures are outlined. Examples of correct usage and possible misuse of certain code features are presented graphically and in standard output listings. Finally, itemized summaries of sample problems, various MCNP code documentation, and future work are given

  11. Contribution to the experimental study of the critical scattering of cold neutrons in iron; Contriiution a l'etude experimentale de la diffusion critique des neutrons froids par le fer

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinovic, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-15

    The aim of the present work is a study of magnetic fluctuations which are produced in iron in the neighbourhood of the Curie temperature, by neutron scattering. We start by briefly recalling the theory of scattering of neutrons by magnetic substances and Landau's theory of second order phase transitions which enables one to derive the magnetic cross section near the Curie temperature. Following this is a description of the experimental apparatus after which we present the experimental results. The analysis of the results confirms the four-third law obeyed by the magnetic susceptibility near the Curie point, predicted by recent theories based on the Heisenberg model. However, the analysis reveals a non-zero relaxation time for the magnetic fluctuations at the Curie point, which is in disagreement with theoretical conclusions. (author) [French] L'objet du present travail est l'etude des fluctuations d'aimantation qui prennent naissance dans le fer au voisinage de sa temperature de Curie par la diffusion des neutrons. Nous commencons par rappeler brievement les generalites sur la diffusion des neutrons par les substances magnetiques et la theorie de Landau des transitions de phase du second ordre qui permet de deriver une expression de la section efficace magnetique pres de la temperature de Curie. Ensuite, apres la description du dispositif experimental, nous presentons les resultats experimentaux. L'analyse de ces resultats confirme les theories recentes suivant le modele d'Heisenberg en ce qui concerne la 'loi en 4/3' de la susceptibilite magnetique au voisinage du point de Curie; mais par ailleurs elle revele l'existence d'un temps de relaxation des fluctuations d'aimantation non nul en ce point, ce qui est en desaccord avec les previsions theoriques actuelles. (auteur)

  12. Report on neutron reflectometry for the Australian Replacement Reactor

    International Nuclear Information System (INIS)

    James, M.

    2001-01-01

    There is a clear need for at least one neutron reflectometer at the Australian Replacement Research Reactor when it commences operation in 2005. The participants at the reflectometry workshop have identified that the neutron reflectometer to be built at the Australian Replacement Research Reactor must be capable of the study of: 1. Specular scattering from air/solid, solid/liquid and in particular 'free liquid' samples; and 2. Off-specular' scattering from the above sample types. 3. Kinetics phenomena on a minute or slower time scale; 4. A range of samples of differing thicknesses, ranging from ultra-thin films to thousand angstrom thick films. In order to achieve this the reflectometer should have the capacity to vary its resolution. Interest was also expressed at the ability to conduct glancing-angle and wide-angle scattering studies for the investigation of short length scale, in-plane structures. There was little interest expressed by the workshop participants for polarised neutron reflectometry. This report contains a scientific case for a neutron reflectometer to be built at the Australian Replacement Research Reactor on a cold neutron guide, which is based on the areas of scientific research expressed by the workshop participants. In addition, trends in neutron reflectometry research conducted at major overseas neutron facilities are noted. The new neutron Reflectometer should: 1. Be based on the Time-of-Flight method; 2. Have a vertical scattering plane (i.e. operate for horizontal samples); 3. Be located on the end of a cold neutron guide, or be built off the guide axis using a bender, 4. Have a position sensitive area detector, 5. Be similar in spirit to the new D17 reflectometer at the ILL. Basic aspects of a reflectometer design are discussed which meet the above-stated scientific criteria and include a preliminary list of instrument specifications, capabilities and ancillary equipment requested by the workshop participants. A preliminary instrument

  13. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  14. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  15. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  16. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  17. User's guide for SAMMY: a computer model for multilevel r-matrix fits to neutron data using Bayes' equations

    International Nuclear Information System (INIS)

    Larson, N.M.; Perey, F.G.

    1980-11-01

    A method is described for determining the parameters of a model from experimental data based upon the utilization of Bayes' theorem. This method has several advantages over the least-squares method as it is commonly used; one important advantage is that the assumptions under which the parameter values have been determined are more clearly evident than in many results based upon least squares. Bayes' method has been used to develop a computer code which can be utilized to analyze neutron cross-section data by means of the R-matrix theory. The required formulae from the R-matrix theory are presented, and the computer implementation of both Bayes' equations and R-matrix theory is described. Details about the computer code and compelte input/output information are given

  18. Neutron scattering at FRJ-2. Experimental reports 2004

    International Nuclear Information System (INIS)

    Brueckel, T.; Richter, D.; Zorn, R.

    2004-01-01

    The Research Centre FZ-Juelich is offering its neutron research facilities to a growing national and international user community for the benefit of their research using neutron beams. FZ-Juelich operates a 23 MW DIDO reactor that delivers a total neutron flux of 2.9 x 10 14 n/cm 2 s (undisturbed) for a comprehensive suite of 17 instruments installed at 5 individual thermal beam tubes and, in addition, 5 external cold neutron guides. In the year 2004 the reactor was in operation for 208 days and we are happy to announce that more than 150 individual experiments (constituting 61% of the total) were carried out by a large external user community from 85 institutions all over the world. In close collaboration with internal staff the study of soft matter systems took the largest stake. In addition, subjects of biology, magnetism and engineering were among the other main topics of the experimental programme. We gratefully acknowledge the funding programme ''Juelich Neutrons for Europe'' under the European initiative NMI3 that enables numerous external users from the EU and associated countries to come over, visit Juelich and perform their experiments. This book comprises the scientific reports of the experiments completed in 2004. We wish to thank all external users, local applicants, instrument responsibles, and technical staff for their joint efforts and contributions to the success and progress of the Juelich neutron research facility. (orig.)

  19. Cold Sore

    Science.gov (United States)

    ... may reduce how often they return. Symptoms A cold sore usually passes through several stages: Tingling and itching. Many people feel an itching, burning or tingling sensation around their lips for a day or so ...

  20. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  1. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    International Nuclear Information System (INIS)

    Makhloufi, M.; Salah, H.

    2017-01-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  2. Neutron Transmission through Sapphire Crystals

    DEFF Research Database (Denmark)

    of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Those simulations were part of the effort of validating and improving the newly developed interface between the Monte-Carlo neutron transport code MCNP and the Monte Carlo ray-tracing code McStas....

  3. The shielding calculation for the CN guide shielding assembly in HANARO

    International Nuclear Information System (INIS)

    Kim, H. S.; Lee, B. C.; Lee, K. H.; Kim, H.

    2006-01-01

    The cold neutron research facility in HANARO is under construction. The area including neutron guides and rotary shutter in the reactor hall should be shielded by the guide shielding assembly which is constructed of heavy concrete blocks and structure. The guide shielding assembly is divided into 2 parts, A and B. Part A is about 6.4 meters apart from the reactor biological shield and it is constructed of heavy concrete blocks whose density is above 4.0g/cm 3 . And part B is a fixed heavy concrete structure whose density is above 3.5g/cm 3 . The rotary shutter is also made with heavy concrete whose density is above 4.0g/cm 3 and includes 5 neutron guides inside. It can block the neutron beam by rotating when CNS is not operating. The dose criterion outside the guide shielding assembly is established as 12.5 μSv/hr which is also applied to reactor shielding in HANARO

  4. European Neutrons form Parasitic Research to Global Strategy: Realizing Plans for a Transnational European Spallation Source in the Wake of the Cold War

    Science.gov (United States)

    Kaiserfeld, Thomas

    2016-03-01

    Studies of Big Science have early on focused on instrumentation and scientific co-operation in large organizations, later on to take into account symbolic values and specific research styles while more recently also involving the relevance of commercial interests and economic development as well as the assimilation of research traditions. In accordance with these transformed practices, this presentation will analyze how an organization with the purpose of realizing a Big-Science facility, The European Spallation Source, has successfully managed to present the project as relevant to different national and international policy-makers, to the community of European neutron researchers as well as to different industrial interests. All this has been achieved in a research-policy environment, which has been the subject to drastic transformations, from calls to engage researchers from the former eastern bloc in the early 1990s via competition with American and Asian researchers at the turn of the century 2000 to intensified demands on business applications. During this process, there has also been fierce competition between different potential sites in the U.K., Germany, Spain, Hungary and Sweden, not once, but twice. The project has in addition been plagued by withdrawals of key actors as well as challenging problems in the field of spallation-source construction. Nevertheless, the European Spallation Source has survived from the early 1990s until today, now initiating the construction process at Lund in southern Sweden. In this presentation, the different measures taken and arguments raised by the European Spallation Source project in order to realize the facility will be analysed. Especially the different designs of the European Spallation Source will be analysed as responses to external demands and threats.

  5. A long neutron optical horn for the ILL neutron-antineutron oscillation experiment

    International Nuclear Information System (INIS)

    Bitter, T.; Eisert, F.; El-Muzeini, P.; Kessler, M.; Klemt, E.; Lippert, W.; Meienburg, W.; Dubbers, D.

    1992-01-01

    In the neutron-antineutron oscillation experiment at ILL the divergence of the free flying cold neutron beam was strongly reduced without loss of intensity by the use of a 34 m long neutron-optical horn system. The divergence reduction was accurately studied in order to maintain the total width of the neutron beam below 1.1 m after a neutron free flight distance of about 80 m. The fabrication and performance of this system are described. (orig.)

  6. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, ......-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering. (C) 2016 Elsevier B.V. All rights reserved....

  7. Opportunities for research using neutron beams at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: On July 13th 2000, a contract was signed for construction of Australia's Replacement Research Reactor at Lucas Heights just outside Sydney. This may represent Australia's largest single investment in scientific infrastructure, and it provides researchers in condensed matter physics, chemistry, materials science, and some aspects of engineering, the earth sciences and biology with the 'opportunity of a generation' The replacement reactor, which will commence operation in 2005, will be comparable with the national neutron sources of Japan, France and the U.S.A. Cold and thermal neutron sources are to be installed and supermirror guides will transport cold and thermal neutron beams into a large modern guide hall. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by the Argentinian company INVAP S.E., in collaboration with two Australian firms, in a turnkey contract. The instruments will be developed by ANSTO and other contracted organisations, in consultation with the Australian user community and interested overseas parties. This presentation reviews the planned scientific capabilities and opportunities, gives a description of the facility and a status report on the activities so far

  8. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan

    2014-01-01

    In a recent numerical optimization study we have found that liquid para-hydrogen coupled cold neutron moderators deliver 3–5 times higher cold neutron brightness at a spallation neutron source if they take the form of a flat, quasi 2-dimensional disc, in contrast to the conventional more voluminous...... for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...... to the much more voluminous liquid D2 or H2 moderators currently used. Neutronic simulation calculations confirm both of these theoretical conclusions....

  9. OSIRIS (the first step). A user guide

    International Nuclear Information System (INIS)

    Engberg, D.

    1999-01-01

    The OSIRIS Project will explore the instrumental horizons available with the cold neutrons from a pulsed source and especially the totally new avenues available to polarised neutrons on these sources. On pulsed sources, polarisation techniques offer great potential for high resolution studies, and only lack of opportunity has left the field unexploited. On OSIRIS, the fundamentally novel methods developed on IRIS will be combined with proven and extended neutron polarising techniques. The high flux available at ISIS, coupled to the advanced design of the OSIRIS guide, will provide the means to take this field to its next evolutionary stage. By exploiting the combination of sharp pulses, white beams and cold neutrons from ISIS, high resolution measurements, both dynamic and structural, can be carried out using both unpolarised and polarised neutrons. The OSIRIS Project is an international collaboration involving India, Italy, Spain, Sweden, Switzerland and the United Kingdom. The project has three well-defined phases; phase 1: Extraction of a second cold beam guide from the IRIS beam line; phase 2: large d-spacing powder diffraction, incident beam polarised powder diffraction; phase 3: high resolution spectroscopy, spectroscopy polarisation analysis, diffraction polarisation analysis. This is the user manual for the first step of the OSIRIS project, which means that phase 2 is now almost finished, i.e. we have a high resolution large d-spacing diffractometer, but the incident beam polarisation is as of yet only used for tests. You can find more information on the Osiris web-pages at . This document is also available in an html version at that address. This document is divided into five different parts. First, this short introduction, then what you need to think about before your arrive at ISIS, thereafter, the different parts of the instrument are described, together with some examples of sample environments. Fourthly, the actual running of an experiment is dealt

  10. Optimization study of ultracold neutron sources at TRIGA reactors using MCNP

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Rogov, A.D.

    1997-01-01

    Monte Carlo simulation for the optimization of ultracold and very cold neutron sources for TRIGA reactors is performed. The calculations of thermal and cold neutron fluxes from the TRIGA reactor for different positions and configurations of a very cold solid methane moderator were performed with using the MCNP program. The production of neutrons in the ultracold and very cold energy range was calculated for the most promising final moderators (converters): very cold solid deuterium and heavy methane. The radiation energy deposition was calculated for the optimized solid methane-heavy methane cold neutron moderator

  11. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  12. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  13. Combined neutron imaging techniques for cultural heritage purpose

    International Nuclear Information System (INIS)

    Materna, T.

    2009-01-01

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  14. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Sekita, Junichiro

    1988-01-01

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  15. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  16. Asymmetries of various P- and T-parities in angular distributions of products of cold-polarized-neutron-induced binary and ternary fission of oriented nuclei and T-invariance

    Energy Technology Data Exchange (ETDEWEB)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Kostryukov, P. V. [Voronezh State University (Russian Federation)

    2016-09-15

    It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wave functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even (T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even (T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.

  17. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO{sub 2}-A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, U. [Faculty of Agriculture, Iwate University (Japan)], E-mail: uzuki@iwate-u.ac.jp; Kardjilov, N.; Hilger, A.; Manke, I. [SF3, Helmholtz Center Berlin for Materials and Energy (Germany); Shono, H. [Faculty of Agriculture, Iwate University (Japan); Herppich, W.B. [Department of Horticultural Engineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim (Germany)

    2009-06-21

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D{sub 2}O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO{sub 2} in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO{sub 2} was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H{sub 2}O and D{sub 2}O in the plant container were exchanged every 30 min to observe water uptake. D{sub 2}O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D{sub 2}O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO{sub 2} as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency (F{sub v}/F{sub m}), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  18. Neutron detectors for the ESS diffractometers

    Czech Academy of Sciences Publication Activity Database

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Muller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, Jan; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    Roč. 12, JAN (2017), č. článku P01019. ISSN 1748-0221 R&D Projects: GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * neutron diffraction detectors * neutron detectors (cold, thermal, fast neutrons) Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.220, year: 2016

  19. Pulsed neutron sources at Dubna

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1991-01-01

    In 1960 the first world repetitively pulsed reactor IBR was put into operation. It was the beginning of the story how fission based pulsed neutron sources at Dubna have survived. The engineers involved have experienced many successes and failures in the course of new sources upgrading to finally come to possess the world's brightest neutron source - IBR-2. The details are being reviewed through the paper. The fission based pulsed neutron sources did not reach their final state as yet- the conceptual views of IBR prospects are being discussed with the goal to double the thermal neutron peak flux (up to 2x10 16 ) and to enhance the cold neutron flux by 10 times (with the present one being as high that of the ISIS cold moderator). (author)

  20. UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics

    CERN Document Server

    Bondarenko, I V; Cimmino, A; Geltenbort, P; Frank, A I; Hoghoj, P; Klein, A G; Masalovich, S V; Nosov, V G

    2000-01-01

    A Gravity Spectrometer for ultra-cold neutrons (UCN) using neutron interference filters has been designed and tested. An energy resolution of the order of 6.5 neV was obtained which is good enough for performing a number of neutron-optical experiments proposed in an earlier paper. Experimental tests of the UCN dispersion law are currently in progress.

  1. UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics

    International Nuclear Information System (INIS)

    Bondarenko, I.V.; Balashov, S.N.; Cimmino, A.; Geltenbort, P.; Frank, A.I.; Hoghoj, P.; Klein, A.G.; Masalovich, S.V.; Nosov, V.G.

    2000-01-01

    A Gravity Spectrometer for ultra-cold neutrons (UCN) using neutron interference filters has been designed and tested. An energy resolution of the order of 6.5 neV was obtained which is good enough for performing a number of neutron-optical experiments proposed in an earlier paper. Experimental tests of the UCN dispersion law are currently in progress

  2. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  3. Some concluding remarks about cold moderator development

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper is the transcription of remarks made at the conclusion of the Workshop on Cold Neutron Sources held at the Los Angeles National Laboratory, Los Alamos, New Mexico, March 5--7, 1990. Areas of interest include the following: scattering functions; cold moderator materials; radiation mixing of chemical composition; comparison of some pulsed moderator spectra; hydrogen mixtures; premoderators and shields; composite reflectors; exotic moderator materials; deuterated methanes; mixed moderator materials; and test facility availabilities. 2 refs., 4 figs., 1 tab

  4. Verification of possible asymmetry of polarization of thermal neutrons reflected by a mirror

    International Nuclear Information System (INIS)

    Okorokov, A.I.; Runov, V.V.; Gukasov, A.G.; Shchebetov, A.F.

    1976-01-01

    Experiments with a polarizing neutron guide do not confirm the neutron polarization asymmetry observed previously by Berndorfer for neutrons traversing a polarizing neutron guide. In connection with the spin-orbit effects a verification is carried out on single reflection of neutrons by magnetic or nonmagnetic mirrors. With an accuracy of 10 -4 -10 -3 no polarization asymmetry is observed

  5. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Science.gov (United States)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  6. Neutron Computed Tomography of Freeze/thaw Phenomena in Polymer Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matthew M. Mech; Jack Brenizer; Kenan Unlu; A.K. Heller

    2008-12-12

    This report summarizes the final year's progress of the three-year NEER program. The overall objectives of this program were to 1) design and construct a sophisticated hight-resolution neutron computed tomography (NCT) facility, 2) develop novel and sophisticated liquid water and ice quantification analysis software for computed tomography, and 3) apply the advanced software and NCT capability to study liquid and ice distribution in polymer electrolyte fuel cells (PEFCs) under cold-start conditions. These objectives have been accomplished by the research team, enabling a new capability for advanced 3D image quantification with neutron imaging for fuel cell and other applications. The NCT water quantification methodology and software will greatly add to the capabilities of the neutron imaging community, and the quantified liquid water and ice distribution provided by its application to PEFCs will enhance understanding and guide design in the fuel cell community.

  7. Advances in neutron scattering spectroscopy

    International Nuclear Information System (INIS)

    White, J.W.

    1977-01-01

    Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)

  8. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  9. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  10. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the

  11. The neutron small-angle camera D11 at the high-flux reactor, Grenoble

    International Nuclear Information System (INIS)

    Ibel, K.

    1976-01-01

    The neutron small-angle scattering system at the high-flux reactor in Grenoble consists of three major parts: the supply of cold neutrons via bent neutron guides; the small-angle camera D11; and the data handling facilities. The camera D11 has an overall length of 80 m. The effective length of the camera is variable. The full length of the collimator before the fixed sample position can be reduced by movable neutron guides; the second flight path of 40 m full length contains detector sites in various positions. Thus a large range of momentum transfers can be used with the same relative resolution. Scattering angles between 5 x 10 -4 and 0.5 rad and neutron wavelengths from 0.2 to 2.0 nm are available. A large-area position-sensitive detector is used which allows simultaneous recording of intensities scattered at different angles; it is a multiwire proportional chamber. 3808 elements of 1 cm 2 are arranged in a two-dimensional matrix. (Auth.)

  12. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  13. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  14. Building America Best Practices Series: Volume 3; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Cold and Very Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-08-01

    The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the cold and very cold climates.

  15. Microscopic observations of palladium used for cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1991-01-01

    This paper examines the microscopic structures of palladium metals used for cold fusion experiments. Tiny spot defects suggesting cold fusion have been observed in grain boundaries as the Nattoh model predicts. The relationship between these defects and a series of neutron busts and an indirect loop of hydrogen chain reactions are discussed

  16. Geant4 simulations of NIST beam neutron lifetime experiment

    Science.gov (United States)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  17. Mechanisms of cold fusion: comprehensive explanations by the Nattoh model

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1995-01-01

    The phenomena of cold fusion seem to be very complicated; inconsistent data between the production rates of heat, neutrons, tritiums and heliums. Our thoughts need to drastically change in order to appropriately understand the mechanisms of cold fusion. Here, a review is described for the Nattoh model, that has been developed extensively to provide comprehensive explanations for the mechanisms of cold fusion. Important experimental findings that prove the model are described. Furthermore several subjects including impacts on other fields are also discussed. (author)

  18. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  19. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  20. The advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    The Advanced Neutron Source (ANS), slated for construction start in 1994, will be a multipurpose neutron research laboratory serving academic and industrial users in chemistry, biology, condensed matter physics, nuclear and fundamental physics, materials science and engineering, and many other fields. It will be centered on the world's highest flux neutron beam reactor, operating at 330 MW, with careful design integration between the neutron source and the experiment systems. Many instruments will be situated in low backgrounds at distances up to 80 m from the reactor, using neutron guides with tailored neutron optical coatings for beam transport. Apart from the many stations for neutron scattering research, specialized stations will also be provided for isotope separation on-line, experiments with liquid hydrogen targets, neutron optical techniques such as interferometry, activation analysis, depth profiling, and positron production. Careful consideration has been given to providing a good research environment for visiting scientists, including easy access to the experimental areas, while maintaining a highly secure nuclear facility. This paper will describe the reactor and experimental facilities and give some examples of the types of research for which ANS has been designed