WorldWideScience

Sample records for cold model study

  1. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  2. Cold flow model study of an oxyfuel combustion pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Guio-Perez, D.C.; Tondl, G.; Hoeltl, W.; Proell, T.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-12-15

    The fluid-dynamic behavior of a circulating fluidized bed pilot plant for oxyfuel combustion was studied in a cold flow model, down-scaled using Glicksman's criteria. Pressures along the unit and the global circulation rate were used for characterization. The analysis of five operating parameters and their influence on the system was carried out; namely, total solids inventory and the air velocity of primary, secondary, loop seal and support fluidizations. The cold flow model study shows that the reactor design allows stable operation at a wide range of fluidization rates, with results that agree well with previous observations described in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  4. Model Development of Cold Chains for Fresh Fruits and Vegetables Distribution: A Case Study in Bali Province

    Science.gov (United States)

    Waisnawa, I. N. G. S.; Santosa, I. D. M. C.; Sunu, I. P. W.; Wirajati, IGAB

    2018-01-01

    In developing countries such as Indonesia, as much as 40% of total vegetables and fruits production becomes waste because of lack refrigeration. This condition also contributes a food crisis problem besides other factor such as, climate change and number of population. Cold chain system that will be modelled in this study is for vegetables and fruits and refrigeration system as the main devices. In future, this system will play an important role for the food crisis solution where fresh food can be distributed very well with significant low waste. The fresh food also can be kept with good quality and hygienist (bacteria contaminated). Cold Chain model will be designed using refrigeration components including, pre cooling chiller, cold room, and truck refrigeration. This study will be conducted by survey and observation di around Bali Province focus on vegetables and fruits production center. Interviews and questionnaire will be also done to get some information about the conventional distribution obstacles and problem. Distribution mapping will be developed and created. The data base of the storage characteristic of the fruits and vegetable also collected through experiment and secondary data. Depend on the mapping and data base can be developed a cold chain model that has the best performance application. The model will be can directly apply in Bali to get eligible cold chain in Bali. The cold chain model will be compared with the conventional distribution system using ALCC/LCC method and also others factor and will be weighted to get better results.

  5. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  6. Cold welding of organic light emitting diode: Interfacial and contact models

    Directory of Open Access Journals (Sweden)

    J. Asare

    2016-06-01

    Full Text Available This paper presents the results of an analytical and computational study of the contacts and interfacial fracture associated with the cold welding of Organic Light Emitting diodes (OLEDs. The effects of impurities (within the possible interfaces are explored for contacts and interfacial fracture between layers that are relevant to model OLEDs. The models are used to study the effects of adhesion, pressure, thin film layer thickness and dust particle modulus (between the contacting surfaces on contact profiles around impurities between cold-welded thin films. The lift-off stage of thin films (during cold welding is then modeled as an interfacial fracture process. A combination of adhesion and interfacial fracture theories is used to provide new insights for the design of improved contact and interfacial separation during cold welding. The implications of the results are discussed for the design and fabrication of cold welded OLED structures.

  7. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  8. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    Science.gov (United States)

    Mohn, Christian; Rengstorf, Anna; White, Martin; Duineveld, Gerard; Mienis, Furu; Soetaert, Karline; Grehan, Anthony

    2014-03-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic motions such as trapped waves, freely propagating internal tides and internal hydraulic jumps. In this study, linkages between key abiotic parameters and cold water coral occurrences are explored across entire cold-water coral mound provinces using an integrated modelling and observational approach. The 3-D ocean circulation model ROMS-AGRIF was applied to simulate near-bottom hydrodynamic conditions at three provinces in the NE Atlantic (Logachev mounds, Arc mounds and Belgica mounds) adopting a nested model setup with a central grid resolution of 250 m. Simulations were carried out with a focus on accurate high-resolution topography and tidal forcing. The central model bathymetry was taken from high-resolution INSS (Irish National Seabed Survey) seafloor mapping data. The model was integrated over a full one-year reference period starting from the 1st January 2010. Interannual variability was not considered. Tidal forcing was obtained from a global solution of the Oregon State University (OSU) inverse tidal model. Modelled fields of benthic currents were validated against available independent in situ observations. Coral assemblage patterns (presence and absence locations) were obtained from benthic surveys of the EU FP7 CoralFISH programme and supplemented by data from additional field surveys. Modelled near-bottom currents, temperature and salinity were analysed for a 1-month subset (15th April to 15th May 2010) corresponding to the main CoralFISH survey period. The model results show intensified near-bottom currents in areas where living corals are observed by contrast with coral absence and random background locations. Instantaneous and time-mean current speeds at

  9. Modelling studies for the assessment of the Advanced Cold Process Canister

    International Nuclear Information System (INIS)

    Henshaw, J.; Hoch, A.R.; Sharland, S.M.

    1991-01-01

    The Advanced Cold Process Canister (ACPC) is a new concept for the encapsulation of spent nuclear fuel for geological disposal. It consists of steel canister encased in a copper overpack. In this paper, modelling studies to assess the performance of the ACPC under repository conditions are presented. The production of nitric acid and ammonia through radiolysis of any water remaining inside the canister under fault conditions has been examined in this study. However, results suggest that only low levels are possible, and the risk of stress-corrosion cracking is considered small. The corrosion behavior subsequent to a breach in the outer canister was also considered. A model was constructed to predict the hydrogen gas production due to corrosion reactions, and evolution of the corrosion behavior

  10. Powder consolidation using cold spray process modeling and emerging applications

    CERN Document Server

    Moridi, Atieh

    2017-01-01

    This book first presents different approaches to modeling of the cold spray process with the aim of extending current understanding of its fundamental principles and then describes emerging applications of cold spray. In the coverage of modeling, careful attention is devoted to the assessment of critical and erosion velocities. In order to reveal the phenomenological characteristics of interface bonding, severe, localized plastic deformation and material jet formation are studied. Detailed consideration is also given to the effect of macroscopic defects such as interparticle boundaries and subsequent splat boundary cracking on the mechanical behavior of cold spray coatings. The discussion of applications focuses in particular on the repair of damaged parts and additive manufacturing in various disciplines from aerospace to biomedical engineering. Key aspects include a systematic study of defect shape and the ability of cold spray to fill the defect, examination of the fatigue behavior of coatings for structur...

  11. A numerical model for cold welding of metals

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1996-01-01

    at the weld interface. Accordingly, the general model for bond strength in cold welding earlier developed by Bay has been extended and modified. The new model presented in this paper simulates the whole cold welding process including the deformation of base metals and the establishment of welds bonding......Based on experimental investigations of cold welding of different metal combinations applying various surface preparation methods, the understanding of the mechanisms of bond formation in cold welding has been improved by introducing two parameters representing the properties of surface layers...... similar as well as dissimilar metals The calculated bond strengths are verified by comparing with experimental measurements....

  12. Diffusion theory model for optimization calculations of cold neutron sources

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations

  13. Cold start-up condition model for heat recovery steam generators

    International Nuclear Information System (INIS)

    Sindareh-Esfahani, Peyman; Habibi-Siyahposh, Ehsan; Saffar-Avval, Majid; Ghaffari, Ali; Bakhtiari-Nejad, Firooz

    2014-01-01

    A dynamic modeling of Heat Recovery Steam Generator (HRSG) during cold start-up operation in Combined Cycle Power Plant (CCPP) is introduced. In order to characterize the essential dynamic behavior of the HRSG during cold start-up; Dynamic equations of all HRSG's components are developed based on energy and mass balances. To describe precisely the operation of HRSG; a method based on nonlinear estimated functions for thermodynamic properties is applied to estimate the model parameters. Model parameters are evaluated by a designed algorithm based on Genetic Algorithm (GA). A wide set of experimental data is used to validate HRSG model during cold start-up operation. The simulation results show the reliability and validity of the developed model for cold start-up operation. - Highlights: •Presenting a mathematical model for HRSGs cold start-up based on energy and mass balances. •A designed parameter identification algorithm based on GA is presented. •Application of experimental data in order to model and validate simulation results

  14. Electrical model of cold atmospheric plasma gun

    Science.gov (United States)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  15. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  16. A model for managing cold-related health and safety risks at workplaces.

    Science.gov (United States)

    Risikko, Tanja; Mäkinen, Tiina M; Påsche, Arvid; Toivonen, Liisa; Hassi, Juhani

    2003-05-01

    Cold conditions increase health and safety risks at work in several ways. The effects of cold have not been sufficiently taken into consideration in occupational safety and health practices. A systematic model and methods were developed for managing cold-related health and safety risks at workplaces. The development work was performed, in a context-bound manner, in pilot industries and workplaces. The model can be integrated into the company's occupational health and safety management system, such as OHSAS 18001. The cold risks are identified and assessed by using a checklist. The preventive measures are systematically planned in a written form specifically produced for cold workplaces. It includes the organisational and technical preventive measures, protective clothing and personal protective equipment, as well as training and information of the personnel. According to the model, all the workers, foremen, occupational safety personnel and occupational health care personnel are trained to recognise the cold risks and to conduct preventive actions. The developed model was evaluated in the context of cold outdoor (construction) and indoor work (fish processing), and by occupational health and safety professionals. According to the feedback, the model and methods were easy to use after a one-day introduction session. The continuum between the cold risk assessment and management worked well, although there was some overlap in the documentation. The cold risk management model and its methods form an essential part of ISO CD 15743 Strategy for risk assessment, management and work practice in cold environments.

  17. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  18. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... the Cold War Advisory Committee for the Cold War Theme Study AGENCY: National Park Service, Interior... Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will... National Park Service (NPS) concerning the Cold War Theme Study. DATES: The teleconference meeting will be...

  19. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    Energy Technology Data Exchange (ETDEWEB)

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  20. Micromechanics-based damage model for failure prediction in cold forming

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.Z.; Chan, L.C., E-mail: lc.chan@polyu.edu.hk

    2017-04-06

    The purpose of this study was to develop a micromechanics-based damage (micro-damage) model that was concerned with the evolution of micro-voids for failure prediction in cold forming. Typical stainless steel SS316L was selected as the specimen material, and the nonlinear isotropic hardening rule was extended to describe the large deformation of the specimen undergoing cold forming. A micro-focus high-resolution X-ray computed tomography (CT) system was employed to trace and measure the micro-voids inside the specimen directly. Three-dimensional (3D) representative volume element (RVE) models with different sizes and spatial locations were reconstructed from the processed CT images of the specimen, and the average size and volume fraction of micro-voids (VFMV) for the specimen were determined via statistical analysis. Subsequently, the micro-damage model was compiled as a user-defined material subroutine into the finite element (FE) package ABAQUS. The stress-strain responses and damage evolutions of SS316L specimens under tensile and compressive deformations at different strain rates were predicted and further verified experimentally. It was concluded that the proposed micro-damage model is convincing for failure prediction in cold forming of the SS316L material.

  1. Mechanisms of cold fusion: comprehensive explanations by the Nattoh model

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1995-01-01

    The phenomena of cold fusion seem to be very complicated; inconsistent data between the production rates of heat, neutrons, tritiums and heliums. Our thoughts need to drastically change in order to appropriately understand the mechanisms of cold fusion. Here, a review is described for the Nattoh model, that has been developed extensively to provide comprehensive explanations for the mechanisms of cold fusion. Important experimental findings that prove the model are described. Furthermore several subjects including impacts on other fields are also discussed. (author)

  2. Numerical modeling of cold room's hinged door opening and closing processes

    Science.gov (United States)

    Carneiro, R.; Gaspar, P. D.; Silva, P. D.; Domingues, L. C.

    2016-06-01

    The need of rationalize energy consumption in agrifood industry has fasten the development of methodologies to improve the thermal and energy performances of cold rooms. This paper presents a three-dimensional (3D) transient Computational Fluid Dynamics (CFD) modelling of a cold room to evaluate the air infiltration rate through hinged doors. A species transport model is used for modelling the tracer gas concentration decay technique. Numerical predictions indicate that air temperature difference between spaces affects the air infiltration. For this case study, the infiltration rate increases 0.016 m3 s-1 per K of air temperature difference. The knowledge about the evolution of air infiltration during door opening/closing times allows to draw some conclusions about its influence on the air conditions inside the cold room, as well as to suggest best practices and simple technical improvements that can minimize air infiltration, and consequently improve thermal performance and energy consumption rationalization.

  3. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  4. Can An Amended Standard Model Account For Cold Dark Matter?

    International Nuclear Information System (INIS)

    Goldhaber, Maurice

    2004-01-01

    It is generally believed that one has to invoke theories beyond the Standard Model to account for cold dark matter particles. However, there may be undiscovered universal interactions that, if added to the Standard Model, would lead to new members of the three generations of elementary fermions that might be candidates for cold dark matter particles

  5. Cross-cultural perspectives on physician and lay models of the common cold.

    Science.gov (United States)

    Baer, Roberta D; Weller, Susan C; de Alba García, Javier García; Rocha, Ana L Salcedo

    2008-06-01

    We compare physicians and laypeople within and across cultures, focusing on similarities and differences across samples, to determine whether cultural differences or lay-professional differences have a greater effect on explanatory models of the common cold. Data on explanatory models for the common cold were collected from physicians and laypeople in South Texas and Guadalajara, Mexico. Structured interview materials were developed on the basis of open-ended interviews with samples of lay informants at each locale. A structured questionnaire was used to collect information from each sample on causes, symptoms, and treatments for the common cold. Consensus analysis was used to estimate the cultural beliefs for each sample. Instead of systematic differences between samples based on nationality or level of professional training, all four samples largely shared a single-explanatory model of the common cold, with some differences on subthemes, such as the role of hot and cold forces in the etiology of the common cold. An evaluation of our findings indicates that, although there has been conjecture about whether cultural or lay-professional differences are of greater importance in understanding variation in explanatory models of disease and illness, systematic data collected on community and professional beliefs indicate that such differences may be a function of the specific illness. Further generalizations about lay-professional differences need to be based on detailed data for a variety of illnesses, to discern patterns that may be present. Finally, a systematic approach indicates that agreement across individual explanatory models is sufficient to allow for a community-level explanatory model of the common cold.

  6. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  7. Numerical Modeling of the Severe Cold Weather Event over Central Europe (January 2006

    Directory of Open Access Journals (Sweden)

    D. Hari Prasad

    2010-01-01

    Full Text Available Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature, winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates that the model has the ability to reproduce the time evolution of the cold wave event.

  8. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    International Nuclear Information System (INIS)

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-01-01

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model

  9. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    Science.gov (United States)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  10. Empirical probability model of cold plasma environment in the Jovian magnetosphere

    Science.gov (United States)

    Futaana, Yoshifumi; Wang, Xiao-Dong; Barabash, Stas; Roussos, Elias; Truscott, Pete

    2015-04-01

    We analyzed the Galileo PLS dataset to produce a new cold plasma environment model for the Jovian magneto- sphere. Although there exist many sophisticated radiation models, treating energetic plasma (e.g. JOSE, GIRE, or Salammbo), only a limited number of simple models has been utilized for cold plasma environment. By extend- ing the existing cold plasma models toward the probability domain, we can predict the extreme periods of Jovian environment by specifying the percentile of the environmental parameters. The new model was produced in the following procedure. We first referred to the existing cold plasma models of Divine and Garrett, 1983 (DG83) or Bagenal and Delamere 2011 (BD11). These models are scaled to fit the statistical median of the parameters obtained from Galileo PLS data. The scaled model (also called as "mean model") indicates the median environment of Jovian magnetosphere. Then, assuming that the deviations in the Galileo PLS parameters are purely due to variations in the environment, we extended the mean model toward the percentile domain. The input parameter of the model is simply the position of the spacecraft (distance, magnetic longitude and lati- tude) and the specific percentile (e.g. 0.5 for the mean model). All the parameters in the model are described in mathematical forms; therefore the needed computational resources are quite low. The new model can be used for assessing the JUICE mission profile. The spatial extent of the model covers the main phase of the JUICE mission; namely from the Europa orbit to 40 Rj (where Rj is the radius of Jupiter). In addition, theoretical extensions toward the latitudinal direction are also included in the model to support the high latitude orbit of the JUICE spacecraft.

  11. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  12. Scientists study 'cold war' fallout

    International Nuclear Information System (INIS)

    Stone, R.

    1993-01-01

    This article describes the epidemiological studies being carried out to determine radiation doses to the public from intentional and accidental releases of radioactive compounds during the Cold War. These studies at present are focused on Hanford, Oak Ridge, and Fernald, with studies beginning at Rocky Flats and Savannah

  13. Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.

    2018-02-01

    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

  14. Investigation of cold extrusion process using coupled thermo-mechanical FEM analysis and adaptive friction modeling

    Science.gov (United States)

    Görtan, Mehmet Okan

    2017-10-01

    Cold extrusion processes are known for their excellent material usage as well as high efficiency in the production of large batches. Although the process starts at room temperature, workpiece temperatures may rise above 200°C. Moreover, contact normal stresses can exceed 2500 MPa, whereas surface enlargement values can reach up to 30. These changes affects friction coefficients in cold extrusion processes. In the current study, friction coefficients between a plain carbon steel C4C (1.0303) and a tool steel (1.2379) are determined dependent on temperature and contact pressure using the sliding compression test (SCT). In order to represent contact normal stress and temperature effects on friction coefficients, an empirical adaptive friction model has been proposed. The validity of the model has been tested with experiments and finite element simulations for a cold forward extrusion process. By using the proposed adaptive friction model together with thermo-mechanical analysis, the deviation in the process loads between numerical simulations and model experiments could be reduced from 18.6% to 3.3%.

  15. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    Science.gov (United States)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  16. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  17. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  18. Redshift space clustering of galaxies and cold dark matter model

    Science.gov (United States)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  19. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    Science.gov (United States)

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  20. Numerical analysis of single particle impact in the context of Cold Spray: a new adhesion model

    Science.gov (United States)

    Profizi, P.; Combescure, A.; Ogawa, K.

    2016-03-01

    A new adhesion model for numerical simulation of single particle impact in the context of Cold Spray is introduced. As in other studies, cohesive forces are put between the particle and substrate to account for adhesion. In this study however, the forces are put only when a local physical criterion is met. The physical phenomenon most often attributed to Cold Spray adhesion is a shear stress instability. The Johnson-Cook material law is used with a shear damage softening law to enable strong localization at the interface without the need for an extremely fine mesh. This localization is then detected as a drop in local yield stress value by the algorithm, which then implements a local cohesive force. The evolution of this cohesive force is defined by an energy dissipative cohesive model, using a surface adhesion energy as a material parameter. Each cohesive link is broken once all its associated surface energy is dissipated. A criterion on the damage value is also used to break a cohesive bond prematurely, to account for the effect of erosion at higher speeds. This model is found to reproduce the Cold Spray-like adhesion behavior with observed critical and maximum speeds.

  1. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  2. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  3. On cold spots in tumor subvolumes

    International Nuclear Information System (INIS)

    Tome, Wolfgang A.; Fowler, Jack F.

    2002-01-01

    Losses in tumor control are estimated for cold spots of various 'sizes' and degrees of 'cold dose'. This question is important in the context of intensity modulated radiotherapy where differential dose-volume histograms (DVHs) for targets that abut a critical structure often exhibit a cold dose tail. This can be detrimental to tumor control probability (TCP) for fractions of cold volumes even as small as 1%, if the cold dose is lower than the prescribed dose by substantially more than 10%. The Niemierko-Goitein linear-quadratic algorithm with γ 50 slope 1-3 was used to study the effect of cold spots of various degrees (dose deficit below the prescription dose) and size (fractional volume of the cold dose). A two-bin model DVH has been constructed in which the cold dose bin is allowed to vary from a dose deficit of 1%-50% below prescription dose and to have volumes varying from 1% to 90%. In order to study and quantify the effect of a small volume of cold dose on TCP and effective uniform dose (EUD), a four-bin DVH model has been constructed in which the lowest dose bin, which has a fractional volume of 1%, is allowed to vary from 10% to 45% dose deficit below prescription dose. The highest dose bin represents a simultaneous boost. For fixed size of the cold spot the calculated values of TCP decreased rapidly with increasing degrees of cold dose for any size of the cold spot, even as small as 1% fractional volume. For the four-subvolume model, in which the highest dose bin has a fractional volume of 80% and is set at a boost dose of 10% above prescription dose, it is found that the loss in TCP and EUD is moderate as long as the cold 1% subvolume has a deficit less than approximately 20%. However, as the dose deficit in the 1% subvolume bin increases further it drives TCP and EUD rapidly down and can lead to a serious loss in TCP and EUD. Since a dose deficit to a 1% volume of the target that is larger than 20% of the prescription dose may lead to serious loss of

  4. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  5. A predictive model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Trachtenberg, I.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1994-06-01

    The chemical vapor deposition of polysilicon from thermally activated silane in a cold wall, single-wafer rapid thermal system was studied by experimentation at a variety of low pressure conditions, including very high temperatures. The effect of diluent gas on polysilicon deposition rates was examined using hydrogen, helium, and krypton. A mass-transfer model for the chemical vapor deposition of polysilicon in a cold wall, rapid thermal system was developed. This model was used to produce an empirical rate expression for silicon deposition from silane by regressing kinetic parameters to fit experimental data. The resulting model provided accurate predictions over widely varying conditions in the experimental data.

  6. Positron Plasma Control Techniques Applied to Studies of Cold Antihydrogen

    CERN Document Server

    Funakoshi, Ryo

    2003-01-01

    In the year 2002, two experiments at CERN succeeded in producing cold antihydrogen atoms, first ATHENA and subsequently ATRAP. Following on these results, it is now feasible to use antihydrogen to study the properties of antimatter. In the ATHENA experiment, the cold antihydrogen atoms are produced by mixing large amounts of antiprotons and positrons in a nested Penning trap. The complicated behaviors of the charged particles are controlled and monitored by plasma manipulation techniques. The antihydrogen events are studied using position sensitive detectors and the evidence of production of antihydrogen atoms is separated out with the help of analysis software. This thesis covers the first production of cold antihydrogen in the first section as well as the further studies of cold antihydrogen performed by using the plasma control techniques in the second section.

  7. Two-parametric model of metals hardening during cold working

    International Nuclear Information System (INIS)

    Khajkin, B.E.

    1985-01-01

    Mathematical models of cold working metal resistance σ depending on deformation degree have been analyzed. Advantage of two-parametric formula combining simplicity with satisfactory accuracy of experimental data approximation is noted. The formula is convenient when determining value σ, which is average with respect of deformation location, as average geometric value

  8. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    Science.gov (United States)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  9. A study of sodium oxide crystallization mechanisms and kinetics in cold traps

    International Nuclear Information System (INIS)

    Latge, C.

    1984-04-01

    After showing up the present lack of data on crystallization mechanisms and kinetics, a number of tests were conducted on a sodium test loop equipped with two experimental cold traps. The effects of several geometric and thermohydraulic parameters on purification efficiency were also studied. The test results were used to develop a simulation model. An optimization code based on the model can be used to determine the nucleation and growth kinetics

  10. Workshop on cold-blanket research

    International Nuclear Information System (INIS)

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  11. Uncovering Mechanisms for Repair and Protection in Cold Environments Through Studies of Cold Adapted Archaea

    Science.gov (United States)

    2009-12-18

    Cpn60) subunits is more abundant during growth at 4°C compared to 23°C. Consistent with this, cold shock studies in thermophilic archaea, and...helicases (Mbur_0245, Mbur_1950): These enzymes may be responsible for unwinding secondary structures in messenger RNA, and a role in cold adaptation in M...limiting step, it is unsurprising that these enzymes showed higher abundance at 4ºC. ParA protein (Mbur_2141): ParA ATPases are a ubiquitous

  12. Review for 'Nattoh' model and experimental findings during cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1993-01-01

    A review is described for the Nattoh model that provides the framework of the mechanisms of cold fusion. The model classifies the reactions into two categories: fundamental and associated reactions. The former involves the new 'hydrogen-catalyzed' fusion reaction and the chain-reactions of hydrogens. And extremely exciting physics are involved in the latter. Furthermore experimental findings are described. (author)

  13. Cold and hot model investigation of flow and mixing in a multi-jet flare

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, P.R. [Petrobras Petroleo Brasileiro S.A., Rio de Janeiro (Brazil); Sobiesiak, A. [Windsor Univ., ON (Canada); Grandmaison, E.W. [Queen' s Univ., Kingston, ON (Canada). Centre for Advanced Gas Combustion Technology

    2003-07-01

    The oil and gas industry commonly disposes of hydrocarbon wastes by flaring. This study simulated several features of industrial offshore flares in a multi-jet burner. Cold and hot flow experiments were performed. Twenty-four nozzles mounted on radial arms originating from a central fuel plenum were used in the burner design. In an effort to improve the mixing and radiation characteristics of this type of burner, an examination of the effect of various mixing-altering devices on the nozzle exit ports was performed. Flow visualization studies of the cold and hot flow systems were presented, along with details concerning temperature, gas composition and radiation levels from the burner models. The complex flow pattern resulting when multiple jets are injected into a cross flow stream were demonstrated with the flow visualization studies from the cold model. The trajectory followed by the leading edge jet for the reference case and the ring attachments was higher but similar to the simple round jet in a cross flow. The precessing jets and the cone attachments were more strongly deflected by the cross flow with a higher degree of mixing between the jets in the nozzle region. For different firing rates, flow visualization, gas temperature, gas composition and radiative heat flux measurements were performed in the hot model studies. Flame trajectories, projected side view areas and volumes increased with firing rates for all nozzle configurations and the ring attachment flare had the smallest flame volume. The gas temperatures reached maximum values at close to 30 per cent of the flame length and the lowest gas temperature was observed for the flare model with precessing jets. For the reference case nozzle, nitrogen oxide (NOx) concentrations were in the 30 to 45 parts per million (ppm) range. The precessing jet model yielded NOx concentrations in the 22 to 24 ppm range, the lowest obtained. There was a linear dependence between the radiative heat flux from the flames

  14. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    Science.gov (United States)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  15. Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings

    Science.gov (United States)

    Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.

    2018-05-01

    Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.

  16. Cold light dark matter in extended seesaw models

    Science.gov (United States)

    Boulebnane, Sami; Heeck, Julian; Nguyen, Anne; Teresi, Daniele

    2018-04-01

    We present a thorough discussion of light dark matter produced via freeze-in in two-body decays A→ B DM . If A and B are quasi-degenerate, the dark matter particle has a cold spectrum even for keV masses. We show this explicitly by calculating the transfer function that encodes the impact on structure formation. As examples for this setup we study extended seesaw mechanisms with a spontaneously broken global U(1) symmetry, such as the inverse seesaw. The keV-scale pseudo-Goldstone dark matter particle is then naturally produced cold by the decays of the quasi-degenerate right-handed neutrinos.

  17. Cold aqueous planetary geochemistry with FREZCHEM from modeling to the search for life at the limits

    CERN Document Server

    Marion, Giles M

    2007-01-01

    This book explicitly investigates issues of astrobiological relevance in the context of cold aqueous planetary geochemistry. At the core of the technical chapters is the FREZCHEM model, initially developed over many years by one of the authors to quantify aqueous electrolyte properties and chemical thermodynamics at subzero temperatures. FREZCHEM, of general relevance to biogeochemists and geochemical modelers, cold planetary scientists, physicochemists and chemical engineers, is subsequently applied to the exploration of biogeochemical applications to solar systems bodies in general, and to speculations about the limits for life in cold environments in particular.

  18. Analysis of neutron spectra and fluxes obtained with cold and thermal moderators at IBR-2 reactor: experimental and computer modeling studies at small-angle scattering YuMO setup

    International Nuclear Information System (INIS)

    Kuklin, A.I.; Rogov, A.D.; Gorshkova, Yu.E.; Kovalev, Yu.S.; Kutuzov, S.A.; Utrobin, P.K.; Rogachev, A.V.; Ivan'kov, O.I.; Solov'ev, D.V.; Gordelij, V.I.

    2011-01-01

    Results of experimental and computer modeling investigations of neutron spectra and fluxes obtained with cold and thermal moderators at the IBR-2 reactor (JINR, Dubna) are presented. The studies are done for small-angle neutron scattering (SANS) spectrometer YuMO (beamline number 4 of the IBR-2). The measurements of neutron spectra for two methane cold moderators are done for the standard configuration of the SANS instrument. The data from both moderators under different conditions of their operation are compared. The ratio of experimentally determined neutron fluxes of cold and thermal moderators at different wavelength is shown. Monte Carlo simulations are done to determine spectra for cold methane and thermal moderators. The results of the calculations of the ratio of neutron fluxes of cold and thermal moderators at different wavelength are demonstrated. In addition, the absorption of neutrons in the air gaps on the way from the moderator to the investigated sample is presented. SANS with the protein apoferritin was done in the case of cold methane as well as a thermal moderator and the data were compared. The perspectives for the use of the cold moderator for a SANS spectrometer at the IBR-2 are discussed. The advantages of the YuMO spectrometer with the thermal moderator with respect to the tested cold moderator are shown

  19. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  20. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  1. Cold War Paradigms and the Post-Cold War High School History Curriculum.

    Science.gov (United States)

    McAninch, Stuart A.

    1995-01-01

    Discusses how Cold War ideological models provide a way to examine the U.S. role in world affairs. Discusses and compares on the writings of Paul Gagnon and Noam Chomsky on this topic. Concludes that students should stand outside both models to develop a meaningful perspective on the U.S. role during the Cold War. (CFR)

  2. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.

    Directory of Open Access Journals (Sweden)

    Maarten J Vosselman

    Full Text Available INTRODUCTION: Mild cold acclimation is known to increase brown adipose tissue (BAT activity and cold-induced thermogenesis (CIT in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured. METHODS: The Iceman (subject A and his brother (subject B were studied during mild cold (13°C and thermoneutral conditions (31°C. Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. RESULTS: Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal, within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G. CIT was relatively high (A: 40.1% and B: 41.9%, but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. CONCLUSION: No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the

  3. Compilation of information on modeling of inductively heated cold crucible melters

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler's discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE

  4. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  5. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  6. Performance evaluation on aquatic product cold-chain logistics

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2015-11-01

    Full Text Available Purpose: The requirements for high quality and diversification aquatic products are increasing with the improvement of Chinese living standard. However, the distribution between place of production and place of consumption are uneven, which results in large cold-chain logistics demand for aquatic products. At present, the low-level development of cold chain logistics has a bad impact on the circulation of aquatic products in China. So it is very urgent to develop cold-chain logistics in China. Design/methodology/approach: In order to do this, we apply performance evaluation, a well-known management tool, to study Chinese aquatic product cold-chain logistics. In this paper we first propose SISP(Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model(Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation. Then an ANP-Fuzzy method is proposed to evaluate the operational performance of Shandong Oriental Ocean Sci-Tech Co., Ltd. Furthermore, a system dynamic model is built to simulate the impact of temperature on the profits in aquatic products cold-chain sales section. Findings: We find out within a reasonable temperature range, lower temperature brings higher profit level. Also, performance improvement methods are proposed and the simulation of performance evaluation system is developed. Practical implications: Our findings can help to improve the level of aquatic product cold-chain logistics in China. Originality/value: The paper proposes the SISP (Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model (Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation.

  7. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    Science.gov (United States)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  8. Cold Therapy in Migraine Patients: Open-label, Non-controlled, Pilot Study

    Directory of Open Access Journals (Sweden)

    Serap Ucler

    2006-01-01

    Full Text Available Some patients with headache report that they have frequently used physical therapies such as application of cold to relieve their headache. There are only a few reported studies related to cold therapies in patients with migraine. In this study, we investigated the effect of cold application on migraine patients. Twenty-eight migraine patients were included. Cold therapy was administered to them by gel cap. Patients used this cap during their two migraine attacks. Before and after the cold therapy, headache severity was recorded by using visual analogue scale (VAS. Patients used this cap for 25 min in each application. They recorded their VAS score just after the therapy and 25 min, 1 h, 2 h and 3 h later. Two patients could not use this therapy due to side effects (one due to cold intolerance and one due to vertigo in both applications. Therefore, therapeutic efficacy was evaluated in 26 patients. Twenty-five minutes after treatment of the first attack, VAS score was decreased from 7.89 ± 1.93 to 5.54 ± 2.96 (P < 0.01. Twenty-five minutes after treatment of the second attack, VAS score was decreased from 7.7 ± 1.8 to 5.4 ± 3.55 (P < 0.01. Cold application alone may be effective in some patients suffering from migraine attacks. Its combination with conventional drugs should be investigated in future studies.

  9. Intense cold and mortality in Castile-La Mancha (Spain): study of mortality trigger thresholds from 1975 to 2003

    Science.gov (United States)

    Miron, Isidro J.; Montero, Juan Carlos; Criado-Alvarez, Juan José; Linares, Cristina; Díaz, Julio

    2012-01-01

    Studies on temperature-mortality time trends especially address heat, so that any contribution on the subject of cold is necessarily of interest. This study describes the modification of the lagged effects of cold on mortality in Castile-La Mancha from 1975 to 2003, with the novelty of also approaching this aspect in terms of mortality trigger thresholds. Cross-correlation functions (CCFs) were thus established with 15 lags, after application of ARIMA models to the mortality data and minimum daily temperatures (from November to March), and the results for the periods 1975-1984, 1985-1994 and 1995-2003 were then compared. In addition, daily mortality residuals for the periods 1975-1989 and 1990-2003 were related to minimum temperatures grouped in 2°C intervals, with a cold threshold temperature being obtained in cases where such residuals increased significantly ( p economic conditions over the study period. Evidence was shown of the effects of cold on mortality, a finding that renders the adoption of preventive measures advisable in any case where intense cold is forecast.

  10. Temperature limit values for cold touchable surfaces ' ColdSurf ' : final report

    NARCIS (Netherlands)

    Holmer, I.; Havenith, G.; Hartog, E.A. den; Rintamaki, H.; Malchaire, J.

    2000-01-01

    The aim of the project was to find and compile information on human responses to contact with cold surfaces. The work has covered 1) literature search and field survey; 2) experimental studies with human subjects; 3) simulation by modeling; 4) instrumentation (artificial finger), 5) establishment of

  11. Computer simulation and cold model testing of CCL cavities

    International Nuclear Information System (INIS)

    Chang, C.R.; Yao, C.G.; Swenson, D.A.; Funk, L.W.

    1993-01-01

    The SSC coupled-cavity-linac (CCL) consists of nine modules with eight tanks in each module. Multicavity magnetically coupled bridge couplers are used to couple the eight tanks within a module into one RF resonant chain. The operating frequency is 1282.851 MHz. In this paper the authors discuss both computer calculations and cold model measurements to determine the geometry dimension of the RF structure

  12. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    Science.gov (United States)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2017-05-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  13. Assessing cold chain status in a metro city of India: an intervention study.

    Science.gov (United States)

    Mallik, S; Mandal, P K; Chatterjee, C; Ghosh, P; Manna, N; Chakrabarty, D; Bagchi, S N; Dasgupta, S

    2011-03-01

    Cold chain maintenance is an essential activity to maintain the potency of vaccines and to prevent adverse events following immunization. One baseline study highlighted the unsatisfactory cold chain status in city of Kolkata in India. To assess the changes which occurred in the cold chain status after the intervention undertaken to improve the status and also to assess the awareness of the cold chain handlers regarding cold chain maintenance. Intervention consisted of reorganization of cold chain points and training of health manpower in Kolkata Municipal area regarding immunization and cold chain following the guidelines as laid by Govt of India. Reevaluation of cold chain status was done at 20 institutions selected by stratified systematic random sampling after the intervention. The results were compared with baseline survey. Significant improvement had been observed in correct placing of cold chain equipment, maintenance of stock security, orderly placing of ice packs, diluents and vaccines inside the equipment, temperature recording and maintenance. But awareness and skill of cold chain handlers regarding basics of cold chain maintenance was not satisfactory. The success of intervention included significant improvement of cold chain status including creation of a designated cold chain handler. The gaps lay in non-availability of non-electrical cold chain equipment and separate cold chain room, policy makers should stress. Cold chain handlers need reorientation training regarding heat & cold sensitive vaccines, preventive maintenance and correct contingency plan.

  14. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  15. Molecular determinants of enzyme cold adaptation: comparative structural and computational studies of cold- and warm-adapted enzymes.

    Science.gov (United States)

    Papaleo, Elena; Tiberti, Matteo; Invernizzi, Gaetano; Pasi, Marco; Ranzani, Valeria

    2011-11-01

    The identification of molecular mechanisms underlying enzyme cold adaptation is a hot-topic both for fundamental research and industrial applications. In the present contribution, we review the last decades of structural computational investigations on cold-adapted enzymes in comparison to their warm-adapted counterparts. Comparative sequence and structural studies allow the definition of a multitude of adaptation strategies. Different enzymes carried out diverse mechanisms to adapt to low temperatures, so that a general theory for enzyme cold adaptation cannot be formulated. However, some common features can be traced in dynamic and flexibility properties of these enzymes, as well as in their intra- and inter-molecular interaction networks. Interestingly, the current data suggest that a family-centered point of view is necessary in the comparative analyses of cold- and warm-adapted enzymes. In fact, enzymes belonging to the same family or superfamily, thus sharing at least the three-dimensional fold and common features of the functional sites, have evolved similar structural and dynamic patterns to overcome the detrimental effects of low temperatures.

  16. Study Finds Association between Biological Marker and Susceptibility to the Common Cold

    Science.gov (United States)

    ... W X Y Z Study Finds Association Between Biological Marker and Susceptibility to the Common Cold Share: © ... a cold caused by a particular rhinovirus. The biological marker identified in the study was the length ...

  17. Artificial intelligence search techniques for optimization of the cold source geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Most optimization studies of cold neutron sources have concentrated on the numerical prediction or experimental measurement of the cold moderator optimum thickness which produces the largest cold neutron leakage for a given thermal neutron source. Optimizing the geometrical shape of the cold source, however, is a more difficult problem because the optimized quantity, the cold neutron leakage, is an implicit function of the shape which is the unknown in such a study. We draw an analogy between this problem and a state space search, then we use a simple Artificial Intelligence (AI) search technique to determine the optimum cold source shape based on a two-group, r-z diffusion model. We implemented this AI design concept in the computer program AID which consists of two modules, a physical model module and a search module, which can be independently modified, improved, or made more sophisticated. 7 refs., 1 fig

  18. Artificial intelligence search techniques for the optimization of cold source geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Most optimization studies of cold neutron sources have concentrated on the numerical prediction or experimental measurement of the cold moderator optimum thickness that produces the largest cold neutron leakage for a given thermal neutron source. Optimizing the geometric shape of the cold source, however, is a more difficult problem because the optimized quantity, the cold neutron leakage, is an implicit function of the shape, which is the unknown in such a study. An analogy is drawn between this problem and a state space search, then a simple artificial intelligence (AI) search technique is used to determine the optimum cold source shape based on a two-group, r-z diffusion model. This AI design concept was implemented in the computer program AID, which consists of two modules, a physical model module, and a search module, which can be independently modified, improved, or made more sophisticated

  19. Nuclear Waste Vitrification Efficiency: Cold Cap Reactions

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.; Pokorny, R.

    2011-01-01

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe 2 O 3 and Al 2 O 3 ), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter

  20. The molecular and cellular basis of cold sensation.

    Science.gov (United States)

    McKemy, David D

    2013-02-20

    Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.

  1. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  2. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  3. A study about business sustainability in cold storage agroindustry

    Directory of Open Access Journals (Sweden)

    Geraldino Carneiro de Araújo

    2009-05-01

    Full Text Available Industrial organizations are adapting to the concept of business sustainability in which companies develop social actions not losing the focus of financial and economic returns. In this context, the beef production sector, which has the cold storage agroindustry as the official coordinator of the chain, is important because of the socio-environmental actions. The objective of this research, characterized as descriptive and exploratory, with a qualitative approach, is to describe the measures adopted for business sustainability of agroindustry. Data analysis was the methodology of Grounded Theory. The results show the involvement of the cold storage studied in the three dimensions of sustainability (environmental, economic and social, and conclude that the cold storage agroindustry has incorporated the concept of sustainability of the business requirements of exporters.

  4. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  5. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency.

    Science.gov (United States)

    Uvin, Pieter; Franken, Jan; Pinto, Silvia; Rietjens, Roma; Grammet, Luc; Deruyver, Yves; Alpizar, Yeranddy A; Talavera, Karel; Vennekens, Rudi; Everaerts, Wouter; De Ridder, Dirk; Voets, Thomas

    2015-10-01

    Acute exposure of part of the skin to cold stimuli can evoke urinary urgency, a phenomenon termed acute cold-induced urgency (ACIU). Despite its high prevalence, particularly in patients with overactive bladder, little is known about the mechanisms that induce ACIU. To develop an animal model of ACIU and test the involvement of cold-activated ion channels transient receptor potential (TRP) M8 and TRPA1. Intravesical pressure and micturition were monitored in female mice (wild-type C57BL/6J, Trpa1(-/-), Trpm8(+/+), and Trpm8(-/-)) and Sprague Dawley rats. An intravesical catheter was implanted. Localized cooling of the skin was achieved using a stream of air or topical acetone. The TRPM8 antagonist (N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide (AMTB) or vehicle was injected intraperitoneally. Frequencies of bladder contractions and voids in response to sensory stimuli were compared using the Mann-Whitney or Kruskal-Wallis test. Brief, innocuously cold stimuli applied to different parts of the skin evoked rapid bladder contractions and voids in anesthetized mice and rats. These responses were strongly attenuated in Trpm8(-/-) mice and in rats treated with AMTB. As rodent bladder physiology differs from that of humans, it is difficult to directly extrapolate our findings to human patients. Our findings indicate that ACIU is an evolutionarily conserved reflex rather than subconscious conditioning, and provide a useful in vivo model for further investigation of the underlying mechanisms. Pharmacological inhibition of TRPM8 may be useful for treating ACIU symptoms in patients. Brief cold stimuli applied to the skin can evoke a sudden desire to urinate, which can be highly bothersome in patients with overactive bladder. We developed an animal model to study this phenomenon, and found that it depends on a specific molecular cold sensor, transient receptor potential M8 (TRPM8). Pharmacological inhibition of TRPM8 may alleviate acute cold

  6. The impact of cold spells on mortality and effect modification by cold spell characteristics

    Science.gov (United States)

    Wang, Lijun; Liu, Tao; Hu, Mengjue; Zeng, Weilin; Zhang, Yonghui; Rutherford, Shannon; Lin, Hualiang; Xiao, Jianpeng; Yin, Peng; Liu, Jiangmei; Chu, Cordia; Tong, Shilu; Ma, Wenjun; Zhou, Maigeng

    2016-12-01

    In China, the health impact of cold weather has received little attention, which limits our understanding of the health impacts of climate change. We collected daily mortality and meteorological data in 66 communities across China from 2006 to 2011. Within each community, we estimated the effect of cold spell exposure on mortality using a Distributed Lag Nonlinear Model (DLNM). We also examined the modification effect of cold spell characteristics (intensity, duration, and timing) and individual-specific factors (causes of death, age, gender and education). Meta-analysis method was finally used to estimate the overall effects. The overall cumulative excess risk (CER) of non-accidental mortality during cold spell days was 28.2% (95% CI: 21.4%, 35.3%) compared with non-cold spell days. There was a significant increase in mortality when the cold spell duration and intensity increased or occurred earlier in the season. Cold spell effects and effect modification by cold spell characteristics were more pronounced in south China. The elderly, people with low education level and those with respiratory diseases were generally more vulnerable to cold spells. Cold spells statistically significantly increase mortality risk in China, with greater effects in southern China. This effect is modified by cold spell characteristics and individual-level factors.

  7. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  8. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  9. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  10. A comparison of least squares linear regression and measurement error modeling of warm/cold multipole correlation in SSC prototype dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Kim, K.; Gunst, R.; Schucany, W.

    1993-05-01

    Linear estimation of cold magnetic field quality based on warm multipole measurements is being considered as a quality control method for SSC production magnet acceptance. To investigate prediction uncertainties associated with such an approach, axial-scan (Z-scan) magnetic measurements from SSC Prototype Collider Dipole Magnets (CDM's) have been studied. This paper presents a preliminary evaluation of the explanatory ability of warm measurement multipole variation on the prediction of cold magnet multipoles. Two linear estimation methods are presented: least-squares regression, which uses the assumption of fixed independent variable (xi) observations, and the measurement error model, which includes measurement error in the xi's. The influence of warm multipole measurement errors on predicted cold magnet multipole averages is considered. MSD QA is studying warm/cold correlation to answer several magnet quality control questions. How well do warm measurements predict cold (2kA) multipoles? Does sampling error significantly influence estimates of the linear coefficients (slope, intercept and residual standard error)? Is estimation error for the predicted cold magnet average small compared to typical variation along the Z-Axis? What fraction of the multipole RMS tolerance is accounted for by individual magnet prediction uncertainty?

  11. A passive cold storage device economic model to evaluate selected immunization location scenarios.

    Science.gov (United States)

    Norman, Bryan A; Nourollahi, Sevnaz; Chen, Sheng-I; Brown, Shawn T; Claypool, Erin G; Connor, Diana L; Schmitz, Michelle M; Rajgopal, Jayant; Wateska, Angela R; Lee, Bruce Y

    2013-10-25

    The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios

  12. Temporal characteristics of cold pain perception.

    Science.gov (United States)

    Frölich, Michael A; Bolding, Mark S; Cutter, Gary R; Ness, Timothy J; Zhang, Kui

    2010-08-09

    Adaptation to a sustained stimulus is an important phenomenon in psychophysical experiments. When studying the response to an experimental task, the investigator has to account for the change in perceived stimulus intensity with repeated stimulus application and, if the stimulus is sustained, for the change in intensity during the presentation. An example of a sustained stimulus is the cold pressor task (CPT). The task has been used both as an experimental pain task and to study cardiovascular physiology. In functional imaging research, the CPT has been used to evaluate cognitive processing of a noxious stimulus. Investigators typically model the stimulus in a block design as a categorical (on-off) stimulus and do not account for a temporal change in stimulus perception. If the perceived stimulus changes over time, the results may be misleading. Therefore, we characterized the time course of cold pain in human volunteers and developed a model of the temporal characteristics of perceived cold pain. Fifteen healthy participants underwent cold pain testing by immersing their right foot into a container filled with ice water (2 degrees C) for 30s alternating with a 30s immersion into a container filled with tepid water 32 degrees C (control). Participants rated the pain intensity using an electronic slide algometer. Using a mixed general linear model (effectively a polynomial regression model), we determined that pain ratings follow a crescendo-decrescendo pattern that can be described well using a quadratic model. We conclude that the time course of quantitative perception differs fundamentally from the time course of stimulus presentation. This may be important when looking for the physiological correlates of perception as opposed to the presence of a stimulus per se. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Concerning the modelling of systems in terms of Quantum Electrodynamics: the special case of 'Cold Fusion'

    International Nuclear Information System (INIS)

    Abyaneh, Morteza; Fleischmann, Martin; Del Giudice, Emilio; Vitiello, Giuseppe

    2006-01-01

    A question we are asked repeatedly is: 'what are the causes of the opposition to your belief in the reality of 'Cold Fusion?'. This question is normally asked in the context of the statement that Quantum Mechanics shows that this phenomenon is impossible (a view that we share). Our answer is always based on the statement 'but what about the modelling of such systems in terms of QED?' which is always met by the insistence that Quantum Mechanics shows that Cold Fusion is impossible. We conclude that scientists do not understand QED or, if they have some understanding of this subject, then this must be subject to some major misconceptions. This pointless dialogue (perhaps more correctly described as two monologues conducted in parallel) and the insistence on the primacy of Quantum Mechanics in the modelling of systems in the Natural Sciences is unfortunate because it obscures the outcome of the investigations in the more normal fields of the Natural Sciences (more normal than Cold Fusion). A brief outline of the work which has led to the formulation of the concept of coherence will therefore be given under the aegis of the revolutions in our understanding of the Natural Sciences which has taken place since the latter part of the 19. Century. The main illustration of the way we can demonstrate the applicability of these concepts will be based on the study of nucleation and phase growth. The development of micro-electrode substrates allows us to study the statistics of the formation of the first nucleus; it will be shown that these statistics are strictly in line with concepts developed from QED coherence. We conclude that QED coherence is not just a concept to be confined to sub-atomic physics, cosmology etc. but that it pervades the modelling of the whole of the Natural Sciences including that of 'Cold Fusion'. Some of the major steps which have taken place in the development of this subject area will be illustrated

  14. Fishing on cold water coral reefs : A bioeconomic model of habitat-fishery connections

    OpenAIRE

    Kahui, Viktoria; Armstrong, Claire W.

    2008-01-01

    This paper applies a bioeconomic model in order to study different interactions between a harvested renewable resource and a non-renewable resource without commercial value that is negatively affected by the harvesting activity. This enables the analysis of for instance cold water coral habitats and their importance to commercial fish species. The fish is harvested either in a manner that does not damage coral, such as stationary gear, or in a destructive fashion, such as botto...

  15. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  16. A pilot study exploring the effects of reflexology on cold intolerance.

    Science.gov (United States)

    Zhang, Wenping; Takahashi, Shougo; Miki, Takashi; Fujieda, Hisayo; Ishida, Torao

    2010-03-01

    Cold intolerance is an inability to tolerate cold temperatures and is accompanied by symptoms including headache, shoulder discomfort, dizziness and palpitations. The current study was performed to examine whether reflexology therapy affected cold intolerance in human subjects and whether the treatment was systemically effective. Ten female volunteer examinees with subjective feelings of cold were examined. After a 5-minute foot bath, 10 minutes of reflexology therapy was performed on their left foot. Skin temperature and blood flow were estimated before and after treatment, together with an interview concerning their feelings of cold and daily habits. In addition, how the recovery rate was affected by the application of a chilled-water load was also estimated. Along with significant increases in skin temperature and blood flow compared with pre-treatment at the bilateral points of KI-1, LR-3, and BL-60, a faster recovery after the application of the chilled-water load was also seen in the lower limbs on both sides. From these results, we conclude that reflexology has systemic effects and is an alternative method for treating cold intolerance. Copyright (c) 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  17. Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe

    Science.gov (United States)

    Lowe, Rachel; Ballester, Joan; Creswick, James; Robine, Jean-Marie; Herrmann, François R.; Rodó, Xavier

    2015-01-01

    The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1–15 August 2003), the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution) for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1–15 January 2003), mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality predictions could

  18. Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe

    Directory of Open Access Journals (Sweden)

    Rachel Lowe

    2015-01-01

    Full Text Available The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1–15 August 2003, the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1–15 January 2003, mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality

  19. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: A study in a monozygotic twin

    NARCIS (Netherlands)

    M.J. Vosselman (Maarten J.); G.H.E.J. Vijgen (Guy H. E. J.); B.R.M. Kingma (Boris R. M.); B. Brans (Boudewijn); W.D. Van Marken Lichtenbelt (Wouter D.)

    2014-01-01

    textabstractIntroduction: Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has

  20. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris

    Directory of Open Access Journals (Sweden)

    Ali Noman

    2017-08-01

    Full Text Available Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.

  1. Observations of Cold Pool Properties during GoAmazon2014/5

    Science.gov (United States)

    Mayne, S. L.; Schumacher, C.; MacDonald, L.; Turner, D. D.

    2017-12-01

    Convectively generated cold pools are instrumental in both the development of the sub-cloud layer and the organization of deep convection. Despite this, analyses of cold pools in the tropics are constrained by a lack of observational data; insight into the phenomena therefore relies heavily on numerical models. GoAmazon2014/5, a 2-year DOE-sponsored field campaign centered on Manacapuru, Brazil in the central Amazon, provides a unique opportunity to characterize tropical cold pools and allows for the comparison of observational data with theoretical results from model cold pool simulations and parameterizations. This investigation analyzes radar, disdrometer, and profiler measurements at the DOE mobile facility site to study tropical cold pool characteristics. The Brazilian military (SIPAM) operational S-band radar in Manaus is used to provide a broad context of convective systems, while measurements from Parsivel disdrometers are used to assess drop-size distributions (DSDs) at the surface. A unique aspect of this research is the use of the Atmospheric Emitted Radiance Interferometer (AERI) instrument, which utilizes down-welling IR measurements to obtain vertical profiles of thermodynamic quantities such as temperature and water vapor in the lowest few km of the atmosphere. Combined with surface observations and sounding data, these datasets will result in a thorough investigation of the horizontal and vertical characteristics of cold pools over the tropical rain forest. Preliminary analyses of 20 events reveal a mean cold pool height of 220 m and a mean radius of approximately 8.5 km. The average cold pool experienced a temperature (specific humidity) decrease of approximately 1 K (0.4 g/kg) at the surface. The temperature decrease is consistent with modeling studies and limited observations from previous studies over the tropics. The small decrease in specific humidity is attributed to the high moisture content within the cold pools. AERI retrievals of

  2. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    Science.gov (United States)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  3. SANS study of understanding mechanism of cold gelation of globular proteins

    International Nuclear Information System (INIS)

    Chinchalikar, A. J.; Kumar, Sugam; Aswal, V. K.; Wagh, A. G.; Kohlbrecher, J.

    2014-01-01

    Small-angle neutron scattering (SANS) has been used to probe the evolution of interaction and the resultant structures in the cold gelation of globular proteins. The cold gelation involves two steps consisting of irreversible protein deformation by heating followed by some means (e.g. increasing ionic strength) to bring them together at room temperature. We have examined the role of different salts in cold gelation of preheated aqueous Bovine Serum Albumin (BSA) protein solutions. The interactions have been modeled by two Yukawa potential combining short-range attraction and long-range repulsion. We show that in step 1 (preheated temperature effect) the deformation of protein increases the magnitude of attractive interaction but not sufficient to induce gel. The attractive interaction is further enhanced in step 2 (salt effect) to result in gel formation. The salt effect is found to be strongly depending on the valency of the counterions. The gel structure has been characterized by the mass fractals

  4. Study of Cold Fusion Reactions Using Collective Clusterization Approach

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-10-01

    Within the framework of the dynamical cluster decay model (DCM), the 1n evaporation cross-sections ({σ }1n) of cold fusion reactions (Pb and Bi targets) are calculated for {Z}{CN}=104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy {E}{CN}* =15+/- 1 {MeV}, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (B f ) and neutron separation energies ({S}1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β 2i-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the 1n cross-sections are addressed for {Z}{CN}=104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto {Z}{CN}=109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia ({I}{NS}) is also investigated at these energies. Supported by the Council of Scientific and Industrial Research (CSIR), in the Form of Research Project Grant No. 03(1341)/15/EMR-II, and to DST, New Delhi, for INSPIRE-Fellowship Grant No. DST/INSPIRE/03/2015/000199

  5. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  6. Dissociation of brain edema induced by cold injury in rat model. MR imaging and perfusion studies with 14C-iodo-antipyrine

    International Nuclear Information System (INIS)

    Itabashi, Yoko; Prado, G.L.M.; Abo, Mitsuru; Miura, Hiroyuki; Abe, Yoshinao

    2001-01-01

    The purpose of this study is to confirm whether T2-weighted imaging and perfusion imaging, i.e. autoradiogram of 14 C-iodoantipyrine, on the course of brain edema correspond to each other or not. Cold injured rat brains were used as a model and were sequentially examined by both methods and compared with each other and with histological specimens. Special focus relies on the time changes in the lesions. High SI of T2-weighted images were observed and the percentages in the high SI area to the total brain area in the same slice were 4.7±0.31, 5.6±0.46 and 3.4±0.42 for 6, 24 and 48 hours, respectively. By contrast, low perfusion areas were indicated in the perfusion study and their percentages were 4.6±0.55, 5.6±0.86 and 2.4±0.35 for 6, 24 and 48 hours, respectively. At 48 hours after cold injury, low perfusion areas were smaller than high SI areas. Moreover, high accumulation areas consisting of macrophages were observed surrounding necrosis. It is concluded that there is dissociation between perfusion and T2-weighted MR imaging, where the collection of macrophages surrounding edema lesions and necrosis had the same appearance on MRI and different accumulations on perfusion studies. (author)

  7. A novel behavioral assay for measuring cold sensation in mice.

    Science.gov (United States)

    Brenner, Daniel S; Golden, Judith P; Gereau, Robert W

    2012-01-01

    Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  8. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA.

    Directory of Open Access Journals (Sweden)

    Jennifer A Curtis

    Full Text Available We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  9. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  10. Thermal welding versus cold knife tonsillectomy: A prospective randomized study

    Directory of Open Access Journals (Sweden)

    Metin Yilmaz

    2012-05-01

    Full Text Available This is a prospective randomized study conducted in a group of children who underwent two methods of tonsillectomy: thermal welding or cold knife tonsillectomy. Parameters, such as postoperative pain scores, intraoperative blood loss, operation time, and postoperative bleeding rates, were analyzed to find out which technique is better. Ninety-one children (aged between 2 years and 13 years with recurrent tonsillitis, obstructive sleep apnea syndrome, or both were included in the study. According to the type of tonsillectomy procedure, the patients were divided into two groups: cold knife and thermal welding procedure. The two groups were compared on the basis of postoperative pain scores, intraoperative blood loss, operation time, and postoperative bleeding. Fifty-seven patients underwent thermal welding tonsillectomy and 34 had cold knife tonsillectomy. The mean pain score in thermal welding group was significantly lower (p<0.001. There was no remarkable blood loss intraoperatively in the thermal welding procedure. The operation time was not significantly different between two groups. No postoperative bleeding was encountered in the thermal welding group. Compared with the cold knife technique, thermal welding was found to be a relatively new and safe technique for tonsillectomy as it results in significantly less postoperative pain and no remarkable blood loss.

  11. Recent Cold War Studies

    Science.gov (United States)

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  12. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    Science.gov (United States)

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p anxiety rating predicted the f

  13. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p CSR when anxiety

  14. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2003-01-01

    Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....

  15. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs. © 2013 The Japanese Urological Association.

  16. A novel behavioral assay for measuring cold sensation in mice.

    Directory of Open Access Journals (Sweden)

    Daniel S Brenner

    Full Text Available Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  17. Analysis of the cold compaction behaviour of TiH2-316L nanocomposite powder blend using compaction models

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2015-07-01

    Full Text Available The paper captures the effect of structure and the applicability of compaction models using the cold compaction of a TiH2-SS316L composite powder prepared by high energy mechanical milling. The composite blend was cold pressed uniaxially...

  18. Multimodal distribution of human cold pain thresholds.

    Science.gov (United States)

    Lötsch, Jörn; Dimova, Violeta; Lieb, Isabel; Zimmermann, Michael; Oertel, Bruno G; Ultsch, Alfred

    2015-01-01

    It is assumed that different pain phenotypes are based on varying molecular pathomechanisms. Distinct ion channels seem to be associated with the perception of cold pain, in particular TRPM8 and TRPA1 have been highlighted previously. The present study analyzed the distribution of cold pain thresholds with focus at describing the multimodality based on the hypothesis that it reflects a contribution of distinct ion channels. Cold pain thresholds (CPT) were available from 329 healthy volunteers (aged 18 - 37 years; 159 men) enrolled in previous studies. The distribution of the pooled and log-transformed threshold data was described using a kernel density estimation (Pareto Density Estimation (PDE)) and subsequently, the log data was modeled as a mixture of Gaussian distributions using the expectation maximization (EM) algorithm to optimize the fit. CPTs were clearly multi-modally distributed. Fitting a Gaussian Mixture Model (GMM) to the log-transformed threshold data revealed that the best fit is obtained when applying a three-model distribution pattern. The modes of the identified three Gaussian distributions, retransformed from the log domain to the mean stimulation temperatures at which the subjects had indicated pain thresholds, were obtained at 23.7 °C, 13.2 °C and 1.5 °C for Gaussian #1, #2 and #3, respectively. The localization of the first and second Gaussians was interpreted as reflecting the contribution of two different cold sensors. From the calculated localization of the modes of the first two Gaussians, the hypothesis of an involvement of TRPM8, sensing temperatures from 25 - 24 °C, and TRPA1, sensing cold from 17 °C can be derived. In that case, subjects belonging to either Gaussian would possess a dominance of the one or the other receptor at the skin area where the cold stimuli had been applied. The findings therefore support a suitability of complex analytical approaches to detect mechanistically determined patterns from pain phenotype data.

  19. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    Science.gov (United States)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  20. Cold Fronts Research Programme: Progress, Future Plans, and Research Directions.

    Science.gov (United States)

    Ryan, B. F.; Wilson, K. J.; Garratt, J. R.; Smith, R. K.

    1985-09-01

    Following the analysis of data collected during Phases land II of the Cold Fronts Research Programme (CFRP) a conceptual model for the Australian summertime "cool change" has been proposed. The model provides a focus and a framework for the design of Phase III.The model is based on data gathered from a mesoscale network centered on Mount Gambier, South Australia, and includes the coastal waters to the west and relatively flat terrain to the east. The first objective of Phase III is to generalize the model so that it is applicable to the ocean waters to the far west of Mount Gambier and to the more rugged terrain farther to the east in the vicinity of Melbourne, Victoria. The remaining objectives concentrate on resolving unsatisfactory aspects of the model such as the evolution of convective lines and the relationship between the surface cold front and the upper-tropospheric cold pool and its associated jet stream.The integrated nature of the Cold Fronts Research Programme has meant that it has stimulated a wide range of research activities that extend beyond the field observations. The associated investigations include climatological, theoretical, and numerical modeling studies.

  1. Two-Dimensional Heat Transfer Modeling of the Formosa Ridge Offshore SW Taiwan: Implication for Fluid Migrating Paths of a Cold Seep Site

    Science.gov (United States)

    Tsai, Y.; Chi, W.; Liu, C.; Shyu, C.

    2011-12-01

    The Formosa Ridge, a small ridge located on the passive China continental slope offshore southwestern Taiwan, is an active cold seep site. Large and dense chemosynthetic communities were found there by the ROV Hyper-Dolphin during the 2007 NT0705 cruise. A vertical blank zone is clearly observed on all the seismic profiles across the cold seep site. This narrow zone is interpreted to be the fluid conduit of the seep site. Previous studies suggest that cold sea water carrying large amount of sulfate could flow into the fluid system from flanks of the ridge, and forms a very effective fluid circulation system that emits both methane and hydrogen sulfide to feed the unusual chemosynthetic communities observed at the Formosa Ridge cold seep site. Here we use thermal signals to study possible fluid flow migration paths. In 2008 and 2010, we have collected vdense thermal probe data at this site. We also study the temperatures at Bottom-Simulating Reflectors (BSRs) based on methane hydrate phase diagram. We perform 2D finite element thermal conductive simulations to study the effects of bathymetry on the temperature field in the ridge, and compare the simulation result with thermal probe and BSR-derived datasets. The boundary conditions include insulated boundaries on both sides, and we assign a fix temperature at the bottom of the model using an average regional geothermal gradient. Sensitivity tests and thermal probe data from a nearby region give a regional background geothermal gradient of 0.04 to 0.05 °C/m. The outputs of the simulation runs include geothermal gradient and temperature at different parts of the model. The model can fit the geothermal gradient at a distance away from the ridge where there is less geophysics evidence of fluid flow. However our model over-predicts the geothermal gradient by 50% at the ridge top. We also compare simulated temperature field and found that under the flanks of the ridge the temperature is cooled by 2 °C compared with the

  2. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  3. Theoretical and experimental studies of thermal stratification in hot and cold pools of PFBR

    International Nuclear Information System (INIS)

    Velusamy, K.; Titus, G.; Rajakumar, A.; Ravichandran, G.; Padmakumar, G.; Vaidyanathan, G.; Kale, R.D.; Chetal, S.C.; Bhoje, S.B.

    1994-01-01

    Results of experimental studies carried out in two water models of size 1/24 and 1/15, to assess the free level fluctuation in the hot pool of PFBR are presented. The results when extrapolated to the prototype gives a ripple height of 50 mm. The results of thermal stratification studies carried out in 1/24 scale model, using hot and cold water indicates that the interface velocity can be correlated with the Richardson number. The paper also gives the details of computer codes developed for the estimation of flow and temperature fields in the pools. (author)

  4. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  5. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  6. Cold-Induced Thermogenesis and Inflammation-Associated Cold-Seeking Behavior Are Represented by Different Dorsomedial Hypothalamic Sites: A Three-Dimensional Functional Topography Study in Conscious Rats.

    Science.gov (United States)

    Wanner, Samuel P; Almeida, M Camila; Shimansky, Yury P; Oliveira, Daniela L; Eales, Justin R; Coimbra, Cândido C; Romanovsky, Andrej A

    2017-07-19

    In the past, we showed that large electrolytic lesions of the dorsomedial hypothalamus (DMH) promoted hypothermia in cold-exposed restrained rats, but attenuated hypothermia in rats challenged with a high dose of bacterial lipopolysaccharide (LPS) in a thermogradient apparatus. The goal of this study was to identify the thermoeffector mechanisms and DMH representation of the two phenomena and thus to understand how the same lesion could produce two opposite effects on body temperature. We found that the permissive effect of large electrolytic DMH lesions on cold-induced hypothermia was due to suppressed thermogenesis. DMH-lesioned rats also could not develop fever autonomically: they did not increase thermogenesis in response to a low, pyrogenic dose of LPS (10 μg/kg, i.v.). In contrast, changes in thermogenesis were uninvolved in the attenuation of the hypothermic response to a high, shock-inducing dose of LPS (5000 μg/kg, i.v.); this attenuation was due to a blockade of cold-seeking behavior. To compile DMH maps for the autonomic cold defense and for the cold-seeking response to LPS, we studied rats with small thermal lesions in different parts of the DMH. Cold thermogenesis had the highest representation in the dorsal hypothalamic area. Cold seeking was represented by a site at the ventral border of the dorsomedial nucleus. Because LPS causes both fever and hypothermia, we originally thought that the DMH contained a single thermoregulatory site that worked as a fever-hypothermia switch. Instead, we have found two separate sites: one that drives thermogenesis and the other, previously unknown, that drives inflammation-associated cold seeking. SIGNIFICANCE STATEMENT Cold-seeking behavior is a life-saving response that occurs in severe systemic inflammation. We studied this behavior in rats with lesions in the dorsomedial hypothalamus (DMH) challenged with a shock-inducing dose of bacterial endotoxin. We built functional maps of the DMH and found the strongest

  7. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  8. Modeling of gas-phase chemistry in the chemical vapor deposition of polysilicon in a cold wall system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Edgar, T.F.; Trachtenberg, I. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-06-01

    The relative contribution of gas-phase chemistry to deposition processes is an important issue both from the standpoint of operation and modeling of these processes. In polysilicon deposition from thermally activated silane in a cold wall rapid thermal chemical vapor deposition (RTCVD) system, the relative contribution of gas-phase chemistry to the overall deposition rate was examined by a mass-balance model. Evaluating the process at conditions examined experimentally, the model indicated that gas-phase reactions may be neglected to good accuracy in predicting polysilicon deposition rate. The model also provided estimates of the level of gas-phase generated SiH[sub 2] associated with deposition on the cold-process chamber walls.

  9. Propagation of Gaussian laser beam in cold plasma of Drude model

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Li Lei; Du Yanwei

    2011-01-01

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n 0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  10. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    Science.gov (United States)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed

  11. Thermo-hydrodynamic and inductive modelling of a glass melt elaborated in cold inductive crucible

    International Nuclear Information System (INIS)

    Sauvage, E.

    2009-11-01

    Within the context of a search for a new vitrification process for nuclear wastes with a replacement of the presently used metallic pot by an inductive cold crucible, this research thesis deals with the numerical modelling of this technology. After having recalled the interest of nuclear waste vitrification, this report presents the new process based on the use of a cold crucible, describing principles and objectives of this method, and the characteristic physical phenomena associated with the flow and the thermodynamics of the glassy melt in such a crucible. It also recalls and comments the existing works on modelling. The main objective of this research is then to demonstrate the feasibility of 3D thermo-hydraulic and inductive simulations. He describes and analyses the glass physical properties (electrical properties, viscosity, thermal properties), the electromagnetic, hydrodynamic and thermal phenomena. He presents in detail the bubbling mixing modelling, reports 3D induction and fluid mechanical coupling calculations, and specific thermal investigations (radiating transfers, thermal limit conditions)

  12. Modeling a cold-air drainage event with a wireless sensor network

    OpenAIRE

    Brian R. Zutta; Eric A. Graham; Philip W. Rundel

    2005-01-01

    A wireless network of sensors was used to characterize a cold-air drainage event in the canyon surrounding the James Reserve. The flow of cold air at night and the first hours of sunrise have major ecological consequences by limiting the vegetation types to those tolerant of freeze and thaw cycles. A network of wireless sensors provides the opportunity to track this event in real time and fully characterize the cold air flow down the canyon, which may last 1.5 hours, and the pooling of cold a...

  13. Cold urticaria: inhibition of cold-induced histamine release by doxantrazole.

    Science.gov (United States)

    Bentley-Phillips, C B; Eady, R A; Greaves, M W

    1978-10-01

    Thirteen patients with cold urticaria were studied to assess the effect of the systemic drug doxantrazole, which has actions resembling disodium cromoglycate, on cold evoked histamine release. The patients, all of whom developed an immediate local whealing response after cooling of the forearm, demonstrated release of histamine into venous blood draining that forearm. Following doxantrazole treatment, significant suppression of histamine release occurred. In some but not all patients this was accompanied by diminution of urtication in response to cooling. A double-blind study was carried out in 3 subjects, all of whom showed diminished cold-stimulated histamine release after doxantrazole. Two of these showed clinical improvement. Doxantrazole had no effect on erythema due to intradermal histamine, but did suppress the erythematous reaction to intradermal injection of compound 48/80. Our results suggest that doxantrazole or related anti-allergic agents might be useful in the treatment of cold urticaria.

  14. Thermo-fluid-dynamic modelling of a cold store for cheese maturation

    Directory of Open Access Journals (Sweden)

    Ferruccio Giametta

    2013-03-01

    Full Text Available In this study, drying tests on fresh cheeses were carried out in a cold store equipped with a Munters MG90 dehumidifier that controls the humidity of the room air. In this system, the condensation/drainage stage is omitted since the humid room air is directed out of the cold store (process air and the dried air is introduced by the dehumidifier inside the cold store. Eight air temperature probes were introduced in the store; two probes (HOBO U12-012, 1 HOBO – Onset Computer Corporation, Cape Cod, MA, USA were also introduced and used to measure relative humidity and temperature together with an anemometer to analyse any changes in thermal and fluid dynamics in the cell environment. COMSOL multiphysics software (Comsol Group, Stockolm, Sweden was used to simulate the store environment based on the finite elements method. This allowed us to compare and discuss the experimental data collected and the results obtained by the thermo- fluid-dynamic simulation.

  15. Homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8

    Directory of Open Access Journals (Sweden)

    Lawal Garba

    2018-03-01

    Full Text Available Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerant Pseudomonas sp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed in Escherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, −6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively

  16. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  17. The addition of hydrodynamic variables to predictive cold water coral habitat modeling: The Bari Canyon case-study, southwestern Adriatic Sea

    Science.gov (United States)

    Foglini, Federica; Bargain, Annaëlle; Angeletti, Lorenzo; Bonaldo, Davide; Carniel, Sandro; Taviani, Marco

    2017-04-01

    Predictive habitat modeling is gaining momentum because of its usefulness to recognize potential distributional patterns of ecosystems thus facilitating their proper governance when required, as it is for instance the case of the Marine Strategy Framework Directive (MSFD). This holds particularly true for the deep-sea in front of its overwhelming areal extent on a global scale and intrinsic technological difficulties (with related costs) for its direct exploration. Cold Water Corals (CWC) is one emblematic, virtually cosmopolitan, ecosystem in the deep, that is under international attention because of its multifaceted ecological importance. CWC is currently represented in the Mediterranean basin by habitats engineered by the arborescent scleractinians Madrepora oculata and Lophelia pertusa associated with a number of other benthic invertebrates. One major CWC hotspot located on the southwestern Adriatic margin, the Bari Canyon cold water coral province, has been targeted for producing habitat suitability maps. Initially the evaluation of the theoretical distribution of CWC in this area has been based upon visual observations, mainly extracted from geo-referenced underwater ROV imagery, coupled with the eco-geographic information derived from bathymetry. This approach relies upon the compilation and comparison of presence-only models (MaxEnt and ENFA), but also presence-absence model (GLMs). However, the pivotal role played by oceanographic factors has been soon added in order to achieve more robust predictive models. In fact, the Bari Canyon CWC province is situated on the main path of the North Adriatic Dense Water cascading, and hypothesized to be sensitive to hydrological factors. Accordingly, the statistical models to assess potential habitat extent have been implemented using hydrodynamic fields provided by ROMS for ocean currents, coupled with SWAN within the COAWST modelling system to account for wave-current interactions. The integration of results is

  18. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor

    Science.gov (United States)

    Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio

    2015-01-01

    Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259

  19. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor.

    Directory of Open Access Journals (Sweden)

    Erick Olivares

    Full Text Available Cold-sensitive nerve terminals (CSNTs encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response. During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response. To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics. However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature. Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.

  20. Noise and Synchronization Analysis of the Cold-Receptor Neuronal Network Model

    Directory of Open Access Journals (Sweden)

    Ying Du

    2014-01-01

    Full Text Available This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater variability with the noise intensity increasing. The synchronization of neuronal network with different connectivity patterns is also studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in single spike and low period patterns. The neuronal network will exhibit various patterns of firing synchronization by varying some key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient and the ISI-distance method. The simulations show that the synchronization status of neurons is related to the network connectivity patterns.

  1. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model

    Science.gov (United States)

    Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y.; Luo, S.; Shen, Y.; Guo, J.; Wen, L.

    2018-04-01

    Systematic cold biases exist in the simulation for 2 m air temperature in the Tibetan Plateau (TP) when using regional climate models and global atmospheric general circulation models. We updated the albedo in the Weather Research and Forecasting (WRF) Model lower boundary condition using the Global LAnd Surface Satellite Moderate-Resolution Imaging Spectroradiometer albedo products and demonstrated evident improvement for cold temperature biases in the TP. It is the large overestimation of albedo in winter and spring in the WRF model that resulted in the large cold temperature biases. The overestimated albedo was caused by the simulated precipitation biases and over-parameterization of snow albedo. Furthermore, light-absorbing aerosols can result in a large reduction of albedo in snow and ice cover. The results suggest the necessity of developing snow albedo parameterization using observations in the TP, where snow cover and melting are very different from other low-elevation regions, and the influence of aerosols should be considered as well. In addition to defining snow albedo, our results show an urgent call for improving precipitation simulation in the TP.

  2. Utilization of Titanium Particle Impact Location to Validate a 3D Multicomponent Model for Cold Spray Additive Manufacturing

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; King, P. C.; Busch, C.; Masood, S. H.; Jahedi, M.; Nagarajah, R.; Gulizia, S.

    2017-12-01

    Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles' velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.

  3. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses

    Directory of Open Access Journals (Sweden)

    Li Chuan

    2012-05-01

    Full Text Available Abstract Background Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP genes, fructosyltransferase (FST genes, and many C-repeat binding factor (CBF genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. Results Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

  4. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    Science.gov (United States)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  5. Anisotropies of the cosmic microwave background in nonstandard cold dark matter models

    Science.gov (United States)

    Vittorio, Nicola; Silk, Joseph

    1992-01-01

    Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.

  6. Studies of magnetism with inelastic scattering of cold neutrons

    International Nuclear Information System (INIS)

    Jacrot, B.

    1964-01-01

    Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr

  7. Vasoconstrictor response to cold in forestry workers: a prospective study

    DEFF Research Database (Denmark)

    Olsen, N; Nielsen, S L

    1988-01-01

    In a five year prospective study of the vasoconstrictor response to cold 37 forestry workers were investigated in 1978 and again in 1983. The subjects were classified into three groups: group A (n = 13): no subjective finger symptoms in 1978 and continued sawing until 1983; group B (n = 12......): no symptoms in 1978 and stopped sawing before 1983; group C (n = 12): vibration induced white finger (VWF) in 1978. A cold provocation test measuring the finger systolic blood pressure with a cuff and strain gauge technique during combined body cooling and finger cooling to 30 degrees, 15 degrees, and 6...... degrees C was applied to all subjects at both investigations. In 1978 all groups had an increased cold response when compared with that of 20 non-exposed controls (p less than 0.05), and the response was more exaggerated in group C than in groups A and B (p less than 0.01). From 1978 to 1983...

  8. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    NARCIS (Netherlands)

    Mohn, C.; Rengstorf, A.; White, M.; Mienis, F.; Soetaert, K.; Grehan, A.; Duineveld, G.

    2014-01-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic

  9. Cold neutron interferometry and its application. 2. Coherency and cold neutron spin interferometry

    International Nuclear Information System (INIS)

    Achiwa, Norio; Ebisawa, Toru

    1998-03-01

    The second workshop entitled 'Interference studies and cold neutron spin interferometry' was held on 10 and 11 March 1998 at KUR (Kyoto University Research Reactor Institute, Kumatori). Cold neutron spin interferometry is a new field. So it is very important for its development to learn the studies of X-ray and neutron optics which are rapidly developing with long history. In the workshop, the issues related to interference were reviewed such as experimental studies on cold neutron spin interferometry, theoretical and experimental approach on tunneling time, interference experiments by neutrons and its application, interference studies using synchrotron radiation, topics on silicon interferometry and quantum measurement problem and cold neutron interference experiment related to quantum measurement problem. The 8 of the presented papers are indexed individually. (J.P.N.)

  10. Local Scale Radiobrightness Modeling During the Intensive Observing Period-4 of the Cold Land Processes Experiment-1

    Science.gov (United States)

    Kim, E.; Tedesco, M.; de Roo, R.; England, A. W.; Gu, H.; Pham, H.; Boprie, D.; Graf, T.; Koike, T.; Armstrong, R.; Brodzik, M.; Hardy, J.; Cline, D.

    2004-12-01

    The NASA Cold Land Processes Field Experiment (CLPX-1) was designed to provide microwave remote sensing observations and ground truth for studies of snow and frozen ground remote sensing, particularly issues related to scaling. CLPX-1 was conducted in 2002 and 2003 in Colorado, USA. One of the goals of the experiment was to test the capabilities of microwave emission models at different scales. Initial forward model validation work has concentrated on the Local-Scale Observation Site (LSOS), a 0.8~ha study site consisting of open meadows separated by trees where the most detailed measurements were made of snow depth and temperature, density, and grain size profiles. Results obtained in the case of the 3rd Intensive Observing Period (IOP3) period (February, 2003, dry snow) suggest that a model based on Dense Medium Radiative Transfer (DMRT) theory is able to model the recorded brightness temperatures using snow parameters derived from field measurements. This paper focuses on the ability of forward DMRT modelling, combined with snowpack measurements, to reproduce the radiobrightness signatures observed by the University of Michigan's Truck-Mounted Radiometer System (TMRS) at 19 and 37~GHz during the 4th IOP (IOP4) in March, 2003. Unlike in IOP3, conditions during IOP4 include both wet and dry periods, providing a valuable test of DMRT model performance. In addition, a comparison will be made for the one day of coincident observations by the University of Tokyo's Ground-Based Microwave Radiometer-7 (GBMR-7) and the TMRS. The plot-scale study in this paper establishes a baseline of DMRT performance for later studies at successively larger scales. And these scaling studies will help guide the choice of future snow retrieval algorithms and the design of future Cold Lands observing systems.

  11. Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.

    Science.gov (United States)

    Toth, James John

    1987-09-01

    A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the

  12. SNS 2.1K Cold Box Turn-down Studies

    International Nuclear Information System (INIS)

    F. Casagrande; P.A. Gurd; D.R. Hatfield; M.P. Howell; W.H. Strong; D. Arenius; J. Creel; V. Ganni; P. Knudsen

    2006-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is nearing completion. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The 2.1K cold box consists of four stages of centrifugal compressors with LN2-cooled variable speed electric motors and magnetic bearings. The cryogenic system successfully supported the Linac beam commissioning at both 4.2K and 2.1K and has been fully operational since June 2005. This paper describes the control principles utilized and the experimental results obtained for the SNS cold compressors turn-down capability to about 30% of the design flow, and possible limitation of the frequency dependent power factor of the cold compressor electric motors, which was measured for the first time during commissioning. These results helped to support the operation of the Linac over a very broad and stable cold compressor operating flow range (refrigeration capacity) and pressure. This in turn helped to optimize the cryogenic system operating parameters, minimizing the utilities and improving the system reliability and availability

  13. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  14. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  15. High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse

    Science.gov (United States)

    Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.

    2017-12-01

    Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results

  16. Cold collisions in dissipative optical lattices

    International Nuclear Information System (INIS)

    Piilo, J; Suominen, K-A

    2005-01-01

    The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix

  17. Shelf-life prediction models for ready-to-eat fresh cut salads: Testing in real cold chain.

    Science.gov (United States)

    Tsironi, Theofania; Dermesonlouoglou, Efimia; Giannoglou, Marianna; Gogou, Eleni; Katsaros, George; Taoukis, Petros

    2017-01-02

    The aim of the study was to develop and test the applicability of predictive models for shelf-life estimation of ready-to-eat (RTE) fresh cut salads in realistic distribution temperature conditions in the food supply chain. A systematic kinetic study of quality loss of RTE mixed salad (lollo rosso lettuce-40%, lollo verde lettuce-45%, rocket-15%) packed under modified atmospheres (3% O 2 , 10% CO 2 , 87% N 2 ) was conducted. Microbial population (total viable count, Pseudomonas spp., lactic acid bacteria), vitamin C, colour and texture were the measured quality parameters. Kinetic models for these indices were developed to determine the quality loss and calculate product remaining shelf-life (SL R ). Storage experiments were conducted at isothermal (2.5-15°C) and non-isothermal temperature conditions (T eff =7.8°C defined as the constant temperature that results in the same quality value as the variable temperature distribution) for validation purposes. Pseudomonas dominated spoilage, followed by browning and chemical changes. The end of shelf-life correlated with a Pseudomonas spp. level of 8 log(cfu/g), and 20% loss of the initial vitamin C content. The effect of temperature on these quality parameters was expressed by the Arrhenius equation; activation energy (E a ) value was 69.1 and 122.6kJ/mol for Pseudomonas spp. growth and vitamin C loss rates, respectively. Shelf-life prediction models were also validated in real cold chain conditions (including the stages of transport to and storage at retail distribution center, transport to and display at 7 retail stores, transport to and storage in domestic refrigerators). The quality level and SL R estimated after 2-3days of domestic storage (time of consumption) ranged between 1 and 8days at 4°C and was predicted within satisfactory statistical error by the kinetic models. T eff in the cold chain ranged between 3.7 and 8.3°C. Using the validated models, SL R of RTE fresh cut salad can be estimated at any point of

  18. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  19. A theoretical model for prediction of deposition efficiency in cold spraying

    International Nuclear Information System (INIS)

    Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.

    2005-01-01

    The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle

  20. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  1. Modelling of Argon Cold Atmospheric Plasmas for Biomedical Applications

    Science.gov (United States)

    Atanasova, M.; Benova, E.; Degrez, G.; van der Mullen, J. A. M.

    2018-02-01

    Plasmas for biomedical applications are one of the newest fields of plasma utilization. Especially high is the interest toward plasma usage in medicine. Promising results are achieved in blood coagulation, wound healing, treatment of some forms of cancer, diabetic complications, etc. However, the investigations of the biomedical applications from biological and medical viewpoint are much more advanced than the studies on the dynamics of the plasma. In this work we aim to address some specific challenges in the field of plasma modelling, arising from biomedical applications - what are the plasma reactive species’ and electrical fields’ spatial distributions as well as their production mechanisms; what are the fluxes and energies of the various components of the plasma delivers to the treated surfaces; what is the gas flow pattern? The focus is on two devices, namely the capacitive coupled plasma jet and the microwave surface wave sustained discharge. The devices are representatives of the so called cold atmospheric plasmas (CAPs). These are discharges characterized by low gas temperature - less than 40°C at the point of application - and non-equilibrium chemistry.

  2. Study on Recrystallization of Cold-worked and β-quenched zirconium alloys

    International Nuclear Information System (INIS)

    Goo, J. S.; Hong, S. I.; Kim, H. S.; Jeong, Y. H.

    1998-01-01

    The observation of microstructure and the hardness test of Zr-Sn binary and Zircaloy-4 alloys were performed to investigate the recrystallization of cold-worked and β-quenched Zr alloys. All specimens were heat-treated in vacuum condition at various temperatures. From the observation of microstructures of cold-worked and β-quenched Zr alloys, the cold-worked specimens were shown to keep the cold-worked micro- structure as annealing temperature increased up to 500 deg C and the recrystallization was completed at between 550 deg C and 700 deg C. Meanwhile, the recrystallization of β-quenched Zr alloys was started at about 700 deg C. In all specimens of cold-worked and β-quenched Zr alloys, the hardness value tended to be consistent with microstructure. Although the cold-worked and the β-quenched specimens had an equal initial hardness value, the recrystallization behavior was indicated to be different from each other, which means that recrystallization mechanism is different from each other

  3. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  4. Condensation of galactic cold dark matter

    International Nuclear Information System (INIS)

    Visinelli, Luca

    2016-01-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M_χc"2≈10"−"2"4 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  5. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang [KAIST, Daejon (Korea, Republic of)

    2015-12-15

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys.

  6. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    International Nuclear Information System (INIS)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang

    2015-01-01

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys

  7. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    Science.gov (United States)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the

  8. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  9. Study of exposure to cold stress and body physiological responses in auto mechanic employees in Hamadan city

    Directory of Open Access Journals (Sweden)

    Keivan Saedpanah

    2017-09-01

    Full Text Available Introduction: Continuous exposure to cold air is considered to be a hazardous agent in the workplace in cold seasons. This study aimed to determine the level of cold stress and relation with physiological responses in auto mechanic employees. Method: This cross-sectional study was conducted in the winter of 1395 on auto mechanic employees in Hamadan city. Physiological responses during daily activity were measured in accordance with ISO 9886 standard method. Environmental air measures like air temperature and air velocity were measured simultaneously and cold stress indexes were also determined. Data was analyzed using SPSS 21 software. Result: The result showed that mean wind chill index, equivalent chill temperature and required clothing insulation were 489.97±47.679 kcal/m2.h, 13.78± 1.869 0c and 2.04 ± 0.246 clo, respectively. According to the results of cold stress indexes, the studied employees are exposed to cold stress. Pearson correlation test showed that there are significant relationship between cold stress indexes with physiological responses (p<0.05, however, IREQ min showed more correlation than the others.  There is also a significant relationship between body fat percentage and deep temperature (p<0.05, r=0.314. Conclusion: The result confirmed that IREQ min index has high validity for estimation of cold stress among auto mechanic employees. Moreover, the increase of body fat percentage leads to an increase of cold tolerance power of employees.

  10. Cold acclimation and cognitive performance: A review.

    Science.gov (United States)

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Smoking, leisure-time exercise and frequency of self-reported common cold among the general population in northeastern China: a cross-sectional study.

    Science.gov (United States)

    Zhou, Ge; Liu, Hongjian; He, Minfu; Yue, Mengjia; Gong, Ping; Wu, Fangyuan; Li, Xuanxuan; Pang, Yingxin; Yang, Xiaodi; Ma, Juan; Liu, Meitian; Li, Jinghua; Zhang, Xiumin

    2018-02-27

    Physical activity (PA) and smoking have been reported to be associated with the duration and severity of common cold symptoms. However, few studies have addressed the associations between the frequency of leisure-time exercise, cigarette smoking status and the frequency of the common cold in a cold area. This study was designed to investigate these issues in northeastern China. This cross-sectional study included individuals who participated in a regular health examination conducted in Jilin Province, China. Information on episodes of the common cold, the frequency of leisure-time exercise and cigarette smoking status in the past year were collected by self-administered health questionnaires. Ordinal logistic regression models were used to analyse the associations between the frequency of leisure-time exercise, cigarette smoking status and the retrospective frequency of common cold. A total of 1413 employees participated in the study, with an average age of 38.92 ± 9.04 years and 44.4% of them were male. Of all participants, 80.8% reported having experienced the common cold in the past year. After adjustment, the risk of suffering from the common cold more than once (odds ratios (ORs), 1.59; 95% confidence interval (CI), 1.27-1.99) in passive smokers was 1.59 times as high as that in non-smokers. Nevertheless, the results of the adjusted analysis showed no statistically significant relation between current smoking and the frequency of the common cold. A high frequency of leisure-time exercise (≥3 days/week) was associated with a 26% reduced risk of having at least one episode of the common cold (OR, 0.74; 95% CI, 0.55-0.98) compared with a low frequency group (exercise appears not to be obvious (current smokers: OR, 0.68; 95% CI, 0.33-1.43; passive smokers: OR, 1.15; 95% CI, 0.69-1.93). Passive smoking was associated with a higher risk of having self-reported common cold at least once, while a high frequency of leisure-time exercise was related to a lower

  12. Age and Ethnic Differences in Cold Weather and Contagion Theories of Colds and Flu

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with…

  13. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L.

    Science.gov (United States)

    Huang, Zhen; Zhang, Xuexian; Jiang, Shouhua; Qin, Mengfan; Zhao, Na; Lang, Lina; Liu, Yaping; Tian, Zhengshu; Liu, Xia; Wang, Yang; Zhang, Binbin; Xu, Aixia

    2017-06-01

    Currently, cold temperatures are one of the main factors threatening rapeseed production worldwide; thus, it is imperative to identify cold-resistant germplasm and to cultivate cold-resistant rapeseed varieties. In this study, the cold resistance of four Brassica rapa varieties was analyzed. The cold resistance of Longyou6 and Longyou7 was better than that of Tianyou2 and Tianyou4. Thus, an F 2 population derived from Longyou6 and Tianyou4 was used to study the correlation of cold resistance and physiological indexes. Our results showed that the degree of frost damage was related to the relative conductivity and MDA content (r1 = 0.558 and r2 = 0.447, respectively). In order to identify the markers related to cold resistance, 504 pairs of SSR (simple sequence repeats) primers were used to screen the two parents and F 2 population. Four and five SSR markers had highly significant positive correlation to relative conductivity and MDA, respectively. In addition, three of these SSR markers had a highly significant positive correlation to both of these two indexes. These three SSR markers were subsequently confirmed to be used to distinguish between cold-resistant and non-cold-resistant varieties. The results of this study will lay a solid foundation for the mapping of cold-resistant genes and molecular markers assisted selection for the cold-resistance.

  14. Analgesic treatment of ciguatoxin-induced cold allodynia.

    Science.gov (United States)

    Zimmermann, Katharina; Deuis, Jennifer R; Inserra, Marco C; Collins, Lindon S; Namer, Barbara; Cabot, Peter J; Reeh, Peter W; Lewis, Richard J; Vetter, Irina

    2013-10-01

    Ciguatera, the most common form of nonbacterial ichthyosarcotoxism, is caused by consumption of fish that have bioaccumulated the polyether sodium channel activator ciguatoxin. The neurological symptoms of ciguatera include distressing, often persistent sensory disturbances such as paraesthesias and the pathognomonic symptom of cold allodynia. We show that intracutaneous administration of ciguatoxin in humans elicits a pronounced axon-reflex flare and replicates cold allodynia. To identify compounds able to inhibit ciguatoxin-induced Nav responses, we developed a novel in vitro ciguatoxin assay using the human neuroblastoma cell line SH-SY5Y. Pharmacological characterisation of this assay demonstrated a major contribution of Nav1.2 and Nav1.3, but not Nav1.7, to ciguatoxin-induced Ca2+ responses. Clinically available Nav inhibitors, as well as the Kv7 agonist flupirtine, inhibited tetrodotoxin-sensitive ciguatoxin-evoked responses. To establish their in vivo efficacy, we used a novel animal model of ciguatoxin-induced cold allodynia. However, differences in the efficacy of these compounds to reverse ciguatoxin-induced cold allodynia did not correlate with their potency to inhibit ciguatoxin-induced responses in SH-SY5Y cells or at heterologously expressed Nav1.3, Nav1.6, Nav1.7, or Nav1.8, indicating cold allodynia might be more complex than simple activation of Nav channels. These findings highlight the need for suitable animal models to guide the empiric choice of analgesics, and suggest that lamotrigine and flupirtine could be potentially useful for the treatment of ciguatera. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. A novel combination technique of cold crystalloid perfusion but not cold storage facilitates transplantation of canine hearts donated after circulatory death.

    Science.gov (United States)

    Rosenfeldt, Franklin; Ou, Ruchong; Salamonsen, Robert; Marasco, Silvana; Zimmet, Adam; Byrne, Joshua; Cosic, Filip; Saxena, Pankaj; Esmore, Donald

    2016-11-01

    Donation after circulatory death (DCD) represents a potential new source of hearts to increase the donor pool. We showed previously that DCD hearts in Greyhound dogs could be resuscitated and preserved by continuous cold crystalloid perfusion but not by cold static storage and could demonstrate excellent contractile and metabolic function on an in vitro system. In the current study, we demonstrate that resuscitated DCD hearts are transplantable. Donor Greyhound dogs (n = 12) were divided into perfusion (n = 8) and cold static storage (n = 4) groups. General anesthesia was induced and ventilation ceased for 30 minutes to achieve circulatory death. Donor cardiectomy was performed, and for 4 hours the heart was preserved by controlled reperfusion, followed by continuous cold perfusion with an oxygenated crystalloid perfusate or by static cold storage, after which orthotopic heart transplantation was performed. Recovery was assessed over 4 hours by hemodynamic monitoring. During cold perfusion, hearts showed continuous oxygen consumption and low lactate levels, indicating aerobic metabolism. The 8 dogs in the perfusion group were weaned off bypass, and 4 hours after bypass produced cardiac output of 4.73 ± 0.51 liters/min, left ventricular power of 7.63 ± 1.32 J/s, right ventricular power of 1.40 ± 0.43 J/s, and left ventricular fractional area shortening of 39.1% ± 5.2%, all comparable to pre-transplant values. In the cold storage group, 3 of 4 animals could not be weaned from cardiopulmonary bypass, and the fourth exhibited low-level function. Cold crystalloid perfusion, but not cold static storage, can resuscitate and preserve the DCD donor heart in a canine model of heart transplantation, thus rendering it transplantable. Controlled reperfusion and cold crystalloid perfusion have potential for clinical application in DCD transplantation. Copyright © 2016. Published by Elsevier Inc.

  16. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1979-10-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile may be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments

  17. Plasticity margin recovery during annealing after cold deformation

    International Nuclear Information System (INIS)

    Bogatov, A.A.; Smirnov, S.V.; Kolmogorov, V.L.

    1978-01-01

    Restoration of the plasticity margin in steel 20 after cold deformation and annealing at 550 - 750 C and soaking for 5 - 300 min was investigated. The conditions of cold deformation under which the metal acquires microdefects unhealed by subsequent annealing were determined. It was established that if the degree of utilization of the plasticity margin is psi < 0.5, the plasticity margin in steel 20 can be completely restored by annealing. A mathematical model of restoration of the plasticity margin by annealing after cold deformation was constructed. A statistical analysis showed good agreement between model and experiment

  18. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  19. Validation of mathematical models to describe fluid dynamics of a cold riser by gamma ray attenuation

    International Nuclear Information System (INIS)

    Melo, Ana Cristina Bezerra Azedo de

    2004-12-01

    The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip

  20. The impact of winter cold weather on acute myocardial infarctions in Portugal

    International Nuclear Information System (INIS)

    Vasconcelos, João; Freire, Elisabete; Almendra, Ricardo

    2013-01-01

    Mortality due to cardiovascular diseases shows a seasonal trend that can be associated with cold weather. Portugal is the European country with the highest excess winter mortality, but nevertheless, the relationship between cold weather and health is yet to be assessed. The main aim of this study is to identify the contribution of cold weather to cardiovascular diseases within Portugal. Poisson regression analysis based on generalized additive models was applied to estimate the influence of a human-biometeorological index (PET) on daily hospitalizations for myocardial infarction. The main results revealed a negative effect of cold weather on acute myocardial infarctions in Portugal. For every degree fall in PET during winter, there was an increase of up to 2.2% (95% CI = 0.9%; 3.3%) in daily hospital admissions. This paper shows the need for public policies that will help minimize or, indeed, prevent exposure to cold. -- Highlights: ► We model the relationship between daily hospitalizations due to myocardial infarctions and cold weather in Portugal. ► We use Physiological Equivalent temperature (PET) as main explanatory variable. ► We adjust the models to confounding factors such as influenza and air pollution. ► Daily hospitalizations increased up to 2.2% per degree fall of PET during winter. ► Exposure to cold weather has a negative impact on human health in Portugal. -- There is an increase of up to 2.2% in daily hospitalizations due to acute myocardial infarctions per degree fall of thermal index during the winter months in Portugal

  1. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  2. Cold dark matter plus not-so-clumpy dark relics

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Ando, Shin' ichiro; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Gariazzo, Stefano; Mena, Olga, E-mail: r.diamanti@uva.nl, E-mail: s.ando@uva.nl, E-mail: gariazzo@to.infn.it, E-mail: omena@ific.uv.es, E-mail: c.weniger@uva.nl [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Apartado de Correos 22085, E-46071, Valencia (Spain)

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.

  3. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  4. Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera.

    Science.gov (United States)

    Patel, Ryan; Brice, Nicola L; Lewis, Richard J; Dickenson, Anthony H

    2015-12-01

    Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity. © 2015 The Authors. European Journal of Neuroscience published by Federation of

  5. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.

    Science.gov (United States)

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E

    2016-06-01

    The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.

  6. Pricing Weather Index Insurance Based on Artificial Controlled Experiment - A Case Study of Cold Temperature for Early Rice in Jiangxi, China

    Science.gov (United States)

    SUN, Q.; Yang, Z.

    2017-12-01

    The growth of early rice is often threated by a phenomenon known as Grain Buds Cold, a period of anomalously cold temperature that occurs during the booting and flowering stage. Therefore, quantifying the impact of weather on crop yield is a core issue in design of weather index insurance. A high yield loss will lead to an increasing premium rate. In this paper, we explored a new way to investigate the relationship between yield loss rate and cold temperature durations. A two-year artificial controlled experiment was used to build logarithm and linear yield loss model. Moreover, an information diffusion model was applied to calculate the probability of different durations which lasting for 3-20 days. The results show that pure premium rates of logarithm yield loss model had better premium rates performance than that of linear yield loss model. The premium rates of Grain Buds Cold Weather Index Insurance fluctuated between 7.085% and 10.151% in Jiangxi Province. Compared with common statistical methods, the artificial controlled experiment provides an easier and more robust way to determine the relationship between yield and single meteorological factor. Meanwhile, this experiment would be very important for some regions where were lacking in historical yield data and climate data and could help farmers cope with extreme cold weather risks under varying weather conditions.

  7. Utilization of mathematical models to manage risk of holding cold food without temperature control.

    Science.gov (United States)

    Schaffner, Donald W

    2013-06-01

    This document describes the development of a tool to manage the risk of the transportation of cold food without temperature control. The tool uses predictions from ComBase predictor and builds on the 2009 U.S. Food and Drug Administration Model Food Code and supporting scientific data in the Food Code annex. I selected Salmonella spp. and Listeria monocytogenes as the organisms for risk management. Salmonella spp. were selected because they are associated with a wide variety of foods and grow rapidly at temperatures >17°C. L. monocytogenes was selected because it is frequently present in the food processing environment, it was used in the original analysis contained in the Food Code Annex, and it grows relatively rapidly at temperatures supplier collected as part of this project. The resulting model-based tool will be a useful aid to risk managers and customers of wholesale cash and carry food service suppliers, as well as to anyone interested in assessing and managing the risks posed by holding cold foods out of temperature control in supermarkets, delis, restaurants, cafeterias, and homes.

  8. Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies

    Science.gov (United States)

    Noguchi, Masafumi

    2018-01-01

    Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.

  9. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China.

    Science.gov (United States)

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-04-08

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of COD(Cr) and NH₃N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  10. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    Directory of Open Access Journals (Sweden)

    Gula Tang

    2016-04-01

    Full Text Available In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well.

  11. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  12. Contemporary formulation and distribution practices for cold-filled acid products: Australian industry survey and modeling of published pathogen inactivation data.

    Science.gov (United States)

    Chapman, B; Scurrah, K J; Ross, T

    2010-05-01

    A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures.

  13. xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies

    Science.gov (United States)

    Saintonge, Amélie; Catinella, Barbara; Tacconi, Linda J.; Kauffmann, Guinevere; Genzel, Reinhard; Cortese, Luca; Davé, Romeel; Fletcher, Thomas J.; Graciá-Carpio, Javier; Kramer, Carsten; Heckman, Timothy M.; Janowiecki, Steven; Lutz, Katharina; Rosario, David; Schiminovich, David; Schuster, Karl; Wang, Jing; Wuyts, Stijn; Borthakur, Sanchayeeta; Lamperti, Isabella; Roberts-Borsani, Guido W.

    2017-12-01

    We introduce xCOLD GASS, a legacy survey providing a census of molecular gas in the local universe. Building on the original COLD GASS survey, we present here the full sample of 532 galaxies with CO (1–0) measurements from the IRAM 30 m telescope. The sample is mass-selected in the redshift interval 0.01 {10}9 {M}ȯ . The CO (1–0) flux measurements are complemented by observations of the CO (2–1) line with both the IRAM 30 m and APEX telescopes, H I observations from Arecibo, and photometry from SDSS, WISE, and GALEX. Combining the IRAM and APEX data, we find that the ratio of CO (2–1) to CO (1–0) luminosity for integrated measurements is {r}21=0.79+/- 0.03, with no systematic variations across the sample. The CO (1–0) luminosity function is constructed and best fit with a Schechter function with parameters {L}{CO}* =(7.77+/- 2.11)× {10}9 {{K}} {km} {{{s}}}-1 {{pc}}2, {φ }* =(9.84+/- 5.41)× {10}-4 {{Mpc}}-3, and α =-1.19+/- 0.05. With the sample now complete down to stellar masses of 109 {M}ȯ , we are able to extend our study of gas scaling relations and confirm that both molecular gas fractions ({f}{{{H}}2}) and depletion timescale ({t}{dep}({{{H}}}2)) vary with specific star formation rate (or offset from the star formation main sequence) much more strongly than they depend on stellar mass. Comparing the xCOLD GASS results with outputs from hydrodynamic and semianalytic models, we highlight the constraining power of cold gas scaling relations on models of galaxy formation.

  14. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  15. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  16. A pulse tube cryocooler with a cold reservoir

    Science.gov (United States)

    Zhang, X. B.; Zhang, K. H.; Qiu, L. M.; Gan, Z. H.; Shen, X.; Xiang, S. J.

    2013-02-01

    Phase difference between pressure wave and mass flow is decisive to the cooling capacity of regenerative cryocoolers. Unlike the direct phase shifting using a piston or displacer in conventional Stirling or GM cryocoolers, the pulse tube cyocooler (PTC) indirectly adjusts the cold phase due to the absence of moving parts at the cold end. The present paper proposed and validated theoretically and experimentally a novel configuration of PTC, termed cold reservoir PTC, in which a reservoir together with an adjustable orifice is connected to the cold end of the pulse tube. The impedance from the additional orifice to the cold end helps to increase the mass flow in phase with the pressure wave at the cold end. Theoretical analyses with the linear model for the orifice and double-inlet PTCs indicate that the cooling performance can be improved by introducing the cold reservoir. The preliminary experiments with a home-made single-stage GM PTC further validated the results on the premise of minor opening of the cold-end orifice.

  17. Numerical simulation of structure integrated cold storages with the model CST-WM; Numerische Simulation gebaeudeintegrierter Kaeltespeicher mit dem Modell CST-WM

    Energy Technology Data Exchange (ETDEWEB)

    Koppatz, Stefan; Urbaneck, Thorsten; Platzer, Bernd [TU Chemnitz (Germany). Fakultaet Maschinenbau; Kalz, Doreen; Sonntag, Martin [Fraunhofer ISE, Freiburg (Germany). Bereich Energieeffiziente und Solare Kuehlung

    2013-04-15

    Decentralized, structure integrated cold water storaged have been purpose of research in Germany for a short time, which is why appropriate system simulation models for mapping their thermal performance are missing. Intention of this article is the presentation of the MATLAB CST-WM model, which is adapted to the special requirements of this storage type in order to differ from existent models. Thereby, a specific method reduces the programming and computation effort.

  18. Warm and cold molecular gas conditions modeled in 87 galaxies observed by the Herschel SPIRE FTS

    Science.gov (United States)

    Kamenetzky, Julia; Rangwala, Naseem; Glenn, Jason

    2018-01-01

    Molecular gas is the raw material for star formation, and like the interstellar medium (ISM) in general, it can exist in regions of higher and lower excitation. Rotational transitions of the CO molecule are bright and sensitive to cold molecular gas. While the majority of the molecular gas exists in the very cold component traced by CO J=1-0, the higher-J lines trace the highly excited gas that may be more indicative of star formation processes. The atmosphere is opaque to these lines, but the launch of the Herschel Space Observatory made them accessible for study of Galactic and extragalactic sources. We have conducted two-component, non-local thermodynamic equilibrium (non-LTE) modeling of the CO lines from J=1‑0 through J=13‑12 in 87 galaxies observed by the Herschel SPIRE Fourier Transform Spectrometer (FTS). We used the nested sampling algorithm Multinest to compare the measured CO spectral line energy distributions (SLEDs) to the ones produced by a custom version of the non-LTE code RADEX. This allowed us to fully examine the degeneracies in parameter space for kinetic temperature, molecular gas density, CO column density, and area filling factor.Here we discuss the major findings of our study, as well as the important implications of two-component molecular gas modeling. The average pressure of the warm gas is slightly correlated with galaxy LFIR, but that of the cold gas is not. A high-J (such as J=11-10) to J=1-0 line ratio is diagnostic of warm component pressure. We find a very large spread in our derived values of "alpha-CO," with no discernable trend with LFIR, and average molecular gas depletion times that decrease with LFIR. If only a few molecular lines are available in a galaxy's SLED, the limited ability to model only one component will change the results. A one-component fit often underestimates the flux of carbon monoxide (CO) J=1‑0 and the mass. If low-J lines are not included, mass is underestimated by an order of magnitude. Even when

  19. Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain

    International Nuclear Information System (INIS)

    Li, Yu-Chu M.; Chen, Yen-Hong A.

    2016-01-01

    Development a novel inorganic salt eutectic solution for cold energy storage material (ESM) have succeeded conducted in this study. The eutectic solutions shows a low melting temperature and high latent heat of fusion value as effect of addition nano copper powder into the eutectic solution. We report a new simulation technique of thermal property as well as test results of three inorganic salts. The thermal property of three inorganic salts were simulated using the differential scanning calorimetry (DSC) method with the help of three binary phase diagrams. The simulation shows the liquidus temperature of each binary phase diagram conforming nicely to the theoretical prediction of the Gibbs-Duhem equation. In order to predict cold storage keeping time, we derived a heat transfer model based on energy conservation law. Three ESMs were tested for their cold energy storage performance and thermal properties aging for durability. The empirical results indicate that, for food cold chain, the melting point rule is superior with less deviation. With this information, one can pre-estimate the basic design parameters with great accuracy; the cost of design and development for a new cold storage logistics system can be dramatically reduced. - Highlights: • For these three ESMs, their modified values of melting point and latent heat are presented in Table 2. • But, TC is usually not a constant like TE. • The freezing time underwent a drop ∼10% in the binary eutectic region.

  20. Cold Storage for a Single-Family House in Italy

    OpenAIRE

    Luigi Mongibello; Giorgio Graditi

    2016-01-01

    This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM), and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the p...

  1. Characterization of a High-Level Waste Cold Cap in a Laboratory-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Dixona, Derek R; Schweiger, Michael J; Hrma, Pavel [Pacific Northwest National Laboratory, Richland (United States)

    2013-05-15

    The feed, slurry or calcine, is charged to the melter from above. The conversion of the melter feed to molten glass occurs within the cold cap, a several centimeters thin layer of the reacting material blanketing the surface of the melt. Between the cold-cap top, which is covered by boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by ∼900 .deg. C. The heat is delivered to the cold cap from the melt that is stirred mainly by bubbling. The feed contains oxides, hydroxides, acids, inorganic salts and organic materials. On heating, these components react, releasing copious amounts of gases, while molten salts decompose, glass-forming melt is generated, and crystalline phases precipitate and dissolve in the melt. Most of these processes have been studied in detail and became sufficiently understood for a mathematical model to represent the heat and mass transfer within the cold cap. This allows US to relate the rate of melting to the feed properties. While the melting reactions can be studied, and feed properties, such as heat conductivity and density, measured in the laboratory, the actual cold-cap dynamics, as it evolves in the waste glass melter, is not accessible to direct investigation. Therefore, to bridge the gap between the laboratory crucible and the waste glass melter, we explored the cold cap formation in a laboratory-scale melter (LSM) and studied the structure of quenched cold caps. The LSM is a suitable tool for investigating the cold cap. The cold cap that formed in the LSM experiments exhibited macroscopic features observed in scaled melters, as well as microscopic features accessible through laboratory studies and mathematical modeling. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open shafts through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move

  2. Impacts of cold weather on all-cause and cause-specific mortality in Texas, 1990-2011.

    Science.gov (United States)

    Chen, Tsun-Hsuan; Li, Xiao; Zhao, Jing; Zhang, Kai

    2017-06-01

    Cold weather was estimated to account for more than half of weather-related deaths in the U.S. during 2006-2010. Studies have shown that cold-related excessive mortality is especially relevant with decreasing latitude or in regions with mild winter. However, only limited studies have been conducted in the southern U.S. The purpose of our study is to examine impacts of cold weather on mortality in 12 major Texas Metropolitan Areas (MSAs) for the 22-year period, 1990-2011. Our study used a two-stage approach to examine the cold-mortality association. We first applied distributed lag non-linear models (DLNM) to 12 major MSAs to estimate cold effects for each area. A random effects meta-analysis was then used to estimate pooled effects. Age-stratified and cause-specific mortalities were modeled separately for each MSA. Most of the MSAs were associated with an increased risk in mortality ranging from 0.1% to 5.0% with a 1 °C decrease in temperature below the cold thresholds. Higher increased mortality risks were generally observed in MSAs with higher average daily mean temperatures and lower latitudes. Pooled effect estimate was 1.58% (95% Confidence Interval (CI) [0.81, 2.37]) increase in all-cause mortality risk with a 1 °C decrease in temperature. Cold wave effects in Texas were also examined, and several MSAs along the Texas Gulf Coast showed statistically significant cold wave-mortality associations. Effects of cold on all-cause mortality were highest among people over 75 years old (1.86%, 95% CI [1.09, 2.63]). Pooled estimates for cause-specific mortality were strongest in myocardial infarction (4.30%, 95% CI [1.18, 7.51]), followed by respiratory diseases (3.17%, 95% CI [0.26, 6.17]) and ischemic heart diseases (2.54%, 95% CI [1.08, 4.02]). In conclusion, cold weather generally increases mortality risk significantly in Texas, and the cold effects vary with MSAs, age groups, and cause-specific deaths. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tactile sensitivity of gloved hands in the cold operation.

    Science.gov (United States)

    Geng, Q; Kuklane, K; Holmér, I

    1997-11-01

    In this study, tactile sensitivity of gloved hand in the cold operation has been investigated. The relations among physical properties of protective gloves and hand tactile sensitivity and cold protection were also analysed both objectively and subjectively. Subjects with various gloves participated in the experimental study during cold exposure at different ambient temperatures of -12 degrees C and -25 degrees C. Tactual performance was measured using an identification task with various sizes of objects over the percentage of misjudgment. Forearm, hand and finger skin temperatures were also recorded throughout. The experimental data were analysed using analysis of variance (ANOVA) model and the Tukey's multiple range test. The results obtained indicated that the tactual performance was affected both by gloves and by hands/fingers cooling. Effect of object size on the tactile discrimination was significant and the misjudgment increased when similar sizes of objects were identified, especially at -25 degrees C.

  4. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  5. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  6. N-hexane neuropathy with vertigo and cold allodynia in a silk screen printer: A case study.

    Science.gov (United States)

    Pradhan, Sunil; Tandon, Ruchika

    2015-01-01

    N-hexane neuropathy is an occupational disease caused by exposure to n-hexane, which is used as a solvent in silk screen printing. Here, we describe a 35-year-old man, a silk screen printer by profession, who presented with dizziness, distal swelling of both lower limbs for 10 months and tingling and burning sensation in both feet for 9.5 months along with cold allodynia. The patient had normal results of a motor and sensory system examination, apart from an impaired temperature sense. Nerve conduction tests showed a conduction block in bilateral common peroneal nerves and absence of conduction in bilateral sural nerves. These symptoms resolved when further exposure to n-hexane was ceased but cold allodynia remained. Thus, cold allodynia and impaired temperature sense can be a manifestation of n-hexane neuropathy. Hence, abnormalities on nerve conduction studies can be detected in n-hexane neuropathy patients, even before clinical examination detects any such abnormalities. In the case of the patients presenting with sensory motor neuropathy, history of occupational exposure to n-hexane becomes important, as the sooner the disease is detected, the better the chances of recovery. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. A sensitivity study to global desertification in cold and warm climates: results from the IPSL OAGCM model

    Energy Technology Data Exchange (ETDEWEB)

    Alkama, Ramdane [GAME/CNRM, CNRS/Meteo-France, Toulouse (France); Kageyama, Masa; Ramstein, Gilles [LSCE/IPSL UMR CEA-CNRS-UVSQ 8212, Gif sur Yvette (France)

    2012-04-15

    Many simulations have been devoted to study the impact of global desertification on climate, but very few have quantified this impact in very different climate contexts. Here, the climatic impacts of large-scale global desertification in warm (2100 under the SRES A2 scenario forcing), modern and cold (Last Glacial Maximum, 21 thousand years ago) climates are assessed by using the IPSL OAGCM. For each climate, two simulations have been performed, one in which the continents are covered by modern vegetation, the other in which global vegetation is changed to desert i.e. bare soil. The comparison between desert and present vegetation worlds reveals that the prevailing signal in terms of surface energy budget is dominated by the reduction of upward latent heat transfer. Replacing the vegetation by bare soil has similar impacts on surface air temperature South of 20 N in all three climatic contexts, with a warming over tropical forests and a slight cooling over semi-arid and arid areas, and these temperature changes are of the same order of magnitude. North of 20 N, the difference between the temperatures simulated with present day vegetation and in a desert world is mainly due to the change in net radiation related to the modulation of the snow albedo by vegetation, which is obviously absent in the desert world simulations. The enhanced albedo in the desert world simulations induces a large temperature decrease, especially during summer in the cold and modern climatic contexts, whereas the largest difference occurs during winter in the warm climate. This temperature difference requires a larger heat transport to the northern high latitudes. Part of this heat transport increase is achieved through an intensification of the Atlantic Meridional Overturning Circulation. This intensification reduces the sea-ice extent and causes a warming over the North Atlantic and Arctic oceans in the warm climate context. In contrast, the large cooling North of 20 N in both the modern

  8. Socioenvironmental factors associated with heat and cold-related mortality in Vadu HDSS, western India: a population-based case-crossover study

    Science.gov (United States)

    Ingole, Vijendra; Kovats, Sari; Schumann, Barbara; Hajat, Shakoor; Rocklöv, Joacim; Juvekar, Sanjay; Armstrong, Ben

    2017-10-01

    Ambient temperatures (heat and cold) are associated with mortality, but limited research is available about groups most vulnerable to these effects in rural populations. We estimated the effects of heat and cold on daily mortality among different sociodemographic groups in the Vadu HDSS area, western India. We studied all deaths in the Vadu HDSS area during 2004-2013. A conditional logistic regression model in a case-crossover design was used. Separate analyses were carried out for summer and winter season. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for total mortality and population subgroups. Temperature above a threshold of 31 °C was associated with total mortality (OR 1.48, CI = 1.05-2.09) per 1 °C increase in daily mean temperature. Odds ratios were higher among females (OR 1.93; CI = 1.07-3.47), those with low education (OR 1.65; CI = 1.00-2.75), those owing larger agricultural land (OR 2.18; CI = 0.99-4.79), and farmers (OR 1.70; CI = 1.02-2.81). In winter, per 1 °C decrease in mean temperature, OR for total mortality was 1.06 (CI = 1.00-1.12) in lag 0-13 days. High risk of cold-related mortality was observed among people occupied in housework (OR = 1.09; CI = 1.00-1.19). Our study suggests that both heat and cold have an impact on mortality particularly heat, but also, to a smaller degree, cold have an impact. The effects may differ partly by sex, education, and occupation. These findings might have important policy implications in preventing heat and cold effects on particularly vulnerable groups of the rural populations in low and middle-income countries with hot semi-arid climate.

  9. Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions

    Science.gov (United States)

    Yi, S.; Manies, K.; Harden, J.; McGuire, A.D.

    2009-01-01

    Soil organic layers (OL) play an important role in landatmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that implementation of OL for cold regions modeling: (1) use three general organic horizon types (live, fibrous, and amorphous) to represent vertical soil heterogeneity; (2) implement dynamics of OL over the course of disturbance, as there are significant differences of OL thickness between young and mature stands; and (3) use two broad drainage classes to characterize spatial heterogeneity, as there are significant differences in OL thickness between dry and wet sites. Implementation of these suggestions into models has the potential to substantially improve how OL dynamics influence variability in surface temperature and soil moisture in cold regions. Copyright 2009 by the American Geophys.ical Union.

  10. PHYSIOLOGICAL AND LEUKOCYTE SUBSET RESPONSES TO EXERCISE AND COLD EXPOSURE IN COLD-ACCLIMATIZED SKATERS

    Directory of Open Access Journals (Sweden)

    K. Kim

    2014-07-01

    Full Text Available We investigated physiological responses and changes in circulating immune cells following exercise in cold and thermoneutral conditions. Participants were short track skaters (n=9 who were acclimatized to cold conditions, and inline skaters (n=10 who were not acclimatized. All skaters were young, and skating at a recreational level three days per week for at least one year. Using a cross-over design, study variables were measured during 60 min of submaximal cycling (65% ·VO2max in cold (ambient temperature: 5±1°C, relative humidity: 41±9% and thermoneutral conditions (ambient temperature: 21±1°C, relative humidity: 35±5%. Heart rate, blood lactate and tympanic temperature were measured at rest, during exercise and recovery. Plasma cortisol, calprotectin and circulating blood cell numbers were measured before and after 60 min of cold or thermoneutral conditions, and during recovery from exercise. Heart rate was lower in both groups during exercise in cold versus thermoneutral conditions (P<0.05. The increase in total leukocytes during recovery was primarily due to an increase in neutrophils in both groups. The cold-acclimatized group activated neutrophils after exercise in cold exposure, whereas the non-acclimatized group activated lymphocyte and cortisol after exercise in cold exposure. Lymphocyte subsets significantly changed in both groups over time during recovery as compared to rest. Immediately after exercise in both groups, CD16+ and CD69+ cells were elevated compared to rest or before exercise in both conditions. Acclimatization to exercise in the cold does not appear to influence exercise-induced immune changes in cold conditions, with the possible exception of neutrophils, lymphocytes and cortisol concentration.

  11. Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sonzogni, A.A.

    2002-01-01

    A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models

  12. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  13. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  14. Study on site selection of cold chain logistics in northwest territories

    Science.gov (United States)

    Liu, Yubin; Ren, Zongwei

    2017-08-01

    In this research, we mainly studied the Site selection problem of cold chain logistics in northwest of China. In the first place, we counted the demands of cold chain products in northwest territories, and then classified it into the Site selection problem in five provinces in northwest territories(Xinjiang, Qinghai, Gansu, Ningxia, Shanxi); Next, we used the Center of gravity Method to select initial location; Finally, we established the location of distribution by using Analytic Hierarchy Process (AHP)and fuzzy comprehensive evaluation method. Comparing with the traditional method, this method not only considered the cost of transportation and distance, but also deliberated the physical condition, social environment and economics condition which associated with Site selection problem.

  15. A transcription factor for cold sensation!

    OpenAIRE

    Kim, Susan J; Qu, Zhican; Milbrandt, Jeffrey; Zhuo, Min

    2005-01-01

    Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB) to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral respons...

  16. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  17. Report on a feasibility survey of the cold accumulated heat use energy system in Hokkaido; Hokkaido ni okeru reichikunetsu riyo energy system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted of various systems which use in summer cold heat from the snow stored in winter. A model of the cold accumulated heat system of the type which has a high possibility of the introduction was built to study a possibility of the realization. Types of the model system were selected assuming the utilization of cold heat energy of snow in Sapporo, a typical large city in the cold heavy-snow area. Studies were made on each model of urban type commercial facilities, urban type offices, suburban type shopping center, and suburban type hospitals. For each model, more than one systems were studied according to types and forms of the storage tank, and heat recovery methods. As a result, it was found that cold heat energy of snow can be utilized almost effectively by making an appropriate study of the energy balance like the possible supply of cold heat exceeded the demand in two models of an urban type office building and an suburban type hospital. Further, operating expenses of typical models were roughly calculated. 51 figs., 20 figs.

  18. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold-sensing

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G.

    2016-01-01

    Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732

  19. Neural network model for survival and growth of Salmonella 8,20:-:z6 in ground chicken thigh meat during cold storage: extrapolation to other serotypes

    Science.gov (United States)

    Mathematical models that predict behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting behavior of Salmonella 8,20:-:z6 in chicken meat during cold storage and to determine how...

  20. Thermal and hydraulic analyses of the System 81 cold traps

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1977-06-15

    Thermal and hydraulic analyses of the System 81 Type I and II cold traps were completed except for thermal transients analysis. Results are evaluated, discussed, and reported. Analytical models were developed to determine the physical dimensions of the cold traps and to predict the performance. The FFTF cold trap crystallizer performances were simulated using the thermal model. This simulation shows that the analytical model developed predicts reasonably conservative temperatures. Pressure drop and sodium residence time calculations indicate that the present design will meet the requirements specified in the E-Specification. Steady state temperature data for the critical regions were generated to assess the magnitude of the thermal stress.

  1. Acupuncture in subjects with cold hands sensation: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Seo, Jung-Chul; Lee, Hyun-jong; Kwak, Min-Ah; Park, Sung-Hoon; Shin, ImHee; Yun, Woo-Sung; Park, Kihyuk

    2014-09-04

    Cold hands sensation is a common disorder within the Korean population. Many Korean family physicians believe that it is a mild early manifestation of Raynaud's phenomenon (RP), or may be related to RP. RP is characterized by reversible digital vasospasm provoked by cold temperatures and/or emotional stress, and doctors often prescribe medications that are used in treatment of RP for subjects with cold hands. However, this has not shown a clear benefit, and these medications can cause unwanted side effects. It is also reported that traditional Korean medicine, including acupuncture, is widely used to treat cold hands, although the current level of evidence for this approach is also poor and to date, there have been no published randomized controlled clinical trials (RCTs) evaluating the efficacy and safety of acupuncture for cold hands. We have therefore designed a pilot RCT to obtain information for the design of a further full-scale trial. The proposed study is a five-week pilot RCT. A total of 14 subjects will be recruited and randomly allocated to two groups: an acupuncture plus medication group (experimental group) and a medication-only group (control group). All subjects will take nifedipine (5 mg once daily) and beraprost (20 mg three times daily) for three weeks. The experimental group will receive additional treatment with three acupuncture sessions per week for three weeks (nine sessions total). The primary outcome will be measured using a visual analogue scale. Secondary outcomes will be measured by blood perfusion in laser Doppler perfusion imaging of the hands, frequency and duration of episodes of cold hands, and heart rate variability. Assessments will be made at baseline and at one, three, and five weeks thereafter. This study will provide an indication of the feasibility and a clinical foundation for a future large-scale trial. This study was registered at Korean Clinical Research Information Service (CRIS) registry on 5 August 2013 with the

  2. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  3. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  4. Study of diffusion type cold traps in liquid sodium circuit

    International Nuclear Information System (INIS)

    Araujo, F.G.B. de.

    1974-01-01

    The purpose of this thesis is to attain conclusions related with the work of the diffusion type cold traps. Primarily a mathematic formulation is established for a purification process, including the determination of the cold trap thermic field. With parameters obtained from the temperature field, purification characteristics were calculated allowing conclusions concerning the system's performance. (author)

  5. Improved biochemical preservation of heart slices during cold storage.

    Science.gov (United States)

    Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V

    2000-01-01

    Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p cold storage (p cold storage.

  6. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon

    DEFF Research Database (Denmark)

    Gimenez, B.; Dalgaard, Paw

    2004-01-01

    Aims: To evaluate and model the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon.Methods and Results: Growth kinetics of L. monocytogenes, lactic acid bacteria (LAB), Enterobacteriaceae, enterococci and Photobacterium phosphoreum were determined...

  7. Case study: Investigating the causes of temperature breaks in South African summer fruit export cold chains

    CSIR Research Space (South Africa)

    Goedhals-Gerber, LL

    2016-08-01

    Full Text Available This study investigated the causes and extent of temperature breaks in the South African summer fruit export cold chain from the pack house to the vessel. Numerous causes of temperature breaks throughout the cold chain were found, resulting in many...

  8. Effects of cold-pressor and mental arithmetic on pupillary light reflex

    International Nuclear Information System (INIS)

    Davis, B C; Daluwatte, C; Colona, N C; Yao, D G

    2013-01-01

    Dynamic pupillary light reflex (PLR) is a simple neurological test that can be useful for assessment of autonomic disorders. In this study, we investigated the changes in PLR induced by mental arithmetic task and cold pressor trials which are often applied in research as model systems to elicit autonomic responses. PLR was recorded before, during and after mental arithmetic and cold pressor tasks in 20 healthy adults (ten males and ten females). Stress-induced sympathetic activation was evident as shown in the increased blood pressure during both tasks. Although the pupillary constriction amplitude did not show significant changes, both constriction time and redilation time changed during the tasks. A significant gender effect was observed in cold pressor that suggested more sympathetic activation in males and faster parasympathetic activation in females in response to light stimulation under cold pressor. (paper)

  9. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  10. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1976-01-01

    Recovery of neutron-irradiated and cold-worked thorium was studied using electrical resistivity measurements. Thorium wires containing 30 and 300 wt ppM carbon were irradiated to fast neutron fluence of 1.3 x 10 18 n/cm 2 (E greater than 0.1 MeV). Another group of thorium wires containing 45, 300 and 600 wt ppM carbon were laterally compressed 5 to 40 percent. Both irradiation and cold-working were performed at liquid nitrogen temperature. The induced resistivity was found to increase with carbon content for both treatments. Isochronal recovery studies were performed in the 120--420 0 K temperature range. Two recovery stages (II and III) were found for both cold-worked and irradiated samples. In all cases the activation energies were determined by use of the ratio-of-slope method. Consistent results were observed for both irradiated and cold-worked specimens within the experimental error in the two stages. Other methods were also used in determining the activation energy of stage III for irradiated samples. All analysis methods indicated that the activation energies decreased with increasing carbon content for differently treated specimens. Possible reasons for such behavior are discussed. The annealing data obtained do not fit a simple chemical rate equation but follow the empirical exponential equation proposed by Avrami. A model of detrapping of interstitials from impurities is suggested for stage II recovery. On the basis of the observed low activation energy and high retention of defects above stage III, a divacancy migration model is proposed for stage III recovery

  11. A fast approximation method for reliability analysis of cold-standby systems

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Amari, Suprasad V.

    2012-01-01

    Analyzing reliability of large cold-standby systems has been a complicated and time-consuming task, especially for systems with components having non-exponential time-to-failure distributions. In this paper, an approximation model, which is based on the central limit theorem, is presented for the reliability analysis of binary cold-standby systems. The proposed model can estimate the reliability of large cold-standby systems with binary-state components having arbitrary time-to-failure distributions in an efficient and easy way. The accuracy and efficiency of the proposed method are illustrated using several different types of distributions for both 1-out-of-n and k-out-of-n cold-standby systems.

  12. Characterization of cold sensitivity and thermal preference using an operant orofacial assay

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-12-01

    Full Text Available Abstract Background A hallmark of many orofacial pain disorders is cold sensitivity, but relative to heat-related pain, mechanisms of cold perception and the development of cold allodynia are not clearly understood. Molecular mediators of cold sensation such as TRPM8 have been recently identified and characterized using in vitro studies. In this study we characterized operant behavior with respect to individually presented cold stimuli (24, 10, 2, and -4°C and in a thermal preference task where rats chose between -4 and 48°C stimulation. We also evaluated the effects of menthol, a TRPM8 agonist, on operant responses to cold stimulation (24, 10, and -4°C. Male and female rats were trained to drink sweetened milk while pressing their shaved faces against a thermode. This presents a conflict paradigm between milk reward and thermal stimulation. Results We demonstrated that the cold stimulus response function was modest compared to heat. There was a significant effect of temperature on facial (stimulus contacts, the ratio of licking contacts to stimulus contacts, and the stimulus duration/contact ratio. Males and females differed only in their facial contacts at 10°C. In the preference task, males preferred 48°C to -4°C, despite the fact that 48°C and -4°C were equally painful as based on their reward/stimulus and duration/contact ratios. We were able to induce hypersensitivity to cold using menthol at 10°C, but not at 24 or -4°C. Conclusion Our results indicate a strong role for an affective component in processing of cold stimuli, more so than for heat, which is in concordance with human psychophysical findings. The induction of allodynia with menthol provides a model for cold allodynia. This study provides the basis for future studies involving orofacial pain and analgesics, and is translatable to the human experience.

  13. Cold adaptive thermogenesis following consumption of certain pungent spice principles: A validation study.

    Science.gov (United States)

    Pandit, Chaitanya; Anilakumar, K R

    2017-02-01

    Identifying a means to activate or potentiate thermogenic mechanisms through ingestion of dietary compounds have important implications in cold endurance and survival. Although many reports discuss the thermogenic potential of spices, it is surprising that none of the studies verify whether consumption of spices can improve cold endurance. In this study, we have attempted to evaluate if ingestion of certain spices can activate heat-generating mechanisms in the body such that a fall in. core body temperature (CBT) can be delayed or prevented when faced with a cold challenge. Ten commonly used spices in the Indian cuisine were chosen and 70% ethanol extract of the spices were fed orally to male Wistar rats at a dose of 250mg/kg for a period of 7 days. A change in CBT during cold exposure was recorded before and after treatment. At the end of the experiment, plasma norepinephrine and serum free fatty acid levels were estimated. We observed that among the ten spices, treatment with cinnamon and pepper extracts showed significant improvement in comparison to the control group. Based on evidence in literature and the HPLC-MS analysis from our lab, we hypothesized that the effects of the pepper and cinnamon extracts might be due to their piperine and cinnamaldehyde content respectively. However, no improved endurance was observed when they were administered alone. Poor endurance following depletion of endogenous norepinephrine levels using reserpine indicated its involvement in mediating the heat generating processes. However, it is noteworthy that green tea and spice treated animals exhibited a fall in CBT which was lower than their initial fall. In conclusion, our findings provide experimental evidence that ingestion of spices, viz., pepper and cinnamon, might elicit thermogenic responses such that hypothermia can be delayed or prevented upon cold exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Control of surface thermal scratch of strip in tandem cold rolling

    Science.gov (United States)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  15. Order in cold ionic systems: Dynamic effects

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1988-01-01

    The present state and recent developments in Molecular Dynamics calculations modeling cooled heavy-ion beams are summarized. First, a frame of reference is established, summarizing what has happened in the past; then the properties of model systems of cold ions studied in Molecular Dynamics calculations are reviewed, with static boundary conditions with which an ordered state is revealed; finally, more recent results on such modelling, adding the complications in the (time-dependent) boundary conditions that begin to approach real storage rings (ion traps) are reported. 14 refs., 19 figs., 2 tabs

  16. Outer crust of nonaccreting cold neutron stars

    International Nuclear Information System (INIS)

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-01-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars

  17. Numerical simulation of thermal stratification in cold legs by using openFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2010-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  18. Cold storage of liver microorgans in ViaSpan and BG35 solutions: study of ammonia metabolism during normothermic reoxygenation.

    Science.gov (United States)

    Pizarro, María Dolores; Mediavilla, María Gabriela; Berardi, Florencia; Tiribelli, Claudio; Rodríguez, Joaquín V; Mamprin, María Eugenia

    2014-01-01

    This work focuses on ammonia metabolism of Liver Microorgans (LMOs) after cold preservation in a normothermic reoxygenation system (NRS). We have previously reported the development of a novel preservation solution, Bes-Gluconate-PEG 35 kDa (BG35) that showed the same efficacy as ViaSpan to protect LMOs against cold preservation injury. The objective of this work was to study mRNA levels and activities of two key Urea Cycle enzymes, Carbamyl Phosphate Synthetase I (CPSI) and Ornithine Transcarbamylase (OTC), after preservation of LMOs in BG35 and ViaSpan and the ability of these tissue slices to detoxify an ammonia overload in a NRS model. After 48 h of cold storage (0°C in BG35 or ViaSpan) LMOs were rewarmed in KHR containing an ammonium chloride overload (1 mM). We determined ammonium detoxification capacity (ADC), urea synthesis and enzyme activities and relative mRNA levels for CPSI and OTC. At the end of reoxygenation LMOs cold preserved in BG35 have ADC and urea synthesis similar to controls. ViaSpan group demonstrated a lower capacity to detoxify ammonia and to synthesize urea than fresh LMOs during the whole reoxygenation period which correlated with the lower mRNA levels and activities for CPSI and OTC observed for this group. We demonstrate that our preservation conditions (48 hours, BG35 solution, anoxia, 0ºC) did not affect ammonia metabolism of cold preserved LMOs maintaining the physiological and biochemical liver functions tested, which allows their future use as biological component of a BAL system.

  19. Microscopic observations of palladium used for cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1991-01-01

    This paper examines the microscopic structures of palladium metals used for cold fusion experiments. Tiny spot defects suggesting cold fusion have been observed in grain boundaries as the Nattoh model predicts. The relationship between these defects and a series of neutron busts and an indirect loop of hydrogen chain reactions are discussed

  20. Thermo-mechanical Design Methodology for ITER Cryodistribution cold boxes

    Science.gov (United States)

    Shukla, Vinit; Patel, Pratik; Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Shah, Nitin; Choukekar, Ketan; Chang, Hyun-Sik; Sarkar, Biswanath

    2017-04-01

    The ITER cryo-distribution (CD) system is in charge of proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users; namely the superconducting (SC) magnets and cryopumps (CPs). The CD system is also capable to use the magnet structures as a thermal buffer in order to operate the cryo-plant as much as possible at a steady state condition. A typical CD cold box is equipped with mainly liquid helium (LHe) bath, heat exchangers (HX’s), cryogenic valves, filter, heaters, cold circulator, cold compressor and process piping. The various load combinations which are likely to occur during the life cycle of the CD cold boxes are imposed on the representative model and impacts on the system are analyzed. This study shows that break of insulation vacuum during nominal operation (NO) along with seismic event (Seismic Level-2) is the most stringent load combination having maximum stress of 224 MPa. However, NO+SMHV (Séismes Maximaux Historiquement Vraisemblables = Maximum Historically Probable Earthquakes) load combination is having the least safety margin and will lead the basis of the design of the CD system and its sub components. This paper presents and compares the results of different load combinations which are likely to occur on a typical CD cold box.

  1. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  2. The supraspinal neural correlate of bladder cold sensation--an fMRI study.

    Science.gov (United States)

    Mehnert, Ulrich; Michels, Lars; Zempleni, Monika-Zita; Schurch, Brigitte; Kollias, Spyros

    2011-06-01

    In recent years, functional imaging studies have revealed a supraspinal network, which is involved in perception and processing of bladder distention. Very little information exists on the cortical representation of C-fiber transmitted temperature sensation of the human bladder, although C-fibers seem to be involved in the pathomechanisms of bladder dysfunctions. Our aim was, therefore, to evaluate the outcome of bladder cold stimulation on supraspinal activity using functional magnetic resonance imaging (fMRI). A block design fMRI study was performed in 14 healthy females at the MR-center of the University of Zurich. After catheterization, all subjects were investigated in a 3.0-Tesla Scanner. The scanning consisted of 10 repetitive cycles. Each cycle consisted of five conditions: REST, INFUSION, SENSATION, DRAIN 1, and DRAIN 2. Cold saline was passively infused at 4-8°C during scanning. Not more than 100 ml were infused per cycle. Blood-oxygen-level-dependent (BOLD) signal analysis of the different conditions was compared to REST. All activations were evaluated on a random effects level at P = 0.001. Activation of brain regions for bladder cold stimulation (DRAIN 1 period) was found bilaterally in the inferior parietal lobe [Brodmann area (BA) 40], the right insula (BA 13), the right cerebellar posterior lobe, the right middle temporal gyrus (BA 20), and the right postcentral gyrus (BA 3). In conclusion, bladder cooling caused a different supraspinal activation pattern compared to what is known to occur during bladder distention. This supports our hypothesis that cold sensation is processed differently from bladder distension at the supraspinal level. Copyright © 2010 Wiley-Liss, Inc.

  3. Dissipation-Free Jumps for the Magnetosonic Branch of Cold Plasma Motion

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipation-free jumps are studied in a hydrodynamic model of a cold plasma moving at about magnetosonic speed. The jumps described by the generalized Korteweg-de Vries equation, which possesses similar nonlinear and dispersion properties, are considered. In particular, jumps with emission and solitonlike jumps are considered. The assumption that our model possesses jumps of the same type as those for the generalized Korteweg-de Vries equation is justified by numerically investigating the problem of the decay of an initial discontinuity in a cold plasma. An analytic method is described that makes it possible to predict the structure of such jumps in the general case

  4. Transcriptome response mediated by cold stress in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Pablo Ignacio Calzadilla

    2016-03-01

    Full Text Available Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures

  5. Monitoring the vaccine cold chain.

    OpenAIRE

    Cheriyan, E

    1993-01-01

    Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.

  6. Dimensional ranges and rolling efficiency in a tandem cold rolling mill

    Energy Technology Data Exchange (ETDEWEB)

    Larkiola, J.

    1997-12-31

    In this work, physical models and a neural network theory have been combined in order to predict the properties of a steel strip and to optimise the process parameters in cold rolling. The prediction of the deformation resistance of the material and the friction parameter is based on the physical model presented by Bland, Ford and Ellis and artificial neural network computing (ANN). The accuracy of these models has been tested and proved by using a large amount of the measured data. With the aid of these models it has been shown that (a) the small change to the relative reduction distribution can have a clear effect upon the rolling efficiency, (b) the dimensional ranges of the tandem cold roll mill can be determined and optimised and (c) the possibility to cold roll a new product of new width, strength or thickness can be determined and the parameters of the tandem cold rolling process can be optimised. (orig.) 43 refs.

  7. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    Science.gov (United States)

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  8. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  9. Formation of cold molecules through the photo-association of cold atoms of Cesium. Existence of long range forces between between cold excited atoms of Cesium

    International Nuclear Information System (INIS)

    Comparat, D.

    1999-09-01

    This thesis deals with the experimental study and the theoretical interpretation of the processes involved in photo-association and the formation of cold caesium molecules. It also presents a study of the dipolar forces between a pair of cold excited caesium atoms. We present here the first photo-association experiment on cold caesium atoms: two cold atoms absorb a photon to form an excited electronically excited molecules in a rotation-vibration level. The first production of cold molecules which was realised experimentally, after the spontaneous deexcitation of the photo-associated molecules, is described, stressing the role of the potential well of the molecular states O g - (6s+6p 3/2 ) or 1 u (6s+6p 3/2 ) of caesium. The detection of the formed caesium molecules is based on a two-photons resonant ionisation that creates Cs 2 + ions, afterwards selectively detected. Temperatures around 20-200 μK have been measured. The photo-associative spectroscopy is described on the theoretical point of view: a detailed theoretical study allows to calculate precisely the asymptotic parts of the potential curves. On the experimental point of view, we present the spectroscopy of the extern potential well of the caesium state O g - (6s+6p 3/2 ) and the construction of an effective potential curve of the RKR type. A unified theory of photo-association in weak field, considered as a collision assisted by laser, is developed. The cold atoms experiments allow to study and control the collision between two atoms whose mutual interaction is of the dipole-dipole type. Two different physical systems are studied: a sample of Rydberg atoms, and the photo-association process which is a laser-assisted collision. A modification of the motion of one pair of atoms makes it possible to control the bipolar forces and to choose the atoms relative speeds. (author)

  10. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  11. The Cold Chain Logistics for Perishable Agricultural Products in China

    OpenAIRE

    Hou Yanfang; Xie Dong; Wang Jianbo

    2015-01-01

    This study introduces concepts of the agricultural product cold chain logistics and domestic and international researches. Also, the study discusses issues of Chinese agricultural cold chain logistics in the development process as the following aspects: the dividing of cold chain logistics market, refrigeration hardware facilities, third-party cold chain logistics development, the level of cold chain technologies, cold chain logistics professionals and the legal system and the standard system...

  12. Cold and heat waves in the United States.

    Science.gov (United States)

    Barnett, A G; Hajat, S; Gasparrini, A; Rocklöv, J

    2012-01-01

    Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on people's cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    Science.gov (United States)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  14. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  15. Dissipative - free jumps for the magnetoacoustic branch of cold plasma motions

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipative-free jumps were studied in hydrodynamic model of cold plasma moving with the rate close to magnetoacoustic one. The jumps for the generalized Korteweg-de Vries equation with similar nonlinear and dispersion properties were studied. Among them there were jumps with emission and solution type jumps. Furthermore, the numerical investigation into the initial break decomposition in cold plasma confirmed the validity of assumption that in the given type of jumps as in case of the generalized Korteweg-de Vries equation. Paper describes the analytical method enabling to forecast the structure nature of such jumps in the general case [ru

  16. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10 -5 m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables

  17. The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.

    Science.gov (United States)

    Turner, Heather N; Armengol, Kevin; Patel, Atit A; Himmel, Nathaniel J; Sullivan, Luis; Iyer, Srividya Chandramouli; Bhattacharya, Surajit; Iyer, Eswar Prasad R; Landry, Christian; Galko, Michael J; Cox, Daniel N

    2016-12-05

    The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the transient receptor potential (TRP) channels Trpm, NompC, and Polycystic kidney disease 2 (Pkd2) are expressed in CIII neurons, where each is required for CT. Misexpression of Pkd2 is sufficient to confer cold responsiveness. The optogenetic activation level of multimodal CIII neurons determines behavioral output, and visualization of neuronal activity supports this conclusion. Coactivation of cold- and heat-responsive sensory neurons suggests that the cold-evoked response circuitry is dominant. Our Drosophila model will enable a sophisticated molecular genetic dissection of cold nociceptive genes and circuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Study of cold and hot sources in a research reactor. (Physics, specifications, operation, utilization)

    International Nuclear Information System (INIS)

    Safieh, J.

    1982-10-01

    A brief description of the reactor, sources and experimental channels (ORPHEE being taken as example) is first given. The first part deals with the hot neutron source, mainly made of a graphite block to be carried at a temperature of 1500 0 K by nuclear heating. The present study focused on the determination, with the code MERCURE IV, of heat sources generated in the graphite block. From these results the spatial distribution of temperatures have been calculated with two different methods. Mechanical and thermal stresses have been calculated for the hot points. Then, the outlet neutron spectra is determined by means of the code APOLLO. Finally, the operation of the device is presented and the risks and the safety measures are given. The second part deals with cold neutron sources comprising mainly a cold moderator (liquid hydrogen 20.4 0 K). The helium coolant circuit liquefies the hydrogen by means of heat exchange in a condenser. Cold neutron yields calculations are developed by means of the code THERMOS in the plane and cyclindrical geometries. Heat sources generated by nuclear radiations are calculated. A detailed description of the device and its coolant circuit is given, and a risk analysis is finally presented. The third part deals with the part of thermal cold and hot neutrons in the study of matter and its dynamics. Technical means needed to obtain a monochromatic beam, for diffraction experiments, are recalled emphasizing on the interest of these neutrons with regard to X radiation. Then, one deals with cold neutron guides. Finally, the efficiency of two neutron guides is calculated. 78 refs [fr

  19. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  20. Hyperbranched polyglycerol as a colloid in cold organ preservation solutions.

    Directory of Open Access Journals (Sweden)

    Sihai Gao

    Full Text Available Hydroxyethyl starch (HES is a common colloid in organ preservation solutions, such as in University of Wisconsin (UW solution, for preventing graft interstitial edema and cell swelling during cold preservation of donor organs. However, HES has undesirable characteristics, such as high viscosity, causing kidney injury and aggregation of erythrocytes. Hyperbranched polyglycerol (HPG is a branched compact polymer that has low intrinsic viscosity. This study investigated HPG (MW-0.5 to 119 kDa as a potential alternative to HES for cold organ preservation. HPG was synthesized by ring-opening multibranching polymerization of glycidol. Both rat myocardiocytes and human endothelial cells were used as an in vitro model, and heart transplantation in mice as an in vivo model. Tissue damage or cell death was determined by both biochemical and histological analysis. HPG polymers were more compact with relatively low polydispersity index than HES in UW solution. Cold preservation of mouse hearts ex vivo in HPG solutions reduced organ damage in comparison to those in HES-based UW solution. Both size and concentration of HPGs contributed to the protection of the donor organs; 1 kDa HPG at 3 wt% solution was superior to HES-based UW solution and other HPGs. Heart transplants preserved with HPG solution (1 kDa, 3% as compared with those with UW solution had a better functional recovery, less tissue injury and neutrophil infiltration in syngeneic recipients, and survived longer in allogeneic recipients. In cultured myocardiocytes or endothelial cells, significantly more cells survived after cold preservation with the HPG solution than those with the UW solution, which was positively correlated with the maintenance of intracellular adenosine triphosphate and cell membrane fluidity. In conclusion, HPG solution significantly enhanced the protection of hearts or cells during cold storage, suggesting that HPG is a promising colloid for the cold storage of donor organs

  1. Cold Storage for a Single-Family House in Italy

    Directory of Open Access Journals (Sweden)

    Luigi Mongibello

    2016-12-01

    Full Text Available This work deals with the operation, modeling, simulation, and cost evaluation of two different cold storage systems for a single-family house in Italy, that differ from one another on the cold storage material. The two materials used to perform the numerical simulations of the cold storage systems are represented by cold water and a phase change material (PCM, and the numerical simulations have been realized by means of numerical codes written in Matlab environment. The main finding of the present work is represented by the fact that, for the considered user characteristics, and under the Italian electricity tariff policy, the use of a proper designed cold storage system characterized by an effective operation strategy could represent a viable solution from an economical point of view.

  2. The CGM of Massive Galaxies: Where Cold Gas Goes to Die?

    Science.gov (United States)

    Howk, Jay

    2017-08-01

    We propose to survey the cold HI content and metallicity of the circumgalactic medium (CGM) around 50 (45 new, 5 archival) z 0.5 Luminous Red Galaxies (LRGs) to directly test a fundamental prediction of galaxy assembly models: that cold, metal-poor accretion does not survive to the inner halos of very massive galaxies. Accretion and feedback through the CGM play key roles in our models of the star formation dichotomy in galaxies. Low mass galaxies are thought to accrete gas in cold streams, while high mass galaxies host hot, dense halos that heat incoming gas and prevent its cooling, thereby quenching star formation. HST/COS has provided evidence for cold, metal-poor streams in the halos of star-forming galaxies (consistent with cold accretion). Observations have also demonstrated the presence of cool gas in the halos of passive galaxies, a potential challenge to the cold/hot accretion model. Our proposed observations will target the most massive galaxies and address the origin of the cool CGM gas by measuring the metallicity. This experiment is enabled by our novel approach to deriving metallicities, allowing the use of much fainter QSOs. It cannot be done with archival data, as these rare systems are not often probed along random sight lines. The H I column density (and metallicity) measurements require access to the UV. The large size of our survey is crucial to robustly assess whether the CGM in these galaxies is unique from that of star-forming systems, a comparison that provides the most stringent test of cold-mode accretion/quenching models to date. Conversely, widespread detections of metal-poor gas in these halos will seriously challenge the prevailing theory.

  3. Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model

    Science.gov (United States)

    Ruaud, Maxime; Wakelam, Valentine; Hersant, Franck

    2016-07-01

    We present an extended version of the two-phase gas-grain code NAUTILUS to the three-phase modelling of gas and grain chemistry of cold cores. In this model, both the mantle and the surface are considered as chemically active. We also take into account the competition among reaction, diffusion and evaporation. The model predictions are confronted to ice observations in the envelope of low-mass and massive young stellar objects as well as towards background stars. Modelled gas-phase abundances are compared to species observed towards TMC-1 (CP) and L134N dark clouds. We find that our model successfully reproduces the observed ice species. It is found that the reaction-diffusion competition strongly enhances reactions with barriers and more specifically reactions with H2, which is abundant on grains. This finding highlights the importance having a good approach to determine the abundance of H2 on grains. Consequently, it is found that the major N-bearing species on grains go from NH3 to N2 and HCN when the reaction-diffusion competition is taken into account. In the gas phase and before a few 105 yr, we find that the three-phase model does not have a strong impact on the observed species compared to the two-phase model. After this time, the computed abundances dramatically decrease due to the strong accretion on dust, which is not counterbalanced by the desorption less efficient than in the two-phase model. This strongly constrains the chemical age of cold cores to be of the order of few 105 yr.

  4. A HIGH FIDELITY SAMPLE OF COLD FRONT CLUSTERS FROM THE CHANDRA ARCHIVE

    International Nuclear Information System (INIS)

    Owers, Matt S.; Nulsen, Paul E. J.; Markevitch, Maxim; Couch, Warrick J.

    2009-01-01

    This paper presents a sample of 'cold front' clusters selected from the Chandra archive. The clusters are selected based purely on the existence of surface brightness edges in their Chandra images which are modeled as density jumps. A combination of the derived density and temperature jumps across the fronts is used to select nine robust examples of cold front clusters: 1ES0657 - 558, Abell 1201, Abell 1758N, MS1455.0+2232, Abell 2069, Abell 2142, Abell 2163, RXJ1720.1+2638, and Abell 3667. This sample is the subject of an ongoing study aimed at relating cold fronts to cluster merger activity, and understanding how the merging environment affects the cluster constituents. Here, temperature maps are presented along with the Chandra X-ray images. A dichotomy is found in the sample in that there exists a subsample of cold front clusters which are clearly mergers based on their X-ray morphologies, and a second subsample of clusters which harbor cold fronts, but have surprisingly relaxed X-ray morphologies, and minimal evidence for merger activity at other wavelengths. For this second subsample, the existence of a cold front provides the sole evidence for merger activity at X-ray wavelengths. We discuss how cold fronts can provide additional information which may be used to constrain merger histories, and also the possibility of using cold fronts to distinguish major and minor mergers.

  5. Numerical simulation of thermal stratification in cold legs by using OpenFOAM

    International Nuclear Information System (INIS)

    Cai, Jiejin; Watanabe, Tadashi

    2011-01-01

    During a small-break loss-of-coolant accident in pressurized water reactors (PWRs), emergency core cooling system (ECCS) is actuated and cold water is injected into cold legs. Insufficient mixing of injected cold water and hot primary coolant results in thermal stratification, which is a matter of concern for evaluation of pressurized thermal shock (PTS) in view of aging and life extension of nuclear power plants. In this study, an open source CFD software, OpenFOAM, is used to simulate mixing and thermal stratification in the cold leg of ROSA/LSTF, which is the largest thermal-hydraulic integral test facility simulating PWR. One of the cold-leg is numerically simulated from the outlet of primary coolant pump to the inlet of downcomer. ECCS water is injected from injection nozzle connected at the top of the cold leg into the steady-state natural circulation flow under high-pressure and high-temperature conditions. The temperature distribution in the cold leg is compared with experimental and FLUENT's results. Effects of turbulent flow models and secondary flow due to the elbow section of the cold leg are discussed for the case with the single-phase natural circulation. Injection into a two-phase stratified flow is also simulated and predictive and numerical capabilities of OpenFOAM are discussed. (author)

  6. Effects of cold temperatures on the excitability of rat trigeminal ganglion neurons that are not for cold sensing.

    Science.gov (United States)

    Kanda, Hirosato; Gu, Jianguo G

    2017-05-01

    Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.

  7. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    Science.gov (United States)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  8. Experimental study on combined cold forging process of backward cup extrusion and piercing

    Science.gov (United States)

    Henry, Robinson; Liewald, Mathias

    2018-05-01

    A reduction in material usage of cold forged components while maintaining the functional requirements can be achieved using hollow or tubular preforms. These preforms are used to meet lightweight requirements and to decrease production costs of cold formed components. To increase production efficiency in common multi-stage cold forming processes, manufacturing of hollow preforms by combining the processes backward cup extrusion and piercing was established and will be discussed in this paper. Corresponding investigations and experimental studies are reported in this article. The objectives of the experimental investigations have been the detection of significant process parameters, determination of process limits for the combined processes and validation of the numerical investigations. In addition, the general influence concerning surface quality and diameter tolerance of hollow performs are discussed in this paper. The final goal is to summarize a guideline for industrial application, moreover, to transfer the knowledge to industry, as regards what are required part geometries to reduce the number of forming stages as well as tool cost.

  9. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Science.gov (United States)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  10. Simulation study on the cold neutron guides in China advanced research reactor

    International Nuclear Information System (INIS)

    Guo Liping; Yang Tonghua; Wang Hongli; Sun Kai; Zhao Zhixiang

    2003-01-01

    The designs of the two cold neutron guides, CNG1 and CNG2, to be built in China advanced research reactor (CARR) are studied with Monte-Carlo simulation technique. The neutron flux density at the exit of the both guides can reach above 1 x10 9 cm -2 ·s -1 under the assumed flux spectrum of the cold neutron source. The transmission efficiency is 50% and 42%, and the maximum divergence is about 2.2 degree and 1.9 degree, respectively for CNG1 and CNG2. Neutron distribution along horizontal direction is quite uniform for both guides, with maximum fluctuation of less than 3%. Gravity can affect neutron distribution along vertical direction considerably

  11. Impairment of exercise performance following cold water immersion is not attenuated after 7 days of cold acclimation.

    Science.gov (United States)

    Jones, Douglas M; Roelands, Bart; Bailey, Stephen P; Buono, Michael J; Meeusen, Romain

    2018-03-19

    It is well-documented that severe cold stress impairs exercise performance. Repeated immersion in cold water induces an insulative type of cold acclimation, wherein enhanced vasoconstriction leads to greater body heat retention, which may attenuate cold-induced exercise impairments. The purpose of this study, therefore, was to investigate changes in exercise performance during a 7-day insulative type of cold acclimation. Twelve healthy participants consisting of eight males and four females (mean ± SD age: 25.6 ± 5.2 years, height: 174.0 ± 8.9 cm, weight: 75.6 ± 13.1 kg) performed a 20 min self-paced cycling test in 23 °C, 40% humidity without prior cold exposure. Twenty-four hours later they began a 7-day cold acclimation protocol (daily 90 min immersion in 10 °C water). On days one, four, and seven of cold acclimation, participants completed the same cycling test. Measurements of work completed, core and skin temperatures, heart rate, skin blood flow, perceived exertion, and thermal sensation were measured during each cycling test. Successful insulative cold acclimation was observed. Work produced during the baseline cycling test (220 ± 70 kJ) was greater (p immersions (195 ± 58, 197 ± 60, and 194 ± 62 kJ) despite similar ratings of perceived exertion during each test, suggesting that cold exposure impaired cycling performance. This impairment, however, was not attenuated over the cold acclimation period. Results suggest that insulative cold acclimation does not attenuate impairments in exercise performance that were observed following acute cold water immersion.

  12. The Cold War in the Soviet School: A Case Study of Mathematics Education

    Science.gov (United States)

    Karp, Alexander

    2007-01-01

    This article is devoted to certain aspects of the cold war reflected in the teaching of mathematics in the Soviet Union. The author deals specifically with direct manifestations of the cold war, not with the teaching of mathematics during the cold war in general. His aim is not to present a comprehensive examination of school programs in…

  13. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    Science.gov (United States)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  14. Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging

    Directory of Open Access Journals (Sweden)

    Wuhao Zhuang

    2014-11-01

    Full Text Available Cold rotary forging is a novel metal forming technology which is widely used to produce the high performance gears. Investigating the microstructure and mechanical property of cold rotary forged gears has a great significance in improving their service performance. In this study, the grain morphology in different regions of the spur bevel gear which is processed by cold rotary forging is presented. And the distribution regulars of the grain deformation and Vickers hardness in the transverse and axial sections of the gear tooth are studied experimentally. A three-dimensional rigid-plastic FE model is developed to simulate the cold rotary forging process of a spur bevel gear under the DEFORM-3D software environment. The variation of effective strain in the spur bevel gear has been investigated so as to explain the distribution regulars of the microstructure and Vickers hardness. The results of this research thoroughly reveal the inhomogeneous deformation mechanisms in cold rotary forging of spur bevel gears and provide valuable guidelines for improving the performance of cold rotary forged spur bevel gears.

  15. Computer analysis of sodium cold trap design and performance

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na 2 O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions

  16. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Rozsypal, J; Moos, M; Goto, S G

    2017-10-17

    The bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at -10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.

  17. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  18. Some Material Characteristics of Cold-Sprayed Structures

    Directory of Open Access Journals (Sweden)

    Victor K. Champagne

    2007-01-01

    Full Text Available The deposition and consolidation of metal powders by means of cold spray are methods whereby powder particles are accelerated to high velocity through entrainment in a gas undergoing expansion in a rocket nozzle and are subsequently impacted upon a surface. The impacted powder particles form a consolidated structure which can be several centimeters thick. The characteristics of this structure depend on the initial characteristics of the metal powder and upon impact velocity. The influence of impact velocity on strain hardening and porosity are examined. A materials model is proposed for these phenomena, and model calculation is compared with experiment for the cold spraying of aluminum.

  19. The Numerical Sensitivity Study of Cold Leg Top Slot Break for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae Jung; Lee, Sang Ik; Park, Ju hyun; Choi, Tong Soo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, cold leg top slot break calculations are performed by RELAP5/MOD3.3 Patch04 for the ATLAS test which is the scaled down experimental facility for the APR1400. The test condition for base case is selected as 0.1016 m (4 in.) based on the break size of the APR1400. In addition, sensitivity studies about break size, break distance from vessel, and pressurizer location are performed until the initiation of simultaneous injection of 2.5 hours. The loop seal reformation occurs early, and the duration of final loop seal reformation is longer as the break is close to vessel. Nonetheless, PCT increased by loop seal reformation is not identified since core uncovery does not occur. In this study, it is confirmed through RELAP5 simulation of the ATLAS test that cold leg top slot break for the APR1400 is not a safety issue in perspective of the loop seal reformation.

  20. Independent cellular effects of cold ischemia and reperfusion: experimental molecular study.

    Science.gov (United States)

    Lledó-García, E; Humanes-Sánchez, B; Mojena-Sánchez, M; Rodrígez, J C J; Hernández-Fernández, C; Tejedor-Jorge, A; Fernández, A L

    2013-04-01

    There is less information available on cell cultures on the exclusive effects of either duration of cold ischemia (CI) or rewarming-reperfusion in the kidney subjected to initial warm ischemia (WI). Therefore, the goals of our work were: (1) to evaluate the consequences on tubular cellular viability of different durations of CI on a kidney after an initial period of WI, and (2) to analyze the additional effect on tubular cell viability of rewarming of the same kidney. Sixteen mini-pig were used. All the animals were performed a right nephrectomy after 45-minute occlusion of the vascular pedicle. The kidneys were then divided into 2 groups (phase 1): cold storage in university of wisconsin (UW) solution for 3 hours (group A, n = 8) at 4°C, or cold storage in UW for 12 hours (group B, n = 8) at 4°C. Four organs of group A and four organs of group B were autotrasplanted (AT) and reperfused for 1 hour (phase 2). Nephrectomy was finally done. Biopsies were taken from all groups to perform cultures of proximal tubule epithelium cells. The biopsies were subjected to studies of cellular morphological viability (contrast phase microscopy [CPM]) and quantitative (confluence cell [CC]) parameters. Phase of pure CI effects (phase 1): Both CC rate and CPM parameters were significantly lower in group B compared with group A, where cell activity reached almost normal results. Phase of CI + AT (phase 2): At produced additional harmful effects in cell cultures compared with those obtained in phase 1, more evident in group B cells. The presence of cold storage followed by rewarming-reperfusion induces independent and cumulative detrimental effects in viability of renal proximal tubule cells. CI periods ≤ 3 hours may ameliorate the injuries secondary to reperfusion in comparison with longer CI periods. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Investigation of focusing of relativistic electron and positron bunches moving in cold plasma. Final report

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Elbakian, S.S.; Khachatryan, A.G.; Sekhpossian, E.V.

    1995-03-01

    This document is the final report on a project to study focusing effects of relativistic beams of electrons and positrons interacting with a cold plasma. The authors consider three different models for the overdense cold plasma - electron bunch interaction. They look at coulomb effects, wakefield effects, bunch parameters, and the effects of trains of pulses on focusing properties

  2. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  3. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  4. An optimum cold end configuration for helium liquefaction cycles

    International Nuclear Information System (INIS)

    Minta, M.; Smith, J.L.

    1984-01-01

    This chapter examines the effect of the non-ideal behavior of helium at low temperature on the performance of helium liquefaction cycles. The effect is isolated by means of a continuum model for the precooling stage. The cold end losses are due primarily to the composite effect of the non-ideality of helium at low temperatures and the heat exchanger losses, in addition to the component losses fixed by the expander/compressor efficiencies. Topics considered include continuously distributed full-pressure ratio expanders, continuously distributed full-flow expanders, the heat exchange effect (ideal gas working fluid, real gas working fluid), and cold end configuration. The cold end configuration minimizes the cycle cold end losses

  5. Experimental facility and methodology for systematic studies of cold startability in direct injection Diesel engines

    Science.gov (United States)

    Pastor, J. V.; García-Oliver, J. M.; Pastor, J. M.; Ramírez-Hernández, J. G.

    2009-09-01

    Cold start at low temperatures in current direct injection (DI) Diesel engines is a problem which has not yet been properly solved and it becomes particularly critical with the current trend to reduce the engine compression ratio. Although it is clear that there are some key factors whose control leads to a proper cold start process, their individual relevance and relationships are not clearly understood. Thus, efforts on optimization of the cold start process are mainly based on a trial-and-error procedure in climatic chambers at low ambient temperature, with serious limitations in terms of measurement reliability during such a transient process, low repeatability and experimental cost. This paper presents a novel approach for an experimental facility capable of simulating real engine cold start, at room temperature and under well-controlled low speed and low temperature conditions. It is based on an optical single cylinder engine adapted to reproduce in-cylinder conditions representative of those of a real engine during start at cold ambient temperatures (of the order of -20 °C). Such conditions must be realistic, controlled and repeatable in order to perform systematic studies in the borderline between ignition success and misfiring. An analysis methodology, combining optical techniques and heat release analysis of individual cycles, has been applied.

  6. Experimental facility and methodology for systematic studies of cold startability in direct injection Diesel engines

    International Nuclear Information System (INIS)

    Pastor, J V; García-Oliver, J M; Pastor, J M; Ramírez-Hernández, J G

    2009-01-01

    Cold start at low temperatures in current direct injection (DI) Diesel engines is a problem which has not yet been properly solved and it becomes particularly critical with the current trend to reduce the engine compression ratio. Although it is clear that there are some key factors whose control leads to a proper cold start process, their individual relevance and relationships are not clearly understood. Thus, efforts on optimization of the cold start process are mainly based on a trial-and-error procedure in climatic chambers at low ambient temperature, with serious limitations in terms of measurement reliability during such a transient process, low repeatability and experimental cost. This paper presents a novel approach for an experimental facility capable of simulating real engine cold start, at room temperature and under well-controlled low speed and low temperature conditions. It is based on an optical single cylinder engine adapted to reproduce in-cylinder conditions representative of those of a real engine during start at cold ambient temperatures (of the order of −20 °C). Such conditions must be realistic, controlled and repeatable in order to perform systematic studies in the borderline between ignition success and misfiring. An analysis methodology, combining optical techniques and heat release analysis of individual cycles, has been applied

  7. Mott-insulating phases in unidimensional multi-components fermionic cold atoms

    International Nuclear Information System (INIS)

    Nonne, Heloise

    2011-01-01

    This thesis is devoted to the investigation of the Mott insulating phases arising in one-dimensional multicomponent fermionic cold atoms systems. The first part of this work is the study of a model with alkaline-earth cold atoms with nuclear spin I = 1/2. Those atoms enjoy an additional orbital degree of freedom, due to the presence of a metastable excited state; they thus have a total of four components. Our investigation is carried at half-filling, at strong and at weak couplings by means of analytic methods (conformal theory, bosonization, refermionization, renormalisation group). We found that the zero temperature phase diagram of the system is very rich: it contains seven Mott insulating phases, among which three are particularly interesting, since they display a hidden order, related to the Haldane physics of the antiferromagnetic spin-1 Heisenberg chain. Our conclusions are checked against numerical simulations, that were carried out with the density matrix renormalization group (DMRG) algorithm for intermediate couplings. The comparison shows an adiabatic continuity between the different regimes. A similar study for a model of cold atoms with hyperfine spin-3/2 highlights the Haldane physics in the charge sector of the degrees of freedom, with an effective model given by an antiferromagnetic pseudo-spin-1 chain. This analysis provides us an opportunity to investigate the zero temperature properties of the SO(5) bilinear-bi-quadratic Heisenberg chain. We show the presence of two gapped phases: one is dimerized, the other has a hidden symmetry (Z 2 x Z 2 ) 2 and spin-3/2 edge states, and they are separated by a critical point that belongs to the SO(5) 1 universality class. Finally, we investigate half-integer hyperfine spin cold atoms systems with 2N components which generalized the results obtained for the hyperfine spin-3/2 model. This leads us to find an even/odd effect according to the parity of N, very similar to the even/odd effect of spin chains

  8. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    Science.gov (United States)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  9. Cold fusion reactors and new modern physics

    OpenAIRE

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    The author of the "modern physics classical particle quantization orbital motion model general solution", referred to as the “new modern physics” a book. “The nuclear force constraint inertial guidance cold nuclear fusion collides” patent of invention referred to as the “cold nuclear fusion reactor” detailed technical data. Now provide to you, hope you help spread and the mainstream of modern physics of academic and fusion engineering academic communication. We work together to promote the c...

  10. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  11. Quantum ratchets for periodically kicked cold atoms and Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Casati, Giulio [Center for Nonlinear and Complex Systems, Universita degli Studi dell' Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy); Poletti, Dario [Center for Nonlinear and Complex Systems, Universita degli Studi dell' Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy)

    2007-05-15

    We study cold atoms and Bose-Einstein condensates exposed to time-dependent standing waves of light. We first discuss a quantum chaotic dissipative ratchet using the method of quantum trajectories. This system is characterized by directed transport emerging from a quantum strange attractor. We then present a very simple model of directed transport with cold atoms in a pair of periodically flashed optical lattices. Finally we study the dynamics of a dilute Bose-Einstein condensate confined in a toroidal trap and exposed to a pair of periodically flashed optical lattices. We show that the many-body atom-atom interactions, treated within the mean-field approximation, can generate directed transport.

  12. Conceptual Readings into the Cold War: Towards Transnational Approaches from the Perspective of Latin American Studies in Eastern and Western Europe

    Directory of Open Access Journals (Sweden)

    Albert Manke

    Full Text Available Abstract This bibliographical and conceptual essay summarizes recent research in Cold War Studies in Europe and the Americas, especially on smaller states in historiographical studies. Against the background of an increasing connectedness and globalization of research about the Cold War, the authors highlight the importance of the full-scale integration of countries and regions of the 'Global South' into Cold War Studies. Critical readings of the newly available resources reveal the existence of important decentralizing perspectives resulting from Cold War entanglements of the 'Global South' with the 'Global North.' As a result, the idea that these state actors from the former 'periphery' of the Cold War should be considered as passive recipients of superpower politics seems rather troubled. The evidence shows (at least partially autonomous and active multiple actors.

  13. Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.

    Science.gov (United States)

    Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.

    2017-12-01

    Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.

  14. The slender bubble model for very slow degassing in porous media and cold production

    Energy Technology Data Exchange (ETDEWEB)

    Chraibi, M. [Total, Paris (France); Zaleski, S. [Society of Petroleum Engineers, London (United Kingdom)]|[Paris Univ., Paris (France); Franco, F. [Society of Petroleum Engineers, London (United Kingdom)]|[Total, Paris (France)

    2008-10-15

    Cold oil production leads to degassing of the light species and the formation of a bubbly phase. This is often referred to as the foamy oil effect and is particularly observed with heavy oils, combining high viscosity and asphaltenes. The presence and behaviour of a foamy-oil effect is critical to the cold production process. However, because a wide range of different petrophysical parameters and experimental factors interact in a complex manner, this process is not a well-understood production mechanism. This study focused on improving the understanding of the solution gas drive mechanism in primary heavy oil recovery. A Darcy-scale model was developed that took into account the basic physical phenomena of bubble nucleation, bubble growth by solute diffusion and expansion, and bubble mobilization. The relative permeability of the gas phase was replaced by an expression for the gas mobility with new physical effects related to capillarity, viscosity, gravity, and bubble geometry. The purpose was to fit the productions with a limited number of parameters, having physical meaning, independently from the depletion rate. The paper also presented several simplifications of the basic Darcy-scale equations, that enabled the production prediction in a much simpler manner than through full simulations. The full set of Darcy-scale equations were solved using a numerical solution. The formation of strong gradients of the gas phase saturation were shown to depend on gravity and viscosity. 12 refs., 4 figs.

  15. Special Issue ;Sediment cascades in cold climate geosystems;

    Science.gov (United States)

    Morche, David; Krautblatter, Michael; Beylich, Achim A.

    2017-06-01

    This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.

  16. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... the number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material...

  17. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  18. Studies on chemical modification of cold agglutinin from the snail Achatina fulica.

    Science.gov (United States)

    Sarkar, M; Mitra, D; Sen, A K

    1987-01-01

    The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867

  19. Development of a continuous cold trap of fluidized bed

    International Nuclear Information System (INIS)

    Yagi, Eiji; Maeda, Mitsuru; Kagami, Haruo; Miyajima, Kazutoshi

    1977-05-01

    As part of the R and D program of Fluoride Volatility Process for the reprocessing of FBR fuel, a continuous cold trap system of fluidized-bed condenser/stripper has been developed which is designed for establishing a continuous flowsheet and also for reducing radiation decomposition of PuF 6 . Feasibility of this cold trap was revealed by an experiment with UF 6 of physical properties similar to those of PuF 6 .; more than 99% trapping efficiency, less than 15 min residence time, and 0.07 critical (UF 6 /Al 2 O 3 ) ratio were obtained in stable operation. The analytical results from a condensation model, such as mist yield, agreed well with those by experiment. Parametric study of the mist formation using the model was made with UF 6 concentration, feed gas temperature and axial temperature distribution. Existence of the optimum axial temperature distribution in the condenser was shown. (auth.)

  20. Viability study of cold generation from biomass in an agrarian exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Ganan Gomez, J.; Gonzalez, J.F.; Roman, S. [Departamento Ingenieria Quimica y Energetica, E II, Universidad de Extremadura, Avda, Elvas s/n, 06071 Badajoz (Spain); Miranda, A. [Departamento Eng, Electromecanica, Universidade da Beira Interior, 6201-001 Covilha (Portugal); Turegano, J.P. [Esc. Sup. de Tecnologia e Gestao, Instituto Politecnico de Portalegre, 7300 Portalegre (Portugal)

    2006-01-15

    In this work the performance of a cold production plant using biomass residuals from an agrarian exploitation as the primary energy source is analyzed. These residuals are generated in the pruning and renovation of fruit trees and are used in a boiler to convey heat to an absorption refrigeration engine. At first the study carries out the characterization and quantification of the energy produced by the residuals. Furthermore, it ponders on the viability analysis of converting that energy in cold by means of an absorption machine. The estimated thermal power sourced from the biomass generated in the exploitation (approx. 4216 ton) is of approximately 56.92x10{sup 6} MJ/year. This energy was shown to be greater than that required to keep the fruits at a suitable low temperature, thus obviating the use of conventional refrigeration and avoiding their associated high energy consumption. (author)

  1. Predictive tool of energy performance of cold storage in agrifood industries: The Portuguese case study

    International Nuclear Information System (INIS)

    Nunes, José; Neves, Diogo; Gaspar, Pedro D.; Silva, Pedro D.; Andrade, Luís P.

    2014-01-01

    Highlights: • A predictive tool for assessment of the energy performance in agrifood industries that use cold storage is developed. • The correlations used by the predictive tool result from the greatest number of data sets collected to date in Portugal. • Strong relationships between raw material, energy consumption and volume of cold stores were established. • Case studies were analyzed that demonstrate the applicability of the tool. • The tool results are useful in the decision-making process of practice measures for the improvement of energy efficiency. - Abstract: Food processing and conservation represent decisive factors for the sustainability of the planet given the significant growth of the world population in the last decades. Therefore, the cooling process during the manufacture and/or storage of food products has been subject of study and improvement in order to ensure the food supply with good quality and safety. A predictive tool for assessment of the energy performance in agrifood industries that use cold storage is developed in order to contribute to the improvement of the energy efficiency of this industry. The predictive tool is based on a set of characteristic correlated parameters: amount of raw material annually processed, annual energy consumption and volume of cold rooms. Case studies of application of the predictive tool consider industries in the meat sector, specifically slaughterhouses. The results obtained help on the decision-making of practice measures for improvement of the energy efficiency in this industry

  2. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems.

    Science.gov (United States)

    Tundisi, J G; Matsumura-Tundisi, T; Pereira, K C; Luzia, A P; Passerini, M D; Chiba, W A C; Morais, M A; Sebastien, N Y

    2010-10-01

    In this paper the authors discuss the effects of cold fronts on the dynamics of freshwater ecosystems of southeast South America. Cold fronts originating from the Antarctic show a monthly frequency that promotes turbulence and vertical mixing in reservoirs with a consequence to homogenize nutrient distribution, dissolved oxygen and temperature. Weak thermoclines and the athelomixis process immediately before, during and after the passage of cold fronts interfere with phytoplankton succession in reservoirs. Cyanobacteria blooms in eutrophic reservoirs are frequently connected with periods of stratification and stability of the water column. Cold fronts in the Amazon and Pantanal lakes may produce fish killings during the process of "friagem" associated mixing events. Further studies will try to implement a model to predict the impact of cold fronts and prepare management procedures in order to cope with cyanobacteria blooms during warm and stable water column periods. Changes in water quality of reservoirs are expected during circulation periods caused by cold fronts.

  3. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems

    Directory of Open Access Journals (Sweden)

    JG. Tundisi

    Full Text Available In this paper the authors discuss the effects of cold fronts on the dynamics of freshwater ecosystems of southeast South America. Cold fronts originating from the Antarctic show a monthly frequency that promotes turbulence and vertical mixing in reservoirs with a consequence to homogenize nutrient distribution, dissolved oxygen and temperature. Weak thermoclines and the athelomixis process immediately before, during and after the passage of cold fronts interfere with phytoplankton succession in reservoirs. Cyanobacteria blooms in eutrophic reservoirs are frequently connected with periods of stratification and stability of the water column. Cold fronts in the Amazon and Pantanal lakes may produce fish killings during the process of "friagem" associated mixing events. Further studies will try to implement a model to predict the impact of cold fronts and prepare management procedures in order to cope with cyanobacteria blooms during warm and stable water column periods. Changes in water quality of reservoirs are expected during circulation periods caused by cold fronts.

  4. Cosmicflows-3: Cold Spot Repeller?

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, Hélène M.; Graziani, Romain; Dupuy, Alexandra [University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN, Lyon (France); Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hoffman, Yehuda [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Pomarède, Daniel [Institut de Recherche sur les Lois Fondamentales de l’Univers, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-09-20

    The three-dimensional gravitational velocity field within z ∼ 0.1 has been modeled with the Wiener filter methodology applied to the Cosmicflows-3 compilation of galaxy distances. The dominant features are a basin of attraction and two basins of repulsion. The major basin of attraction is an extension of the Shapley concentration of galaxies. One basin of repulsion, the Dipole Repeller, is located near the anti-apex of the cosmic microwave background dipole. The other basin of repulsion is in the proximate direction toward the “Cold Spot” irregularity in the cosmic microwave background. It has been speculated that a vast void might contribute to the amplitude of the Cold Spot from the integrated Sachs–Wolfe effect.

  5. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  6. Further assessment studies of the Advanced Cold Process Canister

    International Nuclear Information System (INIS)

    Henshaw, J.; Hoch, A.; Sharland, S.M.

    1990-08-01

    A preliminary assessment of the performance of the Advanced Cold Process Canister (ACPC) was carried out recently by Marsh. The aim of the study presented in this report is to re-examine the validity of some of the assumptions made, and re-evaluate the canister performance as appropriate. Two areas were highlighted in the preliminary study as requiring more detailed quantitative evaluation. 1) Assessment of the risk of internal stress-corrosion cracking induced by irradiation of moist air inside the canister if, under fault conditions, significant water was carried into the canister before sealing. 2) Evaluation of the corrosion behaviour subsequent to first breach of outer container. (author)

  7. Public Perception of Extreme Cold Weather-Related Health Risk in a Cold Area of Northeast China.

    Science.gov (United States)

    Ban, Jie; Lan, Li; Yang, Chao; Wang, Jian; Chen, Chen; Huang, Ganlin; Li, Tiantian

    2017-08-01

    A need exists for public health strategies regarding extreme weather disasters, which in recent years have become more frequent. This study aimed to understand the public's perception of extreme cold and its related health risks, which may provide detailed information for public health preparedness during an extreme cold weather event. To evaluate public perceptions of cold-related health risk and to identify vulnerable groups, we collected responses from 891 participants in a face-to-face survey in Harbin, China. Public perception was measured by calculating the score for each perception question. Locals perceived that extreme cold weather and related health risks were serious, but thought they could not avoid these risks. The significant difference in perceived acceptance level between age groups suggested that the elderly are a "high health risk, low risk perception" group, meaning that they are relatively more vulnerable owing to their high susceptibility and low awareness of the health risks associated with extreme cold weather. The elderly should be a priority in risk communication and health protective interventions. This study demonstrated that introducing risk perception into the public health field can identify vulnerable groups with greater needs, which may improve the decision-making of public health intervention strategies. (Disaster Med Public Health Preparedness. 2017;11:417-421).

  8. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  9. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  10. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  11. Thermal-hydraulic experiments and analyses for cold moderators

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Hino, Ryutaro

    2003-01-01

    Cold moderators using liquid hydrogen are one of the key components in a MW-scale target system working as a spallation neutron source. The cold moderators directly affect the neutronic performance both in intensity and resolution. Cold moderator vessels are designed to be flat and cylindrical type vessels, which are required to realize and uniform temperature distribution in the vessel to obtain better neutronic performance. Velocity distributions in the moderator vessels, affecting the temperature distributions, were measured by using moderator models under water flowing conditions. In the experiments, jet-induced flows such as recirculation flows and stagnant regions were observed. For the flat type moderator vessel, the analytical results of velocity distributions using a standard k-ε turbulence model agreed well with experimental results obtained with a PIV system. However, for the cylindrical type moderator vessel, especially predicted heat transfer coefficients on a bottom of the vessel were much lower than the experimental results, which gave conservative analytical result of temperature. (author)

  12. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  13. Modelling of nitric acid production in the Advanced Cold Process Canister due to irradiation of moist air

    International Nuclear Information System (INIS)

    Henshaw, J.

    1994-01-01

    This report summarises the work performed for SKB of Sweden on the modelling of nitric acid production in the gaseous environment of the Advanced Cold Process Canister (ACPC). The model solves the simultaneous chemical rate equations describing the radiation chemistry of He/Ar/N 2 /O 2 /H 2 O gas mixture, involving over 200 chemical reactions. The amount of nitric acid produced as a function of time for typical ACPC conditions has been calculated using the model and the results reported. 11 refs, 11 figs, 1 tab

  14. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  15. Checking the compatibility of the cold Kuiper belt with a planetary instability migration model

    Science.gov (United States)

    Gomes, Rodney; Nesvorný, David; Morbidelli, Alessandro; Deienno, Rogerio; Nogueira, Erica

    2018-05-01

    The origin of the orbital structure of the cold component of the Kuiper belt is still a hot subject of investigation. Several features of the solar system suggest that the giant planets underwent a phase of global dynamical instability, but the actual dynamical evolution of the planets during the instability is still debated. To explain the structure of the cold Kuiper belt, Nesvorny (2015, AJ 150,68) argued for a "soft" instability, during which Neptune never achieved a very eccentric orbit. Here we investigate the possibility of a more violent instability, from an initially more compact fully resonant configuration of 5 giant planets. We show that the orbital structure of the cold Kuiper belt can be reproduced quite well provided that the cold population formed in situ, with an outer edge between 44 - 45 au and never had a large mass.

  16. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  17. Clean Floquet Time Crystals: Models and Realizations in Cold Atoms

    Science.gov (United States)

    Huang, Biao; Wu, Ying-Hai; Liu, W. Vincent

    2018-03-01

    Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.

  18. Application of Cold Chain Logistics Safety Reliability in Fresh Food Distribution Optimization

    OpenAIRE

    Zou Yifeng; Xie Ruhe

    2013-01-01

    In view of the nature of fresh food’s continuous decrease of safety during distribution process, this study applied safety reliability of food cold chain logistics to establish fresh food distribution routing optimization model with time windows, and solved the model using MAX-MIN Ant System (MMAS) with case analysis. Studies have shown that the mentioned model and algorithm can better solve the problem of fresh food distribution routing optimization with time windows.

  19. Serial changes in metabolism and histology in the cold-injury trauma rat brain model. Proton magnetic resonance imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kyousuke; Houkin, Kiyohiro; Hida, Kazutoshi; Iwasaki, Yoshinobu; Abe, Hiroshi [Hokkaido Univ., Sapporo (Japan). School of Medicine

    1995-01-01

    The serial changes in metabolism and histology during the first 24 hours in the cold-injury trauma rat brain model were investigated by proton magnetic resonance (MR) imaging and high-resolution proton MR spectroscopy. Edema developed extensively via the corpus callosum in the ipsi- and contralateral hemispheres during observation as shown by gradually increased signal intensity on proton MR images. Proton MR spectroscopy showed increased levels of acetate (Ace), lactate (Lac), and glutamine (Glmi) 1 hour after lesion formation. The elevated Glmi level slightly decreased, the level of alanine (Ala) increased substantially, and that of N-acetyl-aspartate (NAA) decreased markedly after 24 hours. Increased Lac, Ace, and Ala might reflect anaerobic glycolysis associated with mitochondrial dysfunction, while decreased Glmi and NAA reveal brain tissue breakdown. The relationship between brain edema and tissue viability can be analyzed in detail using this simple traumatic model and MR techniques which will be useful in the development of therapeutic agents for brain injury. (author).

  20. A simplified analysis for cold storage in porous capsules with solidification

    International Nuclear Information System (INIS)

    Chen, S.L.; Yue, J.S.

    1991-01-01

    This paper investigates the thermal performance of a cold storage system utilizing water porous capsules as phase change material. The proposed cold storage system can be used to shift electric demand from periods of high demand to ones of low demand. A simple lump model to determine the thermal characteristics has been developed. The solution of the system equations is found through the Laplace transformation method. Experimental data of temperature profiles obtained in this study for various porosities, coolant flow rates, and inlet coolant temperatures validate the theory. Effects of dimensionless parameters on the charge characteristics were found

  1. Peripheral cold acclimatization in Antarctic scuba divers.

    Science.gov (United States)

    Bridgman, S A

    1991-08-01

    Peripheral acclimatization to cold in scuba divers stationed at the British Antarctic Survey's Signy Station was investigated during a year in Antarctica. Five divers and five non-diver controls underwent monthly laboratory tests of index finger immersion in cold water for 30 min. Index finger pulp temperature and time of onset of cold-induced vasodilatation (CIVD) were measured. Pain was recorded with verbal and numerical psychophysical subjective pain ratings. Average finger temperatures and median finger pain from 6-30 min of immersion, maximum finger temperatures during the first CIVD cycle, and finger temperatures at the onset of CIVD were calculated. Comparison of the variables recorded from divers and non-divers were performed with analysis of variance. No significant differences were found among the variables recorded from divers and non-divers. From a review of the literature, divers have responses typical of non-cold-adapted Caucasians. There is, therefore, no evidence that Signy divers peripherally acclimatized to cold. We suggest that these findings occur because either the whole body cooling which divers undergo inhibits peripheral acclimatization or because of insufficiently frequent or severe cold exposure while diving. Further basic studies on the duration, frequency and severity of cold exposure necessary to induce peripheral cold acclimatization are required before this question can be satisfactorily answered.

  2. Effect of Fluoxetine on the Hippocampus of Wistar Albino Rats in Cold Restraint Stress Model.

    Science.gov (United States)

    Jayakumar, Saikarthik; Raghunath, Gunapriya; Ilango, Saraswathi; Vijayakumar, J; Vijayaraghavan, R

    2017-06-01

    Stress has been known to be a potential modulator of learning and memory. Long term stress can lead to depression. Fluoxetine is a selective serotonin reuptake inhibitor group of drug used in the treatment of depression. The present study was conducted to evaluate the potential of Fluoxetine on cold restraint induced stress in the hippocampus of Wistar rats. A total of 18 male wistar albino rats were divided randomly into three groups (n=6). Group 1 was the control group which were kept in normal laboratory conditions. Group 2 was the negative control group which were given cold restraint stress for period of four weeks. Group 3 was the experimental group, where the animals were pretreated with fluoxetine 10 mg/kg for a period of one week followed by cold restraint stress for 30 minutes and cotreated with fluoxetine 10 mg/kg for a period of four weeks. The whole study was done for a period of five weeks followed by behavioural studies and subsequently sacrificed with removal of brain for various histological, Immunohistochemical (IHC), neurochemical and antioxidant analysis. The values were expressed as Mean±SEM. One-way analysis of variance followed by Tukey's multiple comparisons test was used for the comparison of means. A probability of 0.05 and less was taken as statistically significant using Prism Graphpad software version 6.01. The results show there was significant improvement in the Morris water maze test after treatment with fluoxetine in Group 2. Similar results were also noted in the levels of neurotransmitters and antioxidant levels in brain and also in the number of cells counted in IHC and histological studies by H&E when Group 3 was compared with Group 2. The treatment reversed the damage in Group 2 which was comparable with the control group. The results revealed that administration of fluoxetine 10 mg/kg given orally has a potential antistressor effect by improving the neurogenic and neuroprotective effect on the cold restraint stress induced

  3. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  4. Investigating temperature breaks in the summer fruit export cold chain: A case study

    Directory of Open Access Journals (Sweden)

    Heinri W. Freiboth

    2013-11-01

    Full Text Available There is concern in the South African fruit industry that a large amount of fruit and money is lost every season due to breaks in the fruit export cold chain. The possibility of a large percentage of losses in a significant sector of the economy warranted further investigation. This article attempted to highlight some of the possible problem areas in the cold chain, from the cold store to the port, by analysing historic temperature data from different fruit export supply chains of apples, pears and grapes. In addition, a trial shipment of apples was used to investigate temperature variation between different pallets in the same container. This research has added value to the South African fruit industry by identifying the need to improve operational procedures in the cold chain.

  5. A vaccine cold chain freezing study in PNG highlights technology needs for hot climate countries.

    Science.gov (United States)

    Wirkas, Theo; Toikilik, Steven; Miller, Nan; Morgan, Chris; Clements, C John

    2007-01-08

    Fourteen data loggers were packed with vaccine vials at the national vaccine store, Port Moresby, Papua New Guinea (PNG), and sent to peripheral locations in the health system. The temperatures that the data loggers recorded during their passage along the cold chain indicated that heat damage was unlikely, but that all vials were exposed to freezing temperatures at some time. The commonest place where freezing conditions existed was during transport. The freezing conditions were likely induced by packing the vials too close to the ice packs that were themselves too cold, and with insufficient insulation between them. This situation was rectified and a repeat dispatch of data loggers demonstrated that the system had indeed been rectified. Avoiding freeze damage becomes even more important as the price of freeze-sensitive vaccines increases with the introduction of more multiple-antigen vaccines. This low-cost high-tech method of evaluating the cold chain function is highly recommended for developing and industrialized nations and should be used on a regular basis to check the integrity of the vaccine cold chain. The study highlights the need for technological solutions to avoid vaccine freezing, particularly in hot climate countries.

  6. Acute Cold / Restraint Stress in Castrated Rats

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2008-09-01

    Full Text Available Objective: The present study aimed to determine whether castration altered osmotically stimulated vasopressin (VP release and urinary volume and what is the role of endocrine-stress axis in this process.Materials and methods: Totally 108 mice were studied in two main groups of castrated (n=78 and control (n=30. Each group was extracted by acute cold stress (4◦C for 2h/day, restraint stress (by syringes 60cc 2h/day and cold/restraint stress. The castrated group was treated in sub groups of testosterone, control (sesame oil as vehicle of testosterone. Propranolol as blocker of sympathetic nervous system was given to both groups of castrated mice and main control.Results: Our results showed that, there is interactions between testosterone and sympathetic nervous system on vasopressin, because urine volume was decreased only in testoctomized mice with cold/restraint and cold stress (P<0.001; propranolol as the antagonist of sympathetic nervous system could block and increase urine volume in castrated mice. This increased volume of urine was due to acute cold stress, not restraint stress (p<0.001. The role of testosterone, noradrenalin (NA and Vasopressin (VP in the acute cold stress is confirmed, because testosterone could return the effect of decreased urine volume in control group (P<0.001. Conclusion: Considering the effect of cold/restraint stress on urinary volume in castrated mice shows that there is interaction between sex hormone (testosterone, vasopressin and adrenergic systems.

  7. Consumer attitudes on cough and cold: US (ACHOO) survey results.

    Science.gov (United States)

    Blaiss, M S; Dicpinigaitis, P V; Eccles, R; Wingertzahn, M A

    2015-08-01

    The Attitudes of Consumers Toward Health, Cough, and Cold (ACHOO) survey was developed to better inform health care providers on the natural history and impact of common cold and cough, and related consumer experience and behaviors. Randomly selected US Internet/mobile device users were invited to participate in an online survey (N = 3333) in October 2012. Response quotas modeled upon 2010 US Census data ensured a demographically representative sample. To reduce potential bias from the quota design, 75% of the completed surveys were randomly selected as the primary analysis pool. Survey questions assessed participant demographics, frequency and duration of cough/cold symptoms, impact of symptoms on daily life, treatment preferences, and knowledge about cough/cold pathophysiology. In the past year, 84.6% of respondents had experienced at least one cold. Colds typically started with sore/scratchy throat (39.2%), nasal congestion (9.8%), and runny nose (9.3%) and lasted 3-7 days. Cough, the most common cold symptom (73.1%), had a delayed onset (typically 1-5 days after cold onset) and a long duration (>6 days in 35.2%). Nasal congestion and cough were the most bothersome symptoms. Many respondents waited until symptoms were 'bad enough' (42.6%) or multiple symptoms were present (20.2%) before using nonprescription medications. Drivers of choice included effectiveness in relieving symptoms, safety, and past experience. Respondents rarely consulted clinicians regarding treatment, and more than three-quarters had never received instructions from a clinician on how to choose a nonprescription cough/cold medication. Misperceptions regarding etiology and treatment of the common cold were prevalent. The main limitation is potential recall bias, since respondents had to recall cough/cold episodes over the prior year. The ACHOO survey confirms that cold is a common, bothersome experience and that there are gaps in consumers' knowledge of pathophysiology and appropriate

  8. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  9. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland.

    Directory of Open Access Journals (Sweden)

    Juan Moreno Navas

    Full Text Available Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  10. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  11. Prediction of cold flow properties of Biodiesel

    Directory of Open Access Journals (Sweden)

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  12. Superfluorescence with cold trapped neon atoms

    International Nuclear Information System (INIS)

    Zachorowski, Jerzy

    2003-01-01

    A method for observation of superfluorescence in a cloud of cold metastable Ne atoms is proposed. Means of achieving a cold sample of trapped metastable atoms are discussed. The feasibility of obtaining conditions for a superfluorescence pulse is studied. The paper also discusses the prospects for obtaining intense pulses of extreme ultraviolet radiation

  13. Nasal mucosa secretion exudation response to cold air in bronchial asthma patients

    Directory of Open Access Journals (Sweden)

    Eduard V. Nekrasov

    2017-01-01

    Full Text Available Background. Combined airway hyper responsiveness to cold and hypoosmotic stimuli in asthma patients results in impairment of lung respiration function and poor disease control compared to patients with isolated airway hyper responsiveness to only one of the stimuli or without such responsiveness that can be connected with edema or mucus hypersecretion.Aim. The purpose of the study is the estimation of the processes of mucin secretion, plasma exudation and oxidative stress in response to cold air in asthma patients with combined airway responsiveness to cold and hypoosmotic stimuli using nasal mucosa as a model.Materials and methods. 23 patients with asthma participated in the study. For the nasal lavage procedure, a nasal cavity was pre-washed at least three times in 5-min intervals with 5 ml saline solution (~36 °C. A control nasal lavage was done 5 min after the last washing with a dwelling time of 1 min in the nasal cavity. Directly after the control lavage, a cold air nasal challenge was done: a participant was asked to breathe deeply at the pace of a metronome to ensure hyperventilation inhaling cold air (–20 °C through the nose and exhaling through the mouth for 5 min. Nasal lavages were taken at 1 min, 15, and 30 min after the challenge. Mucin secretion was estimated on the basis of total protein (TP content, total carbohydrates (TC, and water-soluble forms of mucins MUC5AC and MUC5B in the lavage fluids. For the estimation of plasma exudation, the concentration of α2-macroglobulin (α2-MG was measured. Oxidative stress was estimated by the content of thiobarbituric acid-reactive substances (TBARS in lavage fluid. Lung function and airway responsiveness were studied by the forced expiration spirometry method and the bronchial challenge tests with isocapnic cold air hyperventilation (CAHV and distilled water inhalation (DWI.Results. According to the bronchial challenge tests, the patients were divided into groups: 1 without airway

  14. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    CERN Document Server

    Dufay-Chanat, L; Casas-Cubillos, J; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M; Koettig, T; Vauthier, N; van Weelderen, R; Winkler, T

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium wer...

  15. PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia

    Directory of Open Access Journals (Sweden)

    Raimundo M. G. del Moral

    2013-01-01

    Full Text Available We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN and other renal lesions related to prolonged cold ischemia/reperfusion (IR in kidneys preserved at 4°C in University of Wisconsin (UW solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinylbutoxyl]-1(2H-isoquinolinone (DPQ at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ. We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  16. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    Science.gov (United States)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  17. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China.

    Science.gov (United States)

    Ma, Wenjuan; Chen, Renjie; Kan, Haidong

    2014-10-01

    Few multicity studies have been conducted to investigate the acute health effects of cold and hot temperatures in China. We aimed to examine the relationship between temperature and daily mortality in 17 large Chinese cities. We first calculated city-specific effect of temperature using time-series regression models combined with distributed lag nonlinear models; then we pooled the city-specific estimates with the Bayesian hierarchical models. The cold effects lasted longer than the hot effects. For the cold effects, a 1 °C decrease from the 25th to 1st percentiles of temperature over lags 0-14 days was associated with increases of 1.69% [95% posterior intervals (PI): 1.01%, 2.36%], 2.49% (95% PI: 1.53%, 3.46%) and 1.60% (95% PI: 0.32%, 2.87%) in total, cardiovascular and respiratory mortality, respectively. For the hot effects, a 1 °C increase from the 75th to 99th percentiles of temperature was associated with corresponding increases of 2.83% (95% PI: 1.42%, 4.24%), 3.02% (95% PI: 1.33%, 4.71%) and 4.64% (95% PI: 1.96%, 7.31%). The latitudes, number of air conditioning per household and disposable income per capita were significant modifiers for cold effects; the proportion of the elderly was a significant modifier for hot effects. This largest epidemiological study of temperature to date in China suggested that both cold and hot temperatures were associated with increased mortality. Our findings may have important implications for the public health policies in China. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Study on cold weather concreting using low-heat cement

    International Nuclear Information System (INIS)

    Hama, Yukio; Ryu Koto; Tomosawa, Fuminori

    2004-01-01

    In this paper, properties of frost damage at early age and strength development and thermal crack were studied, for purposes of application to the mass concrete of low-heat cement in cold weather, by means of concrete experiments and temperature analysis by finite element method. The experiments and the analysis result showed that the strength for resistance to frost damage at early age was 5N/mm 2 , the concrete strength correction value in terms of curing temperature was calculated approximately, and was effective in the resistance of thermal crack. And then, the application ranges of construction procedures were investigated. (author)

  19. Creys-Malville nuclear plant. Simulation of the cold plenum thermal-hydraulics. 12 zone model presentation

    International Nuclear Information System (INIS)

    Faulot, J.P.

    1990-05-01

    The CRUSIFI code has been developed by SEPTEN (Engineering and Construction Division) with SICLE software during 1983-1985 in order to study the CREYS-MALVILLE dynamic behavior. At the time, the version was based on project data (version 2.3). It includes a 2 zones model for the cold plenum thermal-hydraulics, modelling which does not allow to reproduce accurately dissymetries apt to occur as well in usual operating (hydraulic dissymetries bound to one or many systems out of order), as during incidentally operating (hydraulic dissymetries bound to primary pump working back or thermal dissymetries after a transient on one or many secondary loops). Moreover, a 2 zones model cannot simulate axial temperature gradients which appear during double stratification phenomenon (upper and lower part of the plenum) produced by alternating thermal shock. A 12 zones model (4 sectors with 3 axial zones each) such as model developed by R$DD (Research and Development Division) allows to satisfy correctly these problems. This report is a specification of the chosen modelling. This model is now operational after qualifying with experimental transients on mockup and reactor. It is to-day connected with the EDF general operating code CRUSIFI (calibrating version 3.0). It could be easily integrated in a four loops plant modelling such as the CREYS-MALVILLE simulator in a four loops plant modelling such as the CREYS-MALVILLE simulator under construction at the present time by THOMSON

  20. A 3-D Thermal Analysis of the HANARO Cold Neutron Moderator Cell

    International Nuclear Information System (INIS)

    Han, Gee Y.; Kim, Heo Nil

    2007-01-01

    Fundamental studies on a thermal analysis of a cryogenic system such as a cold neutron source (CNS) have increased significantly for a successful CNS design in cold neutron research during recent years. A three-dimensional (3-D) thermal analysis model for the HANARO CNS was developed and used to accurately predict a temperature distribution between the hydrogen inside and the entire inner and outer surfaces of a moderator cell, whose moderator and cell walls are heated differently, under a steady-state operating condition by using the HEATING 7 code. The objective of this study is primarily to predict a temperature distribution through a heat flow in a cold neutron moderator cell heated from a nuclear heating and cooled by a cryogenic coolant. This paper presents satisfactory results of a steady-state temperature distribution in a cryogenic moderator cell. They are used to support the thermal stress analysis of the moderator cell walls and to provide a safe operation for the HANARO CNS facility

  1. Tundra biome research in Alaska: the structure and function of cold-dominated ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.; West, G.C.

    1970-11-01

    The objective of the Tundra Biome Program is to acquire a basic understanding of tundra, both alpine and arctic, and taiga. Collectively these are referred to as the cold-dominated ecosystems. The program's broad objectives are threefold: To develop a predictive understanding of how the wet arctic tundra ecosystem operates, particularly as exemplified in the Barrow, Alaska, area; to obtain the necessary data base from the variety of cold-dominated ecosystem types represented in the United States, so that their behavior can be modeled and simulated, and the results compared with similar studies underway in other circumpolar countries; to bring basic environmental knowledge to bear on problems of degradation, maintenance, and restoration of the temperature-sensitive and cold-dominated tundra/taiga ecosystems. (GRA)

  2. The Effect of Cold Showering on Health and Work: A Randomized Controlled Trial

    Science.gov (United States)

    Sierevelt, Inger N.; van der Heijden, Bas C. J. M.; Dijkgraaf, Marcel G.; Frings-Dresen, Monique H. W.

    2016-01-01

    Purpose The aim of this study was to determine the cumulative effect of a routine (hot-to-) cold shower on sickness, quality of life and work productivity. Methods Between January and March 2015, 3018 participants between 18 and 65 years without severe comorbidity and no routine experience of cold showering were randomized (1:1:1:1) to a (hot-to-) cold shower for 30, 60, 90 seconds or a control group during 30 consecutive days followed by 60 days of showering cold at their own discretion for the intervention groups. The primary outcome was illness days and related sickness absence from work. Secondary outcomes were quality of life, work productivity, anxiety, thermal sensation and adverse reactions. Results 79% of participants in the interventions groups completed the 30 consecutive days protocol. A negative binomial regression model showed a 29% reduction in sickness absence for (hot-to-) cold shower regimen compared to the control group (incident rate ratio: 0.71, P = 0.003). For illness days there was no significant group effect. No related serious advents events were reported. Conclusion A routine (hot-to-) cold shower resulted in a statistical reduction of self-reported sickness absence but not illness days in adults without severe comorbidity. Trial Registration Netherlands National Trial Register NTR5183 PMID:27631616

  3. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  4. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    Science.gov (United States)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence

  5. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  6. PERSIAN GARDENS IN COLD AND DRY CLIMATE: A CASE STUDY OF TABRIZ’S HISTORICAL GARDENS

    Directory of Open Access Journals (Sweden)

    Ahad Nejad Ebrahimi

    2016-11-01

    Full Text Available Throughout history, gardens and garden designing has been in the attention of Persian architects who had special expertise in the construction of gardens. The appearance of Islam and allegories of paradise taken from that in Koran and Saints’ sayings gave spirituality to garden construction. Climate conditions have also had an important role in this respect but little research has been done about it and most of the investigations have referred to spiritual aspects and forms of garden. The cold and dry climate that has enveloped parts of West and North West of Iran has many gardens with different forms and functions, which have not been paid much attention to by studies done so far. The aim of this paper is to identify the features and specifications of cold and dry climate gardens with an emphasis on Tabriz’s Gardens.  Due to its natural and strategic situation, Tabriz has always been in the attention of governments throughout history; travellers and tourists have mentioned Tabriz as a city that has beautiful gardens. But, the earthquakes and wars have left no remains of those beautiful gardens. This investigation, by a comparative study of the climates in Iran and the effect of those climates on the formation of gardens and garden design, tries to identify the features and characteristics of gardens in cold and dry climate. The method of study is interpretive-historical on the basis of written documents and historic features and field study of existing gardens in this climate. The results show that, with respect to natural substrate, vegetation, the form of water supply, and the general form of the garden; gardens in dry and cold climate are different from gardens in other climates.

  7. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  8. Cold-inducible RNA-binding protein mediates cold air inducible airway mucin production through TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Chen, Lingxiu; Ran, Danhua; Xie, Wenyue; Xu, Qing; Zhou, Xiangdong

    2016-10-01

    Mucus overproduction is an important feature in patients with chronic inflammatory airway diseases and cold air stimulation has been shown to be associated with the severity of these diseases. However, the regulatory mechanisms that mediate excessive mucin production under cold stress remain elusive. Recently, the cold-inducible RNA-binding protein (CIRP) has been shown to be markedly induced after exposure to cold air. In this study, we sought to explore the expression of CIRP within bronchial biopsy specimens, the effect on mucin5AC (MUC5AC) production in chronic inflammatory airway diseases and the potential signaling pathways involved in cold air stimulation process. We found that CIRP protein expression was significantly increased in patients with COPD and in mice treated with cold air. Moreover, cold air stimulation induced MUC5AC expression in wild-type mice but not in CIRP(-/-) mice. In vitro, cold air stress significantly elevated the transcriptional and protein expression levels of MUC5AC in human bronchial epithelial cells. CIRP, toll-like receptor 4 (TLR4) and phosphorylated NF-κB p65 (p-p65) increased significantly in response to cold stress and CIRP siRNA, TLR4 - neutralizing Ab and a specific inhibitor of NF-κB could attenuated cold stress inducible MUC5AC expression. In addition, CIRP siRNA could hindered the expression levels of TLR4 and p-p65 both induced by cold stress. Taken together, these results suggest that airway epithelial cells constitutively express CIRP in vitro and in vivo. CIRP is responsible for cold-inducible MUC5AC expression by activating TLR4/NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans.

    Science.gov (United States)

    Winchester, Wendy J; Gore, Katrina; Glatt, Sophie; Petit, Wendy; Gardiner, Jennifer C; Conlon, Kelly; Postlethwaite, Michael; Saintot, Pierre-Philippe; Roberts, Sonia; Gosset, James R; Matsuura, Tomomi; Andrews, Mark D; Glossop, Paul A; Palmer, Michael J; Clear, Nicola; Collins, Susie; Beaumont, Kevin; Reynolds, David S

    2014-11-01

    The transient receptor potential (subfamily M, member 8; TRPM8) is a nonselective cation channel localized in primary sensory neurons, and is a candidate for cold thermosensing, mediation of cold pain, and bladder overactivity. Studies with TRPM8 knockout mice and selective TRPM8 channel blockers demonstrate a lack of cold sensitivity and reduced cold pain in various rodent models. Furthermore, TRPM8 blockers significantly lower body temperature. We have identified a moderately potent (IC50 = 103 nM), selective TRPM8 antagonist, PF-05105679 [(R)-3-[(1-(4-fluorophenyl)ethyl)(quinolin-3-ylcarbonyl)amino]methylbenzoic acid]. It demonstrated activity in vivo in the guinea pig bladder ice water and menthol challenge tests with an IC50 of 200 nM and reduced core body temperature in the rat (at concentrations >1219 nM). PF-05105679 was suitable for acute administration to humans and was evaluated for effects on core body temperature and experimentally induced cold pain, using the cold pressor test. Unbound plasma concentrations greater than the IC50 were achieved with 600- and 900-mg doses. The compound displayed a significant inhibition of pain in the cold pressor test, with efficacy equivalent to oxycodone (20 mg) at 1.5 hours postdose. No effect on core body temperature was observed. An unexpected adverse event (hot feeling) was reported, predominantly periorally, in 23 and 36% of volunteers (600- and 900-mg dose, respectively), which in two volunteers was nontolerable. In conclusion, this study supports a role for TRPM8 in acute cold pain signaling at doses that do not cause hypothermia. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  10. The Nav1.9 Channel Is a Key Determinant of Cold Pain Sensation and Cold Allodynia

    Directory of Open Access Journals (Sweden)

    Stéphane Lolignier

    2015-05-01

    Full Text Available Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9−/− neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.

  11. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.

    Science.gov (United States)

    Nagasawa, K; Matsuura, N; Takeshita, Y; Ito, S; Sano, Y; Yamada, Y; Uchinaka, A; Murohara, T; Nagata, K

    2016-04-25

    Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.

  12. Contribution to study on recovery and recrystallization of cold rolling zircaloy-4

    International Nuclear Information System (INIS)

    Persiano, A.I.C.

    1977-01-01

    Recovery and recrystallization of work-hardened (40-60% - Cold rolling) Zircaloy-4 were studied between 200 and 600 0 C with times varying from 15 to 240 minutes, from electrical resistance and hardness measurements. Activation energy calculation for the recovery and recrystallization processes using the samples work-hardened 60% gave 0,7 and 2,1 eV. (author)

  13. The shape-alignment relation in Lambda cold dark matter cosmic structures

    NARCIS (Netherlands)

    Basilakos, S; Plionis, M; Yepes, G; Gottlober, S; Turchaninov, [No Value

    2006-01-01

    In this paper, we study the supercluster-cluster morphological properties using one of the largest (2 x 512(3)) smoothed particle hydrodynamics (SPH)+N-body simulations of large-scale structure formation in a Lambda cold dark matter (Lambda CDM) model, based on the publicly available code GADGET. We

  14. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    Science.gov (United States)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  15. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  16. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  17. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Directory of Open Access Journals (Sweden)

    Songyi Wang

    2018-01-01

    Full Text Available In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  18. Patients' experiences of cold exposure during ambulance care.

    Science.gov (United States)

    Aléx, Jonas; Karlsson, Stig; Saveman, Britt-Inger

    2013-06-06

    Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients' experiences of cold exposure and to identify related factors. During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients' finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from -22.3°C to 8.4°C. Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons.

  19. Patients’ experiences of cold exposure during ambulance care

    Science.gov (United States)

    2013-01-01

    Background Exposure to cold temperatures is often a neglected problem in prehospital care. Cold exposure increase thermal discomfort and, if untreated causes disturbances of vital body functions until ultimately reaching hypothermia. It may also impair cognitive function, increase pain and contribute to fear and an overall sense of dissatisfaction. The aim of this study was to investigate injured and ill patients’ experiences of cold exposure and to identify related factors. Method During January to March 2011, 62 consecutively selected patients were observed when they were cared for by ambulance nursing staff in prehospital care in the north of Sweden. The field study was based on observations, questions about thermal discomfort and temperature measurements (mattress air and patients’ finger temperature). Based on the observation protocol the participants were divided into two groups, one group that stated it was cold in the patient compartment in the ambulance and another group that did not. Continuous variables were analyzed with independent sample t-test, paired sample t-test and dichotomous variables with cross tabulation. Results In the ambulance 85% of the patients had a finger temperature below comfort zone and 44% experienced the ambient temperature in the patient compartment in the ambulance to be cold. There was a significant decrease in finger temperature from the first measurement indoor compared to measurement in the ambulance. The mattress temperature at the ambulance ranged from −22.3°C to 8.4°C. Conclusion Cold exposure in winter time is common in prehospital care. Sick and injured patients immediately react to cold exposure with decreasing finger temperature and experience of discomfort from cold. Keeping the patient in the comfort zone is of great importance. Further studies are needed to increase knowledge which can be a base for implications in prehospital care for patients who probably already suffer for other reasons. PMID:23742143

  20. Measurements and Modeling of Turbulent Fluxes during Persistent Cold Air Pool Events in Salt Lake Valley, Utah

    Science.gov (United States)

    Ivey, C. E.; Sun, X.; Holmes, H.

    2017-12-01

    Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent

  1. Forecasting European cold waves based on subsampling strategies of CMIP5 and Euro-CORDEX ensembles

    Science.gov (United States)

    Cordero-Llana, Laura; Braconnot, Pascale; Vautard, Robert; Vrac, Mathieu; Jezequel, Aglae

    2016-04-01

    Forecasting future extreme events under the present changing climate represents a difficult task. Currently there are a large number of ensembles of simulations for climate projections that take in account different models and scenarios. However, there is a need for reducing the size of the ensemble to make the interpretation of these simulations more manageable for impact studies or climate risk assessment. This can be achieved by developing subsampling strategies to identify a limited number of simulations that best represent the ensemble. In this study, cold waves are chosen to test different approaches for subsampling available simulations. The definition of cold waves depends on the criteria used, but they are generally defined using a minimum temperature threshold, the duration of the cold spell as well as their geographical extend. These climate indicators are not universal, highlighting the difficulty of directly comparing different studies. As part of the of the CLIPC European project, we use daily surface temperature data obtained from CMIP5 outputs as well as Euro-CORDEX simulations to predict future cold waves events in Europe. From these simulations a clustering method is applied to minimise the number of ensembles required. Furthermore, we analyse the different uncertainties that arise from the different model characteristics and definitions of climate indicators. Finally, we will test if the same subsampling strategy can be used for different climate indicators. This will facilitate the use of the subsampling results for a wide number of impact assessment studies.

  2. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  3. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only

  4. New Treatment Options for Osteosarcoma - Inactivation of Osteosarcoma Cells by Cold Atmospheric Plasma.

    Science.gov (United States)

    Gümbel, Denis; Gelbrich, Nadine; Weiss, Martin; Napp, Matthias; Daeschlein, Georg; Sckell, Axel; Ender, Stephan A; Kramer, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2016-11-01

    Cold atmospheric plasma has been shown to inhibit tumor cell growth and induce tumor cell death. The aim of the study was to investigate the effects of cold atmospheric plasma treatment on proliferation of human osteosarcoma cells and to characterize the underlying cellular mechanisms. Human osteosarcoma cells (U2-OS and MNNG/HOS) were treated with cold atmospheric plasma and seeded in culture plates. Cell proliferation, p53 and phospho-p53 protein expression and nuclear morphology were assessed. The treated human osteosarcoma cell lines exhibited attenuated proliferation rates by up to 66%. The cells revealed an induction of p53, as well as phospho-p53 expression, by 2.3-fold and 4.5-fold, respectively, compared to controls. 4',6-diamidino-2-phenylindole staining demonstrated apoptotic nuclear condensation following cold atmospheric plasma treatment. Cold atmospheric plasma treatment significantly attenuated cell proliferation in a preclinical in vitro osteosarcoma model. The resulting increase in p53 expression and phospho-activation in combination with characteristic nuclear changes indicate this was through induction of apoptosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  6. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  7. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  8. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  9. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  10. Prediction of ttt curves of cold working tool steels using support vector machine model

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  11. Acetaminophen (paracetamol) for the common cold in adults.

    Science.gov (United States)

    Li, Siyuan; Yue, Jirong; Dong, Bi Rong; Yang, Ming; Lin, Xiufang; Wu, Taixiang

    2013-07-01

    Acetaminophen is frequently prescribed for treating patients with the common cold, but there is little evidence as to whether it is effective. To determine the efficacy and safety of acetaminophen in the treatment of the common cold in adults. We searched CENTRAL 2013, Issue 1, Ovid MEDLINE (1950 to January week 5, 2013), EMBASE (1980 to February 2013), CINAHL (1982 to February 2013) and LILACS (1985 to February 2013). We included randomised controlled trials (RCTs) comparing acetaminophen to placebo or no treatment in adults with the common cold. Studies were included if the trials used acetaminophen as one ingredient of a combination therapy. We excluded studies in which the participants had complications. Primary outcomes included subjective symptom score and duration of common cold symptoms. Secondary outcomes were overall well being, adverse events and financial costs. Two review authors independently screened studies for inclusion, assessed risk of bias and extracted data. We performed standard statistical analyses. We included four RCTs involving 758 participants. We did not pool data because of heterogeneity in study designs, outcomes and time points. The studies provided sparse information about effects longer than a few hours, as three of four included studies were short trials of only four to six hours. Participants treated with acetaminophen had significant improvements in nasal obstruction in two of the four studies. One study showed that acetaminophen was superior to placebo in decreasing rhinorrhoea severity, but was not superior for treating sneezing and coughing. Acetaminophen did not improve sore throat or malaise in two of the four studies. Results were inconsistent for some symptoms. Two studies showed that headache and achiness improved more in the acetaminophen group than in the placebo group, while one study showed no difference between the acetaminophen and placebo group. None of the included studies reported the duration of common cold

  12. The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia.

    Science.gov (United States)

    Lolignier, Stéphane; Bonnet, Caroline; Gaudioso, Christelle; Noël, Jacques; Ruel, Jérôme; Amsalem, Muriel; Ferrier, Jérémy; Rodat-Despoix, Lise; Bouvier, Valentine; Aissouni, Youssef; Prival, Laetitia; Chapuy, Eric; Padilla, Françoise; Eschalier, Alain; Delmas, Patrick; Busserolles, Jérôme

    2015-05-19

    Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9(-/-) neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  14. Implication of collider experiments for detecting cold dark matter

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    Investigation of Minimal Supersymmetry Standard Model shows, that any discovery with high-energy colliders at least one supersymmetric particle would strongly enhance importance of very accurate experiments. which search for lightest supersymmetric neutralinos as cold dark matter particles. Form other side, non-observations of any signal of cold dark matter in such experiments would force us to change strategy of searching for, for instance, light charged Higgs bosons at high energies [ru

  15. COBE DMR-normalized open inflation cold dark matter cosmogony

    Science.gov (United States)

    Gorski, Krzysztof M.; Ratra, Bharat; Sugiyama, Naoshi; Banday, Anthony J.

    1995-01-01

    A cut-sky orthogonal mode analysis of the 2 year COBE DMR 53 and 90 GHz sky maps (in Galactic coordinates) is used to determine the normalization of an open inflation model based on the cold dark matter (CDM) scenario. The normalized model is compared to measures of large-scale structure in the universe. Although the DMR data alone does not provide sufficient discriminative power to prefer a particular value of the mass density parameter, the open model appears to be reasonably consistent with observations when Omega(sub 0) is approximately 0.3-0.4 and merits further study.

  16. Two cold-season derechoes in Europe

    Science.gov (United States)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  17. Modelling and validation of robust partial thawing of frozen convenience foods during distribution in the cold chain

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens; Zammit, Gine Ørnholt

    2011-01-01

    with small blocks of a frozen model food (23 pct. Tylose® gel) and quipped with temperature loggers were distributed by trucks operating in the cold chain. In addition, controlled storage and temperature abuse experiments were conducted. To predict the product temperature–time relationship we developed a new...... frozen even after two days or more of distribution at +5oC, and that the temperatures inside the product and in the middle of the box were quite stable against the normal oscillations of the ambient temperature in the cold chain. The product temperature was also robust against temperature abuse......In collaboration with two commercial distributors we have tested a new concept for distribution, where convenience products for the food service industry are prepared, frozen and packed in cardboard boxes, but distributed in the chill chain at +5°C instead of in the frost chain. This will lead...

  18. Improved biochemical preservation of lung slices during cold storage.

    Science.gov (United States)

    Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V

    2000-05-15

    Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P cold storage. Copyright 2000 Academic Press.

  19. A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Sanjiangyuan Area

    International Nuclear Information System (INIS)

    Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo

    2014-01-01

    Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter

  20. Thermal math model analysis of FRSI test article subjected to cold soak and entry environments. [Flexible Reuseable Surface Insulation in Space Shuttle Orbiter

    Science.gov (United States)

    Gallegos, J. J.

    1978-01-01

    A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.

  1. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling

    OpenAIRE

    Vetter, Irina; Touska, Filip; Hess, Andreas; Hinsbey, Rachel; Sattler, Simon; Lampert, Angelika; Sergejeva, Marina; Sharov, Anastasia; Collins, Lindon S; Eberhardt, Mirjam; Engel, Matthias; Cabot, Peter J; Wood, John N; Vlachová, Viktorie; Reeh, Peter W

    2012-01-01

    Ciguatoxins derived from fish lead to cold allodynia in humans, the perception of intense burning pain in response to mild cooling. A novel mouse model of ciguatoxin-induced cold allodynia reveals that ciguatoxin activates the TRPA1 thermosensitive ion channel to mediate pain perception.

  2. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  3. Excited-state imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Vredenbregt, E.J.D.; Scholten, R.E.; Deshmukh, P.C.; Chakraborty, P.; Williams, J.F.

    2007-01-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes

  4. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage

    OpenAIRE

    Venditti, Paola; Pamplona Gras, Reinald; Ayala, Victoria; Rosa, R. de; Caldarone, G.; Di Meo, S.

    2006-01-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T-3)- or thyroxine (T-4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most ex...

  5. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  6. Setting parameters in the cold chain

    Directory of Open Access Journals (Sweden)

    Victoria Rodríguez

    2011-12-01

    Full Text Available Breaks in the cold chain are important economic losses in food and pharmaceutical companies. Many of the failures in the cold chain are due to improper adjustment of equipment parameters such as setting the parameters for theoretical conditions, without a corresponding check in normal operation. The companies that transport refrigeratedproducts must be able to adjust the parameters of the equipment in an easy and quick to adapt their functioning to changing environmental conditions. This article presents the results of a study carried out with a food distribution company. The main objective of the study is to verify the effectiveness of Six Sigma as a methodological toolto adjust the equipment in the cold chain. The second objective is more speciÞ c and is to study the impact of: reducing the volume of storage in the truck, the initial temperature of the storage areain the truck and the frequency of defrost in the transport of refrigerated products.

  7. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction

    International Nuclear Information System (INIS)

    Ryu, Hyun Seok; Lee, Sung Chul; Kim, Ki Tae

    2002-01-01

    Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The cap model with constraint factors was implemented into a finite element program(ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the cap model with constraint factors were good

  8. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    Science.gov (United States)

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p  0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable populations such as frail elderly individuals.

  9. Temperature studies with the Asian citrus psyllid, Diaphorina citri: cold hardiness and temperature thresholds for oviposition.

    Science.gov (United States)

    Hall, David G; Wenninger, Erik J; Hentz, Matthew G

    2011-01-01

    This study was conducted to obtain information on the cold hardiness of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), in Florida and to assess upper and lower temperature thresholds for oviposition. The psyllid is an important pest in citrus because it transmits the bacterial pathogens responsible for citrus greening disease, Huanglongbing, considered the most serious citrus disease worldwide. D. citri was first found in Florida during 1998, and the disease was discovered during 2005. Little was known regarding cold hardiness of D. citri, but Florida citrus is occasionally subjected to notable freeze events. Temperature and duration were each significant sources of variation in percent mortality of D. citri subjected to freeze events. Relatively large percentages of adults and nymphs survived after being exposed for several hours to temperatures as low as -5 to -6 °C. Relatively large percentages of eggs hatched after being exposed for several hours to temperatures as low as -8 °C. Research results indicated that adult D. citri become cold acclimated during the winter through exposure to cooler winter temperatures. There was no evidence that eggs became cold acclimated during winter. Cold acclimation in nymphs was not investigated. Research with adult D. citri from laboratory and greenhouse colonies revealed that mild to moderate freeze events were usually nonlethal to the D. citri irrespective of whether they were cold acclimated or not. Upper and lower temperature thresholds for oviposition were investigated because such information may be valuable in explaining the geographic distribution and potential spread of the pest from Florida as well as how cooler winter temperatures might limit population growth. The estimated lower and upper thresholds for oviposition were 16.0 and 41.6 °C, respectively; the estimated temperature of peak oviposition over a 48 h period was 29.6 °C.

  10. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist.

    Science.gov (United States)

    Hoffman, Hal M; Rosengren, Sanna; Boyle, David L; Cho, Jae Y; Nayar, Jyothi; Mueller, James L; Anderson, Justin P; Wanderer, Alan A; Firestein, Gary S

    Familial cold autoinflammatory syndrome (FCAS) is an autosomal dominant disorder characterised by recurrent episodes of rash, arthralgia, and fever after cold exposure. The genetic basis of this disease has been elucidated. Cryopyrin, the protein that is altered in FCAS, is one of the adaptor proteins that activate caspase 1, resulting in release of interleukin 1. An experimental cold challenge protocol was developed to study the acute inflammatory mechanisms occurring after a general cold exposure in FCAS patients and to investigate the effects of pretreatment with an antagonist of interleukin 1 receptor (IL-1Ra). ELISA, real-time PCR, and immunohistochemistry were used to measure cytokine responses. After cold challenge, untreated patients with FCAS developed rash, fever, and arthralgias within 1-4 h. Significant increases in serum concentrations of interleukin 6 and white-blood-cell counts were seen 4-8 h after cold challenge. Serum concentrations of interleukin 1 and cytokine mRNA in peripheral-blood leucocytes were not raised, but amounts of interleukin 1 protein and mRNA were high in affected skin. IL-1Ra administered before cold challenge blocked symptoms and increases in white-blood-cell counts and serum interleukin 6. The ability of IL-1Ra to prevent the clinical features and haematological and biochemical changes in patients with FCAS indicates a central role for interleukin 1beta in this disorder. Involvement of cryopyrin in activation of caspase 1 and NF-kappaB signalling suggests that it might have a role in many chronic inflammatory diseases. These findings support a new therapy for a disorder with no previously known acceptable treatment. They also offer insights into the role of interleukin 1beta in more common inflammatory diseases.

  11. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...

  12. Velocity selection for ultra-cold atoms using bimodal mazer cavity

    International Nuclear Information System (INIS)

    Irshad, A.; Qamar, S.

    2009-04-01

    In this paper, we discuss the velocity selection of ultra-cold three-level atoms in Λ configuration using a micromazer. Our model is the same as discussed by Arun et al., for mazer action in a bimodal cavity. We have shown that significantly narrowed velocity distribution of ultra-cold atoms can be obtained in this system due to the presence of dark states. (author)

  13. Fluid dynamics characterization of riser in a FCC cold flow model using gas radiotracer

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Was carried out the characterization of a diameter small riser of a cold flow model of a circulating fluidized bed (CFB), with aid of a radioactive tracer. Compressed air and catalytic cracking of petroleum flow through solids pneumatic transport regime, made of transparent material (glass, acrylic, PVC, polycarbonate) for study of problems in Fluid Catalytic Cracking (FCC) unit and development of methods of measurement of fluid dynamic parameters. The CFB model consisted of a mixer component solid-gas (compressed air at 25 deg C and 200 kN/m 2 ; cracking catalyst with an average diameter of 72μm and specific mass of 1,500 kg/m 3 ), comprising a riser pipe glass 0.02m internal diameter and 1.8m height, a gas solid separation vessel by flash effect, with the filter in the gas outlet, and a return column (a glass tube with an internal diameter of 0.0254m) to redirect the catalyst for the riser base. Recorded data allowed studies on residence time distribution of the gaseous phase in the riser, with the identification and characterization of the flow of gas-solid components in the CFB riser of small diameter. A plug flow type with deviations due to back mixing of catalyst close to the walls, associated with the density difference between this component was observed. (author)

  14. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.

  15. Cold-water immersion (cryotherapy for preventing and treating muscle soreness after exercise

    Directory of Open Access Journals (Sweden)

    Chris Bleakley

    Full Text Available BACKGROUND: Many strategies are in use with the intention of preventing or minimizing delayed onset muscle soreness and fatigue after exercise. Cold-water immersion, in water temperatures of less than 15 °C, is currently one of the most popular interventional strategies used after exercise. OBJECTIVES: To determine the effects of cold-water immersion in the management of muscle soreness after exercise. SEARCH METHODS: In February 2010, we searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library (2010, Issue 1, Medline, Embase, Cumulative Index to Nursing and Allied Health (CINAHL, British Nursing Index and archive (BNI, and the Physiotherapy Evidence Database (PEDro. We also searched the reference lists of articles, handsearched journals and conference proceedings and contacted experts. In November 2011, we updated the searches of Central (2011, Issue 4, Medline (up to November Week 3 2011, Embase (to 2011 Week 46 and CINAHL (to 28 November 2011 to check for more recent publications. SELECTION CRITERIA: Randomized and quasi-randomized trials comparing the effect of using cold-water immersion after exercise with: passive intervention (rest/no intervention, contrast immersion, warm-water immersion, active recovery, compression, or a different duration/dosage of cold-water immersion. Primary outcomes were pain (muscle soreness or tenderness (pain on palpation, and subjective recovery (return to previous activities without signs or symptoms. DATA COLLECTION AND ANALYSIS: Three authors independently evaluated study quality and extracted data. Some of the data were obtained following author correspondence or extracted from graphs in the trial reports. Where possible, data were pooled using the fixed-effect model. MAIN RESULTS: Seventeen small trials were included, involving a total of 366 participants. Study quality was low. The temperature, duration and

  16. Modeling of inactivation of surface borne microorganisms occurring on seeds by cold atmospheric plasma (CAP)

    Science.gov (United States)

    Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.

    2012-10-01

    Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.

  17. The quality of cold smoked salmon

    DEFF Research Database (Denmark)

    Løje, Hanne

    2007-01-01

    The objective of this Ph. D. thesis was to study the liquid holding capacity/liquid loss of raw and smoked salmonids as affected by raw material and chill storage of the cold smoked product. The liquid holding capacity is an important quality parameter for cold smoked salmon. This study has shown...... that the liquid holding capacity in raw and cold smoked salmon is influenced by several factors. The size of the fish affected the liquid holding capacity as large fish had lower liquid holding capacity than smaller fish. The salt content influenced the liquid holding capacity in smoked fish as it was found...... capacity in raw salmon, as high lipid content gave lower liquid holding capacity. Thus, the lipid content is an important parameter regarding the liquid holding capacity as it can influence the liquid holding capacity directly or indirectly by affecting other factors e.g. the salt content which influences...

  18. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas; Servant, Géraldine, E-mail: tkonstan@cern.ch, E-mail: geraldine.servant@cern.ch [CERN Physics Department, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2011-07-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.

  19. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    International Nuclear Information System (INIS)

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-01-01

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  20. Studying Cold Nuclear Matter with the MPC-EX of PHENIX

    Science.gov (United States)

    Grau, Nathan; Phenix Collaboration

    2017-09-01

    Highly asymmetric collision systems, such as d+Au, provide a unique environment to study cold nuclear matter. Potential measurements range from pinning down the modification of the nuclear wave function, i.e. saturation, to studying final state interactions, i.e. energy loss. The PHENIX experiment has enhanced the muon piston calorimeter (MPC) with a silicon-tungsten preshower, the MPC-EX. With its fine segmentation the MPC-EX extends the photon detection capability at 3 < | η | < 3.8. In this talk we review the current status of the detector, its calibration, and its identification capabilities using the 2016 d+Au dataset. We also discuss the specific physics observables the MPC-EX can measure.

  1. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  2. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  3. Predicting worsening asthma control following the common cold

    NARCIS (Netherlands)

    Walter, M. J.; Castro, M.; Kunselman, S. J.; Chinchilli, V. M.; Reno, M.; Ramkumar, T. P.; Avila, P. C.; Boushey, H. A.; Ameredes, B. T.; Bleecker, E. R.; Calhoun, W. J.; Cherniack, R. M.; Craig, T. J.; Denlinger, L. C.; Israel, E.; Fahy, J. V.; Jarjour, N. N.; Kraft, M.; Lazarus, S. C.; Lemanske, R. F.; Martin, R. J.; Peters, S. P.; Ramsdell, J. W.; Sorkness, C. A.; Sutherland, E. R.; Szefler, S. J.; Wasserman, S. I.; Wechsler, M. E.

    2008-01-01

    The asthmatic response to the common cold is highly variable, and early characteristics that predict worsening of asthma control following a cold have not been identified. In this prospective multicentric cohort study of 413 adult subjects with asthma, the mini-Asthma Control Questionnaire

  4. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  5. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  6. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    DEFF Research Database (Denmark)

    Sandve, Simen R; Rudi, Heidi; Asp, Torben

    2008-01-01

    to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). Conclusion The diverse IRI-like genes identified in this study tell a tale...... of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we...

  7. Leading research report for fiscal 1998 on the next-generation cold emission technology; 1998 nendo jisedai cold emission gijutsu no chosa kenkyu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The report covers the fruits of researches into technologies of cold emission control and cold emission application conducted in fiscal 1998. In the study relative to the current status of cold emission control technology, emitter materials that govern electron emitting characteristics are discussed, such as metallic materials, silicon, carbon systems, semiconductors, liquid metal, etc. In relation with the application of semiconductor process technology, the tunnel emitter is taken up that utilizes the semiconductor tunnel cathode. In relation with the cold emission process, an emitter high in aspect ratio is described, obtained by the inductive emitter deposition method in which organic metallic gas is decomposed by an electron beam. In the study of the cold emission control system and instrumentation, the merits and demerits of control by MOSFET (MOS field effect transistor) are discussed. In relation with the technology of cold emission application, FED (field effect display) development and problems, current status of sensor technology and problems, RF application technology, application to power systems, etc., are mentioned. (NEDO)

  8. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  9. Development of cold sprayed Cu coating for canister

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Kang, Yoon Ha

    2010-01-01

    Cold sprayed Cu deposition was studied for the application of outer part of canister for high level nuclear waste. Five commercially available pure Cu powders were analyzed and sprayed by high pressure cold spray system. Electrochemical corrosion test using potentiostat in 3.5% NaCl solution was conducted as well as microstructural analysis including hardness and oxygen content measurements. Overall evaluation of corrosion performance of cold sprayed Cu deposition is inferior to forged and extruded Cu plates, but some of Cu depositions are comparable to Cu plates. The simulated corrosion test in 200m underground cave is still in progress. The effect of cold spray process parameters was also studied and the results show that the type of nozzle is the most important other than powder feed rate, spray distance, and scan speed. 1/10 scale miniature of canister was manufactured confirming that the production of full scale canister is possible

  10. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  11. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis

    Directory of Open Access Journals (Sweden)

    Radoja Sasa

    2007-11-01

    Full Text Available Abstract Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells of the cold-exposed group would be compared to

  12. Cold moderator test facilities working group

    International Nuclear Information System (INIS)

    Bauer, Guenter S.; Lucas, A. T.

    1997-09-01

    The working group meeting was chaired by Bauer and Lucas.Testing is a vital part of any cold source development project. This applies to specific physics concept verification, benchmarking in conjunction with computer modeling and engineering testing to confirm the functional viability of a proposed system. Irradiation testing of materials will always be needed to continuously extend a comprehensive and reliable information database. An ever increasing worldwide effort to enhance the performance of reactor and accelerator based neutron sources, coupled with the complexity and rising cost of building new generation facilities, gives a new dimension to cold source development and testing programs. A stronger focus is now being placed on the fine-tuning of cold source design to maximize its effectiveness in fully exploiting the facility. In this context, pulsed spallation neutron sources pose an extra challenge due to requirements regarding pulse width and shape which result from a large variety of different instrument concepts. The working group reviewed these requirements in terms of their consequences on the needs for testing equipment and compiled a list of existing and proposed facilities suitable to carry out the necessary development work.

  13. Anomalous cold in the Pangaean tropics

    Science.gov (United States)

    Soreghan, G.S.; Soreghan, M.J.; Poulsen, C.J.; Young, R.A.; Eble, C.F.; Sweet, D.E.; Davogustto, O.C.

    2008-01-01

    The late Paleozoic archives the greatest glaciation of the Phanerozoic. Whereas high-latitude Gondwanan strata preserve widespread evidence for continental ice, the Permo-Carboniferous tropics have long been considered analogous to today's: warm and shielded from the highlatitude cold. Here, we report on glacial and periglacial indicators that record episodes of freezing continental temperatures in western equatorial Pangaea. An exhumed glacial valley and associated deposits record direct evidence for glaciation that extended to low paleoelevations in the ancestral Rocky Mountains. Furthermore, the Permo-Carboniferous archives the only known occurrence of widespread tropical loess in Earth's history; the volume, chemistry, and provenance of this loess(ite) is most consistent with glacial derivation. Together with emerging indicators for cold elsewhere in low-latitude Pangaea, these results suggest that tropical climate was not buffered from the high latitudes and may record glacial-interglacial climate shifts of very large magnitude. Coupled climate-ice sheet model simulations demonstrate that low atmospheric CO2 and solar luminosity alone cannot account for such cold, and that other factors must be considered in attempting to explain this 'best-known' analogue to our present Earth. ?? 2008 The Geological Society of America.

  14. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  15. The Combined Effect of Cold and Moisture on Manual Performance.

    Science.gov (United States)

    Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather

    2018-02-01

    Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.

  16. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  17. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  18. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  19. The impact of the 2008 cold spell on mortality in Shanghai, China

    Science.gov (United States)

    Ma, Wenjuan; Yang, Chunxue; Chu, Chen; Li, Tiantian; Tan, Jianguo; Kan, Haidong

    2013-01-01

    No prior studies in China have investigated the health impact of cold spell. In Shanghai, we defined the cold spell as a period of at least seven consecutive days with daily temperature below the third percentile during the study period (2001-2009). Between January 2001 and December 2009, we identified a cold spell between January 27 and February 3, 2008 in Shanghai. We investigated the impact of cold spell on mortality of the residents living in the nine urban districts of Shanghai. We calculated the excess deaths and rate ratios (RRs) during the cold spell and compared these data with a winter reference period (January 6-9, and February 28 to March 2). The number of excess deaths during the cold spell period was 153 in our study population. The cold spell caused a short-term increase in total mortality of 13 % (95 % CI: 7-19 %). The impact was statistically significant for cardiovascular mortality (RR = 1.21, 95 % CI: 1.12-1.31), but not for respiratory mortality (RR = 1.14, 95 % CI: 0.98-1.32). For total mortality, gender did not make a statistically significant difference for the cold spell impact. Cold spell had a significant impact on mortality in elderly people (over 65 years), but not in other age groups. Conclusively, our analysis showed that the 2008 cold spell had a substantial effect on mortality in Shanghai. Public health programs should be tailored to prevent cold-spell-related health problems in the city.

  20. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    Science.gov (United States)

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  1. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  2. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  3. Progress with cold antihydrogen

    CERN Document Server

    Charlton, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Johnson, I; Jørgensen, L V; Kellerbauer, A G; Lagomarsino, V; Landua, Rolf; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; Van der Werf, D P; Yamazaki, Y; Zurlo, N

    2006-01-01

    The creation of cold antihydrogen by the ATHENA and ATRAP collaborations, working at CERN's unique Antiproton Decelerator (AD) facility, has ushered in a new era in atomic physics. This contribution will briefly review recent results from the ATHENA experiment. These include discussions of antiproton slowing down in a cold positron gas during antihydrogen formation, information derived on the dependence of the antihydrogen formation rate upon the temperature of the stored positron plasma and, finally, upon the spatial distribution of the emitted anti-atoms. We will discuss the implications of these studies for the major outstanding goal of trapping samples of antihydrogen for precise spectroscopic comparisons with hydrogen. The physics motivations for undertaking these challenging experiments will be briefly recalled.

  4. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  5. Cold starting characteristics analysis of hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2017-01-01

    The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed. - Highlights: • The cold start behaviors of HFPE are investigated in detail. • CFD method is used for simulating temperature distribution in start process. • Thermodynamic derivation uncovers the compression temperature distribution. • The improvement suggestions of cold start strategy are proposed.

  6. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    Science.gov (United States)

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  7. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  8. The relationship between codon usage bias and cold resistant genes

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2014-01-01

    This research is based on synonymous codon usage which has been well-known as a feature that affects typical expression level of protein in an organism. Different organisms prefer different codons for same amino acid and this is called Codon Usage Bias (CUB). The codon usage directly affects the level or even direction of changes in protein expression in responses to environmental stimuli. Cold stress is a major abiotic factor that limits the agricultural productivity of plants. In the recent study CUB has been studied in Arabidopsis thaliana cold resistant and housekeeping genes and their homologs in rice (Oryza sativa) to understand the cold stress and housekeeping genes relation with CUB. Six cold resistant and three housekeeping genes in Arabidopsis thaliana and their homologs in rice, were subjected to CUB analysis. The three cold resistant genes (DREB1B, RCI and MYB15) showed more than 50% (52%, 61% and 66% respectively) similar codon usage bias for Arabidopsis thaliana and rice. On the other hand three cold resistant genes (MPK3, ICE1 and ZAT12) showed less than 50% (38%, 38% and 47% respectively) similar codon usage bias for Arabidopsis thaliana and rice. The three housekeeping genes (Actin, Tubulin and Ubiquitin) showed 76% similar codon usage bias for Arabidopsis thaliana and rice. This study will help to manage the plant gene expression through codon optimization under the cold stress. (author)

  9. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments.

    Science.gov (United States)

    Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng

    2017-06-07

    Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase ( CIPKs ), receptor-like protein kinases , and protein kinases . The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata . These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata . In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance.

  10. Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions.

    Science.gov (United States)

    Dhanaraj, Anik L; Alkharouf, Nadim W; Beard, Hunter S; Chouikha, Imed B; Matthews, Benjamin F; Wei, Hui; Arora, Rajeev; Rowland, Lisa J

    2007-02-01

    Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.

  11. Costs and benefits of cold acclimation in field released Drosophila

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Hoffmann, Ary A; Overgaard, Johannes

    2008-01-01

    -acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefits were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold......One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test...... for costs and benefits of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefits at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold...

  12. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  13. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  14. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  15. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  16. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  17. Study on the cold and hot properties of medicinal herbs by thermotropism in mice behavior.

    Science.gov (United States)

    Zhao, Yan-Ling; Wang, Jia-Bo; Xiao, Xiao-He; Zhao, Hai-ping; Zhou, Can-ping; Zhang, Xue-ru; Ren, Yong-shen; Jia, Lei

    2011-02-16

    It is a common sense that chewing a mint leaf causes a cold feeling, while masticating a piece of ginger root is associated with a hot sensation. The Traditional Chinese Medicine has termed this phenomenon as cold and hot properties of herbs and applied them in treating certain human diseases successfully for thousands of years. Here, we have developed an Animal Thermotropism Behavior Surveillance System, and by using this device and other approaches, we not only verified the existence of, but also characterized and quantitated the cold and hot properties of medicinal herbs in animal behavioral experiments. The results suggested that the hot and cold properties of herbal drugs indeed correlated with the alteration of animal behavior in search for residence temperature. Copyright © 2010. Published by Elsevier Ireland Ltd.

  18. Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold

    Science.gov (United States)

    Postnikov, Eugene B.

    2016-01-01

    This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.

  19. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi.

    Directory of Open Access Journals (Sweden)

    Felipe M Vigoder

    Full Text Available Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos, in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed.

  20. Vasomotor response to cold stimulation in human capsaicin-induced hyperalgesic area.

    Science.gov (United States)

    Pud, Dorit; Andersen, Ole Kaeseler; Arendt-Nielsen, Lars; Eisenberg, Elon; Yarnitsky, David

    2005-07-01

    Cooling the skin induces sympathetically driven vasoconstriction, with some vasoparalytic dilatation at the lowest temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In this study we investigated the balance between vasoconstriction and vasodilatation in an area of experimentally induced secondary hyperalgesia (2 degrees HA), in response to low-temperature stimulations. Fourteen healthy volunteers were exposed to three 30-s long cold stimuli (20, 10, and 0 degrees C) applied, at three adjacent sites, before (baseline) and 8 min after intradermal injection of 50 microg capsaicin to the volar forearm. The cold stimuli were applied distally to the injection site within the 2 degrees HA. Blood flux (BF) and skin temperatures were measured at four different regions (proximally, and distally to the capsaicin injection and at the 0, 10, and 20 degrees C thermode sites) all within the 2 degrees HA. The vascular measurements were conducted five times. Results showed a marked increase in BF after baseline cold stimulation (Peffect (elevated BF) was found following the capsaicin injection compared with baseline for all regions (Pcooled area was dilated by 450+/-5.1%; The vasoconstrictive effect for the 10 and 20 degrees C did not overcome the capsaicin vasodilatation, but did reduce it, with dilatation of 364+/-7.0% and 329+/-7.3%, respectively. For 0 degrees C, a dilatation of 407+/-6.5% was seen. It is concluded that in this experimental model, and potentially in the equivalent clinical syndromes, vasodilatation induced by the inflammation is only slightly reduced by cold stimulation such that it is still dominant, despite some cold-induced vasoconstriction.

  1. Task-dependent cold stress during expeditions in Antarctic environments.

    Science.gov (United States)

    Morris, Drew M; Pilcher, June J; Powell, Robert B

    2017-01-01

    This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries.

  2. Study of Cold Coiling Spring Steel on Microstructure and Cold Forming Performance

    Science.gov (United States)

    Jiang, Y.; Liang, Y. L.; Ming, Y.; Zhao, F.

    2017-09-01

    Medium-carbon cold-coiling locomotive spring steels were treated by a novel Q-P-T (quenching-partitioning-tempering) process. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD) were used to characterize the relevant parameters of the steel. Results show that the microstructure of tested steel treated by Q-P-T process is a complex microstructures composed of martensite, bainite and retained austenite. The volume fraction of retained austenite (wt.%) is up to 31%. After pre-deforming and tempering again at 310°C, the plasticity of samples treated by Q-P-T process is still well. Fracture images show that the Q-P-T samples are ductile fracture. It is attributed to the higher volume fraction of the retained austenite and the interactions between the multi-phases in Q-P-T processed sample.

  3. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  4. IMPROVED, FAVORABLE FOR ENVIRONMENT POLYURETHANE COLD-BOX-PROCESS (COLD BOX «HUTTENES-ALBERTUS» .

    Directory of Open Access Journals (Sweden)

    A. Sergini

    2005-01-01

    Full Text Available The results of the laboratory and industrial investigations, the purpose of which is improvement of the classical Cold-box-process, i.e. the process of the slugs hardening in cold boxes, are presented.

  5. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  6. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli.

    Science.gov (United States)

    Datta, Sukdeb; Chatterjee, Koel; Kline, Robert H; Wiley, Ronald G

    2010-01-27

    Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.

  7. Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI injury: correlation of anatomic changes and responses to cold stimuli

    Directory of Open Access Journals (Sweden)

    Kline Robert H

    2010-01-01

    Full Text Available Abstract Background Unilateral constrictive sciatic nerve injury (uCCI is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing. Results All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK staining at all times after bCCI, decreased mu opiate receptor (MOR staining, maximal at 15 days, increased neuropeptide Y (NPY staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY. Conclusions These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.

  8. Relic abundance of mass-varying cold dark matter particles

    International Nuclear Information System (INIS)

    Rosenfeld, Rogerio

    2005-01-01

    In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter

  9. Cold medicines and children

    Science.gov (United States)

    ... ingredient. Avoid giving more than one OTC cold medicine to your child. It may cause an overdose with severe side ... the dosage instructions strictly while giving an OTC medicine to your child. When giving OTC cold medicines to your child: ...

  10. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain.

    Science.gov (United States)

    Caspani, Ombretta; Zurborg, Sandra; Labuz, Dominika; Heppenstall, Paul A

    2009-10-08

    Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG) and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI) model of neuropathic pain in mice.In behavioral experiments, chronic constriction injury (CCI) of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced.Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.

  11. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Ombretta Caspani

    Full Text Available Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI model of neuropathic pain in mice.In behavioral experiments, chronic constriction injury (CCI of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced.Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.

  12. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    Full Text Available Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1 identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2 predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77. Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and

  13. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    Science.gov (United States)

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine

  14. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Malmendal, Anders; Sørensen, Jesper

    2007-01-01

    study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive...

  15. [Experimental study on two-way application of traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in cold and hot blood stasis syndrome I].

    Science.gov (United States)

    Hao, Er-Wei; Deng, Jia-Gang; Du, Zheng-Cai; Yan, Ke; Zheng, Zuo-Wen; Wang, Qin; Huang, Li-Zhen; Bao, Chuan-Hong; Deng, Xiu-Qiong; Lu, Xiao-Yan; Tang, Zhi-Ling

    2012-11-01

    To study the action characteristics of "two-way application and conditioned dominance" of traditional Chinese medicines with neutral property by observing the action characteristic of 10 traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in the microcirculation in rats with heat stagnation and blood stasis syndrome. The rat model with heat stagnation and blood stasis syndrome was established by injecting carrageenan and dry yeast, and the rat model with cold stagnation and blood stasis syndrome was built by the body freezing method. Ten traditional Chinese medicines with neutral property, including 5 with hot property and 5 with cold property, were selected for intervention to observe blood flow rate and flow state indicators in rat auricles and make a comparative analysis on action characteristics of traditional Chinese medicines with neutral property. ANOVA showed that among the 10 traditional Chinese medicines with neutral property, 6 such as Typhae Pollen, Sappan Lignum and Vaccariae Semen can obviously increase the blood flow rate (P traditional Chinese medicines with cold property can increase the blood flow rate (P medicines showed no notable effect; among the 5 traditional Chinese medicines with hot property, Carthamus tinctorius and Ligusticum chuanxiong can increase the blood flow rate (P traditional Chinese medicines with natural and cold properties showed similar effect on heat stagnation and blood stasis syndrome and better effect in increasing blood flow rate than those with hot property; those with natural and hot properties showed similar effect and better effect in increasing blood flow rate than those with cold property. Under the condition of heat stagnation and blood stasis syndrome, traditional Chinese medicines with neutral property have the similar action characteristics with those with cold property; wile under the condition of cold stagnation and blood stasis syndrome

  16. Does acetaminophen/hydrocodone affect cold pulpal testing in patients with symptomatic irreversible pulpitis? A prospective, randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Fowler, Sara; Fullmer, Spencer; Drum, Melissa; Reader, Al

    2014-12-01

    The purpose of this prospective randomized, double-blind, placebo-controlled study was to determine the effects of a combination dose of 1000 mg acetaminophen/10 mg hydrocodone on cold pulpal testing in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients in moderate to severe pain diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, identical capsules of either a combination of 1000 mg acetaminophen/10 hydrocodone or placebo. Cold testing with Endo-Ice (1,1,1,2 tetrafluoroethane; Hygenic Corp, Akron, OH) was performed at baseline and every 10 minutes for 60 minutes. Pain to cold testing was recorded by the patient using a Heft-Parker visual analog scale. Patients' reaction to the cold application was also rated. Cold testing at baseline and at 10 minutes resulted in severe pain for both the acetaminophen/hydrocodone and placebo groups. Although pain ratings decreased from 20-60 minutes, the ratings still resulted in moderate pain. Patient reaction to cold testing showed that 56%-62% had a severe reaction. Although the reactions decreased in severity over the 60 minutes, 20%-34% still had severe reactions at 60 minutes. Regarding pain and patients' reactions to cold testing, there were no significant differences between the combination acetaminophen/hydrocodone and placebo groups at any time period. A combination dose of 1000 mg of acetaminophen/10 mg of hydrocodone did not statistically affect cold pulpal testing in patients presenting with symptomatic irreversible pulpitis. Patients experienced moderate to severe pain and reactions to cold testing. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Mathematical models, rational choice, and the search for Cold War culture.

    Science.gov (United States)

    Erickson, Paul

    2010-06-01

    A key feature of the social, behavioral, and biological sciences after World War II has been the widespread adoption of new mathematical techniques drawn from cybernetics, information theory, and theories of rational choice. Historians of science have typically sought to explain this adoption either by reference to military patronage, or to a characteristic Cold War culture or discursive framework strongly shaped by the concerns of national security. This essay explores several episodes in the history of game theory--a mathematical theory of rational choice--that demonstrate the limits of such explanations. Military funding was indeed critical to game theory's early development in the 1940s. However, the theory's subsequent spread across disciplines ranging from political science to evolutionary biology was the result of a diverse collection of debates about the nature of "rationality" and "choice" that marked the Cold War era. These debates are not easily reduced to the national security imperatives that have been the focus of much historiography to date.

  18. A frequency response study of dipole magnet cold mass for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leung, K.K.; Nicol, T.

    1991-03-01

    This paper describes the technique for calculating the dynamic response of the Superconducting Super Collider (SSC) dipole magnet cold mass. Dynamic motion specification and beam location stability of the cold mass are not available at the present time. Dynamic response of the cold mass depends on measures excitation at the location of the magnet anchoring points on the other factors such as: (1) composite damping of the dipole magnet system, and (2) coupling effect of the cryogenic vessel, concrete slab, and soil to structure interactions. Nevertheless, the cold mass has the largest effect on the motion of the SSC machine. This dynamic analysis is based on response spectra analysis using the finite element method. An upper bond solution will result from this method of analysis, compared to the transient dynamic response method which involves step-by-step time integration from recorded accelerograms. Since no recorded ground motions are available for the SSC site, response spectra from another source shall be employed for the present analysis. 4 refs., 3 figs., 1 tab

  19. An evaluation of the cold chain technology in South-East, Nigeria using Immunogenicity study on the measles vaccines.

    Science.gov (United States)

    Oli, Angus Nnamdi; Agu, Remigius Uchenna; Ihekwereme, Chibueze Peter; Esimone, Charles Okechukwu

    2017-01-01

    Vaccines are biological products and their efficacy is affected by storage conditions. They are vital in promoting public health. Failures in immunization programmes often times are blamed on disruption in vaccine cold-chain. This study assessed the immunogenicity/potency of the measles vaccines utilized in childhood immunization in South-East, Nigeria and indirectly assessed the effectiveness of the cold-chain technology in the region. This was an experimental study carried out between December 2011 and June 2013. Antibody induction method was used to evaluate the immunogenicity/potency of the measles vaccines sourced from the central cold chain facilities in South-east, Nigeria and indirectly, the effectiveness of the cold chain technology in the zone in maintaining vaccine potency. The neutralizing antibodies in a control group (administered with measles vaccines stored at 37°C for 12 months) and in immunized group were determined after 30 days of immunization using ELISA. The mean storage temperature of the vaccines at the states vaccines central cold chain facilities was -2.4°C and before storage at study site, it was 5.8°C but at the study site it was -4.54°C. Mean ±Standard Error in the Mean (SEM) IgG titers for the measles vaccines sourced from "Open Market", Ebonyi, Enugu, Imo, Anambra and Abia States were 0.793±0.051, 1.621±0.015, 1.621±0.015, 1.715±0.081, 1.793±0.051 and 1.683±0.078 respectively while the mean ±Standard Error in the Mean (SEM) IgM titres were 0.857±0.037, 1.400±0.030, 1.391±0.032, 1.339±0.037, 1.405±0.066 and 1.279±0.025 respectively. One way analysis of variance shows that there is statistical difference in the IgG and IgM antibodies titers produced by the control compared to the vaccines (P value cold-chain technology in the region was judged to be optimal as at the time of vaccine sampling since all the measles vaccines had good immunogenicity profile. However, efforts are still needed to maintain these facilities in

  20. Principal component analysis in an experimental cold flow model of a fluid catalytic cracking unit by gammametry

    International Nuclear Information System (INIS)

    Araujo, Janeo Severino C. de; Dantas, Carlos Costa; Santos, Valdemir A. dos; Souza, Jose Edson G. de; Luna-Finkler, Christine L.

    2009-01-01

    The fluid dynamic behavior of riser of a cold flow model of a Fluid Catalytic Cracking Unit (FCCU) was investigated. The experimental data were obtained by the nuclear technique of gamma transmission. A gamma source was placed diametrically opposite to a detector in any straight section of the riser. The gas-solid flow through riser was monitored with a source of Americium-241 what allowed obtaining information of the axial solid concentration without flow disturbance and also identifying the dependence of this concentration profile with several independent variables. The MatLab R and Statistica R software were used. Statistica tool employed was the Principal Components Analysis (PCA), that consisted of the job of the data organization, through two-dimensional head offices to allow extract relevant information about the importance of the independent variables on axial solid concentration in a cold flow riser. The variables investigated were mass flow rate of solid, mass flow rate of gas, pressure in the riser base and the relative height in the riser. The first two components reached about 98 % of accumulated percentage of explained variance. (author)

  1. MAFIA simulation and cold model test of three types of bridge coupler

    International Nuclear Information System (INIS)

    Chang, C.R.; Yao, C.G.; Swenson, D.A.; Funk, L.W.; Raparia, D.

    1992-01-01

    In the new design of the SSC CCL, the total number of bridge couplers has increased from 50 to 63, and their maximum length increased from 37.2 to 46.1 cm. Choosing a bridge coupler that gives maximum coupling, minimum power flow, phase shift and fabrication cost becomes important. The conventional TM010 single cavity bridge coupler used in LAMPF and Fermilab will have severe mode mixing problem when the bridge length is over 30 cm, and the coupling is very weak. Three types of bridge coupler have been proposed: (1) TM012 single cavity bridge coupler; (2) electrically coupled multi-cavity bridge coupler and (3) magnetically coupled multi-cavity bridge coupler. This paper presents both MAFIA simulations and cold model tests results. Each bridge coupler has its unique characteristics with advantages and disadvantages, but all three are superior to the conventional coupler. (Author) 6 figs., tab., 2 refs

  2. Main processes of the Atlantic cold tongue interannual variability

    Science.gov (United States)

    Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy

    2018-03-01

    The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to

  3. Jet evolution in hot and cold QCD matter

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, Svend Oliver

    2010-07-23

    In this thesis, we study the evolution of energetic partons in hot and cold QCD matter. In both cases, interactions with the medium lead to energy loss of the parton and its transverse momentum broadens. The propagation of partons in cold nuclear matter can be investigated experimentally in deep-inelastic scattering (DIS) on nuclei. We use the dipole model to calculate transverse momentum broadening in DIS on nuclei and compare to experimental data from HERMES. In hot matter, the evolution of the parton shower is strongly modified. To calculate this modification, we construct an additional scattering term in the QCD evolution equations which accounts for scattering of partons in the quark-gluon plasma. With this scattering term, we compute the modified gluon distribution in the shower at small momentum fractions. Furthermore, we calculate the modified fragmentation function of gluons into pions. The scattering term causes energy loss of the parton shower which leads to a suppression of hadrons with large transverse momentum. In the third part of this thesis, we study double dijet production in hadron collisions. This process contains information about the transverse parton distribution of hadrons. As main result, we find that double dijet production will allow for a study of the transverse growth of hadronic wave functions at the LHC. (orig.)

  4. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  5. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  6. The role of cell structure during creep of cold worked copper

    Energy Technology Data Exchange (ETDEWEB)

    Sandström, Rolf, E-mail: rsand@kth.se

    2016-09-30

    In previous work it was demonstrated that cold work could reduce the creep rate of phosphorus doped copper (Cu-OFP) by up to six orders of magnitude at 75 °C at a given applied stress. Cu-OFP will be used in canisters for final disposal of spent nuclear fuel. A dislocation model for the cell structure in the cold deformed material has been formulated. A distinction is made between the balanced dislocation content in the cell walls where the number of dislocations of opposite sign match and the unbalanced content where they do not. The recovery rate of the unbalanced content is much lower than that of the balanced content. Taking this into account, it has been possible to model the creep curves of both 12% and 24% cold worked Cu-OFP. The general appearance of the two sets of creep curves are distinctly different, which can be explained by the higher recovery rate in the 24% deformed state.

  7. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  8. Catching a Cold When It's Warm

    Science.gov (United States)

    ... Print this issue Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? En español ... more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s not ...

  9. Two-dimensional finite difference model to study temperature distribution in SST regions of human limbs immediately after physical exercise in cold climate

    Science.gov (United States)

    Kumari, Babita; Adlakha, Neeru

    2015-02-01

    Thermoregulation is a complex mechanism regulating heat production within the body (chemical thermoregulation) and heat exchange between the body and the environment (physical thermoregulation) in such a way that the heat exchange is balanced and deep body temperatures are relatively stable. The external heat transfer mechanisms are radiation, conduction, convection and evaporation. The physical activity causes thermal stress and poses challenges for this thermoregulation. In this paper, a model has been developed to study temperature distribution in SST regions of human limbs immediately after physical exercise under cold climate. It is assumed that the subject is doing exercise initially and comes to rest at time t = 0. The human limb is assumed to be of cylindrical shape. The peripheral region of limb is divided into three natural components namely epidermis, dermis and subdermal tissues (SST). Appropriate boundary conditions have been framed based on the physical conditions of the problem. Finite difference has been employed for time, radial and angular variables. The numerical results have been used to obtain temperature profiles in the SST region immediately after continuous exercise for a two-dimensional unsteady state case. The results have been used to analyze the thermal stress in relation to light, moderate and vigorous intensity exercise.

  10. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  11. Using cold air for reducing needle-injection pain.

    Science.gov (United States)

    Al-Qarqaz, Firas; Al-Aboosi, Mustafa; Al-shiyab, Diala; Al Dabbagh, Ziad

    2012-07-01

    Pain is associated with skin injections. Reducing injection-associated pain is important especially when multiple injections are needed in difficult areas, such as the palms. We present a new safe application for cold air used in laser therapy. The main objectives of this study are to see whether cold air can reduce needle-injection pain and to evaluate the safety of this new application. Patients undergoing skin injection (n=40) were included. Assessment of pain level using visual analog scale (VAS) was done using cold air and again without cold air in the same patient. Comparison of pain scores was performed. Thirty-three patients had lower VAS scores using cold air. Five patients had worse VAS scores, and two patients did not have any change in their pain score. In the group of patients where injections were made to the palms (n=5), there was even more reduction in VAS scores. There were no significant immediate or delayed side effects. Cold air seems to be useful in reducing needle-injection pain in the majority of patients, especially in the palms. This procedure is safe, apart from immediate tolerable discomfort when used around the nose. © 2012 The International Society of Dermatology.

  12. Efficacy of zinc against common cold viruses: an overview.

    Science.gov (United States)

    Hulisz, Darrell

    2004-01-01

    To review the laboratory and clinical evidence of the medicinal value of zinc for the treatment of the common cold. Published articles identified through Medline (1980-2003) using the search terms zinc, rhinovirus, and other pertinent subject headings. Additional sources were identified from the bibliographies of the retrieved articles. By the author. By the author. Human rhinoviruses, by attaching to the nasal epithelium via the intracellular adhesion molecule-1 (ICAM-1) receptor, cause most colds. Ionic zinc, based on its electrical charge, also has an affinity for ICAM-1 receptor sites and may exert an antiviral effect by attaching to the ICAM-1 receptors in the rhinovirus structure and nasal epithelial cells. Clinical tests of zinc for treatment of common colds have been inconsistent, primarily because of study design, blinding, and lozenge contents. Early formulations of lozenges also were unpalatable. In three trials with similar study designs, methodologies, and efficacy assessments, zinc effectively and significantly shortened the duration of the common cold when it was administered within 24 hours of the onset of symptoms. Recent reports of trials with zinc gluconate administered as a nasal gel have supported these findings; in addition, they have shown that treatment with zinc nasal gel is effective in reducing the duration and severity of common cold symptoms in patients with established illness. Clinical trial data support the value of zinc in reducing the duration and severity of symptoms of the common cold when administered within 24 hours of the onset of common cold symptoms. Additional clinical and laboratory evaluations are warranted to further define the role of ionic zinc for the prevention and treatment of the common cold and to elucidate the biochemical mechanisms through which zinc exerts its symptom-relieving effects.

  13. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  14. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  15. Autolysis of Pichia pastoris induced by cold.

    Science.gov (United States)

    Bartolo-Aguilar, Yaneth; Dendooven, Luc; Chávez-Cabrera, Cipriano; Flores-Cotera, Luis B; Hidalgo-Lara, María E; Villa-Tanaca, Lourdes; Marsch, Rodolfo

    2017-12-01

    The production of recombinant biopharmaceutical proteins is a multi-billion dollar market. Protein recovery represents a major part of the production costs. Pichia pastoris is one of the microbial systems most used for the production of heterologous proteins. The use of a cold-induced promoter to express lytic enzymes in the yeast after the growth stage could reduce protein recovery costs. This study shows that a cold-shock can be applied to induce lysis of the yeast cells. A strain of P. pastoris was constructed in which the endogenous eng gene encoding a putative endo-β-1,3-glucanase was overexpressed using the cold-shock induced promoter of the cctα gene from Saccharomyces cerevisiae. In the transgenic P. pastoris, the expression of eng increased 3.6-fold after chilling the cells from 30 to 4 °C (cold-shock stage) followed by incubation for 6 h (eng expression stage). The culture was heated to 30 °C for 6 h (ENG synthesis stage) and kept at 37 °C for 24 h (lysis stage). After this procedure the cell morphology changed, spheroplasts were obtained and cellular lysis was observed. Thus, a clone of P. pastoris was obtained, which undergoes autolysis after a cold-shock.

  16. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  17. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  18. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  19. Cold trap disposed within a tank

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1983-01-01

    Purpose: To improve the reliability and the durability of cold traps by simplifying the structure and recycling liquid metals without using electromagnetic pumps. Constitution: The reactor container is partitioned by an intermediate container enhousing primary recycling pumps and cold traps. The inlet and the exit for the liquid metal of each cold trap are opened to the outside and the inside of the intermediate container respectively. In such a structure, the pressure difference between the inside and the outside of the intermediate container is exerted on the cold traps due to the exhaust pressure of the recycling pumps in which the liquid metal flowing into the cold traps is purified through filters, cooled and then discharged from the exit to the cold plenum. In this way, liquid metal can be recycled without using an electromagnetic pump whose reliability has not yet been established. (Kamimura, M.)

  20. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  1. Effect of Relining Methods (Cold & Heat Cure On the Accuracy of Posterior

    Directory of Open Access Journals (Sweden)

    Nafiseh AsadzadehOghadaee

    2013-01-01

    Full Text Available Introduction: The posterior palatal area is the most important area for retention of maxillary dentures and must be considered carefully during and after the reline. The purpose of this in vitro study was to compare the posterior palatal seal in relined complete dentures with two different methods.Materials & Methods: An average size of edentulous maxillary acrylic arch without undercuts was selected in this in vitro study. The alginate impression was made of this model ten times and was poured with a type IV gypsum product, and the casts of control groups were prepared. Then 10 definitive bases were created for each cast. For the experimental groups, one relief wax layer with a thickness of 2mm was put in post-dam area for relining processes. Then, 20 alginate impressions were made of this model. On definitive base, clear heat-cured acrylic bases were fabricated. In experimental groups, bases were divided into 2 groups of 10: first group was relined with heat-cured acrylic resin and another one was relined with cold cured acrylic resin. All of the bases were put in distilled water for two weeks and then each of them was placed on the definitive base. One code was considered for each model. The gap in posterior area between acrylic bases and arch was measured in five points (a-b-c-d-e: mid line, two points in hamular notch, and two points between midline and hamular notch by two practicers in two different times (during two weeks with light B×60 microscope. The data were analyzed by Tukey and Kruskal Wallis tests.Results: The results of this study indicated that there was a statistically significant difference in the amount of gap at point A between control (bases without reline and experimental groups (P=0.047. At point D there was no significant difference between experimental groups, but a significant difference was detected between control group and bases relined with cold cure acryl (P<0.05.Conclusion: The results of this laboratory study

  2. Modelling of Cold Water Hammer with WAHA code

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2003-01-01

    The Cold Water Hammer experiment described in the present paper is a simple facility where overpressure accelerates a column of liquid water into the steam bubble at the closed vertical end of the pipe. Severe water hammer with high pressure peak occurs when the vapor bubble condenses and the liquid column hits the closed end of the pipe. Experimental data of Forschungszentrum Rossendorf are being used to test the newly developed computer code WAHA and the computer code RELAP5. Results show that a small amount of noncondensable air in the steam bubble significantly affects the magnitude of the calculated pressure peak, while the wall friction and condensation rate only slightly affect the simulated phenomena. (author)

  3. The Formation of Charon's Red Poles from Seasonally Cold-Trapped Volatiles

    Science.gov (United States)

    Grundy, W. M.; Cruikshank, D. P.; Gladstone, D. R.; Howett, C. J. A.; Lauer, T. R.; Spencer, J. R.; Summers, M. E.; Buie, M. W.; Earle, A. M.; Ennico, K.; hide

    2016-01-01

    A unique feature of Plutos large satellite Charon is its dark red northern polar cap. Similar colours on Plutos surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charons high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

  4. Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.

    Science.gov (United States)

    Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K

    1998-09-01

    This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.

  5. Similar cold stress induces sex-specific neuroendocrine and working memory responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Urboniene, Daiva; Eimantas, Nerijus; Daniuseviciute, Laura; Brazaitis, Marius

    2015-01-01

    Men have higher cold-induced neuroendocrine response than women; nevertheless, it is not known whether a different stress hormone rise elicits different effects on cognition during whole body cooling. The objective was to compare the effect of cold-induced neuroendocrine responses on the performance of working memory sensitive tasks between men and women. The cold stress continued until rectal temperature reached 35.5 degree C or for a maximum of 170 min. Working memory performance and stress hormone concentrations were monitored. During cold stress, body temperature variables dropped in all subjects (P < 0.001) and did not differ between sexes. Cold stress raised plasma epinephrine and serum cortisol levels only in men (P < 0.05). Cold stress adversely affected memory performance in men but not in women (P < 0.05). The present study indicated that similar moderate cold stress in men and women induces sex-specific neuroendocrine and working memory responses.

  6. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  7. Robust Tension Control of Strip for 5-Stand Tandem Cold Mills

    Directory of Open Access Journals (Sweden)

    Behrooz Shafiei

    2014-01-01

    Full Text Available Tandem cold rolling process is a nonlinear complex system with external and internal uncertainties and significant disturbances. The improvement in the quality of the final output depends on the control strategy of centerline thickness and interstand tension. This paper focuses on interstand tension control problem in 5-stand tandem cold rolling mills. Tension dynamics can be described by a nominal model perturbed by parametric uncertainties. In order to overcome the model uncertainties and external disturbances, suboptimal H∞ and μ controllers are proposed and the Hankel-norm approximation is used to reduce the order of μ controller. The performance of the proposed controllers is demonstrated by some simulations.

  8. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    Science.gov (United States)

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  10. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    Science.gov (United States)

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  11. Statistical Analysis of Hie (Cold Sensation and Hiesho (Cold Disorder in Kampo Clinic

    Directory of Open Access Journals (Sweden)

    Tetsuhiro Yoshino

    2013-01-01

    Full Text Available A cold sensation (hie is common in Japanese women and is an important treatment target in Kampo medicine. Physicians diagnose patients as having hiesho (cold disorder when hie disturbs their daily activity. However, differences between hie and hiesho in men and women are not well described. Hie can be of three types depending on body part where patients feel hie. We aimed to clarify the characteristics of patients with hie and hiesho by analyzing data from new patients seen at the Kampo Clinic at Keio University Hospital between 2008 and 2013. We collected information about patients’ subjective symptoms and their severity using visual analogue scales. Of 4,016 new patients, 2,344 complained about hie and 524 of those were diagnosed with hiesho. Hie was most common in legs/feet and combined with hands or lower back, rather than the whole body. Almost 30% of patients with hie felt upper body heat symptoms like hot flushes. Cold sensation was stronger in hiesho than non-hiesho patients. Patients with hie had more complaints. Men with hiesho had the same distribution of hie and had symptoms similar to women. The results of our study may increase awareness of hiesho and help doctors treat hie and other symptoms.

  12. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  13. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    International Nuclear Information System (INIS)

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-01-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis

  14. Nowhere to run, rabbit: the cold-war calculus of disease ecology.

    Science.gov (United States)

    Anderson, Warwick

    2017-06-01

    During the cold war, Frank Fenner (protégé of Macfarlane Burnet and René Dubos) and Francis Ratcliffe (associate of A. J. Nicholson and student of Charles Elton) studied mathematically the coevolution of host resistance and parasite virulence when myxomatosis was unleashed on Australia's rabbit population. Later, Robert May called Fenner the "real hero" of disease ecology for his mathematical modeling of the epidemic. While Ratcliffe came from a tradition of animal ecology, Fenner developed an ecological orientation in World War II through his work on malaria control (with Ratcliffe and Ian Mackerras, among others)-that is, through studies of tropical medicine. This makes Fenner at least a partial exception to other senior disease ecologists in the region, most of whom learned their ecology from examining responses to agricultural challenges and animal husbandry problems in settler colonial society. Here I consider the local ecologies of knowledge in southeastern Australia during this period, and describe the particular cold-war intellectual niche that Fenner and Ratcliffe inhabited.

  15. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  16. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Science.gov (United States)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  17. Changes in Landing Mechanics after Cold-Water Immersion

    Science.gov (United States)

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  18. Introduction: the human sciences and Cold War America.

    Science.gov (United States)

    Isaac, Joel

    2011-01-01

    Studies of the history of the human sciences during the Cold War era have proliferated over the past decade--in JHBS and elsewhere. This special issue focuses on the connections between the behavioral sciences and the culture and politics of the Cold War in the United States. In the recent literature, there is a tendency to identify the Cold War human sciences with two main paradigms: that of psychocultural analysis, on the one hand, and of the systems sciences, on the other. The essays in the special issue both extend understanding of each of these interpretive frameworks and help us to grasp their interconnection. © 2011 Wiley Periodicals, Inc.

  19. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  20. A Multi-Modality Deep Network for Cold-Start Recommendation

    Directory of Open Access Journals (Sweden)

    Mingxuan Sun

    2018-03-01

    Full Text Available Collaborative filtering (CF approaches, which provide recommendations based on ratings or purchase history, perform well for users and items with sufficient interactions. However, CF approaches suffer from the cold-start problem for users and items with few ratings. Hybrid recommender systems that combine collaborative filtering and content-based approaches have been proved as an effective way to alleviate the cold-start issue. Integrating contents from multiple heterogeneous data sources such as reviews and product images is challenging for two reasons. Firstly, mapping contents in different modalities from the original feature space to a joint lower-dimensional space is difficult since they have intrinsically different characteristics and statistical properties, such as sparse texts and dense images. Secondly, most algorithms only use content features as the prior knowledge to improve the estimation of user and item profiles but the ratings do not directly provide feedback to guide feature extraction. To tackle these challenges, we propose a tightly-coupled deep network model for fusing heterogeneous modalities, to avoid tedious feature extraction in specific domains, and to enable two-way information propagation from both content and rating information. Experiments on large-scale Amazon product data in book and movie domains demonstrate the effectiveness of the proposed model for cold-start recommendation.