WorldWideScience

Sample records for cold liquid ventilation

  1. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  2. Liquid ventilation.

    Science.gov (United States)

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  3. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  4. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º......C. Due to the ice problem mechanical ventilation systems with heat recovery are often installed with an extra preheating system reducing the energy saving potential significantly. New designs of high efficient heat recovery units capable of continuously defrosting the ice without using extra energy...

  5. Partial liquid ventilation improves lung function in ventilation-induced lung injury

    NARCIS (Netherlands)

    G.F. Vazquez de Anda; R.A. Lachmann; S.J.C. Verbrugge (Serge); D.A.M.P.J. Gommers (Diederik); J.J. Haitsma (Jack); B.F. Lachmann (Burkhard)

    2001-01-01

    textabstractDisturbances in lung function and lung mechanics are present after ventilation with high peak inspiratory pressures (PIP) and low levels of positive end-expiratory pressure (PEEP). Therefore, the authors investigated whether partial liquid ventilation can re-establish

  6. Cardiopulmonary function and oxygen delivery during total liquid ventilation.

    Science.gov (United States)

    Tsagogiorgas, Charalambos; Alb, Markus; Herrmann, Peter; Quintel, Michael; Meinhardt, Juergen P

    2011-10-01

    Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Copyright © 2011 Wiley-Liss, Inc.

  7. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  8. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    Science.gov (United States)

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    Science.gov (United States)

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  10. Analysis of Natural Ventilation in a Passive House Located in Cold Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    in Vejle during cooling season, in the months of June, July and August. The dwelling belongs to a Danish project of passive houses denominated Komfort Husene, where its occupants claim there is no thermal comfort in summer time. The results show that the use of natural ventilation helps to reduce......This article shows the potential of using natural ventilation as a passive method of cooling buildings that are located in cold climate countries using Denmark as a case study. The energy saving potential of natural ventilation is found by performing thermal simulations of a household located...

  11. Effects of ventilation on hyaluronan and protein concentration in pleural liquid of anesthetized and conscious rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1998-01-01

    The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.

  12. Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1997-01-01

    We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.

  13. Field measurements of moisture variation in cold ventilated attics with different ceiling constructions

    DEFF Research Database (Denmark)

    Hansen, Thor; Møller, Eva B.

    2017-01-01

    Adding insulation material on ceilings against cold ventilated attics is one of the most straightforward tasks of adding insulation. Theoretically, a higher amount of insulation in the attic decreases the temperature and consequently the capability of removing infiltrated indoor humid air. Field...

  14. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    Directory of Open Access Journals (Sweden)

    Davies Mark W

    2006-02-01

    Full Text Available Abstract Background The loss of perfluorocarbon (PFC vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates. Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77 and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47% to 27.3 mL (91% of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p -1 (ANOVA with Bonferroni's multiple comparison test, p -1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation.

  15. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  16. Evaluation of simplified ventilation system with direct air supply through the facade in a school in a cold climate

    Energy Technology Data Exchange (ETDEWEB)

    Mysen, M. [Norwegian Building Research Institute, Blindern, Oslo (Norway); Department of Energy and Process Technology, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Schild, P. G.; Hellstrand, V.; Thunshelle, K. [Norwegian Building Research Institute, Blindern, Oslo (Norway)

    2004-07-01

    Many educational buildings in industrialised countries have poor indoor climate, according to today's knowledge about the impact of indoor climate on well-being and productivity. Budget restrictions and practical limitations such as lack of space for central air handling units and ventilation ducts, have motivated the application of simplified ventilation systems in some schools, such as taking unconditioned supply air directly from the facade. One such school was recently evaluated in Norway. On cold days, thermal comfort in the classroom deteriorated due to cold down draught from the supply outlet. In addition, moist and fertile conditions for microbiological growth were observed in the air supply ductwork. On the other hand the same pupils are more satisfied with the school and have less sick building syndrome (SBS) symptoms during winter than summer. An improved control strategy with a temperature-compensated CO{sub 2} set-point for controlling the air flow is suggested. This could improve thermal comfort and reduce energy use without compromising perceived air quality (PAQ) during cold weather. Furthermore it could improve indoor air quality (IAQ) during warm weather with only a slight increase of energy use. Further evaluation of an improved solution is needed before such a ventilation concept can be recommended in cold climates. (author)

  17. The Advanced Neutron Source liquid deuterium cold source

    International Nuclear Information System (INIS)

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy

  18. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    Science.gov (United States)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  19. New counter flow heat exchanger designed for ventilation systems in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Nielsen, Toke Rammer

    2007-01-01

    In cold climates, mechanical ventilation systems with highly efficient heat recovery will experience problems with condensing water from the extracted humid indoor air. If the condensed water changes to ice in the heat exchanger, the airflow rate will quickly fall due to the increasing pressure...... problem is therefore desirable. In this paper, the construction and test measurements of a new counter flow heat exchanger designed for cold climates are presented. The developed heat exchanger is capable of continuously defrosting itself without using supplementary heating. Other advantages...... of the developed beat exchanger are low pressure loss, cheap materials and a simple construction. The disadvantage is that the exchanger is big compared with other heat exchangers. In this paper, the new heat exchanger's efficiency is calculated theoretically and measured experimentally. The experiment shows...

  20. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    Science.gov (United States)

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  1. Research of the cold shield in cryogenic liquid storage

    Science.gov (United States)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  2. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  3. Study of liquid hydrogen and liquid deuterium cold neutron sources; Etude de sources de neutrons froids a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Harig, H D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10{sup 15} n/cm{sup 2}s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10{sup 12} n/cm{sup 2}s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [French] En vue de l'installation d'une source a neutrons froids dans un reacteur a haut flux (flux thermique maximal environ 10{sup 15} n/cm{sup 2}s), nous avons fait une etude neutronique experimentale de differentes sources froides a hydrogene et a deuterium liquides aupres d'un reacteur a faible puissance (100 kW environ 10{sup 12} n/cm{sup 2}s). Nous avons etudie: des couches annulaires de differentes epaisseurs d'hydrogene liquide normal et d'hydrogene a grand pourcentage para, des cellules cylindriques de 18 et 38 cm de diametre, remplies de deuterium liquide et placees a differentes positions dans le reflecteur D{sub 2}O. Ce travail traite l'implantation de l'installation cryogenique et donne une description generale de l'experience. L'interpretation des resultats fait etat entre autres d'une comparaison entre l'experience et une etude theorique portant sur les memes moderateurs. (auteurs)

  4. Diurnal and seasonal variations of greenhouse gas emissions from a naturally ventilated dairy barn in a cold region

    Science.gov (United States)

    Huang, Dandan; Guo, Huiqing

    2018-01-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions were quantified for a naturally ventilated free-stall dairy barn in the Canadian Prairies climate through continuous measurements for a year from February 2015 to January 2016, with ventilation rate estimated by a CO2 mass balance method. The results were categorized into seasonal emission profiles with monthly data measured on a typical day, and diurnal profiles in cold (January), warm (July), and mild seasons (October) of all three gases. Seasonal CO2, CH4, and N2O concentrations greatly fluctuated within ranges of 593-2433 ppm, 15-152 ppm, and 0.32-0.40 ppm, respectively, with obviously higher concentrations in the cold season. Emission factors of the three gases were summarized: seasonal N2O emission varied between 0.5 and 10 μg s-1 AU-1 with lower emission in the cold season, while seasonal CO2 and CH4 emissions were within narrow ranges of 112-119 mg s-1 AU-1 and 2.5-3.5 mg s-1 AU-1. The result suggested a lower enteric CH4 emission for dairy cows than that estimated by Environment Canada (2014). Significant diurnal effects (P 0.05), but obvious diurnal variations in all seasons. In comparison with previous studies, it was found that the dairy barn in a cold region climate with smaller vent openings had relatively higher indoor CO2 and CH4 concentrations, but comparable CO2 and CH4 emissions to most previous studies. Besides, ventilation rate, temperature, and relative humidity all significantly affected the three gas concentrations with the outdoor temperature being the most relevant factor (P < 0.01); however, they showed less or no statistical relations to emissions.

  5. Measurements of neutron intensity from liquid deuterium moderator of the cold neutron source of KUR

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji

    1990-01-01

    The neutron spectra from the liquid deuterium moderator of the cold neutron source of KUR were measured by the time of flight (TOF) method similar to the previous measurements for the liquid hydrogen moderator. The cold neutron gain factor is found to be about 20 ∼ 28 times for the wavelength longer than 6 A. Cold neutron intensities from the liquid deuterium moderator and from the liquid hydrogen moderator are compared and discussed. (author)

  6. Computer tomographic assessment of partial liquid ventilation in dogs with inhalation injury

    International Nuclear Information System (INIS)

    Wang Liya; Gong Honghan; Xiao Xiangzuo; Guo Guanghua; Li Guohui; Zhou Li; Fu Lihui; Fan Kunwu

    2004-01-01

    Objective: To analyze CT and pathologic findings of lung in dogs with inhalation injury, and to provide reliable basis to explore the mechanism of partial liquid ventilation (PLV) treatment on inhalation injury. Methods: Respiratory tract injury models in 14 dogs were made by steam inhalation and they were divided into 2 groups. The control group was treated by high frequency ventilation (HFV) and the treatment group was treated by partial liquid with perfluorocarbon plus HFV. CT scan of the lung in dogs with inhalation injury was performed before and after perfluorocarbon (PFC) PLV, and then the histopathologic pieces with isolation lung were obtained. Analysis and comparison of the results among them was conducted. Results: After steam inhalation injury, CT appeared as exudation with patchy and mass in 6 dogs, cotton-wool spots in 2 dogs, ground-glass opacity in 2 dogs, and consolidation in 4 dogs. CT appeared as mass in 5 dogs with inhalation injury of perfluorocarbon-filled lungs during partial liquid ventilation, patchy in 2 dogs, and homogeneous in 1 dog. The distribution of perfluorocarbon was in the posterior region of lung. The CT findings were in accordance with those in histopathology. Conclusion: Perfluorocarbon is distributed predominantly in the dependent regions of the lung and the distribution of perfluorocarbon is gravity dependent. It is benefit for the inhalation injury

  7. Cold neutron production in liquid para- and normal-H sub 2 moderators

    CERN Document Server

    Morishima, N

    2002-01-01

    A neutron transport analysis is performed for liquid H sub 2 moderators with 100% para and normal (ortho:para=0.75:0.25) fractions. Four sets of energy-averaged cross-sections (group constants) for liquid ortho- and para-H sub 2 at melting and boiling points are generated and neutron energy range between 0.1 mu eV and 10 eV is broken into 80 groups. Basic moderating characteristics are studied of a model cold-neutron source in a one-dimensional bare-slab geometry. It is shown that liquid para-H sub 2 is superior in cold neutron production to liquid normal H sub 2 on account of a para-to-ortho transition (molecular rotational excitation) and a good transmission property with a mean free path of about 10 cm. In the case of neutron extraction from the inside of the source, high intensity of cold neutrons is possible with liquid normal H sub 2 at higher temperatures up to the boiling point.

  8. Effect of PEEP and inhaled nitric oxide on pulmonary gas exchange during gaseous and partial liquid ventilation with small volumes of perfluorocarbon.

    Science.gov (United States)

    Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R

    2000-04-01

    Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.

  9. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...

  10. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kiyanagi, Y.; Kosugi, N.; Iwasa, H.; Furusaka, M.; Watanabe, N.

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  11. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  12. In China, students in crowded dormitories with a low ventilation rate have more common colds: evidence for airborne transmission.

    Directory of Open Access Journals (Sweden)

    Yuexia Sun

    Full Text Available OBJECTIVE: To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. METHODS: In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO(2 concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO(2 concentrations. RESULTS: In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person. CONCLUSION: Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students.

  13. Regeneration process for a cold trap placed in a liquid metal circuit

    International Nuclear Information System (INIS)

    Desreumaux, J.; Rebiere, J.

    1989-01-01

    Regeneration of a cold trap containing solid hydride and oxide sodium impurities is made by heating the cold trap for thermally decomposing the impurities. By communication with a vessel containing an absorbing material such as Mg 2 Ni the tritium liberated by heating is absorbed. Liquid effluents made by heating the impurities are drained out of the cold trap [fr

  14. Potential of Natural Ventilation in Cold Conditions Countries

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to investigate the energy performance of natural ventilation as a passive cooling method of buildings within houses located in temperate countries using Denmark as a case study. The method consists in running simulations with a thermal-airflow program of a household...... the simulations are validated with measured data, and by applying a new assessment method presented in this article as the cooling rate due to natural ventilation instead of a constant mechanical ventilation rate in the thermal balance within the dwelling, the energy saving is calculated. Results show...... ventilation rather mechanical one on large-scale scenarios located in temperate conditions. Finally, as a practical implication example, an assessment for Denmark is carried out....

  15. Experience on the removal of impurities from liquid metal systems by cold-trapping

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J. A.

    1963-10-15

    Experience in impurity removal by cold-trapping, which was obtained on DFR and its associated liquid metal rigs, is reviewed. The development of the present DFR cold-trapping system is outlined, and the operation of the additional pumped loops, which were required in order to control the reactor impurity levels, are described. Operation of the liquid metal rigs ancillary to the reactor project is discussed with particular reference to the control of impurity levels. (auth)

  16. Effects of therapeutic bronchoalveolar lavage and partial liquid ventilation on meconium-aspirated newborn piglets.

    Science.gov (United States)

    Jeng, Mei-Jy; Soong, Wen-Jue; Lee, Yu-Sheng; Chang, Hua-Lun; Shen, Chung-Min; Wang, Chua-Ho; Yang, Shyh-Sheng; Hwang, Betau

    2006-04-01

    To investigate the therapeutic effects of bronchoalveolar lavage (BAL) with either diluted surfactant (SBAL) or perfluorochemical liquid (PBAL), followed by either conventional mechanical ventilation (CMV) or partial liquid ventilation (PLV), on lung injury and proinflammatory cytokine production induced by meconium aspiration in newborn piglets. A prospective, randomized, experimental study. An animal research laboratory at a medical center. Anesthetized and mechanically ventilated newborn piglets (n = 27). The animals were instilled with 3-5 mL/kg 25% human meconium via an endotracheal tube to induce meconium aspiration syndrome (MAS). After stabilization, animals were randomly assigned to either CMV group (no BAL) or one of the treatment groups (SBAL-CMV, SBAL-PLV, PBAL-CMV, and PBAL-PLV). Cardiopulmonary variables were monitored, and interleukin-1beta and interleukin-6 content of the serum and lung tissue was measured. The animals without any treatment (CMV group) displayed the worst outcome; the animals in the PBAL-PLV group had the best gas exchange, lung compliance, and least pulmonary damage; and the SBAL-CMV, PBAL-CMV, and SBAL-PLV groups had intermediate effects. The serum interleukin-1beta concentration of the CMV group was significantly higher than all other groups over time (p CMV group and lowest in the PBAL-PLV group. Initial therapeutic BAL and therapeutic BAL followed by PLV with the same perfluorochemical liquid provided significant therapeutic effects in treating an animal model with severe MAS and therefore warrant consideration in cases that are intractable to other therapies.

  17. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  18. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-04-03

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  19. Thermal Dynamics in Newborn and Juvenile Models Cooled by Total Liquid Ventilation.

    Science.gov (United States)

    Nadeau, Mathieu; Sage, Michael; Kohlhauer, Matthias; Vandamme, Jonathan; Mousseau, Julien; Robert, Raymond; Tissier, Renaud; Praud, Jean-Paul; Walti, Herve; Micheau, Philippe

    2016-07-01

    Total liquid ventilation (TLV) consists in filling the lungs with a perfluorocarbon (PFC) and using a liquid ventilator to ensure a tidal volume of oxygenated, CO 2 -free and temperature-controlled PFC. Having a much higher thermal capacity than air, liquid PFCs assume that the filled lungs become an efficient heat exchanger with pulmonary circulation. The objective of the present study was the development and validation of a parametric lumped thermal model of a subject in TLV. The lungs were modeled as one compartment in which the control volume varied as a function of the tidal volume. The heat transfer in the body was modeled as seven parallel compartments representing organs and tissues. The thermal model of the lungs and body was validated with two groups of lambs of different ages and weights (newborn and juvenile) undergoing an ultrafast mild therapeutic hypothermia induction by TLV. The model error on all animals yielded a small mean error of -0.1 ±0.4  (°)C for the femoral artery and 0.0 ±0.1   (°)C for the pulmonary artery. The resulting experimental validation attests that the model provided an accurate estimation of the systemic arterial temperature and the venous return temperature. This comprehensive thermal model of the lungs and body has the advantage of closely modeling the rapid thermal dynamics in TLV. The model can explain how the time to achieve mild hypothermia between newborn and juvenile lambs remained similar despite of highly different physiological and ventilatory parameters. The strength of the model is its strong relationship with the physiological parameters of the subjects, which suggests its suitability for projection to humans.

  20. Active space cooling with night-coldness - development of a decentralized ventilation system with latent heat storage; Aktive Raumkuehlung mit Nachkaelte - Entwicklung eines dezentralen Lueftungsgeraetes mit Latentwaermespeicher. Imtech-Haus, Hamburg Referenzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Detzer, R. [Imtech Deutschland, Hamburg (Germany)

    2007-04-15

    Imtech Germany a decentralized ventilation system with a latent heat-storage unit made of Phase Change Material. The equipment was used successfully in a first reference asset in the Imtech house in Hamburg. During the day active space cooling is realized by storage of night-cold. In combination with a night ventilation the attached areas could be held continuous within the comfort range under 26 C under normal summer conditions. The decentralized ventilation system including control is developed to series production readiness and will be introduced now on the market. (orig.)

  1. Method of calculation of tanks forced ventilation from the remnants of liquid products

    Directory of Open Access Journals (Sweden)

    С. О. Пузік

    2013-07-01

    Full Text Available The advantages of gasoline compared to other petroleum products in terms of feasibility of their research. Calculations of the duration of ventilation and changes in the concentration of vapors of gasoline remains in the gas space of the vertical tank with a capacity of 1000 m3 (RUS-1000. Nomogram constructed for the quantitative forecast available liquid balances petrol A-95 and the time duration ventylyaiyi RUS-1000 from the remnants of the petrol

  2. Cold Electronics for Giant Liquid Argon Time Projection Chambers

    International Nuclear Information System (INIS)

    Radeka, V.; De Geronimo, G.; Chen, H.; Deptuch, G.; Lanni, F.; Li, S.; Nambiar, N.; Rescia, S.; Thorn, C.; Yarema, R.; Yu, B.

    2011-01-01

    The choice between cold and warm electronics (inside or outside the cryostat) in very large LAr TPCs (>5-10 ktons) is not an electronics issue, but it is rather a major cryostat design issue. This is because the location of the signal processing electronics has a direct and far reaching effect on the cryostat design, an indirect effect on the TPC electrode design (sense wire spacing, wire length and drift distance), and a significant effect on the TPC performance. All these factors weigh so overwhelmingly in favor of the cold electronics that it remains an optimal solution for very large TPCs. In this paper signal and noise considerations are summarized, the concept of the readout chain is described, and the guidelines for design of CMOS circuits for operation in liquid argon (at ∼89 K) are discussed.

  3. A comparison of conventional surfactant treatment and partial liquid ventilation on the lung volume of injured ventilated small lungs

    International Nuclear Information System (INIS)

    Proquitté, Hans; Hartenstein, Sebastian; Wauer, Roland R; Schmalisch, Gerd; Koelsch, Uwe; Rüdiger, Mario

    2013-01-01

    As an alternative to surfactant therapy (ST), partial liquid ventilation (PLV) with perfluorocarbons (PFC) has been considered as a treatment for acute lung injury (ALI) in newborns. The instilled PFC is much heavier than the instilled surfactant and the aim of this study was to investigate whether PLV, compared to ST, increases the end-expiratory volume of the lung (V L ). Fifteen newborn piglets (age <12 h, mean weight 678 g) underwent saline lung lavage to achieve a surfactant depletion. Thereafter animals were randomized to PLV (n = 8), receiving PFC PF5080 (3M, Germany) at 30 mL kg −1 , and ST (n = 7) receiving 120 mg Curosurf®. Blood gases, hemodynamics and static compliance were measured initially (baseline), immediately after ALI, and after 240 min mechanical ventilation with either technique. Subsequently all piglets were killed; the lungs were removed in toto and frozen in liquid N 2 . After freeze-drying the lungs were cut into lung cubes (LCs) with edge lengths of 0.7 cm, to calculate V L . All LCs were weighed and the density of the dried lung tissue was calculated. No statistically significant differences between treatment groups PLV and ST (means ± SD) were noted in body weight (676 ± 16 g versus 679 ± 17 g; P = 0.974) or lung dry weight (1.64 ± 0.29 g versus 1.79 ± 0.48 g; P = 0.48). Oxygenation index and ventilatory efficacy index did not differ significantly between both groups at any time. V L (34.28 ± 6.13 mL versus 26.22 ± 8.1 mL; P < 0.05) and the density of the dried lung tissue (48.07 ± 5.02 mg mL −1 versus 69.07 ± 5.30 mg mL −1 ; P < 0.001), however, differed significantly between the PLV and ST groups. A 4 h PLV treatment of injured ventilated small lungs increased V L by 30% and decreased lung density by 31% compared to ST treatment, indicating greater lung distension after PLV compared to ST. (paper)

  4. Energy Analysis of the Ductless Personalized Ventilation

    DEFF Research Database (Denmark)

    Lelong, Cyril; Dalewski, Mariusz; Melikov, Arsen Krikor

    2013-01-01

    energy efficient strategies for implantation of DPV in practice. The impact of using DPV on annual energy use has been studied for different occupancy profiles in cold climates. The results suggest that using DPV combined with displacement ventilation may significantly reduce building energy use while......This study explores the impact of different occupancy profiles on the potential energy savings due to using ductless personalized ventilation (DPV) combined with displacement ventilation. Energy simulations were performed with the dynamic simulation software IDA-ICE in order to investigate optimal...

  5. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, William [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-07-01

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace.

  6. Extended high-frequency partial liquid ventilation in lung injury: gas exchange, injury quantification, and vapor loss.

    Science.gov (United States)

    Doctor, Allan; Al-Khadra, Eman; Tan, Puay; Watson, Kenneth F; Diesen, Diana L; Workman, Lisa J; Thompson, John E; Rose, Charles E; Arnold, John H

    2003-09-01

    High-frequency oscillatory ventilation with perflubron (PFB) reportedly improves pulmonary mechanics and gas exchange and attenuates lung injury. We explored PFB evaporative loss kinetics, intrapulmonary PFB distribution, and dosing strategies during 15 h of high-frequency oscillation (HFO)-partial liquid ventilation (PLV). After saline lavage lung injury, 15 swine were rescued with high-frequency oscillatory ventilation (n = 5), or in addition received 10 ml/kg PFB delivered to dependent lung [n = 5, PLV-compartmented (PLV(C))] or 10 ml/kg distributed uniformly within the lung [n = 5, PLV(U)]. In the PLV(C) group, PFB vapor loss was replaced. ANOVA revealed an unsustained improvement in oxygenation index in the PLV(U) group (P = 0.04); the reduction in oxygenation index correlated with PFB losses. Although tissue myeloperoxidase activity was reduced globally by HFO-PLV (P PFB distribution optimized gas exchange during HFO-PLV; additionally, monitoring PFB evaporative loss appears necessary to stabilize intrapulmonary PFB volume.

  7. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  8. Low resource ventilation unit; Ressourcebesparende ventilationsenhed

    Energy Technology Data Exchange (ETDEWEB)

    Drivsholm, C.

    2012-03-15

    In the project a resource-saving ventilation device was developed which is based on the use of a regenerator and a reversible air flow. The regenerator is placed in the building envelope, and the concept works in the way that the heat in the air during ventilation is stored in the regenerator and brought back into the building by a reversible air change. The heated air is blown from inside the building out through the regenerator. In this way the regenerator accumulates the heat in the air. Over a period of 30-120 seconds, the regenerator capacity is utilized. When the regenerator cannot be further heated, the air flow is reversed and there is now blown cold air through the regenerator. Thereby the heat from the regenerator is released to the cold fresh air. Thus, the fresh air brings heat back into the building, whereby the air is replaced with a limited heat loss. Ventilation with a regenerator is described as micro-ventilation. The developed micro-ventilation unit was tested by the Danish Technological Institute. The test results shows that the unit performs according to expectations: 1) The heat recovery is 85%; 2) The flow through the unit is 80m3 per hour in a 5 section unit; 3) The noise level is 30 db(A) in a representative room; 4) The energy consumption is <300 J/m3. The unit is introduced into the market, and the first plants have been sold. (LN)

  9. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  10. Technology assessment of long distance liquid natural gas pipelines. Phase 8. Cold utilization and rural service

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    This phase of the investigation presents a summary of material relating to: (1) actual or potential applications for the very large refrigeration effects inherent in the vaporization of liquid natural gas; and (2) rural service gas supplies adjacent to the route of a trunk liquid natural gas line. A variety of concepts for cold utilization are discussed. The Canadian prospects for cold utilization include: electric power generation; oxygen production for integration with a coal gasification project; and the use of refrigeration stages in the petrochemical processing of natural gas, for example, ethane separation and processing to produce ethylene and ammonia.

  11. An advanced liquid hydrogen cold source for the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, R.E.; Kopetka, P.; Rowe, J.M.

    1999-01-01

    A second-generation liquid hydrogen cold neutron source is currently being fabricated and will be installed in the NIST reactor early next year. The existing source has operated very successfully over the last four years, providing a six-fold increase in the cold neutron yield compared to the previous heavy ice source. The design of the new source is based on our operating experience with the existing LH 2 source and extensive neutron transport calculations using improved MCNP modeling and computational capabilities. Enhanced mechanical design and manufacturing tools are exploited in the fabrication of the advanced source, which is expected to nearly double the yield of the existing LH 2 source. (author)

  12. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  13. Dose monitoring in Partial Liquid Ventilation by infrared measurement of expired perfluorochemicals.

    Science.gov (United States)

    Mazzoni, M; Nugent, L; Klein, D; Hoffman, J; Sekins, K M; Flaim, S F

    1999-01-01

    Patients undergoing Partial Liquid Ventilation (PLV) with the perfluorochemical liquid perflubron (PFB) continuously evaporate the drug from the lung during ventilatory expiration. In this study, two infrared (IR) devices, a modified industrial analyzer ("experimental prototype") and a custom-designed device suitable for use in a clinical environment ("clinical prototype"), were calibrated and validated on the bench to measure a range of PFB concentrations (CPFB) in a gas stream. PFB loss from the lung (area under the CPFB-vs-time-curve) could be correlated during PLV simulation with changes in tidal volume, breathing rate, and variable CPFB-vs-time profiles. The two IR devices produced nearly identical measurements for the same CPFB standards (maximum deviation = 1.5%). The experimental IR prototype was tested in 17 anesthetized, paralyzed, and ventilated swine (42-53 kg) to quantify the total amount and rate of evaporate loss of PFB over 12 hours of PLV, both with and without periodic supplemental PFB doses. The residual PFB volumes in the animal lungs at the end of the study, as determined by a gravimetric postmortem lung method, were found to agree on average for all animals to within 10% of the residual PFB volume as predicted by the IR approach. Furthermore, the IR signal of CPFB does not appear to correlate with the absolute amount of PFB in the lungs, but may reflect the relative proportion of PFB-wetted airway and alveolar surface. The authors conclude that IR quantitation of PFB evaporative loss is acceptably accurate for extended periods of PLV and may be a useful tool in the clinic for PFB dose monitoring and maintenance, thereby helping to optimize PLV treatment.

  14. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night......-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect...

  15. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  16. Cold trap disposed within a tank

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1983-01-01

    Purpose: To improve the reliability and the durability of cold traps by simplifying the structure and recycling liquid metals without using electromagnetic pumps. Constitution: The reactor container is partitioned by an intermediate container enhousing primary recycling pumps and cold traps. The inlet and the exit for the liquid metal of each cold trap are opened to the outside and the inside of the intermediate container respectively. In such a structure, the pressure difference between the inside and the outside of the intermediate container is exerted on the cold traps due to the exhaust pressure of the recycling pumps in which the liquid metal flowing into the cold traps is purified through filters, cooled and then discharged from the exit to the cold plenum. In this way, liquid metal can be recycled without using an electromagnetic pump whose reliability has not yet been established. (Kamimura, M.)

  17. Thermodynamical double-flux ventilation system in individual house; Systeme de ventilation double flux thermodynamique en maison individuelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This guidebook written by the French scientific and technical committee of the space heating, ventilation and air-conditioning industry (Costic) with the collaboration of the French association of coldness production engineering (AFF) and Electricite de France (EdF), presents the technical rules and practical advices for the installation of thermodynamical double-flux ventilation systems in residential houses. Content: heat pumps (standardization and regulation, choice and dimensioning of the auxiliary electrical supply, installation, acoustic precautions), aeraulic networks (standardization and regulation, choice and dimensioning, installation), thermal insulation, thermoregulation, control and start-up, maintenance. (J.S.)

  18. Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems

    Science.gov (United States)

    2017-02-22

    Endotracheal tubes, high-volume, low-pressure, tracheal wall injury 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...ventilators to the LOX devices. Ventilator settings were as follows : respiratory rate 35 breaths/min, inspiratory time 0.8 seconds, tidal volume 450 mL

  19. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  20. The quality of cold smoked salmon

    DEFF Research Database (Denmark)

    Løje, Hanne

    2007-01-01

    The objective of this Ph. D. thesis was to study the liquid holding capacity/liquid loss of raw and smoked salmonids as affected by raw material and chill storage of the cold smoked product. The liquid holding capacity is an important quality parameter for cold smoked salmon. This study has shown...... that the liquid holding capacity in raw and cold smoked salmon is influenced by several factors. The size of the fish affected the liquid holding capacity as large fish had lower liquid holding capacity than smaller fish. The salt content influenced the liquid holding capacity in smoked fish as it was found...... capacity in raw salmon, as high lipid content gave lower liquid holding capacity. Thus, the lipid content is an important parameter regarding the liquid holding capacity as it can influence the liquid holding capacity directly or indirectly by affecting other factors e.g. the salt content which influences...

  1. Energy-saving strategies with personalized ventilation in cold climates

    DEFF Research Database (Denmark)

    Shiavon, Stefano; Melikov, Arsen Krikor

    2009-01-01

    In this study the influence of the personalized supply air temperature control strategy on energy consumption and the energy-saving potentials of a personalized ventilation system have been investigated by means of simulations with IDA-ICE software. GenOpt software was used to determine the optimal...

  2. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  3. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  4. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Williamson, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Puttafunta, Srikanth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-30

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent

  5. Natural ventilation in organic poultry houses in cold weather

    Science.gov (United States)

    This topic was suggested as a way to address concerns with winter ventilation and temperature control. The suggestion came with a request that the presentation cover “proper management in cooler ambient temps. The broad issue is most organic egg production is brown and these birds have an easy abil...

  6. SY Tank Farm ventilation isolation option risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.B.; Morales, S.D.

    1994-03-01

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  7. Potential of Ventilation Radiators: Performance evaluation by numerical, analytical and experimental means

    Energy Technology Data Exchange (ETDEWEB)

    Myhren, Jonn Are

    2011-07-01

    Energy consumption for heating and ventilation of buildings is still in 2011 considered far too high, but there are many ways to save energy and construct low energy buildings that have not been fully utilised. This doctoral thesis has focused on one of these - low temperature heating systems. Particular attention has been given to the ventilation radiator adapted for exhaust-ventilated buildings because of its potential as a low energy consuming, easily-operated, environmentally-friendly system that might also ensure occupant health and well-being. Investigations were based on Computational Fluid Dynamics (CFD) simulations and analytical calculations, with laboratory experiments used for validation. Main conclusions: - Low and very low temperature heating systems, such as floor heating, in general create an indoor climate with low air speeds and low temperature differences in the room, which is beneficial for thermal comfort. A typical disadvantage, however, was found to be weakness in counteracting cold down-flow from ventilation air supply units in exhaust ventilated buildings. - with ventilation radiators, unlike most other low temperature systems, it was found that the risk of cold draught could be reduced while still maintaining a high ventilation rate even in cold northern European winters. - ventilation radiators were found to be more thermally efficient than traditional radiators. - design of ventilation radiators could be further modified for improved thermal efficiency. - at an outdoor temperature of -15 deg. C the most efficient models were able to give double the heat output of traditional radiators. Also, by substituting the most efficient ventilation radiators for traditional radiators operating at 55 deg. C supply water temperature, it was found that supply water temperature could be reduced to 35 deg. C while heat output remained the same and comfort criteria were met. - lowering the supply water temperature by 20 deg. C (as described above) could

  8. Low resource ventilation unit. Preface to the final report; Ressourcebesparende ventilationsenhed. Forord til afslutningsrapport

    Energy Technology Data Exchange (ETDEWEB)

    Lundehoej, M.; Boersting, J.

    2012-07-01

    In the project a resource-saving ventilation device was developed which is based on the use of a regenerator and a reversible air flow. The regenerator is placed in the building envelope, and the concept works in the way that the heat in the air during ventilation is stored in the regenerator and brought back into the building by a reversible air change. The heated air is blown from inside the building out through the regenerator. In this way the regenerator accumulates the heat in the air. Over a period of 30-120 seconds, the regenerator capacity is utilized. When the regenerator cannot be further heated, the air flow is reversed and there is now blown cold air through the regenerator. Thereby the heat from the regenerator is released to the cold fresh air. Thus, the fresh air brings heat back into the building, whereby the air is replaced with a limited heat loss. Ventilation with a regenerator is described as micro-ventilation. (LN)

  9. Air change. Ventilation requirements of closed rooms

    Energy Technology Data Exchange (ETDEWEB)

    Cords, W

    1988-04-01

    Closed rooms have to be ventilated in order to compensate influences changing the composition and quality of air. Details are given on the conditions and factors determining the required change of air as well as the design of ventilation systems. Reference is made to the respiratory consumption of oxygen, the increase of hazardous carbon dioxide contents causing headaches and indispositions, water vapor exhalations, body heat, odors, cold air coming in from outside, bodily heat losses, carbon dioxide limiting values, air speeds, and air pressures inside rooms. The humidity and temperatures of frequented rooms should keep within the maximum values. (HWJ).

  10. Cold storage with phase change material for building ventilation

    OpenAIRE

    Butala, Vincenc; Stritih, Uroš

    2015-01-01

    This paper presents an experimental and numerical analysis of building coolingusing night-time cold accumulation in phase change material (PCM), otherwise known as the "free-cooling" or "passive-cooling" principle. The phase change materials were used in ceilings and floors. The free-cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22 °C as the PCM to store cold during the ni...

  11. Thermal hydraulic tests of a liquid hydrogen cold neutron source. NISTIR 5026

    International Nuclear Information System (INIS)

    Siegwarth, J.D.; Olson, D.A.; Lewis, M.A.; Rowe, J.M.; Williams, R.E.; Kopetka, P.

    1995-01-01

    Liquid hydrogen cold neutron source designed at NBSR contains neutron moderator chamber. The NIST-B electrically heated glass moderator chamber used to test the NBSR chamber testing showed the following results: Stable operation possible up to at least 2200 watts with two-phase flow; LH 2 mass quickly reaches new, stable value after heat load change; Void fraction well below 20 at anticipated power and pressure; Restart of H 2 flow verified after extending supply line; Visual inspection showed no dryout or unexpected voids

  12. Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    2000-01-01

    We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.

  13. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  14. Effect of ventilation type on radon concentration at places of work

    International Nuclear Information System (INIS)

    Oksanen, E.

    1994-01-01

    Indoor radon ( 222 Rn) concentrations were measured at 76 child care facilities and 36 schools in southern Finland. The buildings had three different types of ventilation systems: mechanical air supply and exhaust, mechanical exhaust, and natural ventilation, the first being most common. The effect of the ventilation type on the long-term radon concentration was studied in child care facilities. The radon concentrations were highest in the naturally ventilated buildings. The mechanical air supply and exhaust system maintained the lowest values in cold wintertime. In school buildings both the long-term radon concentration and short-term radon and daughter concentrations were measured. The correlation of the ventilation type and the radon concentration was not obvious in this group of measurements, but the radon concentrations and the equilibrium factors were highest in buildings with natural ventilation. Radon concentrations were generally lower during the working hours than during the one-month period, as expected. (author)

  15. On the use of the cold time-of-flight spectrometer in Studsvik for liquid 3He measurements

    International Nuclear Information System (INIS)

    Faak, Bjoern.

    1989-01-01

    The time-of-flight spectrometer for cold neutrons at the R2 reactor in Studsvik has been reconstructed. The design and the performance of the instrument are briefly described. Improvements required for measurement of the neutron scattering function of liquid 3 He are discussed. (author)

  16. Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.

    Science.gov (United States)

    Wu, You; Nguyen, Tam L; Perlman, Carrie E

    2017-04-01

    Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier-higher liquid pressure at the border than in the center of flooded alveoli-that is proportional to surface tension, T Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T Mechanical ventilation, by cyclically increasing T , injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T , and then gently ventilating the edematous lungs, which increases T at 15 cmH 2 O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T , which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but-because of elevated T -the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T , early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the

  17. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples

    International Nuclear Information System (INIS)

    Zeeb, M.; Sadeghi, M.

    2011-01-01

    We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18 μg L -1 , and the relative standard deviation is 3.0% (at n=5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples. (author)

  18. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    Science.gov (United States)

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Prospective, randomized study using sealed envelopes. 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  19. REVERSIBLE VENTILATION SYSTEM FOR ADMINISTRATIVE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Valery Yu. Kravchuk

    2017-01-01

    Full Text Available Abstract. Objectives To consider the possibility of applying the principle of reversing air flows for a centralised ventilation system; to develop a specific scheme for air exchange reversible ventilation, which will take into account the peculiarities of the microclimate of administrative buildings; to select the type of filling of the air-permeable element and justify this choice; to determine the conditions for changing the direction of air movement in the ventilation system and the area of its application; to form a list of equipment necessary for the operation of such a system; to consider the influence of supply and exhaust devices on the heat and humidity regime of claddings. Methods  To achieve this goal, the published thematic material was reviewed and a patent search carried out using Russian and European databases. Data on mathematical modelling of filtration in porous media and experimental results were used. A method for ventilating rooms in administrative building using the reversal of movement of supply and exhaust air streams along the same channels was applied. Results  Schemas for reversible ventilation systems are presented and their modes of operation considered. It is established that the idea of reversing ventilation flows has not yet been applied in the development of centralised ventilation systems. Based on these published materials, it was concluded that the proposed design of supply and exhaust devices can be used in practice. An original air exchange scheme for the ventilation of administrative buildings and design of supply and exhaust devices for this system are proposed. The conditions for changing the operating modes of the system and the scope of its application are determined. Conclusion The use of the proposed ventilation system allows normative air exchange to be provided without using a supply unit during the cold season. This application of airflow reversal allows the potential of natural forces to be used

  20. Evaluation of AY/AZ tank farm ventilation system during aging waste retrieval operations

    International Nuclear Information System (INIS)

    Wong, J.J.; Waters, E.D.

    1995-01-01

    Waste Management is currently planning to demonstrate mobilization of radioactive waste sludges in Tank 101-AZ beginning in October 1991. The retrieval system being designed will utilize mixer pumps that generate high-velocity, high-volume submerged liquid jets to mobilize settled solids. There is concern that these jets may also generate radioactive aerosols, some of which may be carried into the tank Ventilation system. The purpose of this study is to determine if the current AY/AZ ventilation system or the proposed ventilation system upgrade (Project W-030) will provide adequate deentrainment of liquid and solid aerosols during mixer pump operations, or if the radioactive aerosols will overload the HEPA filters

  1. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  2. Temporary core liquid level depression during cold-leg small-break LOCA effect of break size and power level

    International Nuclear Information System (INIS)

    Koizumi, Y.; Kumamaru, H.; Mimura, Y.; Kukita, Y.; Tasaka, K.

    1989-01-01

    Cold-leg small break LOCA experiments (0.5-10% break) were conducted at the large scale test facility (LSTF), a volumetrically-scaled (1/48) simulator of a PWR, of the ROSA-IV Program. When a break area was less than 2.5% of the scaled cold-leg flow area, the core liquid level was temporarily further depressed to the bottom elevation of the crossover leg during the loop seal clearing early in the transient only by the manometric pressure balance since no coolant remained in the upper portion of the primary system. When the break size was larger than 5%, the core liquid level was temporarily further depressed lower than the bottom elevation of the crossover leg during the loop seal clearing since coolant remained at the upper portion of the primary system; the steam generator (SG) U-tube upflow side and the SG inlet plenum, due to counter current flow limiting by updrafting steam while the coolant drained. The amount of coolant trapped there was dependent on the vapor velocity (core power); the larger the core power, the lower the minimum core liquid level. The RELAP5/MOD2 code reasonable predicted phenomena observed in the experiments. (orig./DG)

  3. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  4. Energy Performance of a Novel System Combining Natural Ventilation with Diffuse Ceiling Inlet and Thermally Activated Building Systems (TABS)

    DEFF Research Database (Denmark)

    Yu, Tao

    and thermally activated building systems (TABS) for cooling and ventilation in future Danish office buildings. The new solution would have the special potential of using natural ventilation all year round even in the extremely cold seasons without any draught risk. The main focuses of this study are the energy...

  5. Performance of Portable Ventilators Following Storage at Temperature Extremes.

    Science.gov (United States)

    Blakeman, Thomas C; Rodriquez, Dario; Britton, Tyler J; Johannigman, Jay A; Petro, Michael C; Branson, Richard D

    2016-05-01

    In the current theater of operation, medical devices are often shipped and stored at ambient conditions. The effect of storage at hot and cold temperature extremes on ventilator performance is unknown. We evaluated three portable ventilators currently in use or being evaluated for use by the Department of Defense (731, Impact Instrumentation; T1, Hamilton Medical; and Revel, CareFusion) at temperature extremes in a laboratory setting. The ventilators were stored at temperatures of 60°C and -35°C for 24 hours and were allowed to acclimate to room temperature for 30 minutes before evaluation. The T1 required an extra 15 to 30 minutes of acclimation to room temperature before the ventilator would deliver breaths. All delivered tidal volumes at room temperature and after storage at temperature extremes were less than the ±10% American Society for Testing and Materials standard with the Revel. Delivered tidal volumes at the pediatric settings were less than the ±10% threshold after storage at both temperatures and at room temperature with the 731. Storage at extreme temperature affected the performance of the portable ventilators tested. This study showed that portable ventilators may need an hour or more of acclimation time at room temperature after storage at temperature extremes to operate as intended. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  6. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  7. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  8. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  9. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  10. Inhibition of breathing after surfactant depletion is achieved at a higher arterial PCO2 during ventilation with liquid than with gas

    Directory of Open Access Journals (Sweden)

    Sindelar Richard

    2005-03-01

    Full Text Available Abstract Background Inhibition of phrenic nerve activity (PNA can be achieved when alveolar ventilation is adequate and when stretching of lung tissue stimulates mechanoreceptors to inhibit inspiratory activity. During mechanical ventilation under different lung conditions, inhibition of PNA can provide a physiological setting at which ventilatory parameters can be compared and related to arterial blood gases and pH. Objective To study lung mechanics and gas exchange at inhibition of PNA during controlled gas ventilation (GV and during partial liquid ventilation (PLV before and after lung lavage. Methods Nine anaesthetised, mechanically ventilated young cats (age 3.8 ± 0.5 months, weight 2.3 ± 0.1 kg (mean ± SD were studied with stepwise increases in peak inspiratory pressure (PIP until total inhibition of PNA was attained before lavage (with GV and after lavage (GV and PLV. Tidal volume (Vt, PIP, oesophageal pressure and arterial blood gases were measured at inhibition of PNA. One way repeated measures analysis of variance and Student Newman Keuls-tests were used for statistical analysis. Results During GV, inhibition of PNA occurred at lower PIP, transpulmonary pressure (Ptp and Vt before than after lung lavage. After lavage, inhibition of inspiratory activity was achieved at the same PIP, Ptp and Vt during GV and PLV, but occurred at a higher PaCO2 during PLV. After lavage compliance at inhibition was almost the same during GV and PLV and resistance was lower during GV than during PLV. Conclusion Inhibition of inspiratory activity occurs at a higher PaCO2 during PLV than during GV in cats with surfactant-depleted lungs. This could indicate that PLV induces better recruitment of mechanoreceptors than GV.

  11. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  12. Experimental validation of a local dehumidification system based on cold water droplets and air-to-air heat exchanger

    NARCIS (Netherlands)

    Janssen, E.G.O.N.; Hammink, H.A.J.; Hendriksen, L.J.A.M.

    2015-01-01

    Excessive humidity is a problem in Dutch growing circumstances. A traditional solution is heating and natural ventilation. To save energy a number of energy efficient dehumidification methods are developed, like mechanical ventilation with dry outside air or a curtain of cold water droplets. In this

  13. Effect of ventilation procedures on the behaviour of a fire compartment scenario

    Energy Technology Data Exchange (ETDEWEB)

    Pretrel, H. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Service d' Etude et de Recherches Experimentales sur les Accidents (SEREA), Laboratoire d' Experimentation des Feux -LEF, Centre de Cadarache, 13108 Cedex Saint Paul-lez-Durance (France)]. E-mail: hugues.pretrel@irsn.fr; Such, J.M. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Service d' Etude et de Recherches Experimentales sur les Accidents (SEREA), Laboratoire d' Experimentation des Feux - LEF, Centre de Cadarache, 13108 Cedex Saint Paul-lez-Durance (France)

    2005-09-01

    This contribution presents a study on the consequences of applying ventilation procedures during a fire scenario involving a TPH/TBP pool fire in a ventilated enclosure. This research is addressed to fire safety in the nuclear industry in which ventilated enclosures remain a configuration frequently encountered. This work presents experiments comprising a 300 kW liquid pool fire in a 400 m{sup 3} vessel connected to an industrial ventilation system featuring one inlet and one exhaust branch. The investigated ventilation procedures consist in closing the inlet branch only or closing both inlet and exhaust branches. The analysis compares fire behaviour with and without the implementation of a ventilation procedure and points out the effects of said procedures on the combustion rate, fire duration and gas temperature within the vessel. It highlights pressure variations within the vessel when both the inlet and exhaust ventilation branches are closed. Conclusions provide practical answers that would be useful when designing appropriate ventilation strategies limiting fire hazards.

  14. Effect of ventilation procedures on the behaviour of a fire compartment scenario

    International Nuclear Information System (INIS)

    Pretrel, H.; Such, J.M.

    2005-01-01

    This contribution presents a study on the consequences of applying ventilation procedures during a fire scenario involving a TPH/TBP pool fire in a ventilated enclosure. This research is addressed to fire safety in the nuclear industry in which ventilated enclosures remain a configuration frequently encountered. This work presents experiments comprising a 300 kW liquid pool fire in a 400 m 3 vessel connected to an industrial ventilation system featuring one inlet and one exhaust branch. The investigated ventilation procedures consist in closing the inlet branch only or closing both inlet and exhaust branches. The analysis compares fire behaviour with and without the implementation of a ventilation procedure and points out the effects of said procedures on the combustion rate, fire duration and gas temperature within the vessel. It highlights pressure variations within the vessel when both the inlet and exhaust ventilation branches are closed. Conclusions provide practical answers that would be useful when designing appropriate ventilation strategies limiting fire hazards

  15. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome.

    Science.gov (United States)

    Rambaud, Jérôme; Lidouren, Fanny; Sage, Michaël; Kohlhauer, Matthias; Nadeau, Mathieu; Fortin-Pellerin, Étienne; Micheau, Philippe; Zilberstein, Luca; Mongardon, Nicolas; Ricard, Jean-Damien; Terada, Megumi; Bruneval, Patrick; Berdeaux, Alain; Ghaleh, Bijan; Walti, Hervé; Tissier, Renaud

    2018-05-02

    Ultrafast cooling by total liquid ventilation (TLV) provides potent cardio- and neuroprotection after experimental cardiac arrest. However, this was evaluated in animals with no initial lung injury, whereas out-of-hospital cardiac arrest is frequently associated with early-onset pneumonia, which may lead to acute respiratory distress syndrome (ARDS). Here, our objective was to determine whether hypothermic TLV could be safe or even beneficial in an aspiration-associated ARDS animal model. ARDS was induced in anesthetized rabbits through a two-hits model including the intra-tracheal administration of a pH = 1 solution mimicking gastric content and subsequent gaseous non-protective ventilation during 90 min (tidal volume [Vt] = 10 ml/kg with positive end-expiration pressure [PEEP] = 0 cmH 2 O). After this initial period, animals either received lung protective gas ventilation (LPV; Vt = 8 ml/kg and PEEP = 5 cmH 2 O) under normothermic conditions, or hypothermic TLV (TLV; Vt = 8 ml/kg and end-expiratory volume = 15 ml/kg). Both strategies were applied for 120 min with a continuous monitoring of respiratory and cardiovascular parameters. Animals were then euthanized for pulmonary histological analyses. Eight rabbits were included in each group. Before randomization, all animals elicited ARDS with arterial oxygen partial pressure over inhaled oxygen fraction ratios (PaO 2 /FiO 2 ) below 100 mmHg, as well as decreased lung compliance. After randomization, body temperature rapidly decreased in TLV versus LPV group (32.6 ± 0.6 vs. 38.2 ± 0.4 °C after 15 min). Static lung compliance and gas exchanges were not significantly different in the TLV versus LPV group (PaO 2 /FiO 2  = 62 ± 4 vs. 52 ± 8 mmHg at the end of the procedure, respectively). Mean arterial pressure and arterial bicarbonates levels were significantly higher in TLV versus LPV. Histological analysis also showed significantly lower inflammation in

  16. Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre

    Energy Technology Data Exchange (ETDEWEB)

    Kavgic, M.; Mumovic, D.; Young, A. [The Bartlett School of Graduate Studies, University College London, Gower Street, London, WC1E 6BT, England (United Kingdom); Stevanovic, Z. [Institute of Nuclear Sciences - Vinca, P.O. Box 522, 11001 Belgrade (RS)

    2008-07-01

    Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO{sub 2}, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants' feet. (author)

  17. A novel system solution for cooling and ventilation in office buildings

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2015-01-01

    solution has the special function of using natural ventilation all the year around without draught risk, even in very cold seasons. A case study of a typical office room using this solution and other traditional HVAC systems is carried out by energy simulation. The results show that there is a large energy...

  18. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  19. Ventilator-driven xenon ventilation studies

    International Nuclear Information System (INIS)

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-01-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration

  20. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  1. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  2. Beware Cold Agglutinins in Organ Donors! Ex Vivo Lung Perfusion From an Uncontrolled Donation After Circulatory-Determination-of-Death Donor With a Cold Agglutinin: A Case Report.

    Science.gov (United States)

    Venkataraman, A; Blackwell, J W; Funkhouser, W K; Birchard, K R; Beamer, S E; Simmons, W T; Randell, S H; Egan, T M

    2017-09-01

    We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O 2 -ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli-the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Anaesthesia ventilators

    Directory of Open Access Journals (Sweden)

    Rajnish K Jain

    2013-01-01

    Full Text Available Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV. PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  4. Anaesthesia ventilators.

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  5. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  6. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    Science.gov (United States)

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.

  7. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    Science.gov (United States)

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  8. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  9. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  10. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  11. Bile acid aspiration in suspected ventilator-associated pneumonia.

    Science.gov (United States)

    Wu, Yu-Chung; Hsu, Po-Kuei; Su, Kang-Cheng; Liu, Lung-Yu; Tsai, Cheng-Chien; Tsai, Shu-Ho; Hsu, Wen-Hu; Lee, Yu-Chin; Perng, Diahn-Warng

    2009-07-01

    The aims of this study were to measure the levels of bile acids in patients with suspected ventilator-associated pneumonia (VAP) and provide a possible pathway for neutrophilic inflammation to explain its proinflammatory effect on the airway. Bile acid levels were measured by spectrophotometric enzymatic assay, and liquid chromatography mass spectrometry was used to quantify the major bile acids. Alveolar cells were grown on modified air-liquid interface culture inserts, and bile acids were then employed to stimulate the cells. Reverse transcriptase polymerase chain reaction and Western blots were used to determine the involved gene expression and protein levels. The mean (+/- SE) concentration of total bile acids in tracheal aspirates was 6.2 +/- 2.1 and 1.1 +/- 0.4 mumol/L/g sputum, respectively, for patients with and without VAP (p VAP group (p aspiration may reduce the intensity of neutrophilic inflammation in intubated and mechanically ventilated patients in the ICU.

  12. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  13. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  14. Bench performance of ventilators during simulated paediatric ventilation.

    Science.gov (United States)

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  15. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  16. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Anaesthesia ventilators

    OpenAIRE

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bello...

  18. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  19. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  20. Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients.

    Science.gov (United States)

    Blankman, P; VAN DER Kreeft, S M; Gommers, D

    2014-09-01

    Inhomogeneous ventilation is an important contributor to ventilator-induced lung injury. Therefore, this study examines homogeneity of lung ventilation by means of electrical impedance tomography (EIT) measurements during pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) using the same ventilation pressures. Twenty mechanically ventilated patients were studied after cardiac surgery. On arrival at the intensive care unit, ventilation distribution was measured with EIT just above the diaphragm for 15 min. After awakening, PCV was switched to PSV and EIT measurements were again recorded. Tidal impedance variation, a measure of tidal volume, increased during PSV compared with PCV, despite using the same ventilation pressures (P = 0.045). The distribution of tidal ventilation to the dependent lung region was more pronounced during PSV compared with PCV, especially during the first half of the inspiration. An even distribution of tidal ventilation between the dependent and non-dependent lung regions was seen during PCV at lower tidal volumes (tidal volumes (≥ 8 ml/kg). In addition, the distribution of tidal ventilation was predominantly distributed to the dependent lung during PSV at low tidal volumes. In post-cardiac surgery patients, PSV showed improved ventilation of the dependent lung region due to the contribution of the diaphragm activity, which is even more pronounced during lower assist levels. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. The cold neutron facility of the JRR-3M

    International Nuclear Information System (INIS)

    Kumai, T.; Suzuki, M.; Kakefuda, K.

    1992-01-01

    A description is given of a cold neutron source and neutron guide tubes of the JRR-3M. The installation of the cold neutron source (CNS) together with the neutron guide system is one of the principal objectives of the remodeling project of the JRR-3 and this CNS is the first one that was installed in the high neutron flux reactors of 14 orders of magnitude in Japan. The CNS is a liquid hydrogen moderator and vertical thermosyphon type. It mainly consists of a hydrogen plant for liquid hydrogen and helium refrigerator plant for cold helium gas. Five neutron guide tubes are installed to get thermal and cold neutron beams in the beam hall. The CNS and the guide tubes have been operated very well since August 1990. (author)

  2. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  3. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  4. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Minteer, D.J.

    1995-01-23

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude.

  5. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    International Nuclear Information System (INIS)

    Minteer, D.J.

    1995-01-01

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude

  6. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  7. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  8. Battery life of portable home ventilators: effects of ventilator settings.

    Science.gov (United States)

    Falaize, Line; Leroux, Karl; Prigent, Hélène; Louis, Bruno; Khirani, Sonia; Orlikowski, David; Fauroux, Brigitte; Lofaso, Frédéric

    2014-07-01

    The battery life (BL) of portable home ventilator batteries is reported by manufacturers. The aim of this study was to evaluate the effects of ventilator mode, breathing frequency, PEEP, and leaks on the BL of 5 commercially available portable ventilators. The effects of the ventilator mode (volume controlled-continuous mandatory ventilation [VC-CMV] vs pressure support ventilation [PSV]), PEEP 5 cm H2O, breathing frequency (10, 15, and 20 breaths/min), and leaks during both volume-targeted ventilation and PSV on the BL of 5 ventilators (Elisée 150, Monnal T50, PB560, Vivo 50, and Trilogy 100) were evaluated. Each ventilator was ventilated with a test lung at a tidal volume of 700 ml and an inspiratory time of 1.2 s in the absence of leaks. Switching from PSV to VC-CMV or the addition of PEEP did not significantly change ventilator BL. The increase in breathing frequency from 10 to 20 breaths/min decreased the BL by 18 ± 11% (P = .005). Leaks were associated with an increase in BL during the VC-CMV mode (18 ± 20%, P = .04) but a decrease in BL during the PSV mode (-13 ± 15%, P = .04). The BL of home ventilators depends on the ventilator settings. BL is not affected by the ventilator mode (VC-CMV or PSV) or the addition of PEEP. BL decreases with an increase in breathing frequency and during leaks with a PSV mode, whereas leaks increase the duration of ventilator BL during VC-CMV. Copyright © 2014 by Daedalus Enterprises.

  9. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  10. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  11. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  12. Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation.

    Science.gov (United States)

    Kirmse, M; Fujino, Y; Hess, D; Kacmarek, R M

    1998-11-01

    Partial liquid ventilation (PLV) with perflubron (PFB) has been proposed as an adjunct to the current therapies for the acute respiratory distress syndrome (ARDS). Because PFB has been also referred to as "liquid PEEP," distributing to the most gravity-dependent regions of the lung, less attention has been paid to the amount of applied positive end-expiratory pressure (PEEP). We hypothesized that higher PEEP levels than currently applied are needed to optimize gas exchange, and that the lower inflection point (LIP) of the pressure-volume curve could be used to estimate the amount of PEEP needed when the lung is filled with PFB. Lung injury was induced in 23 sheep by repeated lung lavage with warmed saline until the PaO2/FIO2 ratio fell below 150. Five sheep were used to investigate the change of the LIP when the lung was filled with PFB in increments of 5 ml/kg/body weight to a total of 30 ml/kg/body weight. To evaluate the impact of PEEP set at LIP +1 cm H2O we randomized an additional 15 sheep to three groups with different doses (7.5 ml, 15 ml, 30 ml/kg/body weight) of PFB. In random order a PEEP of 5 cm H2O or PEEP at LIP +1 cm H2O was applied. The LIP decreased with incremental filling of PFB to a minimum at 10 ml (p PFB shifts the LIP to the left, and that setting PEEP at LIP +1 cm H2O improves gas exchange at moderate to high doses of PFB.

  13. Patient-Ventilator Dyssynchrony

    Directory of Open Access Journals (Sweden)

    Elvira-Markela Antonogiannaki

    2017-11-01

    Full Text Available In mechanically ventilated patients, assisted mechanical ventilation (MV is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.

  14. Effectiveness of air vapor barriers combined with ventilated crawlspaces in decreasing residential exposure to radon daughters to radon daughters: preliminary report

    International Nuclear Information System (INIS)

    Sterling, T.D.; Arundel, A.; McIntyre, D.; Sterling, E.; Sterling, T.D.

    1986-01-01

    Radon gas is present in many homes. Concentrations may be increased in airtight, energy-efficient structures. This is especially true in cold climates where energy conservation is an important factor leading to the widespread application of sealing and tightening techniques both in older renovated homes and new construction. To reduce radon concentrations, it may be effective to ventilate crawlspaces and prevent infiltration of radon gas into the house by means of an air/vapor barrier. The authors report first results of comparing radon levels in homes with and without ventilated crawlspaces and air/vapor barriers. Radon emissions were measured in a tightly sealed home with ventilated crawlspaces and an air/vapor barrier and in two homes without such vapor barriers and ventilated crawlspaces, but differing in ventilation. Preliminary results suggest that use of ventilated crawlspaces and bottomside vapor barriers may reduce indoor radon levels by approximately 60%. 15 references, 1 table

  15. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    Science.gov (United States)

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Consideration of LH2 and LD2 cold neutron sources in heavy water reactor reflector

    International Nuclear Information System (INIS)

    Potapov, I.A.; Serebrov, A.P.

    2001-01-01

    The reactor power, the required CNS dimensions and power of the cryogenic equipment define the CNS type with maximized cold neutron production. Cold neutron fluxes from liquid hydrogen (LH 2 ) and liquid deuterium (LD 2 ) cold neutron sources (CNS) are analyzed. Different CNS volumes, presents and absence of reentrant holes inside the CNS, different adjustment of beam tube and containment are considered. (orig.)

  17. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Science.gov (United States)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  18. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  19. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  20. Analytical and experimental analysis of a low-pressure heat exchanger suitable for passive ventilation

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2011-01-01

    AbstractA core element in sustainable ventilation systems is the heat recovery system. Conventional heat recovery systems have a high pressure drop that acts as blockage to naturally driven airflow. The heat recovery system we propose here consists of two separated air-to-liquid heat exchangers...... interconnected by a liquid loop powered by a pump ideal as a component in a heat recovery system for passive ventilation systems. This paper describes the analytical framework and the experimental development of one exchanger in the liquid-loop. The exchanger was constructed from the 8mm plastic tubing...... that is commonly used in water-based floor-heating systems. The pressure loss and temperature exchange efficiency was measured. For a design airflow rate of 560L/s, the pressure loss was 0.37Pa and the efficiency was 75.6%. The experimental results agree well with the literature or numerical fluid calculations...

  1. Hygrothermal conditions in cold, north facing attic spaces under the eaves with vapour-open roofing underlay in a cool, temperate climate

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Johnston, C.J.; Hansen, M.H.

    2016-01-01

    compliance with the current Danish Building Regulations (BR10) for airtightness (moisture levels in attics with vapour-open roofing underlays. North facing cold attic spaces under the eaves constitute a worst case scenario. Following best...... to allow an influx of 3.3 l/s of conditioned indoor air 20 °C and 60% RH at a pressure difference of 50 Pa) and ventilation (singled-sided, passive ventilation) contained more moisture and had significantly higher levels of mould growth than the non-ventilated attics. Under the same physical conditions...... the ‘pressure equalized’ attic rooms were found to have moisture levels in between those observed in the ventilated and non-ventilated attic rooms. Likewise, the observed levels of mould growth were in between those observed in the cases of the ventilated and non-ventilated attic rooms. Attics with reduced...

  2. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  3. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    Science.gov (United States)

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  4. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  5. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  6. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  7. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    This report summarizes task 1 of the Clean Air Heat Pump project - modelling and simulation on energy savings when using the clean air heat pump for ventilation, air cleaning and energy recovery. The total energy consumption of the proposed ventilation systems using clean air heat pump technology was calculated by a theoretical model and compared with the reference ventilation systems (conventional ventilation systems). The energy compared between the two systems includes energy used for heating, cooling and fan. The simulation and energy saving calculation was made for the application of the clean air heat pump in three typical climate conditions, i.e. mild-cold, mild-hot and hot and wet climates. Real climate data recorded from three cities in 2002 was used for the calculation. The three cities were Copenhagen (Denmark), Milan (Italy) and Colombo (Sir Lanka) which represent the above three typical climate zones. For the Danish climate (the mild cold climate), the calculations show that the ventilation system using clean air heat pump technology can save up to 42% of energy cost in winter compared to the conventional ventilation system. The energy saving in summer can be as high as 66% for the ventilation system with humidity control and 9% for the ventilation system without the requirement of humidity control. Since the Danish summer climate is very mild, over 80% of the yearly energy consumption for ventilation is used during winter season. It is, therefore, estimated that more than 35% annual energy saving for ventilation is expected in Denmark using the clean air heat pump ventilation technology. For the mild hot climate, e.g. the Italian climate, the calculations show that up to 63% of the energy saving can be achieved in summer season. For the winter mode, 17% reduction of the energy cost can be expected for the domestic use. For industrial use, the energy cost of the clean air heat pump may not be favourable due to the industrial price of gas in Italy is

  8. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts

    Directory of Open Access Journals (Sweden)

    Nikolaev Aleksandr

    2017-01-01

    Full Text Available In the existing shaft air heater installations (AHI, that heat the air for air suppliers in cold seasons, a heater channel is used. Some parts of the air from the heater go to the channel, other parts are sucked through a pithead by the general shaft pressure drawdown formed by the main ventilation installation (MVI. When this happens, a mix of two air flows leads to a shaft heat regime violation that can break pressurization of intertubular sealers. The problem of energy saving while airing underground mining enterprises is also very important. The proposed solution of both tasks due to the application of an air curtain is described in the article. In cold seasons the air treatment process should be used and it is offered to place an air curtain in the air suppliers shaft above the place of interface of the calorifer channel to a trunk in order to avoid an infiltration (suction of air through the pithead. It’s recommended to use an air curtain in a ventilation shaft because it reduces external air leaks thereby improving energy efficiency of the MVI work. During the mathematical modeling of ventilation and air preparation process (in SolidWorks Flowsimulation software package it was found out that the use of the air curtain in the air supply shaft can increase the efficiency of the AHI, and reduce the electricity consumption for ventilation in the ventilation shaft.

  9. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  10. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  11. Control of Single-room Ventilation with Regenerative Heat Recovery for Indoor Climate and Energy Performance

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2016-01-01

    constructions and will soon require 85%. The development of single-room ventilation units may aim for these requirements as a result. The exhaust temperatures in highly efficient heat exchangers may approach outdoor levels. The cold exhaust cannot contain ample moisture, so vapour will condense on the heat...... exchanger. Available literature suggests that uncoated rotary heat exchangers transfer this condensate to the supply air, so the drying capacity of the ventilation system may be severely limited. This could raise indoor relative humidities to unsafe levels, which could promote the growth of dust......-mites and mould. Controls may increase drying capacity by increasing ventilation airflow, but this may not be sufficient to limit moisture-related risks. This research investigated the added demand-control measure of reducing variable heat recovery to increase drying capacity when using an uncoated rotary heat...

  12. Climatic potential for passive cooling of buildings by night-time ventilation in Europe

    International Nuclear Information System (INIS)

    Artmann, N.; Manz, H.; Heiselberg, P.

    2007-01-01

    Due to an overall trend towards less heating and more cooling demands in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising technique, particularly for commercial buildings in the moderate or cold climates of Central, Eastern and Northern Europe. The basic concept involves cooling the building structure overnight in order to provide a heat sink that is available during the occupancy period. In this study, the potential for passive cooling of buildings by night-time ventilation was evaluated by analysing climatic data, without considering any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data of 259 stations all over Europe. The results show a high potential for night-time ventilative cooling over the whole of Northern Europe and still significant potential in Central, Eastern and even some regions of Southern Europe. However, due to the inherent stochastic properties of weather patterns, a series of warmer nights can occur at some locations, where passive cooling by night-time ventilation alone might not be sufficient to guarantee thermal comfort

  13. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  14. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation

    Directory of Open Access Journals (Sweden)

    Eduardo Mireles-Cabodevila

    2012-01-01

    Full Text Available Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes. Two examples are adaptive support ventilation (ASV and mid-frequency ventilation (MFV. We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  15. Study of diffusion type cold traps in liquid sodium circuit

    International Nuclear Information System (INIS)

    Araujo, F.G.B. de.

    1974-01-01

    The purpose of this thesis is to attain conclusions related with the work of the diffusion type cold traps. Primarily a mathematic formulation is established for a purification process, including the determination of the cold trap thermic field. With parameters obtained from the temperature field, purification characteristics were calculated allowing conclusions concerning the system's performance. (author)

  16. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  17. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  18. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  19. A novel combination technique of cold crystalloid perfusion but not cold storage facilitates transplantation of canine hearts donated after circulatory death.

    Science.gov (United States)

    Rosenfeldt, Franklin; Ou, Ruchong; Salamonsen, Robert; Marasco, Silvana; Zimmet, Adam; Byrne, Joshua; Cosic, Filip; Saxena, Pankaj; Esmore, Donald

    2016-11-01

    Donation after circulatory death (DCD) represents a potential new source of hearts to increase the donor pool. We showed previously that DCD hearts in Greyhound dogs could be resuscitated and preserved by continuous cold crystalloid perfusion but not by cold static storage and could demonstrate excellent contractile and metabolic function on an in vitro system. In the current study, we demonstrate that resuscitated DCD hearts are transplantable. Donor Greyhound dogs (n = 12) were divided into perfusion (n = 8) and cold static storage (n = 4) groups. General anesthesia was induced and ventilation ceased for 30 minutes to achieve circulatory death. Donor cardiectomy was performed, and for 4 hours the heart was preserved by controlled reperfusion, followed by continuous cold perfusion with an oxygenated crystalloid perfusate or by static cold storage, after which orthotopic heart transplantation was performed. Recovery was assessed over 4 hours by hemodynamic monitoring. During cold perfusion, hearts showed continuous oxygen consumption and low lactate levels, indicating aerobic metabolism. The 8 dogs in the perfusion group were weaned off bypass, and 4 hours after bypass produced cardiac output of 4.73 ± 0.51 liters/min, left ventricular power of 7.63 ± 1.32 J/s, right ventricular power of 1.40 ± 0.43 J/s, and left ventricular fractional area shortening of 39.1% ± 5.2%, all comparable to pre-transplant values. In the cold storage group, 3 of 4 animals could not be weaned from cardiopulmonary bypass, and the fourth exhibited low-level function. Cold crystalloid perfusion, but not cold static storage, can resuscitate and preserve the DCD donor heart in a canine model of heart transplantation, thus rendering it transplantable. Controlled reperfusion and cold crystalloid perfusion have potential for clinical application in DCD transplantation. Copyright © 2016. Published by Elsevier Inc.

  20. Human response to ductless personalized ventilation coupled with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Veselý, Michal; Melikov, Arsen K.

    2012-01-01

    A human subject experiment was carried out to investigate the extent to which ductless personalized ventilation (DPV) in conjunction with displacement ventilation can improve perceived air quality (PAQ) and thermal comfort at elevated room air temperature in comparison with displacement ventilation...... alone. The experimental conditions comprised displacement ventilation alone (room air temperature of 23 °C, 26 °C, 29 °C) and DPV with displacement ventilation (26 °C, 29 °C), both operating at supply air temperatures 3, 5 or 6K lower than room air temperature, as well as mixing ventilation (23 °C, 3 K......). During one hour exposure participants answered questionnaires regarding PAQ and thermal comfort. PAQ was significantly better with DPV than without DPV at the same background conditions. Thermal comfort improved when DPV was used. Combining DPV with displacement ventilation showed the potential...

  1. Numerical and experimental investigation on frosting of energy-recovery ventilator

    Science.gov (United States)

    Bilodeau, Stephane; Mercadier, Yves; Brousseau, Patrick

    Frosting of energy-recovery ventilators results in two major problems: increase of pressure losses and reduction of heat transfer rates. Frost formation of heat and mass exchangers used in these ventilation systems is investigated both experimentally and numerically. A numerical model for the prediction of the thermal behavior of the exchanger is presented. The model is validated with experimental data and is then employed to conduct a parametric study. Results indicate that the absolute humidity is the prevailing parameter for characterizing the frosting phenomenon. A frost-mass-fraction chart is established in terms of the absolute humidity of the warm exhaust stream and of the temperature of the cold supply stream. The effect of time and mass flowrate is also evaluated. The transient three-dimensional model shows that the absolute humidity and the temperature of both air flows vary nonlinearly in the frosted zone.

  2. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  3. Development and application of a double-piston configured, total-liquid ventilatory support device.

    Science.gov (United States)

    Meinhardt, J P; Quintel, M; Hirschl, R B

    2000-05-01

    Perfluorocarbon liquid ventilation has been shown to enhance pulmonary mechanics and gas exchange in the setting of respiratory failure. To optimize the total liquid ventilation process, we developed a volume-limited, time-cycled liquid ventilatory support, consisting of an electrically actuated, microprocessor-controlled, double-cylinder, piston pump with two separate limbs for active inspiration and expiration. Prospective, controlled, animal laboratory study, involving sequential application of conventional gas ventilation, partial ventilation (PLV), and total liquid ventilation (TLV). Research facility at a university medical center. A total of 12 normal adult New Zealand rabbits weighing 3.25+/-0.1 kg. Anesthestized rabbits were supported with gas ventilation for 30 mins (respiratory rate, 20 cycles/min; peak inspiratory pressure, 15 cm H2O; end-expiratory pressure, 5 cm H2O), then PLV was established with perflubron (12 mL/kg). After 15 mins, TLV was instituted (tidal volume, 18 mL/kg; respiratory rate, 7 cycles/min; inspiratory/expiratory ratio, 1:2 cycles/min). After 4 hrs of TLV, PLV was re-established. Of 12 animals, nine survived the 4-hr TLV period. During TLV, mean values +/- SEM were as follows: PaO2, 363+/-30 torr; PaCO2, 39+/-1.5 torr; pH, 7.39+/-0.01; static peak inspiratory pressure, 13.2+/-0.2 cm H2O; static endexpiratory pressure, 5.5+/-0.1 cm H2O. No significant changes were observed. When compared with gas ventilation and PLV, significant increases occurred in mean arterial pressure (62.4+/-3.5 torr vs. 74.0+/-1.2 torr) and central venous pressure (5.6+/-0.7 cm H2O vs. 7.8+/-0.2 cm H2O) (p piston pumps with active expiration. Considering the enhanced flow profiles, this device configuration provides advantages over others.

  4. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free...

  5. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  6. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems

    International Nuclear Information System (INIS)

    Coomans, Mathias; Allaerts, Koen; Wittemans, Lieve; Pinxteren, Dave

    2013-01-01

    Highlights: • Measurements on two semi-closed greenhouses and two traditional open greenhouses. • Mechanical and natural ventilation for dehumidification and cooling. • Analyses and comparison of installation controls, indoor climate and energy flows. • Examination of air-to-air heat recuperation efficiency in ventilation unit. • Using the semi-closed systems amounted to energy savings of 13% and 28%. - Abstract: Horticulture is an energy intensive industry when dealing with cold climates such as Western Europe. High energy prices and on-going pressure from international competition are raising demand for energy efficient solutions. In search of reducing greenhouse energy consumption, this study investigates semi-closed systems combining controlled mechanical and natural ventilation with thermal screens. Ventilated greenhouse systems (semi-closed) have been implemented in the greenhouse compartments of two Belgian horticulture research facilities: the Research Station for Vegetable Production Sint-Katelijne-Waver (PSKW) and the Research Center Hoogstraten (PCH). Additionally, two reference compartments were included for comparison of the results. The greenhouses were part of a long-term monitoring campaign in which detailed measurements with a high time resolution were gathered by a central monitoring system. A large amount of data was processed and analysed, including outdoor and indoor climatic parameters, system controls and installation measurements. The ventilated greenhouses obtained energy savings of 13% and 28% for PSKW and PCH respectively, without substantial impact on crop production or indoor climate conditions when compared to the reference compartments. A considerable amount of heat was recovered by the heat recuperation stage in the ventilation unit of PCH, accounting for 12% of the total heat demand. In general, it was demonstrated that the greenhouse heat demand can be reduced significantly by controlled dehumidification with mechanical

  7. Radioaerosol ventilation imaging in ventilator-dependent patients. Technical considerations

    International Nuclear Information System (INIS)

    Vezina, W.; Chamberlain, M.; Vinitski, S.; King, M.; Nicholson, R.; Morgan, W.K.

    1985-01-01

    The differentiation of pulmonary embolism (PE) from regional ventilatory abnormalities accompanied by reduced perfusion requires contemporary perfusion and ventilation studies. Distinguishing these conditions in ventilator-dependent patients is aided by administering a Tc-99m aerosol to characterize regional ventilation, and by performing a conventional Tc-99m MAA perfusion study. The technique uses a simple in-house constructed apparatus. Simple photographic techniques suffice, but computer subtraction of perfusion from the combined perfusion-ventilation image renders interpretation easier if aerosol administration follows perfusion imaging. Multiple defects can be examined in a single study. Excluding normal or near-normal perfusion studies, PE was thought to be present in eight of 16 patients after perfusion imaging alone, but in only one of eight after added aerosol imaging. Angiography confirmed the diagnosis in that patient. Of the eight patients who had abnormal perfusion but were thought unlikely to have PE from the perfusion study alone, two had normal ventilation, and subsequently were shown to have PE by angiography. Because angiography was only performed on patients who were thought to have a high probability of PE on sequential perfusion-ventilation imaging, the true incidence of PE may have been higher. Aerosol ventilation imaging is a useful adjunct to perfusion imaging in patients on ventilators. It requires an efficient delivery system, particularly if aerosol administration follows perfusion imaging, as it does in this study

  8. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  9. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  10. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  11. Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Kacmarek, Robert M

    2008-09-01

    To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Experimental bench study. The respiratory care laboratory of a university-affiliated teaching hospital. A computerized mechanical lung model, the IngMar ASL5000. Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Performance varied widely among ventilators. Mean inspiratory trigger time was ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

  12. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  13. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    C.R. Gorrell

    1998-01-01

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  14. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  15. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied...... of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air...

  16. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must...

  17. Solutions for Energy Efficient and Sustainable Heating of Ventilation Air: A Review

    Directory of Open Access Journals (Sweden)

    A. Žandeckis

    2015-10-01

    Full Text Available A high energy efficiency and sustainability standards defined by modern society and legislation requires solutions in the form of complex integrated systems. The scope of this work is to provide a review on technologies and methods for the heating of ventilation air as a key aspect for high energy and environmental performance of buildings located in a cold climate. The results of this work are more relevant in the buildings where space heating consumes a significant part of the energy balance of a building, and air exchange is arranged in an organized manner. A proper design and control strategy, heat recovery, the use of renewable energy sources, and waste heat are the main aspects which must be considered for efficient and sustainable ventilation. This work focuses on these aspects. Air conditioning is not in the scope of this study.

  18. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    Science.gov (United States)

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  19. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  20. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  1. Symptoms and perceived indoor air quality among occupants of houses and apartments with different ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.; Roennberg, R.; Majanen, A.; Seppaenen, O. (Laboratory of Heating, Ventilating and Air Conditioning, Helsinki University of Technology, Espoo (Finland)); Jaakkola, J.J.K. (Laboratory of Heating, Ventilating and Air Conditioning, Helsinki University of Technology, Espoo (Finland) Department of Public Health, University of Helsinki (Finland))

    1991-01-01

    The purpose of the study was to evaluate the occurrence of symptoms and the perception of poor indoor air quality among the occupants of houses and apartments with different ventilation systems. The study population consisted of the 473 occupants of 242 dwellings in the Helsinki metropolitan area who responded to a self-administered questionnaire (response rate 93.1%) after a two-week period of indoor air quality measurements. The symptoms of interest were those often related to poor indoor air quality including dryness or itching of the skin; dryness, irritation or itching of the eyes; nasal congestion (''blocked nose''); nasal dryness; nasal discharge (''runny nose''); sneezing; cough; breathlessness; headache or migraine; and lethargy, weakness or nausea. Perception of coldness; warmness; draught; dryness; stuffiness; and sufficiency of air exchange was also requested. The age-standardized period prevalences of the symptoms and complaints were systematically more common among the occupants of the apartments than those of the houses. The occupants of the houses with natural ventilation seemed to have more symptoms and complaints than those with balanced ventilation. However, in the apartments with blanced ventilation the occupants reported, in general, more symptoms and complaints than those with natural ventilation. (au) (9 refs.).

  2. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  3. Liquid metal purification device

    International Nuclear Information System (INIS)

    Sakai, Takao; Shimoyashiki, Shigehiro.

    1992-01-01

    The device of the present invention concerns a liquid metal purification device for removing and purifying impuries in liquid metal sodium used as coolants of an FBR type reactor. A vessel having a group of pipes made of hydrogen permeable metal at the inside thereof is disposed to the inlet pipeline of a cold trap. The group of hydrogen permeable metal pipes is connected to an exhaust pipe and a vacuum pump, so that the inside of the pipes is exhausted. Liquid metal sodium branched from the main pipeline of a coolant system passes through the outer side of the group of the hydrogen permeable metal pipes. In this cae, hydrogen contained as impurities in the liquid metal sodium diffuses and permeates the hydrogen permeation metal pipes and enters into the pipe group and is discharged out of the system by the vacuum pump. This can mitigate the hydrogen removing burden of the cold trap, to extend the device life time. (I.N.)

  4. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  5. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  6. Experimental Results Obtained with Air Liquide Cold Compression System CERN LHC and SNS Projects

    CERN Document Server

    Delcayre, F; Hamber, F; Hilbert, B; Monneret, E; Toia, J L

    2006-01-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high‐capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC wil...

  7. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  8. Nasal mask ventilation is better than face mask ventilation in edentulous patients.

    Science.gov (United States)

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively evaluated. After induction of anesthesia and administration of neuromuscular blocker, lungs were ventilated with a standard anatomical face mask of appropriate size, using a volume controlled anesthesia ventilator with tidal volume set at 10 ml/kg. In case of inadequate ventilation, the mask position was adjusted to achieve best-fit. Inspired and expired tidal volumes were measured. Thereafter, the face mask was replaced by a nasal mask and after achieving best-fit, the inspired and expired tidal volumes were recorded. The difference in expired tidal volumes and airway pressures at best-fit with the use of the two masks and number of patients with inadequate ventilation with use of the masks were statistically analyzed. A total of 79 edentulous patients were recruited for the study. The difference in expiratory tidal volumes with the use of the two masks at best-fit was statistically significant (P = 0.0017). Despite the best-fit mask placement, adequacy of ventilation could not be achieved in 24.1% patients during face mask ventilation, and 12.7% patients during nasal mask ventilation and the difference was statistically significant. Nasal mask ventilation is more efficient than standard face mask ventilation in edentulous patients.

  9. SUPRAGLOTTIC JET VENTILATION VERSUS CONVENTIONAL ENDOTRACHEAL VENTILATION IN MINOR LARYNGEAL SURGERIES

    Directory of Open Access Journals (Sweden)

    Illendual Upendranath

    2016-08-01

    Full Text Available Any attempt at intubation will cause many cardiovascular responses and the major concern during this time is to attenuate the same. Similar response is seen during procedures on Larynx in microlaryngeal surgery which produces an intense cardiovascular stimulation during suspension laryngoscopy and intubation. AIM OF STUDY Supraglottic jet ventilation versus conventional endotracheal ventilation in minor laryngeal surgeries. To evaluate the haemodynamic response in supraglottic jet ventilation and conventional intubation in minor laryngeal surgeries. METHODS Patients were randomised to 2 Groups: 30 patients in each group; Group A - in whom supraglottic jet ventilation was planned and Group B - in whom endotracheal intubation was planned. RESULT The haemodynamic response in terms of increase in MAP and HR is significantly more with endotracheal intubation than with supraglottic jet ventilation. CONCLUSION Our study showed that supraglottic jet ventilation showed a better haemodynamic stability when compared to conventional endotracheal intubation in patients undergoing minor laryngeal surgeries. Statistical scores were also in favour of the patients treated with supraglottic jet ventilation based on the p values.

  10. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    Science.gov (United States)

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  11. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  12. Developments of high-performance moderator vessel for JRR-3 cold neutron source

    International Nuclear Information System (INIS)

    Arai, Masaji; Tamura, Itaru; Hazawa, Tomoya

    2015-05-01

    The cold neutron source (CNS) facility converts thermal neutrons into cold neutrons to moderate neutrons with liquid hydrogen. The cold neutron beam at Japan Research Reactor No. 3 (JRR-3) is led to the beam experimental devices in the beam hall through neutron guide tubes. High intensities of the cold neutron beam are always demanded for increasing the experimental effectiveness and accuracy. In the Department of Research Reactor and Tandem Accelerator, developments of high-performance CNS moderator vessel that can produce cold neutron intensity about two times higher compared to the existing vessel have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the design and manufacture of new vessel. In the present study, design strength evaluation, mockup test, simulation for thermo-fluid dynamics of the liquid hydrogen and strength evaluation of the different-material-bonding were studied. By these evaluation results, we verified that the developed new vessel can be applied to CNS moderator vessel of JRR-3. (author)

  13. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    International Nuclear Information System (INIS)

    Cronert, T; Zakalek, P; Rücker, U; Brückel, T; Dabruck, J P; Doege, P E; Nabbi, R; Bessler, Y; Hofmann, M; Butzek, M; Klaus, M; Lange, C; Hansen, W

    2016-01-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D 2 O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H 2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H 2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H 2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement. (paper)

  14. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  15. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    Science.gov (United States)

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  16. [The effect of partial liquid ventilation on inflammatory response in piglets with acute lung injury induced by lipopolysaccharide].

    Science.gov (United States)

    Tang, Jin; Zhang, Jie; Li, Xuguang; Guo, Zhongliang

    2014-02-01

    To evaluate the effect of partial liquid ventilation (PLV) on pro-inflammatory and anti-inflammatory factors change in lipopolysaccharide (LPS)-induced piglets acute lung injury (ALI). Twelve Shanghai white piglets were randomly divided into mechanical ventilation (MV) group (n=6) and PLV group (n=6). 60 μg×kg(-1)×h(-1) LPS were intravenous infused continuously for 2 hours to induce ALI model. PLV model was set on the basis of the MV by endotracheal injection of perfluorodecalin (PFC, 10 mL/kg). The hemodynamic and respiratory parameters such as mechanics and arterial blood gas analysis were monitored at basic condition and after lung injury establishment (0, 1, 2, 4 hours). The serum levels of interleukin (IL-1β, IL-6, IL-8, IL-10) and tumor necrosis factor-α (TNF-α) were dynamically monitored by enzyme linked immunosorbent assay (ELISA). A lung injury score was used to quantify lung tissues change under light microscopic observations. Ventilation and oxygenation function were improved gradually after PFC endotracheal injection in PLV group, and there were significant difference compared with MV group at 4 hours [heart rate (HR): 144 ± 6 beats/min vs. 179 ± 9 beats/min, respiratory rate (RR): 58 ± 4 beats/min vs. 77 ± 6 beats/min, mean arterial blood pressure (MAP): 99 ± 7 mmHg vs. 75 ± 29 mmHg, dynamic lung compliance (Cdyn): 1.9 ± 0.3 mL×cmH(2)O(-1)×kg(-1) vs. 1.2 ± 0.4 mL×cmH(2)O(-1)×kg(-1), tidal volume (VT): 7.8 ± 0.4 mL/kg vs. 5.8 ± 0.9 mL/kg, mean airway resistance (Raw): 20.5 ± 6.6 cmH(2)O×L(-1)×s(-1) vs. 35.2 ± 4.0 cmH(2)O×L(-1)×s(-1), mean airway pressure (Paw): 1.0 ± 0.5 cmH(2)O vs. 3.0 ± 0.9 cmH(2)O, ventilation efficacy index (VEI): 0.18 ± 0.02 vs. 0.08 ± 0.02, pH value: 7.386 ± 0.143 vs. 7.148 ± 0.165, arterial partial pressure of oxygen (PaO(2)): 121.8 ± 12.5 mmHg vs. 73.6 ± 10.9 mmHg, arterial partial pressure of carbon dioxide (PaCO(2)): 39.6 ± 20.3 mmHg vs. 66.8 ± 23.5 mmHg, oxygenation index (PaO(2)/FiO(2

  17. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  18. Factors Predicting Ventilator Dependence in Patients with Ventilator-Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Chia-Cheng Tseng

    2012-01-01

    Full Text Available Objectives. To determine risk factors associated with ventilator dependence in patients with ventilator-associated pneumonia (VAP. Study Design. A retrospective study was conducted at Chang Gung Memorial Hospital, Kaohsiung, from January 1, 2007 to January 31, 2008. Methods. This study evaluated 163 adult patients (aged ≥18 years. Eligibility was evaluated according to the criterion for VAP, Sequential Organ Failure Assessment (SOFA score, Acute Physiological Assessment and Chronic Health Evaluation II (APACHE II score. Oxygenation index, underlying comorbidities, septic shock status, previous tracheostomy status, and factors related to pneumonia were collected for analysis. Results. Of the 163 VAP patients in the study, 90 patients survived, yielding a mortality rate of 44.8%. Among the 90 surviving patients, only 36 (40% had been weaned off ventilators at the time of discharge. Multivariate logistic regression analysis was used to identify underlying factors such as congestive cardiac failure (P=0.009, initial high oxygenation index value (P=0.04, increased SOFA scores (P=0.01, and increased APACHE II scores (P=0.02 as independent predictors of ventilator dependence. Results from the Kaplan-Meier method indicate that initial therapy with antibiotics could increase the ventilator weaning rate (log Rank test, P<0.001. Conclusions. Preexisting cardiopulmonary function, high APACHE II and SOFA scores, and high oxygenation index were the strongest predictors of ventilator dependence. Initial empiric antibiotic treatment can improve ventilator weaning rates at the time of discharge.

  19. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  20. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    Science.gov (United States)

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  1. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    International Nuclear Information System (INIS)

    Dufay-Chanat, L; Bremer, J; Casas-Cubillos, J; Koettig, T; Vauthier, N; Van Weelderen, R; Winkler, T; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point.This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests. (paper)

  2. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    Science.gov (United States)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  3. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  4. Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel

    Science.gov (United States)

    Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei

    2018-03-01

    In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.

  5. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    Science.gov (United States)

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Calculation notes in support of ammonia releases from waste tank ventilation systems

    International Nuclear Information System (INIS)

    Wojdac, L.F.

    1996-01-01

    Ammonia is generated in waste tanks via the degradation of nitrogen compounds. The ammonia is released from the liquids by a mechanism which is dependent on temperature, pH, ionic strength and ammonia concentration. The release of ammonia to the environment occurs via diffusion of ammonia through a stagnant air mass and into the ventilation system

  7. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  8. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  9. Study and preparation of 99Tcm-GP kit for lung ventilation imaging

    International Nuclear Information System (INIS)

    Zhu Lin; Meng Fanmin; Zhang Jihong; Hong Tao; Liu Yunzhong; Liu Xiujie

    1997-01-01

    The preparation of the lyophilizing reagent, D-glucose-l-phosphate (GP) kit and the method of using this kit to label 99 Tc m to form 99 Tc m -GP for lung ventilation imaging at room temperature in a simple, rapid procedure are described. The stability of the lyophilizing reagent kit under various stock conditions is examined. The results show that all of the 99 Tc m -GP yields by the lyophilizing reagent kit are above 95% at 4 degree C (cold), 20-25 degree C (room temperature) and 40 degree C (oven) for 180, 90 and 3 days, respectively. The clinical practice indicates that in comparison with 99 Tc m -DTPA, 99 Tc m -GP has remarkable difference (P 99 Tc m -GP is an ideal radioaerosol for SPECT studies of lung ventilation. It has high alveolar deposition rate but low adhesion in the major airways compared to those of 99 Tc m -DTPA. 99 Tc m -GP also features prolonged pulmonary clearance time

  10. Clinical challenges in mechanical ventilation.

    Science.gov (United States)

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Night time cooling by ventilation or night sky radiation combined with in-room radiant cooling panels including phase change materials

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Olesen, Bjarne W.; Grossule, Fabio

    Night sky radiative cooling technology using PhotoVoltaic/Thermal panels (PVT) and night time ventilation have been studied both by means of simulations and experiments to evaluate their potential and to validate the created simulation model used to describe it. An experimental setup has been...... depending on the sky clearness. This cooling power was enough to remove the stored heat and regenerate the ceiling panels. The validation simulation model results related to PCM were close to the corresponding results extracted from the experiment, while the results related to the production of cold water...... through the night sky radiative cooling differed significantly. The possibility of night time ventilation was studied through simulations for three different latitudes. It was concluded that for Danish climatic conditions night time ventilation would also be able to regenerate the panels while its...

  12. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  13. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sub-level development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  14. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James [Consortium of Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium of Advanced Residential Buildings, Norwalk, CT (United States)

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heating performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.

  15. Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects

    Science.gov (United States)

    Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.

    2006-04-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.

  16. Numerical study on the thermal performance of a ventilated facade with PCM

    International Nuclear Information System (INIS)

    Gracia, Alvaro de; Navarro, Lidia; Castell, Albert; Cabeza, Luisa F.

    2013-01-01

    A new type of ventilated facade (VF) with macro-encapsulated phase change material (PCM) in its air cavity is presented in this paper. Two identical house-like cubicles located in Puigverd de Lleida (Spain) were monitored during 2012, and in one of them, the VF with PCM was implemented in the south wall. The versatility of the facade allows the system to reduce both heating and cooling loads. During winter, the PCM increases the heat storage capacity of the system exposed to solar radiation and during summer the system can be used as a cold storage unit or as a night free cooling device. From the experimental winter campaign, important net electrical energy savings were registered due to the use of the VF. On the other hand, no net energy savings were achieved during summer due to excessive use of mechanical ventilation. In this paper, an own developed numerical model, based on finite control volume approach, was validated against experimental data and it is used to select the operational schedule of both solidification and melting processes in order to achieve net electrical energy savings. During the mild summer period the system presents a net energy supply of 2.49 MJ/day. This value would be increased by 61.6% if a wooden structure would have been used instead of the current metallic structure. Moreover, the high hysteresis of the PCM limits strongly the potential of the system in supplying cooling during the severe summer period. -- Highlights: • Numerical study of the thermal performance of a ventilated facade with PCM. • The study considers cooling purposes. • Operational schedule and use of fans during solidification of PCM optimization. • Net energy supply of 2.49 MJ/day during mild summer from the ventilated facade. • Storage efficiency would maximize with more mechanical ventilation during less time

  17. Methylene Blue in Ventilator-Induced Lung Injury after Pneumonectomy: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Ye. V Suborov

    2007-01-01

    Full Text Available Objective: to study the expediency and efficiency of using methylene blue (MB on a model of pneumectomy (PE and subsequent ventilator-induced lung injury (VILI in sheep. Materials and methods. The study was conducted at the Research Laboratory of University of Tromse. The experiment included 23 sheep weighing 41.0±4.9 kg. Thoracotomy and right-sided pneumonectomy were performed in the animals under general anesthesia and controlled artificial ventilation. After measurement of the parameters of systemic hemodynamics and extravascular water of the lung (EVWL, the animals were divided into 3 groups: 1 a control group (CG, n=7 with a tidal volume (TV of 6 ml/kg and an end-expiratory positive pressure (PEEP of 2 cm H2O; 2 a VILI group (n=9 with a TV of 12 ml/kg and a PEEP of 0 cm H2O; 3 a group of MB (n=7 that was given in parallel with a damaging ventilation mode. The thermodilution technique (using a Cold Z-021 monitor, (Pulsion, Germany was employed to measure volumetric parameters and EVWL. The parameters of pulmonary hemodynamics, respiratory mechanics, and blood gas composition were recorded. Results: After its reduction at PE, EVWL index increased during damaging ventilation in the VILI and MB groups. In addition, there was an increase in pulmonary artery wedge pressure after PE in the MB and VILI groups. In the latter group, arterial hypoxemia was observed at the end of the experiment. Along with this, after PE pulmonary compliance decreased and airway pressure elevated in the VILI and MB groups. Conclusion: In the presented model of VILI, MB does not prevent the development of postp-neumectomic edema of the lung. Key words: thermochromodilution, acute lung injury, pneumectomy, ventilator-induced lung injury, postpneumectomic edema of the lung, methylene blue.

  18. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  19. Hypothetical accidents at disposal facilities for high-level liquid radioactive wastes and pulps

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Zagainov, V.A.; Lishnikov, A.A.; Nazin, E.R.

    1994-01-01

    Four accidents are postulated and analyzed for interim storage of high-level, liquid radioactive wastes at a fuel reprocessing facility. Normal waste storage operation is based on wastes stored in steel drums, partially buried in concrete canyons, and equipped with heat exchangers for cooling and ventilation systems for removal of explosive gases and vapors. The accident scenarios analyzed are: (1) shutdown of ventilation with open entrance and exit ventilation pipes, (2) shutdown of ventilation with closed entrance and exit ventilation pipes, (3) shutdown of the cooling system with normally functioning ventilation, and (4) simultaneous cooling and ventilation system failure (worst case). A mathematical model was developed and used to calculate radiation consequences of various accidents. Results are briefly presented for the worst case scenario and compared to an actual accident for model validation. 17 refs., 3 figs., 1 tab

  20. The CMS COLD BOX

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    The CMS detector is built around a large solenoid magnet. This takes the form of a cylindrical coil of superconducting cable that generates a field of 3.8 Tesla: about 100,000 times the magnetic field of the Earth. To run, this superconducting magnet needs to be cooled down to very low temperature with liquid helium. Providing this is the job of a compressor station and the so-called “cold box”.

  1. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  2. COLD-SAT feasibility study safety analysis

    Science.gov (United States)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  3. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Directory of Open Access Journals (Sweden)

    Raffaele L. Dellaca’

    2017-06-01

    To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice. To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients. To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment. To better understand and classify ventilation modes. To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  4. Winter sports athletes: long-term effects of cold air exposure.

    Science.gov (United States)

    Sue-Chu, Malcolm

    2012-05-01

    Athletes such as skaters and skiers inhale large volumes of cold air during exercise and shift from nasal to mouth breathing. Endurance athletes, like cross-country skiers, perform at 80% or more of their maximal oxygen consumption and have minute ventilations in excess of 100 l/min. Cold air is always dry, and endurance exercise results in loss of water and heat from the lower respiratory tract. In addition, athletes can be exposed to indoor and outdoor pollutants during the competitive season and during all-year training. Hyperpnoea with cold dry air represents a significant environmental stress to the airways. Winter athletes have a high prevalence of respiratory symptoms and airway hyper-responsiveness to methacholine and hyperpnoea. The acute effects of exercise in cold air are neutrophil influx as demonstrated in lavage fluid and airway epithelial damage as demonstrated by bronchoscopy. Upregulation of pro-inflammatory cytokines has been observed in horses. Chronic endurance training damages the epithelium of the small airways in mice. Airway inflammation has been observed on bronchoscopy of cross-country skiers and in dogs after a 1100-mile endurance race in Alaska. Neutrophilic and lymphocytic inflammation with remodelling is present in bronchial biopsies from skiers. Repeated peripheral airway hyperpnoea with dry air causes inflammation and remodelling in dogs. As it is currently unknown if these airway changes are reversible upon cessation of exposure, preventive measures to diminish exposure of the lower airways to cold air should be instituted by all winter sports athletes.

  5. Standardization of pulmonary ventilation technique using volume-controlled ventilators in rats with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    Rodrigo Melo Gallindo

    Full Text Available OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH using a volume-controlled ventilator. METHODS: Pregnant rats were divided into the following groups: a control (C; b exposed to nitrofen with CDH (CDH; and c exposed to nitrofen without CDH (N-. Fetuses of the three groups were randomly divided into the subgroups ventilated (V and non-ventilated (N-V. Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW, total lung weight (TLW, left lung weight (LLW, ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation. RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p 0.05. The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05. The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl. CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.

  6. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    Science.gov (United States)

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  7. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  8. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  9. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  10. 46 CFR 45.131 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 45.131 Section 45.131 Shipping COAST GUARD....131 Ventilators. (a) Ventilators passing through superstructures other than enclosed superstructures must have coamings of steel or equivalent material at the freeboard deck. (b) Ventilators in position 1...

  11. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    Science.gov (United States)

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  12. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    Science.gov (United States)

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  13. Ventilation area measured with eit in order to optimize peep settings in mechanically ventilated patients

    NARCIS (Netherlands)

    Blankman, P; Groot Jebbink, E; Preis, C; Bikker, I.; Gommers, D.

    2012-01-01

    INTRODUCTION. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique, which can be used to visualize ventilation. Ventilation will be measured by impedance changes due to ventilation. OBJECTIVES. The aim of this study was to optimize PEEP settings based on the ventilation area of

  14. Climatic potential for passive cooling of buildings by night-time ventilation in Europe

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2006-01-01

    Due to an overall trend towards less heating and more cooling demands in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising technique, particularly for commercial buildings in the moderate or cold climates of Central......, without considering any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data of 259 stations all over Europe. The results show a high potential for night...

  15. Natural Ventilation in Atria

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Hendriksen, Ole Juhl

    This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions.......This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions....

  16. Ventilation practices in subarachnoid hemorrhage: a cohort study exploring the use of lung protective ventilation.

    Science.gov (United States)

    Marhong, Jonathan D; Ferguson, Niall D; Singh, Jeffrey M

    2014-10-01

    Acute respiratory distress syndrome (ARDS) is common following aneurysmal subarachnoid hemorrhage (SAH), but the influence of mechanical ventilator settings on its development is unclear. We sought to determine adherence to lung protective thresholds in ventilated patients with SAH and describe the association between ventilator settings and subsequent development of ARDS. We conducted a retrospective cohort study of consecutive patients receiving mechanical ventilation within 72 h of SAH at a single academic center. Ventilator settings and blood gas data were collected twice daily for the first 7 days of ventilation along with ICU and hospital outcomes. Lung protective ventilation was defined as follows: tidal volume ≤8 mL/kg of predicted body weight, positive end-expiratory pressure (PEEP) ≥5 cm H(2)O, and peak or plateau pressure ≤30 cm H(2)O. The development of ARDS was ascertained retrospectively by PaO(2)/FiO(2) ≤300 with new bilateral lung opacities on chest X-ray within one day of hypoxemia. We identified 62 patients who underwent early mechanical ventilation following SAH. PS and Continuous Positive Airway Pressure were common ventilator modes with a median tidal volume of 7.8 mL/kg [interquartile range 6.8-8.8], median peak pressure of 14 cm H(2)O [IQR 12-17], and median PEEP of 5 cm H(2)O [IQR 5-6]. Adherence to tidal volumes ≤8 mL/kg was seen in 64 % of all observations and peak pressures protective criteria were seen in 58 % of all observations. Thirty-one patients (50 %) were determined to have ARDS. ARDS patients were more frequently ventilated with a peak pressure >30 cm H(2)O (11.3 % of ARDS ventilation days vs. 0 % of non-ARDS ventilation days; p mechanical ventilation frequently breathe spontaneously, generating tidal volumes above usual protective thresholds regardless of meeting ARDS criteria. In patients with SAH, the presence of an additional ARDS risk factor should prompt close screening for the development of ARDS and

  17. Noninvasive Ventilation in Premature Neonates.

    Science.gov (United States)

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  18. Progress towards magnetic trapping of ultra-cold neutrons

    CERN Document Server

    Huffman, P R; Butterworth, J S; Coakley, K J; Dewey, M S; Dzhosyuk, S N; Gilliam, D M; Golub, R; Greene, G L; Habicht, K; Lamoreaux, S K; Mattoni, C E H; McKinsey, D N; Wietfeldt, F E; Doyle, J M

    2000-01-01

    We report progress towards magnetic trapping of ultra-cold neutrons (UCN) in preparation for a neutron lifetime measurement. UCN will be produced by inelastic scattering of cold (0.89 nm) neutrons in a reservoir of superfluid sup 4 He and confined in a three-dimensional magnetic trap. As the trapped neutrons decay, recoil electrons will generate scintillations in the liquid He, which should be detectable with nearly 100% efficiency. This direct measure of the number of UCN decays vs. time can be used to determine the neutron beta-decay lifetime.

  19. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-01-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were

  20. Interfaces and ventilator settings for long-term noninvasive ventilation in COPD patients

    Directory of Open Access Journals (Sweden)

    Callegari J

    2017-06-01

    Full Text Available Jens Callegari,1 Friederike Sophie Magnet,1 Steven Taubner,1 Melanie Berger,2 Sarah Bettina Schwarz,1 Wolfram Windisch,1 Jan Hendrik Storre3,4 1Department of Pneumology, Cologne-Merheim Hospital, Kliniken der Stadt Koeln, Witten/Herdecke University Hospital, 2Department of Pneumology, Malteser Hospital St Hildegardis, Cologne, 3Department of Pneumology, University Medical Hospital, Freiburg, 4Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios Fachkliniken Munich-Gauting, Gauting, Germany Introduction: The establishment of high-intensity (HI noninvasive ventilation (NIV that targets elevated PaCO2 has led to an increase in the use of long-term NIV to treat patients with chronic hypercapnic COPD. However, the role of the ventilation interface, especially in more aggressive ventilation strategies, has not been systematically assessed.Methods: Ventilator settings and NIV compliance were assessed in this prospective cross-sectional monocentric cohort study of COPD patients with pre-existing NIV. Daytime ­arterialized blood gas analyses and lung function testing were also performed. The primary end point was the distribution among study patients of interfaces (full-face masks [FFMs] vs nasal masks [NMs] in a real-life setting.Results: The majority of the 123 patients studied used an FFM (77%, while 23% used an NM. Ventilation settings were as follows: mean ± standard deviation (SD inspiratory positive airway pressure (IPAP was 23.2±4.6 mbar and mean ± SD breathing rate was 16.7±2.4/minute. Pressure support ventilation (PSV mode was used in 52.8% of patients, while assisted pressure-controlled ventilation (aPCV was used in 47.2% of patients. Higher IPAP levels were associated with an increased use of FFMs (IPAP <21 mbar: 73% vs IPAP >25 mbar: 84%. Mean compliance was 6.5 hours/day, with no differences between FFM (6.4 hours/day and NM (6.7 hours/day users. PaCO2 assessment of ventilation quality revealed

  1. Behovstyret ventilation

    DEFF Research Database (Denmark)

    Afshari, Alireza; Heiselberg, Per; Reinhold, Claus

    2010-01-01

    I en nylig afsluttet undersøgelse er der udført en række målinger på otte udvalgte børneinstitutioner. Fire af disse med mekanisk ventilation og fire med naturlig ventilation. Formålet er at udvide den erfaringsbaserede viden om funktionen af naturlige og mekaniske ventilationsløsninger i...

  2. Mechanical ventilator - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007240.htm Mechanical ventilator - infants To use the sharing features on this page, please enable JavaScript. A mechanical ventilator is a machine that assists with breathing. ...

  3. Comparison between conventional and protective one-lung ventilation for ventilator-assisted thoracic surgery.

    Science.gov (United States)

    Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J

    2012-09-01

    Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (PProtective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.

  4. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  5. Experimental results obtained with the simulated cold moderator system. System characteristics and technical issues

    CERN Document Server

    Aso, T; Hino, R; Kaminaga, M; Kinoshita, H; Takahashi, T

    2002-01-01

    The Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization have been developing a Mega-Watt scale spallation target system. In the system, neutrons generated in a target are sorted out their energy to the proper values in liquid-hydrogen moderators. Then, the liquid-hydrogen is forced to circulate in order to suppress hydrogen temperature increase. In the operation of moderators, it is very important to establish a safety protection system against emergency shutdown of the accelerator or accidents of the cold moderator system. In order to obtain a technical data for design and safety review of the liquid-hydrogen system, we have fabricated an experimental apparatus simulated the cold moderator system using liquid nitrogen (max. 1.5 MPa, mini. 77 K) instead of liquid hydrogen. The experiments on a controllability of the system were carried out to investigate dynamic characteristics of the system. This report presents the experimental results and technical issues for the co...

  6. A century of cold, superfluids and superconductors

    International Nuclear Information System (INIS)

    White, G.K.

    1990-01-01

    A review of the history of cryogenics, the science of cold and 'order', and superconductivity is presented. The most unexpected forms of order included sperflow in liquid helium and superconductivity in many metals. So far have been a few applications, without much impact on society excepting the economic convenience of sorting and moving gases in liquid form. Nevertheless, these phenomena and some aspects of magnetic order have presented a continuing challenge to the scientists and their experience is expected to reveal some lessons relating to the time scale for research and development. ills

  7. Leading research report for fiscal 1998 on the next-generation cold emission technology; 1998 nendo jisedai cold emission gijutsu no chosa kenkyu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The report covers the fruits of researches into technologies of cold emission control and cold emission application conducted in fiscal 1998. In the study relative to the current status of cold emission control technology, emitter materials that govern electron emitting characteristics are discussed, such as metallic materials, silicon, carbon systems, semiconductors, liquid metal, etc. In relation with the application of semiconductor process technology, the tunnel emitter is taken up that utilizes the semiconductor tunnel cathode. In relation with the cold emission process, an emitter high in aspect ratio is described, obtained by the inductive emitter deposition method in which organic metallic gas is decomposed by an electron beam. In the study of the cold emission control system and instrumentation, the merits and demerits of control by MOSFET (MOS field effect transistor) are discussed. In relation with the technology of cold emission application, FED (field effect display) development and problems, current status of sensor technology and problems, RF application technology, application to power systems, etc., are mentioned. (NEDO)

  8. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  9. Learning about ventilators

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000458.htm Learning about ventilators To use the sharing features on this page, ... fixed or changed. How Does Being on a Ventilator Feel? A person receives medicine to remain comfortable ...

  10. Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Hill, Nicholas S; Kacmarek, Robert M

    2009-08-01

    Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/ L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume.

  11. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  12. Experimental results obtained with the simulated cold moderator system. System characteristics and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Takahashi, Toshio; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization have been developing a Mega-Watt scale spallation target system. In the system, neutrons generated in a target are sorted out their energy to the proper values in liquid-hydrogen moderators. Then, the liquid-hydrogen is forced to circulate in order to suppress hydrogen temperature increase. In the operation of moderators, it is very important to establish a safety protection system against emergency shutdown of the accelerator or accidents of the cold moderator system. In order to obtain a technical data for design and safety review of the liquid-hydrogen system, we have fabricated an experimental apparatus simulated the cold moderator system using liquid nitrogen (max. 1.5 MPa, mini. 77 K) instead of liquid hydrogen. The experiments on a controllability of the system were carried out to investigate dynamic characteristics of the system. This report presents the experimental results and technical issues for the construction of a practical liquid-hydrogen moderator system of the Mega-Watt scale target system. (author)

  13. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis.

    Science.gov (United States)

    Liu, Zhen; Liu, Xiaowen; Huang, Yuguang; Zhao, Jing

    2016-01-01

    Postoperative pulmonary complications (PPCs), which are not uncommon in one-lung ventilation, are among the main causes of postoperative death after lung surgery. Intra-operative ventilation strategies can influence the incidence of PPCs. High tidal volume (V T) and increased airway pressure may lead to lung injury, while pressure-controlled ventilation and lung-protective strategies with low V T may have protective effects against lung injury. In this meta-analysis, we aim to investigate the effects of different ventilation strategies, including pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), protective ventilation (PV) and conventional ventilation (CV), on PPCs in patients undergoing one-lung ventilation. We hypothesize that both PV with low V T and PCV have protective effects against PPCs in one-lung ventilation. A systematic search (PubMed, EMBASE, the Cochrane Library, and Ovid MEDLINE; in May 2015) was performed for randomized trials comparing PCV with VCV or comparing PV with CV in one-lung ventilation. Methodological quality was evaluated using the Cochrane tool for risk. The primary outcome was the incidence of PPCs. The secondary outcomes included the length of hospital stay, intraoperative plateau airway pressure (Pplateau), oxygen index (PaO2/FiO2) and mean arterial pressure (MAP). In this meta-analysis, 11 studies (436 patients) comparing PCV with VCV and 11 studies (657 patients) comparing PV with CV were included. Compared to CV, PV decreased the incidence of PPCs (OR 0.29; 95 % CI 0.15-0.57; P < 0.01) and intraoperative Pplateau (MD -3.75; 95 % CI -5.74 to -1.76; P < 0.01) but had no significant influence on the length of hospital stay or MAP. Compared to VCV, PCV decreased intraoperative Pplateau (MD -1.46; 95 % CI -2.54 to -0.34; P = 0.01) but had no significant influence on PPCs, PaO2/FiO2 or MAP. PV with low V T was associated with the reduced incidence of PPCs compared to CV. However, PCV and VCV had similar

  14. Impact of Fire Ventilation on General Ventilation in the Building

    Science.gov (United States)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  15. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Science.gov (United States)

    Dellaca', Raffaele L; Veneroni, Chiara; Farre', Ramon

    2017-06-01

    This review addresses how the combination of physiology, medicine and engineering principles contributed to the development and advancement of mechanical ventilation, emphasising the most urgent needs for improvement and the most promising directions of future development. Several aspects of mechanical ventilation are introduced, highlighting on one side the importance of interdisciplinary research for further development and, on the other, the importance of training physicians sufficiently on the technological aspects of modern devices to exploit properly the great complexity and potentials of this treatment. To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice.To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients.To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment.To better understand and classify ventilation modes.To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  16. Ventilation in homes infested by house-dust mites.

    Science.gov (United States)

    Sundell, J; Wickman, M; Pershagen, G; Nordvall, S L

    1995-02-01

    Thirty single-family homes with either high (> or = 2000 ng/g) or low (< or = 1000 ng/g) house-dust mite (HDM) allergen levels in mattress dust were examined for ventilation, thermal climate, and air quality (formaldehyde and total volatile organic compounds (TVOC). Elevated concentrations of HDM allergen in mattress and floor dust were associated with the difference in absolute humidity between indoor and outdoor air, as well as with low air-change rates of the home, particularly the bedroom. No correlation was found between concentration of TVOC or formaldehyde in bedroom air and HDM allergen concentration. In regions with a cold winter climate, the air-change rate of the home and the infiltration of outdoor air into the bedroom appear to be important for the infestation of HDM.

  17. 46 CFR 42.15-45 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 42.15-45 Section 42.15-45 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-45 Ventilators. (a) Ventilators in position 1 or 2 to spaces... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing...

  18. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  19. The liquid hydrogen moderator at the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, Robert E.; Rowe, J. Michael; Kopetka, Paul

    1997-09-01

    In 1995, the NIST research reactor was shut down for a number of modifications, including the replacement of the D 2 O cold neutron source with a liquid hydrogen moderator. When the liquid hydrogen source began operating, the flux of cold neutrons increased by a factor of six over the D 2 O source. The design and operation of the hydrogen source are described, and measurements of its performance are compared with the Monte Carlo simulations used in the design. (auth)

  20. A comparison of leak compensation in acute care ventilators during noninvasive and invasive ventilation: a lung model study.

    Science.gov (United States)

    Oto, Jun; Chenelle, Christopher T; Marchese, Andrew D; Kacmarek, Robert M

    2013-12-01

    Although leak compensation has been widely introduced to acute care ventilators to improve patient-ventilator synchronization in the presence of system leaks, there are no data on these ventilators' ability to prevent triggering and cycling asynchrony. The goal of this study was to evaluate the ability of leak compensation in acute care ventilators during invasive and noninvasive ventilation (NIV). Using a lung simulator, the impact of system leaks was compared on 7 ICU ventilators and 1 dedicated NIV ventilator during triggering and cycling at 2 respiratory mechanics (COPD and ARDS models) settings, various modes of ventilation (NIV mode [pressure support ventilation], and invasive mode [pressure support and continuous mandatory ventilation]), and 2 PEEP levels (5 and 10 cm H(2)O). Leak levels used were up to 35-36 L/min in NIV mode and 26-27 L/min in invasive mode. Although all of the ventilators were able to synchronize with the simulator at baseline, only 4 of the 8 ventilators synchronized to all leaks in NIV mode, and 2 of the 8 ventilators in invasive mode. The number of breaths to synchronization was higher during increasing than during decreasing leak. In the COPD model, miss-triggering occurred more frequently and required a longer time to stabilize tidal volume than in the ARDS model. The PB840 required fewer breaths to synchronize in both invasive and noninvasive modes, compared with the other ventilators (P ventilators. The PB840 and the V60 were the only ventilators to acclimate to all leaks, but there were differences in performance between these 2 ventilators. It is not clear if these differences have clinical importance.

  1. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  2. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  3. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  4. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  5. The effect of helium on ventilator performance: study of five ventilators and a bedside Pitot tube spirometer.

    Science.gov (United States)

    Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R

    2001-08-01

    To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.

  6. [A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].

    Science.gov (United States)

    Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X

    2017-02-12

    Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P ventilators ( P ventilators (1, 0.67, 0, P ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.

  7. Ventilation of nuclear power plants

    International Nuclear Information System (INIS)

    Madoyan, A.A.; Vlasik, V.F.

    1984-01-01

    Foundations and calculation methods of ventilation of rooms with different degree of heat and gas release with the change of operation mode of NPP main equipment, as well as problems of NPP site and adjoining area aerodynamics, have been presented. Systems of air ventilation and conditioning, cooling equipment, are considered. The main points of designing are described and determination of economic efficiency of the ventilation systems are made. Technical characteristics of the ventilators, conditioners, filters and air heaters used, are presented. Organization of adjustment, tests, operation and maintenance of the ventilation systems of NPP with RBMK and WWER-type reactors, is described

  8. The barrel EM is cold and full

    CERN Document Server

    Fournier, D

    After insertion of the two EM wheels in the cryostat in 2003, the cold vessel was finally closed in December (Omega seals and welds). This was then followed by the installation of the solenoid in February, and the closing of the warm vessel in March (see eNews of December 2003). During these few months the LAr cryogenic system was thoroughly tested, and its control system commissioned, each of the ~1000 control points at a time. Finally, in April the cool-down could start. Rather unusual for liquid argon detectors, the cool-down was made in its first part (above 140K) by circulating cold nitrogen gas (instead of liquid nitrogen) in the heat exchangers. The reason was to limit as much as possible temperature gradients in the calorimeter body. With the accordion structure, each of the EM wheel behaves as a single piece, which could be damaged if the supporting rings at its outside would contract faster than the active part inside. Also with improperly controlled gradients, the two wheels - 4 meters in diamete...

  9. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  10. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  11. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.......For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation...

  12. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  13. Pretest Predictions for Ventilation Tests

    International Nuclear Information System (INIS)

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only

  14. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  15. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  16. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditio......The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....

  17. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  18. Ventilator and viral induced inflammation

    NARCIS (Netherlands)

    Hennus, M.P.

    2013-01-01

    This thesis expands current knowledge on ventilator induced lung injury and provides insights on the immunological effects of mechanical ventilation during viral respiratory infections. The experimental studies in the first part of this thesis improve our understanding of how mechanical ventilation

  19. Computer analysis of sodium cold trap design and performance

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na 2 O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions

  20. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative...

  1. Realtime mine ventilation simulation

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1997-01-01

    This paper describes the development of a Windows based, interactive mine ventilation simulation software program at the Waste Isolation Pilot Plant (WIPP). To enhance the operation of the underground ventilation system, Westinghouse Electric Corporation developed the program called WIPPVENT. While WIPPVENT includes most of the functions of the commercially available simulation program VNETPC and uses the same subroutine to calculate airflow distributions, the user interface has been completely rewritten as a Windows application with screen graphics. WIPPVENT is designed to interact with WIPP ventilation monitoring systems through the sitewise Central monitoring System. Data can be continuously collected from the Underground Ventilation Remote Monitoring and Control System (e.g., air quantity and differential pressure) and the Mine Weather Stations (psychrometric data). Furthermore, WIPPVENT incorporates regulator characteristic curves specific to the site. The program utilizes this data to create and continuously update a REAL-TIME ventilation model. This paper discusses the design, key features, and interactive capabilities of WIPPVENT

  2. Styret naturlig ventilation

    DEFF Research Database (Denmark)

    Morsing, S.; Strøm, J.S.

    Publikationen præsenterer et generelt dimensioneringsgrundlag for naturlig ventilation i husdyrstalde. Det er kontrolleret ved forsøg i slagtesvinestalde, hvor det ligeledes er undersøgt hvilken temperaturstabilitet, der kan opnås ved naturlig ventilation, samt produktions- og adfærdsmæssige...

  3. [Evaluation of tidal volume delivered by ventilators during volume-controlled ventilation].

    Science.gov (United States)

    Zhou, Juan; Yan, Yong; Cao, Desen

    2014-12-01

    To study the ways which ensure the delivery of enough tidal volume to patients under various conditions close to the demand of the physician. The volume control ventilation model was chosen, and the simulation lung type was active servo lung ASL 5000 or Michigan lung 1601. The air resistance, air compliance and lung type in simulation lungs were set. The tidal volume was obtained from flow analyzer PF 300. At the same tidal volume, the displaying values of tidal volume of E5, Servo i, Evital 4, and Evital XL ventilators with different lung types of patient, compliance of gas piping, leakage, gas types, etc. were evaluated. With the same setting tidal volume of a same ventilator, the tidal volume delivered to patients was different with different lung types of patient, compliance of gas piping, leakage, gas types, etc. Reducing compliance and increasing resistance of the patient lungs caused high peak airway pressure, the tidal volume was lost in gas piping, and the tidal volume be delivered to the patient lungs was decreased. If the ventilator did not compensate to leakage, the tidal volume delivered to the patient lungs was decreased. When the setting gas type of ventilator did not coincide with that applying to the patient, the tidal volume be delivered to the patient lungs might be different with the setting tidal volume of ventilator. To ensure the delivery of enough tidal volume to patients close to the demand of the physician, containable factors such as the compliance of gas piping, leakage, and gas types should be controlled.

  4. Ventilator associated pneumonia among patients on mechanical ventilation at tertiary care centres

    International Nuclear Information System (INIS)

    Rafiq, M.Y.; Ikram, A.; Ayyub, M.

    2018-01-01

    Objective: To determine the frequency of ventilator associated pneumonia (VAP) among patients on mechanical ventilation, and to identify the causative bacterial pathogens and antibiotic susceptibility pattern of isolated microorganisms in intensive care units of tertiary care settings. Study Design: Descriptive cross sectional. Place and Duration of Study: This study was conducted at Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from Dec 2014 to Aug 2015. Material and Methods: A total of 176 patients on mechanical ventilation were included in the study; patients having respiratory tract infection before putting on ventilator were excluded. Endotracheal aspirate (ETA) and Bronchoalveolar lavage (BAL) samples were collected aseptically from patients on mechanical ventilation on day zero i.e. the day on which the patient was put on ventilator to rule out any previous respiratory tract infection and then after 48 hours to observe the development of VAP. Samples were processed in the laboratory by standard culture techniques, pathogens were identified and their antibiotic susceptibility was performed as per CLSI guidelines. Results: Out of 176 patients on mechanical ventilation, 59 (33.5%) developed VAP. Acinetobacter baumanii being the predominant pathogen isolated from 32 (54.2%) patients followed by MRSA 11 (18.6%), Klebsiella pneumoniae 9 (15.2%), Pseudomonas aeruginosa 5 (8.47%) and Stenotrophomonas maltophila from 2 (3.38%) patients. Conclusion: Frequency of VAP is quite high in our setup, identification of causative bacterial pathogensand their antibiotic susceptibility pattern will not only help in providing effective treatment to the patients but will also help in the formulation of antibiogram according to local resistance patterns for empirical therapy and to reduce the morbidity and mortality. (author)

  5. Effect of a ventilator-focused intervention on the rate of Acinetobacter baumannii infection among ventilated patients.

    Science.gov (United States)

    Cohen, Regev; Shimoni, Zvi; Ghara, Riad; Ram, Ron; Ben-Ami, Ronen

    2014-09-01

    Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia, often as a result of ventilator equipment contamination. Evidence-based guidance on optimal care of ventilator equipment to prevent infection is lacking. Here, we report on a significant and persistent reduction in A baumannii infection rates achieved by introducing a strict policy on ventilator care. We implemented an institution-wide ventilator care policy that included routine exchange of breathing circuits and external bacterial filters (every 7-14 days) and replacement followed by routine sterilization of internal bacterial filters (every 4-8 weeks). We analyzed sputum cultures and patient outcomes among ventilated patients before and after the intervention. Between January 2012 and March 2013, 321 patients ventilated for more than 3 days comprised the study cohort. Health care-associated A baumannii acquisition was significantly reduced during the postintervention period (33% vs 16%; odds ratio, 0.39; 95% confidence interval, 0.23-0.67; P = .0008). Additionally, the median time to A baumannii acquisition was significantly longer postintervention (59 vs 21 days; P < .0001). A baumannii ventilator-associated pneumonia risk was also reduced postintervention (odds ratio, 0.39; P = .005). Implementing a stricter standard of ventilator care than that currently defined in published guidelines can significantly decrease health care-associated A baumannii acquisition and related adverse outcomes among ventilated patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Neonatal and adult ICU ventilators to provide ventilation in neonates, infants, and children: a bench model study.

    Science.gov (United States)

    Vignaux, Laurence; Piquilloud, Lise; Tourneux, Pierre; Jolliet, Philippe; Rimensberger, Peter C

    2014-10-01

    Using a bench test model, we investigated the hypothesis that neonatal and/or adult ventilators equipped with neonatal/pediatric modes currently do not reliably administer pressure support (PS) in neonatal or pediatric patient groups in either the absence or presence of air leaks. PS was evaluated in 4 neonatal and 6 adult ventilators using a bench model to evaluate triggering, pressurization, and cycling in both the absence and presence of leaks. Delivered tidal volumes were also assessed. Three patients were simulated: a preterm infant (resistance 100 cm H2O/L/s, compliance 2 mL/cm H2O, inspiratory time of the patient [TI] 400 ms, inspiratory effort 1 and 2 cm H2O), a full-term infant (resistance 50 cm H2O/L/s, compliance 5 mL/cm H2O, TI 500 ms, inspiratory effort 2 and 4 cm H2O), and a child (resistance 30 cm H2O/L/s, compliance 10 mL/cm H2O, TI 600 ms, inspiratory effort 5 and 10 cm H2O). Two PS levels were tested (10 and 15 cm H2O) with and without leaks and with and without the leak compensation algorithm activated. Without leaks, only 2 neonatal ventilators and one adult ventilator had trigger delays under a given predefined acceptable limit (1/8 TI). Pressurization showed high variability between ventilators. Most ventilators showed TI in excess high enough to seriously impair patient-ventilator synchronization (> 50% of the TI of the subject). In some ventilators, leaks led to autotriggering and impairment of ventilation performance, but the influence of leaks was generally lower in neonatal ventilators. When a noninvasive ventilation algorithm was available, this was partially corrected. In general, tidal volume was calculated too low by the ventilators in the presence of leaks; the noninvasive ventilation algorithm was able to correct this difference in only 2 adult ventilators. No ventilator performed equally well under all tested conditions for all explored parameters. However, neonatal ventilators tended to perform better in the presence of leaks

  7. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  8. Potential for passive cooling of buildings by night-time ventilation in present and future climates in Europe

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, Heinrich; Heiselberg, Per

    2006-01-01

    Given the general shift in recent decades towards a lower heating and higher cooling demand for buildings in many European countries, passive cooling by night-time ventilation has come to be seen as a promising option, particularly in the moderate or cold climates of Central, Eastern and Northern...... Europe. The basic concept involves cooling the building structure overnight in order to provide a heat sink that is available during the occupancy period. In this study, the potential for the passive cooling of buildings by night-time ventilation is evaluated by analysing climatic data, irrespective...... of any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data from 259 stations throughout Europe. The results show a very high potential for night...

  9. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  10. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  11. Boundary conditions for the use of personal ventilation over mixing ventilation in open plan offices

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    2013-01-01

    This paper investigates the boundary conditions for choosing a combined Personal Ventilation (PV) and Mixing Ventilation (MV) over conventional mixing ventilation in an office with multiple workers. A simplified procedure for annual performance assessment of PV/MV systems in terms of air quality...

  12. 21 CFR 868.5975 - Ventilator tubing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a patient...

  13. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  14. Body cooling in human males by cold-water immersion after vigorous exercise.

    Science.gov (United States)

    McDonald, A; Goode, R C; Livingstone, S D; Duffin, J

    1984-03-01

    Five male subjects were immersed to neck level in a whole-body water calorimeter (water temperature 19 degrees C) on two occasions. One immersion was preceded by 30 min of exercise on a treadmill at 80% of the subjects' maximum heart rate, while the other was preceded by no exercise (control). Ventilation, oxygen consumption, hand-grip strength, and heat loss (measured by calorimetry) results showed no significant differences between resting and exercise trials. Minute ventilation and oxygen consumption increased during the immersion but the magnitude of the increase varied among subjects. There was a significant decrease is isometric hand-grip strength after 30 min of immersion. Rectal temperatures fell faster (0.031 degree C +/- 0.004 degree C/min) for exercised subjects than for controls (0.019 degree C +/- 0.005 degree C/min) between 10 and 45 min of immersion (P less than 0.01). It appears that vigorous preimmersion exercise may shorten survival time in cold water due to an increase in cooling rate.

  15. The role of ventilation. 2 v. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    The 78 papers which constitute the proceedings of the conference are presented in two volumes. The papers in the first volume cover sessions dealing with the following broad topics: ventilation strategies; indoor air quality; energy impact of ventilation; building design for optimum ventilation; ventilation and energy. Volume 2 also covers ventilation strategies and ventilation and energy, and in addition: calculation, measurement and design tools; measurement and modelling. Separate abstract have been prepared for 4 papers in Volume 1 which deal with the role of ventilation in mitigating the hazard of radon in buildings. (UK)

  16. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Dingle, H. B.

    1999-01-01

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  17. Ventilation of radioactive enclosures; Ventilation des enceintes radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Caminade, F; Laurent, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m{sup 3}). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [French] Les manipulations oceaniques, physiques et chimiques sur des produits radioactifs doivent s'effectuer dans des enceintes convenablement ventilees. L'air extrait ne peut etre rejete dans l'atmosphere qu'apres une filtration correcte. La puissance des installations de ventilation est fonction des dimensions de l'enceinte et de son utilisation. Le choix des types de filtres est determine par l'etat physique et la nature ehimique des corps radioactifs manipules. Notre etude porte sur l'equipement individuel d'installations de petites dimensions: boites a gants, boites a pinces et, a la rigueur, enceintes de production (volume maximum utilisable 5 m{sup 3}). Nous mesurons et comparons les performances de trois types de 'ventilateurs' et les modifications apportees par l'adjonction de filtres. (auteur)

  18. How to Plan Ventilation Systems.

    Science.gov (United States)

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  19. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  20. Cooling of the Building Structure by Night-time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai

    In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning is increasingly applied even in moderate and cold climates, like in Central and Northern Europe. Particularly in these cases, night-time ventilation is often......, without considering any building-specific parameters. A method for quantifying the climatic cooling potential (CCP) was developed based on degree-hours of the difference between building and external air temperature. Applying this method to climatic data of 259 stations shows very high night cooling...... potential over the whole of Northern Europe and still significant potential in Central, Eastern and even some regions of Southern Europe. However, due to the inherent stochastic properties of weather patterns, series of warmer nights can occur at some locations, where passive cooling by night...

  1. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.

    Science.gov (United States)

    Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo

    2006-10-01

    Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of

  2. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  3. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  4. Intelligent ventilation in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Sigal Sviri

    2012-08-01

    Full Text Available Objectives. Automated, microprocessor-controlled, closed-loop mechanical ventilation has been used in our Medical Intensive Care Unit (MICU at the Hadassah Hebrew-University Medical Center for the past 15 years; for 10 years it has been the primary (preferred ventilator modality. Design and setting. We describe our clinical experience with adaptive support ventilation (ASV over a 6-year period, during which time ASV-enabled ventilators became more readily available and were used as the primary (preferred ventilators for all patients admitted to the MICU. Results. During the study period, 1 220 patients were ventilated in the MICU. Most patients (84% were ventilated with ASV on admission. The median duration of ventilation with ASV was 6 days. The weaning success rate was 81%, and tracheostomy was required in 13%. Sixty-eight patients (6% with severe hypoxia and high inspiratory pressures were placed on pressure-controlled ventilation, in most cases to satisfy a technical requirement for precise and conservative administration of inhaled nitric oxide. The overall pneumothorax rate was less than 3%, and less than 1% of patients who were ventilated only using ASV developed pneumothorax. Conclusions. ASV is a safe and acceptable mode of ventilation for complicated medical patients, with a lower than usual ventilation complication rate.

  5. Protective garment ventilation system

    Science.gov (United States)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  6. Is cold better ? - exploring the feasibility of liquid-helium-cooled optics

    International Nuclear Information System (INIS)

    Assoufid, L.; Mills, D.; Macrander, A.; Tajiri, G.

    1999-01-01

    Both simulations and recent experiments conducted at the Advanced Photon Source showed that the performance of liquid-nitrogen-cooled single-silicon crystal monochromators can degrade in a very rapid nonlinear fashion as the power and for power density is increased. As a further step towards improving the performance of silicon optics, we propose cooling with liquid helium, which dramatically improves the thermal properties of silicon beyond that of liquid nitrogen and brings the performance of single silicon-crystal-based synchrotrons radiation optics up to the ultimate limit. The benefits of liquid helium cooling as well as some of the associated technical challenges will be discussed, and results of thermal and structural finite elements simulations comparing the performance of silicon monochromators cooled with liquid nitrogen and helium will be given

  7. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  8. 46 CFR 153.312 - Ventilation system standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system standards. 153.312 Section 153.312... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation system must meet the following: (a) A ventilation system exhaust duct must discharge no less than 10 m...

  9. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival

    Science.gov (United States)

    Barwood, Martin J.; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R. D.

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3–5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [fc], respiratory frequency [fR], tidal volume [VT], minute ventilation [E]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the fc component of the CSR in unhabituated participants (CON1; p anxiety rating predicted the f

  10. Acute Anxiety Predicts Components of the Cold Shock Response on Cold Water Immersion: Toward an Integrated Psychophysiological Model of Acute Cold Water Survival.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Massey, Heather; McMorris, Terry; Tipton, Mike; Wagstaff, Christopher R D

    2018-01-01

    Introduction: Drowning is a leading cause of accidental death. In cold-water, sudden skin cooling triggers the life-threatening cold shock response (CSR). The CSR comprises tachycardia, peripheral vasoconstriction, hypertension, inspiratory gasp, and hyperventilation with the hyperventilatory component inducing hypocapnia and increasing risk of aspirating water to the lungs. Some CSR components can be reduced by habituation (i.e., reduced response to stimulus of same magnitude) induced by 3-5 short cold-water immersions (CWI). However, high levels of acute anxiety, a plausible emotion on CWI: magnifies the CSR in unhabituated participants, reverses habituated components of the CSR and prevents/delays habituation when high levels of anxiety are experienced concurrent to immersions suggesting anxiety is integral to the CSR. Purpose: To examine the predictive relationship that prior ratings of acute anxiety have with the CSR. Secondly, to examine whether anxiety ratings correlated with components of the CSR during immersion before and after induction of habituation. Methods: Forty-eight unhabituated participants completed one (CON1) 7-min immersion in to cold water (15°C). Of that cohort, twenty-five completed four further CWIs that would ordinarily induce CSR habituation. They then completed two counter-balanced immersions where anxiety levels were increased (CWI-ANX) or were not manipulated (CON2). Acute anxiety and the cardiorespiratory responses (cardiac frequency [ f c ], respiratory frequency [ f R ], tidal volume [ V T ], minute ventilation [ E ]) were measured. Multiple regression was used to identify components of the CSR from the most life-threatening period of immersion (1 st minute) predicted by the anxiety rating prior to immersion. Relationships between anxiety rating and CSR components during immersion were assessed by correlation. Results: Anxiety rating predicted the f c component of the CSR in unhabituated participants (CON1; p CSR when anxiety

  11. Design of Energy Efficient Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The focus in the development has for both systems been to minimise energy consumption while maintaining a comfortable and healthy indoor environment. The natural next step in this development is to develop ventilation concepts that utilises and combines the best features from each system......[Mechanical and natural ventilation] into a new type of ventilation system- Hybrid Ventilation....

  12. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  13. Refined liquid smoke: a potential antilisterial additive to cold-smoked sockeye salmon (Oncorhynchus nerka).

    Science.gov (United States)

    Montazeri, Naim; Himelbloom, Brian H; Oliveira, Alexandra C M; Leigh, Mary Beth; Crapo, Charles A

    2013-05-01

    Cold-smoked salmon (CSS) is a potentially hazardous ready-to-eat food product due to the high risk of contamination with Listeria monocytogenes and lack of a listericidal step. We investigated the antilisterial property of liquid smokes (LS) against Listeria innocua ATCC 33090 (surrogate to L. monocytogenes) as a potential supplement to vacuum-packaged CSS. A full-strength LS (Code 10-Poly), and three commercially refined fractions (AM-3, AM-10, and 1291) having less color and flavor (lower content of phenols and carbonyl-containing compounds) were tested. In vitro assays showed strong inhibition for all LS except for 1291. The CSS strips were surface coated with AM-3 and AM-10 at 1% LS (vol/wt) with an L-shaped glass rod and then inoculated with L. innocua at 3.5 log CFU/g, vacuum packaged, and stored at 4°C. The LS did not completely eliminate L. innocua but provided a 2-log reduction by day 14, with no growth up to 35 days of refrigerated storage. A simple difference sensory test by 180 untrained panelists showed the application of AM-3 did not significantly influence the overall sensorial quality of CSS. In essence, the application of the refined LS as an antilisterial additive to CSS is recommended.

  14. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  15. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  16. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Science.gov (United States)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  17. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  18. SU-F-J-219: Predicting Ventilation Change Due to Radiation Therapy: Dependency On Pre-RT Ventilation and Effort Correction

    Energy Technology Data Exchange (ETDEWEB)

    Patton, T; Du, K; Bayouth, J [University of Wisconsin, Madison, WI (United States); Christensen, G; Reinhardt, J [University of Iowa, Iowa City, IA (United States)

    2016-06-15

    Purpose: Ventilation change caused by radiation therapy (RT) can be predicted using four-dimensional computed tomography (4DCT) and image registration. This study tested the dependency of predicted post-RT ventilation on effort correction and pre-RT lung function. Methods: Pre-RT and 3 month post-RT 4DCT images were obtained for 13 patients. The 4DCT images were used to create ventilation maps using a deformable image registration based Jacobian expansion calculation. The post-RT ventilation maps were predicted in four different ways using the dose delivered, pre-RT ventilation, and effort correction. The pre-RT ventilation and effort correction were toggled to determine dependency. The four different predicted ventilation maps were compared to the post-RT ventilation map calculated from image registration to establish the best prediction method. Gamma pass rates were used to compare the different maps with the criteria of 2mm distance-to-agreement and 6% ventilation difference. Paired t-tests of gamma pass rates were used to determine significant differences between the maps. Additional gamma pass rates were calculated using only voxels receiving over 20 Gy. Results: The predicted post-RT ventilation maps were in agreement with the actual post-RT maps in the following percentage of voxels averaged over all subjects: 71% with pre-RT ventilation and effort correction, 69% with no pre-RT ventilation and effort correction, 60% with pre-RT ventilation and no effort correction, and 58% with no pre-RT ventilation and no effort correction. When analyzing only voxels receiving over 20 Gy, the gamma pass rates were respectively 74%, 69%, 65%, and 55%. The prediction including both pre- RT ventilation and effort correction was the only prediction with significant improvement over using no prediction (p<0.02). Conclusion: Post-RT ventilation is best predicted using both pre-RT ventilation and effort correction. This is the only prediction that provided a significant

  19. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study.

    Science.gov (United States)

    Eom, Joong Sik; Lee, Mi-Suk; Chun, Hee-Kyung; Choi, Hee Jung; Jung, Sun-Young; Kim, Yeon-Sook; Yoon, Seon Jin; Kwak, Yee Gyung; Oh, Gang-Bok; Jeon, Min-Hyok; Park, Sun-Young; Koo, Hyun-Sook; Ju, Young-Su; Lee, Jin Seo

    2014-01-01

    For prevention of ventilator-associated pneumonia (VAP), a bundle approach was applied to patients receiving mechanical ventilation in intensive care units. The incidence of VAP and the preventive efficacy of the VAP bundle were investigated. A quasi-experimental study was conducted in adult intensive care units of 6 university hospitals with similar VAP rates. We implemented the VAP bundle between March 2011 and June 2011, then compared the rate of VAP after implementation of the VAP bundle with the rate in the previous 8 months. Our ventilator bundle included head of bed elevation, peptic ulcer disease prophylaxis, deep venous thrombosis prophylaxis, and oral decontamination with chlorhexidine 0.12%. Continuous aspiration of subglottic secretions was an option. Implementation of the VAP bundle reduced the VAP rate from a mean of 4.08 cases per 1,000 ventilator-days to 1.16 cases per 1,000 ventilator-days. The incidence density ratio (rate) was 0.28 (95% confidence interval, 0.275-0.292). Implementing the appropriate VAP bundle significantly decreased the incidence of VAP in patients with mechanical ventilation. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  20. Fungal volatiles associated with moldy grain in ventilated and non-ventilated bin-stored wheat.

    Science.gov (United States)

    Sinha, R N; Tuma, D; Abramson, D; Muir, W E

    1988-01-01

    The fungal odor compounds 3-methyl-1-butanol, 1-octen-3-ol and 3-octanone were monitored in nine experimental bins in Winnipeg, Manitoba containing a hard red spring wheat during the autumn, winter and summer seasons of 1984-85. Quality changes were associated with seed-borne microflora and moisture content in both ventilated and non-ventilated bins containing wheat of 15.6 and 18.2% initial moisture content. All three odor compounds occurred in considerably greater amounts in bulk wheat in non-ventilated than in ventilated bins, particularly in those with wheat having 18.2% moisture content. The presence of these compounds usually coincided with infection of the seeds by the fungi Alternaria alternata (Fr.) Keissler, Aspergillus repens DeBarry, A. versicolor (Vuill.) Tiraboschi, Penicillium crustosum Thom, P. oxalicum Currie and Thom, P. aurantiogriesum Dierckx, and P. citrinum Thom. High production of all three odor compounds in damp wheat stored in non-ventilated bins was associated with heavy fungal infection of the seeds and reduction in seed germinability. High initial moisture content of the harvested grain accelerated the production of all three fungal volatiles in non-ventilated bins.

  1. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...... studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants...

  2. Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction

    NARCIS (Netherlands)

    Doorduin, J.; Sinderby, C.A.; Beck, J.; Hoeven, J.G. van der; Heunks, L.M.

    2015-01-01

    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), the use of assisted mechanical ventilation is a subject of debate. Assisted ventilation has benefits over controlled ventilation, such as preserved diaphragm function and improved oxygenation. Therefore, higher level of

  3. TS LOOP ALCOVE VENTILATION ANALYSIS

    International Nuclear Information System (INIS)

    T.M. Lahnalampi

    2000-01-01

    The scope of this analysis is to examine the existing, constructor installed, physical ventilation installations located in each of the Exploratory Studies Facility (ESF) Topopah Springs (TS) Loop Alcoves No.1, No.2, No.3, No.4, No.6, and No.7. Alcove No.5 is excluded from the scope of this analysis since it is an A/E design system. Each ventilation installation will be analyzed for the purpose of determining if requirements for acceptance into the A/E design technical baseline have been met. The ventilation installations will be evaluated using Occupational Safety and Health Administration (OSHA) standards and Exploratory Studies Facility Design Requirements (ESFDR) (YMP 1997) requirements. The end product will be a technical analysis that will define ventilation installation compliance issues, any outstanding field changes, and use-as-is design deviations that are required to bring the ventilation installations into compliance with requirements for acceptance into the A/E design technical baseline. The analysis will provide guidance for alcove ventilation component design modifications to be developed to correct any deficient components that do not meet minimum requirements and standards

  4. Mechanical ventilation for severe asthma.

    Science.gov (United States)

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting.

  5. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  6. Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation

    DEFF Research Database (Denmark)

    Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim

    2004-01-01

    The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution...

  7. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  8. Lung-protective ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, Emmanuel; Jaber, Samir

    2014-08-01

    To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.

  9. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  10. Design Principles for Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2000-01-01

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.

  11. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  12. Liquefied petroleum gas cold burn sustained while refueling a car.

    Science.gov (United States)

    Scarr, Bronwyn; Mitra, Biswadev; Maini, Amit; Cleland, Heather

    2010-02-01

    There have been few cases of cold burn related to the exposure of liquid petroleum gas (LPG). We present the case of a young woman exposed to LPG while refueling her car who sustained partial thickness burns to the dorsum of her hand. Contact with LPG leaking from a pressurized system causes tissue damage because of cold injury. Immediate management of LPG is extrapolated from the management of frostbite. The increasing use of LPG mandates an awareness of prevention strategies and management principles in the setting of adverse events.

  13. Basic design of the HANARO cold neutron source using MCNP code

    International Nuclear Information System (INIS)

    Yu, Yeong Jin; Lee, Kye Hong; Kim, Young Jin; Hwang, Dong Gil

    2005-01-01

    The design of the Cold Neutron Source (CNS) for the HANARO research reactor is on progress. The CNS produces neutrons in the low energy range less than 5meV using liquid hydrogen at around 21.6 K as the moderator. The primary goal for the CNS design is to maximize the cold neutron flux with wavelengths of around 2 ∼ 12 A and to minimize the nuclear heat load. In this paper, the basic design of the HANARO CNS is described

  14. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    Full Text Available Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation and mechanical ventilator support is crucial for the neonatologist, who should aim to a shorter process of discontinuing mechanical ventilation as well as an earlier appreciation of readiness for spontaneous breathing trials. Unfortunately, there is scarce information about the best ways to perform an effective weaning process in infants undergoing mechanical ventilation, thus in most cases the weaning course is still based upon the individual judgment of the attending clinician. Nonetheless, some evidence indicate that volume targeted ventilation modes are more effective in reducing the duration of mechanical ventilation than traditional pressure limited ventilation modes, particularly in very preterm babies. Weaning and extubation directly from high frequency ventilation could be another option, even though its effectiveness, when compared to switching and subsequent weaning and extubating from conventional ventilation, is yet to be adequately investigated. Some data suggest the use of weaning protocols could reduce the weaning time and duration of mechanical ventilation, but better designed prospective studies are still needed to confirm these preliminary observations. Finally, the implementation of short spontaneous breathing tests in preterm infants has been shown to be beneficial in some centres, favoring an earlier extubation at higher ventilatory settings compared with historical controls, without worsening the extubation failure rate. Further

  15. A Porcine Model for Initial Surge Mechanical Ventilator Assessment and Evaluation of Two Limited Function Ventilators

    Science.gov (United States)

    Dickson, Robert P; Hotchkin, David L; Lamm, Wayne JE; Hinkson, Carl; Pierson, David J; Glenny, Robb W; Rubinson, Lewis

    2013-01-01

    Objective To adapt an animal model of acute lung injury for use as a standard protocol for a screening, initial evaluation of limited function, or “surge,” ventilators for use in mass casualty scenarios. Design Prospective, experimental animal study. Setting University research laboratory. Subjects 12 adult pigs. Interventions 12 spontaneously breathing pigs (6 in each group) were subjected to acute lung injury/acute respiratory distress syndrome (ALI/ARDS) via pulmonary artery infusion of oleic acid. Following development of respiratory failure, animals were mechanically ventilated with a limited function ventilator (Simplified Automatic Ventilator [SAVe] I or II; Automedx) for one hour or until the ventilator could not support the animal. The limited function ventilator was then exchanged for a full function ventilator (Servo 900C; Siemens). Measurements and Main Results Reliable and reproducible levels of ALI/ARDS were induced. The SAVe I was unable to adequately oxygenate 5 animals, with PaO2 (52.0 ± 11.1 torr) compared to the Servo (106.0 ± 25.6 torr; p=0.002). The SAVe II was able to oxygenate and ventilate all 6 animals for one hour with no difference in PaO2 (141.8 ± 169.3 torr) compared to the Servo (158.3 ± 167.7 torr). Conclusions We describe a novel in vivo model of ALI/ARDS that can be used to initially screen limited function ventilators considered for mass respiratory failure stockpiles, and is intended to be combined with additional studies to defintively assess appropriateness for mass respiratory failure. Specifically, during this study we demonstrate that the SAVe I ventilator is unable to provide sufficient gas exchange, while the SAVe II, with several more functions, was able to support the same level of hypoxemic respiratory failure secondary to ALI/ARDS for one hour. PMID:21187747

  16. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position.

    Science.gov (United States)

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation.

  17. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  18. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    Science.gov (United States)

    Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R

    2014-01-01

    The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (pVentilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.

  19. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  20. Use of Ventilator Bundle and Staff Education to Decrease Ventilator-Associated Pneumonia in Intensive Care Patients.

    Science.gov (United States)

    Parisi, Maria; Gerovasili, Vasiliki; Dimopoulos, Stavros; Kampisiouli, Efstathia; Goga, Christina; Perivolioti, Efstathia; Argyropoulou, Athina; Routsi, Christina; Tsiodras, Sotirios; Nanas, Serafeim

    2016-10-01

    Ventilator-associated pneumonia (VAP), one of the most common hospital-acquired infections, has a high mortality rate. To evaluate the incidence of VAP in a multidisciplinary intensive care unit and to examine the effects of the implementation of ventilator bundles and staff education on its incidence. A 24-month-long before/after study was conducted, divided into baseline, intervention, and postintervention periods. VAP incidence and rate, the microbiological profile, duration of mechanical ventilation, and length of stay in the intensive care unit were recorded and compared between the periods. Of 1097 patients evaluated, 362 met the inclusion criteria. The baseline VAP rate was 21.6 per 1000 ventilator days. During the postintervention period, it decreased to 11.6 per 1000 ventilator days (P = .01). Length of stay in the intensive care unit decreased from 36 to 27 days (P = .04), and duration of mechanical ventilation decreased from 26 to 21 days (P = .06). VAP incidence was high in a general intensive care unit in a Greek hospital. However, implementation of a ventilator bundle and staff education has decreased both VAP incidence and length of stay in the unit. ©2016 American Association of Critical-Care Nurses.

  1. 46 CFR 153.310 - Ventilation system type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system type. 153.310 Section 153.310... Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent forced ventilation system of the exhaust type. ...

  2. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  3. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  4. [Mechanical ventilation in acute asthma crisis].

    Science.gov (United States)

    Barbas, Carmen Sílvia Valente; Pinheiro, Bruno do Valle; Vianna, Arthur; Magaldi, Ricardo; Casati, Ana; José, Anderson; Okamoto, Valdelis Novis

    2007-06-01

    The II Brazilian Consensus Conference on Mechanical Ventilation was published in 2000. Knowledge on the field of mechanical ventilation evolved rapidly since then, with the publication of numerous clinical studies with potential impact on the ventilatory management of critically ill patients. Moreover, the evolving concept of evidence - based medicine determined the grading of clinical recommendations according to the methodological value of the studies on which they are based. This explicit approach has broadened the understanding and adoption of clinical recommendations. For these reasons, AMIB - Associação de Medicina Intensiva Brasileira and SBPT - Sociedade Brasileira de Pneumologia e Tisiologia - decided to update the recommendations of the II Brazilian Consensus. Mechanical ventilation in the asthma attack has been one of the updated topics. Describe the most important topics on the mechanical ventilation during the asthma attack and suggest the main therapeutic approaches. Systematic review of the published literature and gradation of the studies in levels of evidence, using the key words "mechanical ventilation" and "asthma". We present recommendations on the ventilatory modes and settings to be adopted when ventilating a patient during an asthma attack, as well as the recommended monitoring. Alternative ventilation techniques are also presented. Protective ventilatory strategies are recommended when ventilating a patient during a severe asthma attack.

  5. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    International Nuclear Information System (INIS)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support

  6. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  7. Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine.

    Science.gov (United States)

    Batchinsky, Andriy I; Burkett, Samuel E; Zanders, Thomas B; Chung, Kevin K; Regn, Dara D; Jordan, Bryan S; Necsoiu, Corina; Nguyen, Ruth; Hanson, Margaret A; Morris, Michael J; Cancio, Leopoldo C

    2011-10-01

    The role of airway pressure release ventilation in the management of early smoke inhalation injury has not been studied. We compared the effects of airway pressure release ventilation and conventional mechanical ventilation on oxygenation in a porcine model of acute respiratory distress syndrome induced by wood smoke inhalation. Prospective animal study. Government laboratory animal intensive care unit. Thirty-three Yorkshire pigs. Smoke inhalation injury. Anesthetized female Yorkshire pigs (n = 33) inhaled room-temperature pine-bark smoke. Before injury, the pigs were randomized to receive conventional mechanical ventilation (n = 15) or airway pressure release ventilation (n = 12) for 48 hrs after smoke inhalation. As acute respiratory distress syndrome developed (PaO2/Fio2 ratio conventional mechanical ventilation for 48 hrs and served as time controls. Changes in PaO2/Fio2 ratio, tidal volume, respiratory rate, mean airway pressure, plateau pressure, and hemodynamic variables were recorded. Survival was assessed using Kaplan-Meier analysis. PaO2/Fio2 ratio was lower in airway pressure release ventilation vs. conventional mechanical ventilation pigs at 12, 18, and 24 hrs (p conventional mechanical ventilation animals between 30 and 48 hrs post injury (p animals between 6 and 48 hrs (p conventional mechanical ventilation and airway pressure release ventilation pigs. In this model of acute respiratory distress syndrome caused by severe smoke inhalation in swine, airway pressure release ventilation-treated animals developed acute respiratory distress syndrome faster than conventional mechanical ventilation-treated animals, showing a lower PaO2/Fio2 ratio at 12, 18, and 24 hrs after injury. At other time points, PaO2/Fio2 ratio was not different between conventional mechanical ventilation and airway pressure release ventilation.

  8. The fluid mechanics of natural ventilation

    Science.gov (United States)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  9. Ventilation of an hydrofoil wake

    Science.gov (United States)

    Arndt, Roger; Lee, Seung Jae; Monson, Garrett

    2013-11-01

    Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.

  10. Mechanical ventilators in US acute care hospitals.

    Science.gov (United States)

    Rubinson, Lewis; Vaughn, Frances; Nelson, Steve; Giordano, Sam; Kallstrom, Tom; Buckley, Tim; Burney, Tabinda; Hupert, Nathaniel; Mutter, Ryan; Handrigan, Michael; Yeskey, Kevin; Lurie, Nicole; Branson, Richard

    2010-10-01

    The supply and distribution of mechanical ventilation capacity is of profound importance for planning for severe public health emergencies. However, the capability of US health systems to provide mechanical ventilation for children and adults remains poorly quantified. The objective of this study was to determine the quantity of adult and pediatric mechanical ventilators at US acute care hospitals. A total of 5,752 US acute care hospitals included in the 2007 American Hospital Association database were surveyed. We measured the quantities of mechanical ventilators and their features. Responding to the survey were 4305 (74.8%) hospitals, which accounted for 83.8% of US intensive care unit beds. Of the 52,118 full-feature mechanical ventilators owned by respondent hospitals, 24,204 (46.4%) are pediatric/neonatal capable. Accounting for nonrespondents, we estimate that there are 62,188 full-feature mechanical ventilators owned by US acute care hospitals. The median number of full-feature mechanical ventilators per 100,000 population for individual states is 19.7 (interquartile ratio 17.2-23.1), ranging from 11.9 to 77.6. The median number of pediatric-capable device full-feature mechanical ventilators per 100,000 population younger than 14 years old is 52.3 (interquartile ratio 43.1-63.9) and the range across states is 22.1 to 206.2. In addition, respondent hospitals reported owning 82,755 ventilators other than full-feature mechanical ventilators; we estimate that there are 98,738 devices other than full-feature ventilators at all of the US acute care hospitals. The number of mechanical ventilators per US population exceeds those reported by other developed countries, but there is wide variation across states in the population-adjusted supply. There are considerably more pediatric-capable ventilators than there are for adults only on a population-adjusted basis.

  11. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  12. Intraoperative mechanical ventilation for the pediatric patient.

    Science.gov (United States)

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Changes in lung volume and ventilation during surfactant treatment in ventilated preterm infants

    NARCIS (Netherlands)

    Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Veenendaal, Mariëtte B.; van Kaam, Anton H.

    2011-01-01

    The immediate and regional effects of exogenous surfactant in open lung high-frequency oscillatory ventilated (HFOV) preterm infants are unknown. To assess regional changes in lung volume, mechanics, and ventilation during and after surfactant administration in HFOV preterm infants with respiratory

  14. Monitoring of noninvasive ventilation by built-in software of home bilevel ventilators: a bench study.

    Science.gov (United States)

    Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul

    2012-02-01

    Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.

  15. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators

    Science.gov (United States)

    Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent

    2009-01-01

    Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (Pventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622

  16. Minute Ventilation Limitations of Two Field Transport Ventilators.

    Science.gov (United States)

    Szpisjak, Dale F; Horn, Gregory; Shalov, Samuel; Abes, Alvin Angelo; Van Decar, Lauren

    2017-01-01

    Knowledge of transport ventilator performance impacts patient safety. This study compared minute ventilation (V E ) of the MOVES and Uni-Vent 731 when ventilating the VentAid Training Test Lung with compliance (C) ranging from 0.02 to 0.10 L/cm H 2 O and three different airway resistances (R) (none, Rp5, or Rp20). Tidal volume (V T ) was 800 ± 25 mL. Respiratory rate was increased to ventilator's maximum or until auto-PEEP > 5 cm H 2 O. Respiratory parameters were recorded with the RSS 100HR Research Pneumotach. Data were reported as median (interquartile range). Peak inspiratory pressure (PIP) of the Uni-Vent and MOVES ranged from 22.3 (22.2-22.5) to 82.6 (82.2-83.2) and 20.8 (20.6-20.9) to 50.6 (50.2-50.9) cm H 2 O, respectively. V E of the Uni-Vent and MOVES ranged from 17.7 (17.7-17.7) to 31.5 (31.5-31.5) and 11.3 (10.5-11.3) to 20.2 (19.7-20.5) L/min, respectively. Linear regression demonstrated strong, negative correlation of V E with PIP for the MOVES (V E [L/min] = 26 - 0.31 × PIP [cm H 2 O], r = -0.97) but weak, positive correlation for the Uni-Vent (r = 0.05). Uni-Vent V E exceeded MOVES V E under each test condition (p = 0.0002). If patient V E requirements exceed those predicted by the MOVES regression equation, then using the Uni-Vent should be considered. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  17. Mechanical ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEPventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  18. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  19. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    Science.gov (United States)

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  20. Ventilation of carbon monoxide from a biomass pellet storage tank--a study of the effects of variation of temperature and cross-ventilation on the efficiency of natural ventilation.

    Science.gov (United States)

    Emhofer, Waltraud; Lichtenegger, Klaus; Haslinger, Walter; Hofbauer, Hermann; Schmutzer-Roseneder, Irene; Aigenbauer, Stefan; Lienhard, Martin

    2015-01-01

    Wood pellets have been reported to emit toxic gaseous emissions during transport and storage. Carbon monoxide (CO) emission, due to the high toxicity of the gas and the possibility of it being present at high levels, is the most imminent threat to be considered before entering a pellet storage facility. For small-scale (ventilation, preferably natural ventilation utilizing already existing openings, has become the most favored solution to overcome the problem of high CO concentrations. However, there is little knowledge on the ventilation rates that can be reached and thus on the effectiveness of such measures. The aim of the study was to investigate ventilation rates for a specific small-scale pellet storage system depending on characteristic temperature differences. Furthermore, the influence of the implementation of a chimney and the influence of cross-ventilation on the ventilation rates were investigated. The air exchange rates observed in the experiments ranged between close to zero and up to 8 m(3) h(-1), depending largely on the existing temperature differences and the existence of cross-ventilation. The results demonstrate that implementing natural ventilation is a possible measure to enhance safety from CO emissions, but not one without limitations. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. Why this crisis in residential ventilation

    NARCIS (Netherlands)

    Hasselaar, E.

    2008-01-01

    Ventilation is the cornerstone of good indoor air quality. Ventilation requirements have major attention in building regulations, but ventilation in practice is often poor, resulting in increased concentration of pollutants and hence exposure to health risk. Inspection of 500 houses with interviews

  2. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Charlotte J Beurskens

    Full Text Available BACKGROUND: Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2 diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator-induced lung injury. METHODS: Sprague-Dawley rats (N=8 per group were mechanically ventilated with heliox (50% oxygen; 50% helium. Controls received a standard gas mixture (50% oxygen; 50% air. VILI was induced by application of tidal volumes of 15 mL kg(-1; lung protective ventilated animals were ventilated with 6 mL kg(-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF was obtained. Data are mean (SD. RESULTS: VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324 vs. 290 (181 μg mL(-1; p<0.05 and IL-6 levels (640 (8.7 vs. 206 (8.7 pg mL(-1; p<0.05, whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123 ± 0.6 vs. 146 ± 8.9 mL min(-1, P<0.001, due to a decrease in respiratory rate (22 (0.4 vs. 25 (2.1 breaths per minute; p<0.05, while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects. CONCLUSIONS: Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of

  3. [Ventilator associated pneumonia].

    Science.gov (United States)

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  4. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  5. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  6. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  7. Thermal-hydraulic experiments and analyses for cold moderators

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Hino, Ryutaro

    2003-01-01

    Cold moderators using liquid hydrogen are one of the key components in a MW-scale target system working as a spallation neutron source. The cold moderators directly affect the neutronic performance both in intensity and resolution. Cold moderator vessels are designed to be flat and cylindrical type vessels, which are required to realize and uniform temperature distribution in the vessel to obtain better neutronic performance. Velocity distributions in the moderator vessels, affecting the temperature distributions, were measured by using moderator models under water flowing conditions. In the experiments, jet-induced flows such as recirculation flows and stagnant regions were observed. For the flat type moderator vessel, the analytical results of velocity distributions using a standard k-ε turbulence model agreed well with experimental results obtained with a PIV system. However, for the cylindrical type moderator vessel, especially predicted heat transfer coefficients on a bottom of the vessel were much lower than the experimental results, which gave conservative analytical result of temperature. (author)

  8. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  9. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  10. 33 CFR 183.610 - Powered ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Powered ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.610 Powered ventilation system... must: (1) Be open to the atmosphere, or (2) Be ventilated by an exhaust blower system. (b) Each exhaust...

  11. 21 CFR 868.5895 - Continuous ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous ventilator. 868.5895 Section 868.5895...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5895 Continuous ventilator. (a) Identification. A continuous ventilator (respirator) is a device intended to mechanically control or assist...

  12. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs

    Directory of Open Access Journals (Sweden)

    Davis Peter G

    2009-03-01

    Full Text Available Abstract Background Bronchopulmonary dysplasia (BPD is closely associated with ventilator-induced lung injury (VILI in very preterm infants. The greatest risk of VILI may be in the immediate period after birth, when the lungs are surfactant deficient, still partially filled with liquid and not uniformly aerated. However, there have been very few studies that have examined this immediate post-birth period and identified the initial injury-related pathways that are activated. We aimed to determine if the early response genes; connective tissue growth factor (CTGF, cysteine rich-61 (CYR61 and early growth response 1 (EGR1, were rapidly induced by VILI in preterm lambs and whether ventilation with different tidal volumes caused different inflammatory cytokine and early response gene expression. Methods To identify early markers of VILI, preterm lambs (132 d gestational age; GA, term ~147 d were resuscitated with an injurious ventilation strategy (VT 20 mL/kg for 15 min then gently ventilated (5 mL/kg for 15, 30, 60 or 120 min (n = 4 in each. To determine if early response genes and inflammatory cytokines were differentially regulated by different ventilation strategies, separate groups of preterm lambs (125 d GA; n = 5 in each were ventilated from birth with a VT of 5 (VG5 or 10 mL/kg (VG10 for 135 minutes. Lung gene expression levels were compared to levels prior to ventilation in age-matched control fetuses. Results CTGF, CYR61 and EGR1 lung mRNA levels were increased ~25, 50 and 120-fold respectively (p CTGF, CYR61, EGR1, IL1-β, IL-6 and IL-8 mRNA levels compared to control levels. CTGF, CYR61, IL-6 and IL-8 expression levels were higher in VG10 than VG5 lambs; although only the IL-6 and CYR61 mRNA levels reached significance. Conclusion CTGF, CYR61 and EGR1 may be novel early markers of lung injury and mechanical ventilation from birth using relatively low tidal volumes may be less injurious than using higher tidal volumes.

  13. Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation.

    Science.gov (United States)

    Cheng, Y; Lin, Z

    2015-12-01

    The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV. This study reports the unique profiles of flow, temperature, turbulence intensity, and power spectrum of stratum ventilation, which can have a number of implications for both knowledge and understanding of the flow characteristics in a stratum-ventilated room. With respect to the former, it expounds the fundamental characteristics of this air distribution method; and with respect to the latter, it reveals the mechanism of thermal comfort and energy saving under stratum ventilation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. CbRCI35, a cold responsive peroxidase from Capsella bursa-pastoris regulates reactive oxygen species homeostasis and enhances cold tolerance in tobacco

    Directory of Open Access Journals (Sweden)

    Juan Lin

    2016-10-01

    Full Text Available Low temperature affects gene regulatory networks and alters cellular metabolism to inhibit plant growth. Peroxidases are widely distributed in plants and play a large role in adjusting and controlling reactive oxygen species (ROS homeostasis in response to abiotic stresses such as low temperature. The Rare Cold-Inducible 35 gene from Capsella bursa-pastoris (CbRCI35 belongs to the type III peroxidase family and has been reported to be a cold responsive gene in plants. Here we performed an expressional characterization of CbRCI35 under cold and ionic liquid treatments. The promoter of CbRCI35 was also cloned and its activity was examined using the GUS reporter system. CbRCI35 protein was localized in the cytoplasm according to sequence prediction and GFP fusion assay. Heterologous expression tests revealed that CbRCI35 conferred enhanced resistance to low temperature and activated endogenous cold responsive signaling in tobacco. Furthermore, in the normal condition the ROS accumulation was moderately enhanced while after chilling exposure superoxide dismutase (SOD activity was increased in CbRCI53 transgenic plants. The ROS metabolism related genes expression was altered accordingly. We conclude that CbRCI35 modulates ROS homeostasis and contributes to cold tolerance in plants.

  15. On possible contribution of standing wave like spacer dynamics in polymer liquid crystals to quasi-elastic cold neutron scattering spectra

    International Nuclear Information System (INIS)

    Jecl, R.; Cvikl, B.

    1998-01-01

    The quasi-elastic cold neutron incoherent scattering law, QNS, for the assumed case of transversal standing wave type of motion of the linear chain a spacer-of the polyacrylate polymer liquid crystal, based upon the random walk of the particle between two perfectly potential barriers, is derived. The spacer protons are taken to vibrate (within the stationary plane) transversely to the line joining the oxygen atoms in a way where they are all simultaneously displaced in the same direction with amplitudes of the standing wave fundamental mode of the vibration excited. The calculated relevant incoherent scattering law is found to be a non-distinct function of the scattering vector Q, in the sense that the postulated dynamical effect of the spacer protons causes the peak value of the calculated incoherent scattering law, S(Q,ω), to remain constant throughout the experimentally accessible range of the scattering vector Q. It appears that, when the experimental resolution broadening effects is taken into account, the contribution of the postulated dynamical behavior to the measured QNS spectra might be small, particularly so, if dome additional motion of the scatters is present, and consequently the standing wave like spacer dynamics in polymer liquid crystals will be very difficult to be identified uniquely in the quasielastic neutron scattering experiments.(author)

  16. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  17. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study.

    Science.gov (United States)

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.

  18. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study* **

    Science.gov (United States)

    Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto

    2014-01-01

    Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653

  19. Ventilation Model and Analysis Report

    International Nuclear Information System (INIS)

    Chipman, V.

    2003-01-01

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity

  20. Design ventilátoru

    OpenAIRE

    Macháčková, Petra

    2013-01-01

    Předmětem této bakalářské práce je návrh designu stolního ventilátoru. Hlavní myšlenkou je inovativní přístup a dodržení technických, estetických a ergonomických požadavků a současně splnění psychologických a ekonomických funkcí. Navržený ventilátor by měl využívat inovativní technologie bezlopatkových ventilátorů. Ventilátor by měl působit jako vhodný doplněk do moderního interiéru. Cílem je propojit originální design s modernizací přístroje při splnění obecných předpokladů průmyslového desi...

  1. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  2. Comparative performances analysis of neonatal ventilators.

    Science.gov (United States)

    Baldoli, Ilaria; Tognarelli, Selene; Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Ghirri, Paolo; Boldrini, Antonio; Menciassi, Arianna; Laschi, Cecilia; Cuttano, Armando

    2015-02-08

    Mechanical ventilation is a therapeutic action for newborns with respiratory diseases but may have side effects. Correct equipment knowledge and training may limit human errors. We aimed to test different neonatal mechanical ventilators' performances by an acquisition module (a commercial pressure sensor plus an isolated chamber and a dedicated software). The differences (ΔP) between peak pressure values and end-expiration pressure were investigated for each ventilator. We focused on discrepancies among measured and imposed pressure data. A statistical analysis was performed. We investigated the measured/imposed ΔP relation. The ΔP do not reveal univocal trends related to ventilation setting parameters and the data distributions were non-Gaussian. Measured ΔP represent a significant parameter in newborns' ventilation, due to the typical small volumes. The investigated ventilators showed different tendencies. Therefore, a deep specific knowledge of the intensive care devices is mandatory for caregivers to correctly exploit their operating principles.

  3. Decontamination in the Electron Probe Microanalysis with a Peltier-Cooled Cold Finger.

    Science.gov (United States)

    Buse, Ben; Kearns, Stuart; Clapham, Charles; Hawley, Donovan

    2016-10-01

    A prototype Peltier thermoelectric cooling unit has been constructed to cool a cold finger on an electron microprobe. The Peltier unit was tested at 15 and 96 W, achieving cold finger temperatures of -10 and -27°C, respectively. The Peltier unit did not adversely affect the analytical stability of the instrument. Heat conduction between the Peltier unit mounted outside the vacuum and the cold finger was found to be very efficient. Under Peltier cooling, the vacuum improvement associated with water vapor deposition was not achieved; this has the advantage of avoiding severe degradation of the vacuum observed when warming up a cold finger from liquid nitrogen (LN2) temperatures. Carbon contamination rates were reduced as cooling commenced; by -27°C contamination rates were found to be comparable with LN2-cooled devices. Peltier cooling, therefore, provides a viable alternative to LN2-cooled cold fingers, with few of their associated disadvantages.

  4. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Prevention of ventilator-associated pneumonia

    OpenAIRE

    J. Oliveira; C. Zagalo; P. Cavaco-Silva

    2014-01-01

    Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48 h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critica...

  6. Contaminants in ventilated filling boxes

    Science.gov (United States)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  7. 14 CFR 252.9 - Ventilation systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever the ventilation system is not fully functioning. Fully functioning for this purpose means operating so...

  8. Ventilation in Commercial and Residential Buildings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    A number of areas have to be considered in connection with indoor air quality and ventilation. The selection of ventilation principle and components in the ventilation system will have influence on the indoor air quality and this subject will be discussed on the following pages. The main object o...

  9. 46 CFR 98.25-75 - Ventilation.

    Science.gov (United States)

    2010-10-01

    ... shall be fitted with efficient natural or mechanical ventilation. (b) Enclosed compartments in which... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation. 98.25-75 Section 98.25-75 Shipping COAST... Ventilation. (a) All enclosed spaces containing cargo tanks fitted with bottom outlet connections shall be...

  10. 46 CFR 194.10-25 - Ventilation.

    Science.gov (United States)

    2010-10-01

    ... magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design... vans shall be provided with natural ventilation sufficient to maintain the inside air temperature below... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation. 194.10-25 Section 194.10-25 Shipping COAST...

  11. Contaminant Distribution Around Persons in Rooms Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.

    An optimal design of the ventilation system needs a proper prediction of the velocity, temperature and contaminant distribution in the room. Traditionally this is done either by the use of simplified models or by a somewhat more comprehensive CFD-simulation. Common to both methods is usually...... the lack of consideration for the persons present in the room. This paper deals with some of the effects of persons present in a displacement ventilated room, especially the effect on the contaminant distribution....

  12. Mechanical ventilation strategies.

    Science.gov (United States)

    Keszler, Martin

    2017-08-01

    Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan

    2017-11-01

    Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P mechanical ventilation and ICU stay.

  14. Why we ventilate our houses - An historical look

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Sherman, Max H.

    2004-05-14

    The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and animals have developed successful solutions to the problems of regulating temperature and removing air pollutants through the use of ventilation. These solutions include ingenious construction methods, such as engineered passive ventilation (termite mounds and passive stacks), mechanical means (wing-powered, fans), and an evolving effort to identify problems and develop solutions. Ventilation can do more than help prevent building occupants from getting sick; it can provide an improved indoor environment. Codes and standards provide minimum legal requirements for ventilation, but the need for ventilation goes beyond code minima. In this paper we will look at indoor air pollutant sources over time, the evolution of ventilation strategies, current residential ventilation codes and standards (e.g., recently approved ASHRAE Standard 62.2), and briefly discuss ways in which we can go beyond the standards to optimize residential ventilation, reduce indoor air quality problems, and provide corresponding social and economic benefit.

  15. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  16. Mechanical ventilation in neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Keshav Goyal

    2013-01-01

    Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.

  17. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Jed Lipes

    2012-01-01

    Full Text Available Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges.

  18. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    Science.gov (United States)

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  19. Thermo-mechanical Design Methodology for ITER Cryodistribution cold boxes

    Science.gov (United States)

    Shukla, Vinit; Patel, Pratik; Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Shah, Nitin; Choukekar, Ketan; Chang, Hyun-Sik; Sarkar, Biswanath

    2017-04-01

    The ITER cryo-distribution (CD) system is in charge of proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users; namely the superconducting (SC) magnets and cryopumps (CPs). The CD system is also capable to use the magnet structures as a thermal buffer in order to operate the cryo-plant as much as possible at a steady state condition. A typical CD cold box is equipped with mainly liquid helium (LHe) bath, heat exchangers (HX’s), cryogenic valves, filter, heaters, cold circulator, cold compressor and process piping. The various load combinations which are likely to occur during the life cycle of the CD cold boxes are imposed on the representative model and impacts on the system are analyzed. This study shows that break of insulation vacuum during nominal operation (NO) along with seismic event (Seismic Level-2) is the most stringent load combination having maximum stress of 224 MPa. However, NO+SMHV (Séismes Maximaux Historiquement Vraisemblables = Maximum Historically Probable Earthquakes) load combination is having the least safety margin and will lead the basis of the design of the CD system and its sub components. This paper presents and compares the results of different load combinations which are likely to occur on a typical CD cold box.

  20. Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation.

    Science.gov (United States)

    Lyazidi, Aissam; Thille, Arnaud W; Carteaux, Guillaume; Galia, Fabrice; Brochard, Laurent; Richard, Jean-Christophe M

    2010-12-01

    During volume-controlled ventilation, part of the volume delivered is compressed into the circuit. To correct for this phenomenon, modern ventilators use compensation algorithms. Humidity and temperature also influence the delivered volume. In a bench study at a research laboratory in a university hospital, we compared nine ICU ventilators equipped with compensation algorithms, one with a proximal pneumotachograph and one without compensation. Each ventilator was evaluated under normal, obstructive, and restrictive conditions of respiratory mechanics. For each condition, three tidal volumes (V (T)) were set (300, 500, and 800 ml), with and without an inspiratory pause. The insufflated volume and the volume delivered at the Y-piece were measured independently, without a humidification device, under ambient temperature and pressure and dry gas conditions. We computed the actually delivered V (T) to the lung under body temperature and pressure and saturated water vapour conditions (BTPS). For target V (T) values of 300, 500, and 800 ml, actually delivered V (T) under BTPS conditions ranged from 261 to 396 ml (-13 to +32%), from 437 to 622 ml (-13 to +24%), and from 681 to 953 ml (-15 to +19%), respectively (p ventilators.

  1. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  2. Preoperational test report, vent building ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  4. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies...... that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...

  5. Academic Emergency Medicine Physicians’ Knowledge of Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Susan R. Wilcox

    2016-05-01

    Full Text Available Introduction: Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM education or clinical practice. The objective of this study was to quantify EM attendings’ education, experience, and knowledge regarding mechanical ventilation in the emergency department. Methods: We developed a survey of academic EM attendings’ educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings’ scores on the assessment instrument and their training, education, and comfort with ventilation. Results: Of 394 EM attendings surveyed, 211 responded (53.6%. Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46% reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one’s own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians’ comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. Conclusion: EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians’ performance on an assessment tool for mechanical ventilation is

  6. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  7. Natural ventilation for reducing airborne infection in hospitals

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Hua [School of Energy and Environment, Southeast University, Nanjing (China); Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yuguo; Ching, W.H.; Sun, H.Q. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Seto, W.H.; Ching, Patricia [Department of Microbiology, Queen Mary Hospital, Hong Kong (China)

    2010-03-15

    High ventilation rate is shown to be effective for reducing cross-infection risk of airborne diseases in hospitals and isolation rooms. Natural ventilation can deliver much higher ventilation rate than mechanical ventilation in an energy-efficient manner. This paper reports a field measurement of naturally ventilated hospital wards in Hong Kong and presents a possibility of using natural ventilation for infection control in hospital wards. Our measurements showed that natural ventilation could achieve high ventilation rates especially when both the windows and the doors were open in a ward. The highest ventilation rate recorded in our study was 69.0 ACH. The airflow pattern and the airflow direction were found to be unstable in some measurements with large openings. Mechanical fans were installed in a ward window to create a negative pressure difference. Measurements showed that the negative pressure difference was negligible with large openings but the overall airflow was controlled in the expected direction. When all the openings were closed and the exhaust fans were turned on, a reasonable negative pressure was created although the air temperature was uncontrolled. The high ventilation rate provided by natural ventilation can reduce cross-infection of airborne diseases, and thus it is recommended for consideration of use in appropriate hospital wards for infection control. Our results also demonstrated a possibility of converting an existing ward using natural ventilation to a temporary isolation room through installing mechanical exhaust fans. (author)

  8. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  9. Low Tidal Volume Reduces Lung Inflammation Induced by Liquid Ventilation in Piglets With Severe Lung Injury.

    Science.gov (United States)

    Jiang, Lijun; Feng, Huizhen; Chen, Xiaofan; Liang, Kaifeng; Ni, Chengyao

    2017-05-01

    Total liquid ventilation (TLV) is an alternative treatment for severe lung injury. High tidal volume is usually required for TLV to maintain adequate CO 2 clearance. However, high tidal volume may cause alveolar barotrauma. We aim to investigate the effect of low tidal volume on pulmonary inflammation in piglets with lung injury and under TLV. After the establishment of acute lung injury model by infusing lipopolysaccharide, 12 piglets were randomly divided into two groups, TLV with high tidal volume (25 mL/kg) or with low tidal volume (6 mL/kg) for 240 min, respectively. Extracorporeal CO 2 removal was applied in low tidal volume group to improve CO 2 clearance and in high tidal volume group as sham control. Gas exchange and hemodynamic status were monitored every 30 min during TLV. At the end of the study, pulmonary mRNA expression and plasmatic concentration of interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured by collecting lung tissue and blood samples from piglets. Arterial blood pressure, PaO 2 , and PaCO 2 showed no remarkable difference between groups during the observation period. Compared with high tidal volume strategy, low tidal volume resulted in 76% reduction of minute volume and over 80% reduction in peak inspiratory pressure during TLV. In addition, low tidal volume significantly diminished pulmonary mRNA expression and plasmatic level of IL-6 and IL-8. We conclude that during TLV, low tidal volume reduces lung inflammation in piglets with acute lung injury without compromising gas exchange. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air...... to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed...

  11. Iatrogenic pneumothorax related to mechanical ventilation

    Science.gov (United States)

    Hsu, Chien-Wei; Sun, Shu-Fen

    2014-01-01

    Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with pneumothoraces occurring most commonly during the early phase of mechanical ventilation. The diagnosis of pneumothorax in critical illness is established from the patients’ history, physical examination and radiological investigation, although the appearances of a pneumothorax on a supine radiograph may be different from the classic appearance on an erect radiograph. For this reason, ultrasonography is beneficial for excluding the diagnosis of pneumothorax. Respiration-dependent movement of the visceral pleura and lung surface with respect to the parietal pleura and chest wall can be easily visualized with transthoracic sonography given that the presence of air in the pleural space prevents sonographic visualization of visceral pleura movements. Mechanically ventilated patients with a pneumothorax require tube thoracostomy placement because of the high risk of tension pneumothorax. Small-bore catheters are now preferred in the majority of ventilated patients. Furthermore, if there are clinical signs of a tension pneumothorax, emergency needle decompression followed by tube thoracostomy is widely advocated. Patients with pneumothorax related to mechanical ventilation who have tension pneumothorax, a higher acute physiology and chronic health evaluation II score or PaO2/FiO2 < 200 mmHg were found to have higher mortality. PMID:24834397

  12. Liquid distribution in trickle-bed reactor; Distribution du liquide en reacteur a lit ruisselant

    Energy Technology Data Exchange (ETDEWEB)

    Marcandelli, C.; Wild, G. [Centre National de la Recherche Scientifique (CNRS-ENSIC), Lab. des Sciences du Genie Chimique, 54 - Nancy (France); Lamine, A.S. [CNRS-Universite de Paris-Nord, Lab. d' Ingenierie des Materiaux et des Hautes Pressions, 93 - Villetaneuse (France); Bernard, J.R. [Elf Antar France, Centre de Recherche Elf de Solaize, 69 - Solaize (France)

    2000-07-01

    The aim of this study is to develop techniques to qualify the efficiency of liquid distribution in trickle-bed reactors, using cold mockups. The experimental setup consists mainly in a 0.3-m-ID packed-bed column with three different plates used to vary the quality of inlet liquid distribution. Liquid distribution has been qualified using several techniques: global pressure drop measurements, global RTD (Residence-Time Distribution) of the liquid, local heat transfer probes, capacitance tomography, collector at the bottom of the reactor with nine equal zones. The bed pressure drop and the overall external liquid saturation decrease when the maldistribution increases; quantitative information is however difficult to obtain this way. Global RTD of the liquid allows quantifying of the average liquid distribution in the bed. The local thermal sensors give an indication of local liquid velocity and indicate possible local maldistribution of the liquid (scale mm) even when global distribution is good. Concerning the results obtained with the collector, a maldistribution index is defined ranging from 0 (ideal distribution) to 1 (worst possible distribution), and the influence of the different operating parameters (gas and liquid velocities, particle shape) is discussed. (authors)

  13. Water-hammer in the cold leg during an SBLOCA due to cold ECCS injection

    International Nuclear Information System (INIS)

    Ortiz, M.G.; Ghan, L.S.

    1991-01-01

    Water-hammer might occur in the cold leg of pressurized water reactors (PWR) during small break loss-of-coolant accidents (SBLOCA's), when cold emergency core cooling system (ECCS) water is injected into a pipe that may be partially filled with saturated steam. The water may mix with the steam and cause it to condense abruptly. Depending on the flow regime present, slugs of liquid may then be accelerated towards each other or against the piping structure. The possibility of this phenomenon is of concern to us because it may become a dominant phenomenon and change the character of the transient. In performing the code scaling, applicability, and uncertainty study (CSAU) on a SBLOCA scenario, we had to examine the possibility that the transient being analyzed could experience water-hammer and thus depart from the scope of the study. Two criteria for water-hammer initiation were investigated and tested using a RELAP5/MOD3 simulation of the transient. Our results indicated a very low likelihood of occurrence of the phenomenon. 8 refs., 6 figs

  14. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  15. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  16. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  17. Mechanical Ventilation: State of the Art.

    Science.gov (United States)

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  18. Pandemic ventilator rationing and appeals processes.

    Science.gov (United States)

    Patrone, Daniel; Resnik, David

    2011-06-01

    In a severe influenza pandemic, hospitals will likely experience serious and widespread shortages of patient pulmonary ventilators and of staff qualified to operate them. Deciding who will receive access to mechanical ventilation will often determine who lives and who dies. This prospect raises an important question whether pandemic preparedness plans should include some process by which individuals affected by ventilator rationing would have the opportunity to appeal adverse decisions. However, the issue of appeals processes to ventilator rationing decisions has been largely neglected in state pandemic planning efforts. If we are to devise just and effective plans for coping with a severe influenza pandemic, more attention to the issue of appeals processes for pandemic ventilator rationing decisions is needed. Arguments for and against appeals processes are considered, and some suggestions are offered to help efforts at devising more rational pandemic preparedness plans.

  19. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  20. Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions.

    Science.gov (United States)

    Rackes, A; Ben-David, T; Waring, M S

    2018-04-23

    This article presents an outcome-based ventilation (OBV) framework, which combines competing ventilation impacts into a monetized loss function ($/occ/h) used to inform ventilation rate decisions. The OBV framework, developed for U.S. offices, considers six outcomes of increasing ventilation: profitable outcomes realized from improvements in occupant work performance and sick leave absenteeism; health outcomes from occupant exposure to outdoor fine particles and ozone; and energy outcomes from electricity and natural gas usage. We used the literature to set low, medium, and high reference values for OBV loss function parameters, and evaluated the framework and outcome-based ventilation rates using a simulated U.S. office stock dataset and a case study in New York City. With parameters for all outcomes set at medium values derived from literature-based central estimates, higher ventilation rates' profitable benefits dominated negative health and energy impacts, and the OBV framework suggested ventilation should be ≥45 L/s/occ, much higher than the baseline ~8.5 L/s/occ rate prescribed by ASHRAE 62.1. Only when combining very low parameter estimates for profitable impacts with very high ones for health and energy impacts were all outcomes on the same order. Even then, however, outcome-based ventilation rates were often twice the baseline rate or more. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  2. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Lstiburek, J. [Building Science Corporation (BSC), Somerville, MA (United States); Bergey, D. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  3. Efficacy of an expanded ventilator bundle for the reduction of ventilator-associated pneumonia in the medical intensive care unit.

    Science.gov (United States)

    Blamoun, John; Alfakir, Maria; Rella, Marie E; Wojcik, Janice M; Solis, Roberto A; Anees Khan, M; DeBari, Vincent A

    2009-03-01

    The ventilator bundle (VB) includes a group of clinical maneuvers (head-of-bed elevation, "sedation vacation," deep vein thrombosis prophylaxis, and peptic ulcer disease prophylaxis) to improve outcomes in patients undergoing mechanical ventilation. We modified the standard VB in our medical intensive care unit to include a group of respiratory therapist-driven protocols and, postimplementation, observed a statistically significant (P = .0006) reduction in ventilator-associated pneumonia (VAP), from a median of 14.1 cases/10(3) ventilator-days (interquartile range [IQR] = 12.1 to 20.6) to 0 cases/10(3) ventilator-days (IQR = 0 to 1.1).

  4. Performance of current intensive care unit ventilators during pressure and volume ventilation.

    Science.gov (United States)

    Marchese, Andrew D; Sulemanji, Demet; Chipman, Daniel; Villar, Jesús; Kacmarek, Robert M

    2011-07-01

    Intensive-care mechanical ventilators regularly enter the market, but the gas-delivery capabilities of many have never been assessed. We evaluated 6 intensive-care ventilators in the pressure support (PS), pressure assist/control (PA/C), and volume assist/control (VA/C) modes, with lung-model mechanics combinations of compliance and resistance of 60 mL/cm H(2)O and 10 cm H(2)O/L/s, 60 mL/cm H(2)O and 5 cm H(2)O/L/s, and 30 mL/cm H(2)O and 10 cm H(2)O/L/s, and inspiratory muscle effort of 5 and 10 cm H(2)O. PS and PA/C were set to 15 cm H(2)O, and PEEP to 5 and 15 cm H(2)O in all modes. During VA/C, tidal volume was set at 500 mL and inspiratory time was set at 0.8 second. Rise time and termination criteria were set at the manufacturers' defaults, and to an optimal level during PS and PA/C. There were marked differences in ventilator performance in all 3 modes. VA/C had the greatest difficulty meeting lung model demand and the greatest variability across all tested scenarios and ventilators. From high to low inspiratory muscle effort, pressure-to-trigger, time for pressure to return to baseline, and triggering pressure-time product decreased in all modes. With increasing resistance and decreasing compliance, tidal volume, pressure-to-trigger, time-to-trigger, time for pressure to return to baseline, time to 90% of peak pressure, and pressure-time product decreased. There were large differences between the default and optimal settings for all the variables in PS and PA/C. Performance was not affected by PEEP. Most of the tested ventilators performed at an acceptable level during the majority of evaluations, but some ventilators performed inadequately during specific settings. Bedside clinical evaluation is needed.

  5. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  6. 209-E Building -- Response to ventilation failure evaluation

    International Nuclear Information System (INIS)

    Foust, D.J.

    1998-01-01

    This document provides an evaluation and recommendations for radiological workplace air monitoring and response to ventilation failure for the Critical Mass Laboratory, 209-E Building. The Critical Mass Laboratory, part of the 209-E Building, was designed to provide a heavily shielded room where plutonium and uranium liquid solutions could be brought into various critical configurations under readily controlled and monitored conditions. The facility is contained within a one-story L-shaped concrete block and reinforced concrete building. One wing houses offices, a control room, shops, and a common area while the other wing includes an equipment room, the change room, work areas, and the two-story Critical Assembly Room (CAR). Three of the rooms contain radiologically contaminated equipment and materials

  7. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  8. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  9. Comparison of two modes of ventilation after fast-track cardiac surgery: Adaptive support ventilation versus synchronized intermittent mandatory ventilation

    International Nuclear Information System (INIS)

    Aghadavoudi, O.

    2012-01-01

    Objective: There is substantial debate regarding the appropriate protocol for ventilatory management in fast-track cardiac anesthesia (FTCA). This study was carried out to assess and compare the risks and benefits of respiratory weaning based on adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) after uncomplicated cardiac surgery. Methodology: In a randomized clinical trial, after receiving approval of the Department Research Committee and informed consent from study subjects, 100 patients undergoing elective coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass (CPB) were enrolled during a 4-month period at a university-based hospital. After surgery and admission to the intensive care unit (ICU), patients were randomized to ASV and SIMV groups. Arterial blood gas (ABG) and hemodynamic variables, respiratory and ventilator characteristics including lung compliance, rapid shallow breathing index (RSBI), tidal volume (TV), respiratory rate (RR), peak inspiratory pressure (P peak), mean airway pressure (p mean), Pao2/FIo2, duration of mechanical ventilation and tracheal intubation, and length of ICU stay were recorded and compared between the two groups. The data were analyzed in 82 patients after considering the exclusion criteria. Results: There were no differences between ASV and SIMV groups in demographics and preoperative characteristics. The duration of tracheal intubation and the length of ICU stay were similar in both groups. There were no statistically and clinically relevant differences between the two groups in ABG, hemodynamic changes, and respiratory and ventilator characteristics during ICU stay. Conclusion: Although ASV may facilitate postoperative respiratory management in FTCA, both ASV and SIMV provide similarly safe and practicable respiratory weaning in the cardiac ICU. The evaluation of potential advantages in patient outcomes and resource utilization of respiratory weaning based on ASV

  10. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    Science.gov (United States)

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics

  11. Duration of Mechanical Ventilation in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Lauren B. Angotti

    2017-07-01

    Full Text Available Introduction: Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED before intensive care unit (ICU admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS. Methods: This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. Results: We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. Conclusion: In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to

  12. Duration of Mechanical Ventilation in the Emergency Department.

    Science.gov (United States)

    Angotti, Lauren B; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey D; Seigel, Todd A; Al Ashry, Haitham S; Wilcox, Susan R

    2017-08-01

    Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED) before intensive care unit (ICU) admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS). This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to expedited transfer of patients into an appropriate ICU setting.

  13. Initial ventilator settings for critically ill patients

    OpenAIRE

    Kilickaya, Oguz; Gajic, Ognjen

    2013-01-01

    The lung-protective mechanical ventilation strategy has been standard practice for management of acute respiratory distress syndrome (ARDS) for more than a decade. Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation. Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ...

  14. Artificial humidification for the mechanically ventilated patient

    OpenAIRE

    Selvaraj, Nelson

    2010-01-01

    Caring for patients who are mechanically ventilated poses many\\ud challenges for critical care nurses. It is important to humidify the\\ud patient’s airways artificially to prevent complications such as\\ud ventilator-associated pneumonia. There is no gold standard to\\ud determine which type of humidification is best for patients who\\ud are artificially ventilated. This article provides an overview of\\ud commonly used artificial humidification for mechanically ventilated\\ud patients and discuss...

  15. Artificial humidification for the mechanically ventilated patient.

    Science.gov (United States)

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  16. Diesel CPO for SOFC. Development of a cold-flame assisted CPO reactor coupled to a SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, H.A.J.; Ouweltjes, J.P.; Nyqvist, R.G. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-07-15

    Within the research program 'Reforming of liquid fuels for fuel-cells', ECN started a project on the development of a diesel CPO (catalytic partial oxidation) reformer for SOFC (solid oxide fuel cell) in 2005. The application in mind is a small scale (5kWe) diesel fed auxiliary power unit (APU). The goal of the project is to develop the technology required to transform a liquid logistic fuel into a reformat suitable for the operation of a SOFC. The emphasis of this work is on the development of a cold-flame assisted evaporator/mixer coupled to a catalytic CPO reformer. The application of cold-flame evaporation and mixing allows the reformat to be directly fed to the SOFC without further heating or cooling. Moreover, once cold-flames are ignited and stabilized, pre-heating of the air and fuel becomes obsolete. These aspects justify the development described in this report. In the cold-flame evaporator/mixer, the cold-flames are stabilized by means of a recirculation tube. The momentum of the fuel spray of the nozzle induces the required recirculation. The cold flame evaporator/mixer was coupled to a catalytic reformer reactor, transforming the hydrocarbon+air feed into a CO+H2 rich reformate. The reformer was coupled to a SOFC to be able to verify the quality of the reformat obtained with this reformer. The SOFC therefore served as an analysis tool. Characteristically, the reformat was held at 800C all the way towards the SOFC. For this, high temperature flange connections and steel-ceramic expansion connections were successfully applied. It is demonstrated that cold-flame evaporation of liquid fuels is a feasible means of feed preparation for a catalytic reforming reactor. The quality of the resulting reformat is adequate to be fed to the SOFC. The reformat quality, however, decreased with time-on-stream due to fouling of the reformer by carbon-depositions. These carbon-depositions were essentially located on the fuel injector, which is the coldest part

  17. Natural ventilation of buildings: opposing wind and buoyancy

    Science.gov (United States)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  18. Lung-protective ventilation in neonatology

    NARCIS (Netherlands)

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should

  19. [Lung protective ventilation - pathophysiology and diagnostics].

    Science.gov (United States)

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  20. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    Science.gov (United States)

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  2. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  3. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  4. Ventilation of radioactive enclosures

    International Nuclear Information System (INIS)

    Caminade, F.; Laurent, H.

    1957-01-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m 3 ). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [fr

  5. Modelling of Cold Water Hammer with WAHA code

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2003-01-01

    The Cold Water Hammer experiment described in the present paper is a simple facility where overpressure accelerates a column of liquid water into the steam bubble at the closed vertical end of the pipe. Severe water hammer with high pressure peak occurs when the vapor bubble condenses and the liquid column hits the closed end of the pipe. Experimental data of Forschungszentrum Rossendorf are being used to test the newly developed computer code WAHA and the computer code RELAP5. Results show that a small amount of noncondensable air in the steam bubble significantly affects the magnitude of the calculated pressure peak, while the wall friction and condensation rate only slightly affect the simulated phenomena. (author)

  6. Secretion management in the mechanically ventilated patient.

    Science.gov (United States)

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  7. Natural ventilation for the prevention of airborne contagion.

    Science.gov (United States)

    Escombe, A Roderick; Oeser, Clarissa C; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Pan, William; Martínez, Carlos; Chacaltana, Jesus; Rodríguez, Richard; Moore, David A J; Friedland, Jon S; Evans, Carlton A

    2007-02-01

    Institutional transmission of airborne infections such as tuberculosis (TB) is an important public health problem, especially in resource-limited settings where protective measures such as negative-pressure isolation rooms are difficult to implement. Natural ventilation may offer a low-cost alternative. Our objective was to investigate the rates, determinants, and effects of natural ventilation in health care settings. The study was carried out in eight hospitals in Lima, Peru; five were hospitals of "old-fashioned" design built pre-1950, and three of "modern" design, built 1970-1990. In these hospitals 70 naturally ventilated clinical rooms where infectious patients are likely to be encountered were studied. These included respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. These rooms were compared with 12 mechanically ventilated negative-pressure respiratory isolation rooms built post-2000. Ventilation was measured using a carbon dioxide tracer gas technique in 368 experiments. Architectural and environmental variables were measured. For each experiment, infection risk was estimated for TB exposure using the Wells-Riley model of airborne infection. We found that opening windows and doors provided median ventilation of 28 air changes/hour (ACH), more than double that of mechanically ventilated negative-pressure rooms ventilated at the 12 ACH recommended for high-risk areas, and 18 times that with windows and doors closed (p ventilation than modern naturally ventilated rooms (40 versus 17 ACH; p natural ventilation exceeded mechanical (p ventilated rooms 39% of susceptible individuals would become infected following 24 h of exposure to untreated TB patients of infectiousness characterised in a well-documented outbreak. This infection rate compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open. Opening windows and

  8. Building ventilation, state of the art, prospective

    International Nuclear Information System (INIS)

    1995-10-01

    This conference is composed of 21 communications and 21 posters in the domain of building ventilation and indoor air quality; the main themes are: indoor air quality assessment and optimization; performance enhancement and optimization of ventilation systems and equipment; ventilation systems for renovated and rehabilitated buildings; French and European regulations, standardizations and certifications; experimental and numerical simulation studies concerning ventilation systems, air flow, temperature distribution, air quality, radon decontamination, thermal comfort and acoustic levels in buildings

  9. Implementation of a Goal-Directed Mechanical Ventilation Order Set Driven by Respiratory Therapists Improves Compliance With Best Practices for Mechanical Ventilation.

    Science.gov (United States)

    Radosevich, Misty A; Wanta, Brendan T; Meyer, Todd J; Weber, Verlin W; Brown, Daniel R; Smischney, Nathan J; Diedrich, Daniel A

    2017-01-01

    Data regarding best practices for ventilator management strategies that improve outcomes in acute respiratory distress syndrome (ARDS) are readily available. However, little is known regarding processes to ensure compliance with these strategies. We developed a goal-directed mechanical ventilation order set that included physician-specified lung-protective ventilation and oxygenation goals to be implemented by respiratory therapists (RTs). We sought as a primary outcome to determine whether an RT-driven order set with predefined oxygenation and ventilation goals could be implemented and associated with improved adherence with best practice. We evaluated 1302 patients undergoing invasive mechanical ventilation (1693 separate episodes of invasive mechanical ventilation) prior to and after institution of a standardized, goal-directed mechanical ventilation order set using a controlled before-and-after study design. Patient-specific goals for oxygenation partial pressure of oxygen in arterial blood (Pao 2 ), ARDS Network [Net] positive end-expiratory pressure [PEEP]/fraction of inspired oxygen [Fio 2 ] table use) and ventilation (pH, partial pressure of carbon dioxide) were selected by prescribers and implemented by RTs. Compliance with the new mechanical ventilation order set was high: 88.2% compliance versus 3.8% before implementation of the order set ( P mechanical ventilation, intensive care unit (ICU) length of stay, and in-hospital or ICU mortality. A standardized best practice mechanical ventilation order set can be implemented by a multidisciplinary team and is associated with improved compliance to written orders and adherence to the ARDSNet PEEP/Fio 2 table.

  10. Numerical simulation and comparison of two ventilation methods for a restaurant - displacement vs mixed flow ventilation

    Science.gov (United States)

    Chitaru, George; Berville, Charles; Dogeanu, Angel

    2018-02-01

    This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.

  11. Functionality of Ventilated Facades: Protection of Insulation

    Directory of Open Access Journals (Sweden)

    Petrichenko Mikhail

    2016-01-01

    Full Text Available This article discusses about methods of construction of the ventilated facades. The ventilated facade is not only the element of facing, it is the supporting structure. Their main objective - creation of air ventilating space between a facade and an external wall of the building. Moving of air in this gap protects a heater from destruction, interfering with a moisture congestion. In addition, the ventilated facade protect the building from aggressive influence of external environment, have a sound and thermal insulation properties. There are several problems of systems of the ventilated facades connected with an application of a heater. For more effective using it is necessary to minimize contact of a heater with environment.

  12. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  13. Implementation of natural ventilation in pig houses

    NARCIS (Netherlands)

    Klooster, van 't C.E.

    1994-01-01

    A description of experimental work and discussion on implementation of natural ventilation in pig houses is given. A literature review describes the state of the art, animal growth data are given. It includes characterization of ventilation openings, a technique to estimate the ventilation

  14. Echocardiographic evaluation during weaning from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luciele Medianeira Schifelbain

    2011-01-01

    Full Text Available INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. RESULTS: Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients

  15. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  16. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    Science.gov (United States)

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  17. Discussion for management of ventilation system in uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Ren Jianjun; Hu Penghua

    2014-01-01

    Radon exhaustion and ventilation are surely regarded as key links for safety production and radiation protection in underground uranium mines, and the crucial point to achieve safety production goals lies in timely and accurately adjusting and controlling of ventilation technical measures and ventilation system management with the changing operation conditions of mines. This paper proposes corresponding countermeasures based on the respectively systematical analysis of daily ventilation management, ventilation facilities and structures management, and ventilation system information management in uranium mines. Furthermore, standardized management approaches and suggestions are put forward to realize standardization of uranium mines' ventilation management and radon exhaustion technique. (authors)

  18. Nasal mask ventilation is better than face mask ventilation in edentulous patients

    OpenAIRE

    Kapoor, Mukul Chandra; Rana, Sandeep; Singh, Arvind Kumar; Vishal, Vindhya; Sikdar, Indranil

    2016-01-01

    Background and Aims: Face mask ventilation of the edentulous patient is often difficult as ineffective seating of the standard mask to the face prevents attainment of an adequate air seal. The efficacy of nasal ventilation in edentulous patients has been cited in case reports but has never been investigated. Material and Methods: Consecutive edentulous adult patients scheduled for surgery under general anesthesia with endotracheal intubation, during a 17-month period, were prospectively ev...

  19. Evaluation of cold testing for Tokai Vitrification Facility

    International Nuclear Information System (INIS)

    Yoshioka, Masahiro; Inada, Eiichi

    1994-01-01

    The cold testing of the Tokai Vitrification Facility (TVF) was completed at the end of March, 1994 through the tests of nearly two years since May in 1992. The cold testing was carried out in order to evaluate the process equipment, product quality control, remote maintenance capability. The test results shown that TVF has enough performance with safety to treat the liquid waste in each process, and to control the product quality. For the remote maintenance of process equipment in the vitrification cell, the remote maintenance capability was confirmed for all remote equipment in the cell. The improvements were taken for some equipment with problem from the point of the operability and maintenance. It was confirmed by these test results that the TVF can go forward to the hot test operation using actual waste. (author)

  20. Computational modeling of particle transport and distribution emitted from a Laserjet printer in a ventilated room with different ventilation configurations

    International Nuclear Information System (INIS)

    Ansaripour, Mehrzad; Abdolzadeh, Morteza; Sargazizadeh, Saleh

    2016-01-01

    Highlights: • The distribution of emitted particles form a laserjet printer was studied in the breathing zone. • Effects of different ventilation configurations on the breathing zone concentration were investigated. • Mixing ventilation system has a low mean particle concentration in the breathing zone. - Abstract: In the present research, computational modeling of particle transport and distribution emitted from a Laserjet printer was carried out in a ventilated room. A seated manikin was integrated into the study room and the manikin was evaluated in two cases: heated and unheated. Effects of different ventilation configurations of the room on the particle distribution were studied, including three displacement ventilation systems and a mixing ventilation system. The printer was located on different sides of the manikin and the particle concentrations in the breathing zone of the manikin due to the printer’s particles were evaluated in all the ventilation configurations. The averaged particle concentration in the breathing zone of the manikin was calculated and validated with the experimental and numerical data available in the literature. The results of the present study showed that in case of the heated manikin, the particle concentration due to the printer pollutants is significant in the breathing zone of the manikin. The results also showed that when the printer is located on the front side of the manikin, the particle concentration in the breathing zone is quite high in most of the used ventilation configurations. Furthermore, it was found that the mixing ventilation system has a lower mean particle concentration in the breathing zone compared to the most displacement ventilation systems.

  1. 21 CFR 868.5925 - Powered emergency ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered emergency ventilator. 868.5925 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5925 Powered emergency ventilator. (a) Identification. A powered emergency ventilator is a demand valve or inhalator intended to provide emergency...

  2. Ventilation strategies and indoor environment in classrooms

    DEFF Research Database (Denmark)

    Zhang, Chen; Liu, Li

    2017-01-01

    Compared with the other building types, the school building has much higher occupancy density and ventilation demand. In Demark, most of the school buildings are ventilated by natural manner. There is a risk of poor indoor environment associated with the lack of ventilation system or insufficient...

  3. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  4. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  5. Application of CPM procedures in mine ventilation

    International Nuclear Information System (INIS)

    Wang, Y.J.; Mutmansky, J.M.

    1982-01-01

    Mine ventilation analysis is an engineering discipline that can be considered a branch of the body of science known as network analysis. Likewise, the group of engineering procedures known as the critical path method (CPM) is considered a branch of network analysis. It is therefore not surprising that mine ventilation network analysis and CPM have many similarities. These similarities are useful in analyzing several types of mine ventilation problems and will be utilized in this paper. The analogy between the free split in a ventilation circuit and the critical path in a scheduling network has been recognized by Owili-Eger (1973). While this was recognized as a property of a general ventilation network, many important applications to controlled-splitting problems also exist. The mathematical procedures necessary to apply CPM and network methods have previously been presented (Wang, 1981; Wang, 1982). This paper will illustrate the implementation of these methods by application to mine ventilation networks

  6. Effect of cold working on the corrosion resistance of JPCA stainless steel in flowing Pb–Bi at 450 °C

    International Nuclear Information System (INIS)

    Rivai, Abu Khalid; Saito, Shigeru; Tezuka, Masao; Kato, Chiaki; Kikuchi, Kenji

    2012-01-01

    Development of a high performance proton beam window material is one of the critical issues for the deployment of the accelerator-driven transmutation system (ADS) with liquid Pb–Bi eutectic as a spallation target and coolant. In the present study, we applied 20% cold work treatment to JPCA austenitic stainless steel and investigated it from the corrosion behavior viewpoint. The corrosion test of 20% cold-worked JPCA SS has been carried in the JLBL-1 (JAEA Lead–Bismuth Loop-1) apparatus. The maximum temperature, the temperature difference, the flow velocity and the exposure time of the liquid Pb–Bi were 450 °C, 100 °C, 1 m/s, and 1000 h, respectively. For comparison analysis, JPCA SS without cold working was also tested in the same time and conditions with the 20% cold-worked JPCA SS. The results showed a different corrosion behavior between the JPCA SS without and with cold working. As for the JPCA SS without cold working, Pb–Bi penetrated into the matrix through a ferrite layer which was formed because of constituent metals dissolution from the matrix into Pb–Bi. As for the 20% cold-worked JPCA SS, dissolution attack occurred only partially and formed localized superficial pitting corrosion. It was found that the different corrosion behavior occurred because the cold working induced a structure transformation from γ-austenite to α′-martensite and affected the corrosion resistance of the JPCA SS in flowing Pb–Bi at 450 °C.

  7. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  8. 21 CFR 868.5915 - Manual emergency ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual emergency ventilator. 868.5915 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5915 Manual emergency ventilator. (a) Identification. A manual emergency ventilator is a device, usually incorporating a bag and valve, intended to...

  9. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    OpenAIRE

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung inj...

  10. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  11. A prospective evaluation of ventilator-associated conditions and infection-related ventilator-associated conditions.

    Science.gov (United States)

    Boyer, Anthony F; Schoenberg, Noah; Babcock, Hilary; McMullen, Kathleen M; Micek, Scott T; Kollef, Marin H

    2015-01-01

    The Centers for Disease Control and Prevention has shifted policy away from using ventilator-associated pneumonia (VAP) and toward using ventilator-associated conditions (VACs) as a marker of ICU quality. To date, limited prospective data regarding the incidence of VAC among medical and surgical ICU patients, the ability of VAC criteria to capture patients with VAP, and the potential clinical preventability of VACs are available. This study was a prospective 12-month cohort study (January 2013 to December 2013). We prospectively surveyed 1,209 patients ventilated for ≥ 2 calendar days. Sixty-seven VACs were identified (5.5%), of which 34 (50.7%) were classified as an infection-related VAC (IVAC) with corresponding rates of 7.0 and 3.6 per 1,000 ventilator days, respectively. The mortality rate of patients having a VAC was significantly greater than that of patients without a VAC (65.7% vs 14.4%, P VACs included IVACs (50.7%), ARDS (16.4%), pulmonary edema (14.9%), and atelectasis (9.0%). Among IVACs, 44.1% were probable VAP and 17.6% were possible VAP. Twenty-five VACs (37.3%) were adjudicated to represent potentially preventable events. Eighty-six episodes of VAP occurred in 84 patients (10.0 of 1,000 ventilator days) during the study period. The sensitivity of the VAC criteria for the detection of VAP was 25.9% (95% CI, 16.7%-34.5%). Although relatively uncommon, VACs are associated with greater mortality and morbidity when they occur. Most VACs represent nonpreventable events, and the VAC criteria capture a minority of VAP episodes.

  12. Innovation in home mechanical ventilation

    NARCIS (Netherlands)

    Hazenberg, Andrea

    2017-01-01

    Patients on home mechanical ventilation (HMV) are ventilator dependent, usually for the rest of their lives. In the past decades, the number of patients on HMV increased to nearly 3,000 in 2016 in the Netherlands. Current indications for HMV are patients diagnosed with either neuromuscular disease,

  13. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  14. 9 CFR 354.226 - Lighting and ventilation.

    Science.gov (United States)

    2010-01-01

    ... Facilities § 354.226 Lighting and ventilation. There shall be ample light, either natural or artificial or both, of good quality and well distributed, and sufficient ventilation for all rooms and compartments... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Lighting and ventilation. 354.226...

  15. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-01

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with 68 Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V HU ) or Jacobian determinant of deformation (V Jac ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV HU and ρV Jac ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ m = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d 20 for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV HU ) with σ m = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d 20 ⩽ 0.68, with r ¯ =0.42±0.16 and d ¯ 20 =0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r ¯ and d ¯ 20 (p ¯ than for unscaled

  16. Reflector optimization for coupled liquid hydrogen moderator

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Furusaka, M.

    1991-01-01

    As a part of optimization studies on a coupled liquid hydrogen moderator system, the optimal thickness of the reflector, the effects of neutron absorbing liners and other beam hole/moderator on the cold-neutron-beam intensity were studied experimentally. It turns out that the optimal thickness is rather thick in this system and the existence of Cd liners around the beam extraction hole considerably reduces the cold neutron beam intensity, while the existence of other beam hole and moderator does not give an important intensity reduction. (author)

  17. Implementation of a real-time compliance dashboard to help reduce SICU ventilator-associated pneumonia with the ventilator bundle.

    Science.gov (United States)

    Zaydfudim, Victor; Dossett, Lesly A; Starmer, John M; Arbogast, Patrick G; Feurer, Irene D; Ray, Wayne A; May, Addison K; Pinson, C Wright

    2009-07-01

    Ventilator-associated pneumonia (VAP) causes significant morbidity and mortality in critically ill surgical patients. Recent studies suggest that the success of preventive measures is dependent on compliance with ventilator bundle parameters. Implementation of an electronic dashboard will improve compliance with the bundle parameters and reduce rates of VAP in our surgical intensive care unit (SICU). Time series analysis of VAP rates between January 2005 and July 2008, with dashboard implementation in July 2007. Multidisciplinary SICU at a tertiary-care referral center with a stable case mix during the study period. Patients admitted to the SICU between January 2005 and July 2008. Infection control data were used to establish rates of VAP and total ventilator days. For the time series analysis, VAP rates were calculated as quarterly VAP events per 1000 ventilator days. Ventilator bundle compliance was analyzed after dashboard implementation. Differences between expected and observed VAP rates based on time series analysis were used to estimate the effect of intervention. Average compliance with the ventilator bundle improved from 39% in August 2007 to 89% in July 2008 (P dashboard (P = .01). Quarterly VAP rates were significantly reduced in the November 2007 through January 2008 and February through April 2008 periods (P dashboard improved compliance with ventilator bundle measures and is associated with reduced rates of VAP in our SICU.

  18. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  19. Synchronized mechanical ventilation for respiratory support in newborn infants.

    Science.gov (United States)

    Greenough, Anne; Murthy, Vadivelam; Milner, Anthony D; Rossor, Thomas E; Sundaresan, Adesh

    2016-08-19

    During synchronised mechanical ventilation, positive airway pressure and spontaneous inspiration coincide. If synchronous ventilation is provoked, adequate gas exchange should be achieved at lower peak airway pressures, potentially reducing baro/volutrauma, air leak and bronchopulmonary dysplasia. Synchronous ventilation can potentially be achieved by manipulation of rate and inspiratory time during conventional ventilation and employment of patient-triggered ventilation. To compare the efficacy of:(i) synchronised mechanical ventilation, delivered as high-frequency positive pressure ventilation (HFPPV) or patient-triggered ventilation (assist control ventilation (ACV) and synchronous intermittent mandatory ventilation (SIMV)), with conventional ventilation or high-frequency oscillation (HFO);(ii) different types of triggered ventilation (ACV, SIMV, pressure-regulated volume control ventilation (PRVCV), SIMV with pressure support (PS) and pressure support ventilation (PSV)). We used the standard search strategy of the Cochrane Neonatal Review group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 5), MEDLINE via PubMed (1966 to June 5 2016), EMBASE (1980 to June 5 2016), and CINAHL (1982 to June 5 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised or quasi-randomised clinical trials comparing synchronised ventilation delivered as HFPPV to CMV, or ACV/SIMV to CMV or HFO in neonates. Randomised trials comparing different triggered ventilation modes (ACV, SIMV, SIMV plus PS, PRVCV and PSV) in neonates. Data were collected regarding clinical outcomes including mortality, air leaks (pneumothorax or pulmonary interstitial emphysema (PIE)), severe intraventricular haemorrhage (grades 3 and 4), bronchopulmonary dysplasia (BPD) (oxygen dependency beyond 28 days), moderate/severe BPD (oxygen

  20. What does built-in software of home ventilators tell us? An observational study of 150 patients on home ventilation.

    Science.gov (United States)

    Pasquina, Patrick; Adler, Dan; Farr, Pamela; Bourqui, Pascale; Bridevaux, Pierre Olivier; Janssens, Jean-Paul

    2012-01-01

    Recent home ventilators are equipped with built-in software which provides data such as compliance, estimations of leaks, tidal volume, minute ventilation, respiratory rate, apnea and apnea-hypopnea indexes, and percentage of inspirations triggered by the patient (or ventilator). However, for many of these variables, there is neither consensus nor documentation as to what is to be expected in a population of stable patients under noninvasive ventilation (NIV). To document the values and distribution of specific items downloaded from ventilator monitoring software, by diagnostic category. Analysis of data downloaded from home ventilators in clinically stable patients under long-term NIV, during elective home visits by specialized nurses. Data were collected from home ventilators of 150 patients with chronic obstructive pulmonary disease (n = 32), overlap syndrome (n = 29), obesity-hypoventilation (n = 38), neuromuscular disorders (n = 19), restrictive disorders (n = 21), and central sleep apnea syndrome (n = 11). On average, leaks were low, being lowest in patients with facial masks (vs. nasal masks), and increased with older age. Compliance was excellent in all groups. Patients with neuromuscular diseases triggered their ventilators less and tended to be 'captured', while other groups triggered at least half of inspiratory cycles. Most patients had a respiratory rate just slightly above the back-up rate. Residual apneas and hypopneas were highest in patients with central apneas. Built-in software of home ventilators provides the clinician with new parameters, some of which are a useful adjunct to recommended tools for monitoring NIV and may contribute to a better understanding of residual hypoventilation and/or desaturations. However, an independent validation of the accuracy of this information is mandatory. Copyright © 2011 S. Karger AG, Basel.

  1. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted into...

  2. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  3. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  4. Modelling of Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2006-01-01

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building,...

  5. Potential of Natural Ventilation in Shopping Centres

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Friis, Kristina; Brohus, Henrik

    2008-01-01

    The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV) in shop......The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV......) in shopping centres with focus on both the achieved IEQ and energy consumptions for air movement. By thermal building simulations it is found that there exists an interesting potential for hybrid ventilation of shopping centres, which can lead to great savings in the electrical energy consumptions...

  6. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  7. 3 Level Ventilation: the First Clinical Experience

    Directory of Open Access Journals (Sweden)

    P. Torok

    2008-01-01

    Full Text Available Considering the issues of artificial ventilation (AV in non-homogenous pathological lung processes (acute lung injury (ALI, acute respiratory distress syndrome (ARDS, pneumonia, etc., the authors applied the three-level lung ventilation to a group of 12 patients with non-homogenous lung injury. Three-level ventilation was defined as a type (modification of AV whose basic ventilation level was produced by the modes CMV, PCV or PS (ASB and add-on level, the so-called background ventilation was generated by two levels of PEEP. PEEP (constant and PEEPh (PEEP high with varying frequency and duration of transition between the individual levels of PEEP. Objective: to elucidate whether in cases of considerably non-homogenous gas distribution in acute pathological disorders, three-level ventilation (3LV can correct gas distribution into the so-called slow bronchoalveolar compartments, by decreasing the volume load of the so-called fast compartments and to improve lung gas exchange, by following the principles of safe ventilation. Results. 3LV was applied to 12 patients with severe non-homogenous lung injury/disorder (atypic pneumonia and ARDS/ALI and low-success PCV ventilation after recruitment manoeuvre (PaO2 (kPA /FiO2 = 5—6. There were pronounced positive changes in pulmonary gas exchange within 1—4 hours after initiation of 3LV at a fPCV of 26±4 breaths/min-1 and PEEPh at a fPEEPH of 7±2 breaths/min-1 with a minute ventilation of 12±4 l/min. 3LV reduced a intrapulmonary shunt fraction 50±5 to 30±5%, increased CO2 elimination, with PaCO2 falling to the values below 6±0.3 kPa, and PaO2 to 7.5±1.2 kPa, with FiO2 being decreased to 0.8—0.4. Lung recruitment also improved gas exchange: with PEEP=1.2±0.4 kPa, static tho-racopulmonary compliance (Cst elevated from 0.18±0.02 l/kPa to 0.3±0.02 l/kPa and then to 0.38±0.05 l/kPa. Airways resistance (Raw decreased by more than 30%. Improved lung aeration was also estimated as a manifestation of

  8. Analysis of a Pediatric Home Mechanical Ventilator Population.

    Science.gov (United States)

    Amirnovin, Rambod; Aghamohammadi, Sara; Riley, Carley; Woo, Marlyn S; Del Castillo, Sylvia

    2018-05-01

    The population of children requiring home mechanical ventilation has evolved over the years and has grown to include a variety of diagnoses and needs that have led to changes in the care of this unique population. The purpose of this study was to provide a descriptive analysis of pediatric patients requiring home mechanical ventilation after hospitalization and how the evolution of this technology has impacted their care. A retrospective, observational, longitudinal analysis of 164 children enrolled in a university-affiliated home mechanical ventilation program over 26 years was performed. Data included each child's primary diagnosis, date of tracheostomy placement, duration of mechanical ventilation during hospitalization that consisted of home mechanical ventilator initiation, total length of pediatric ICU stay, ventilator settings at time of discharge from pediatric ICU, and disposition (home, facility, or died). Univariate, bivariate, and regression analysis was used as appropriate. The most common diagnosis requiring the use of home mechanical ventilation was neuromuscular disease (53%), followed by chronic pulmonary disease (29%). The median length of stay in the pediatric ICU decreased significantly after the implementation of a ventilator ward (70 d [30-142] vs 36 d [18-67], P = .02). The distribution of subjects upon discharge was home (71%), skilled nursing facility (24%), and died (4%), with an increase in the proportion of subjects discharged on PEEP and those going to nursing facilities over time ( P = 0.02). The evolution of home mechanical ventilation has allowed earlier transition out of the pediatric ICU and with increasing disposition to skilled nursing facilities over time. There has also been a change in ventilator management, including increased use of PEEP upon discharge, possibly driven by changes in ventilators and in-patient practice patterns. Copyright © 2018 by Daedalus Enterprises.

  9. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  10. Modes of mechanical ventilation for the operating room.

    Science.gov (United States)

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  11. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  12. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  13. Perioperative lung protective ventilation in obese patients.

    Science.gov (United States)

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F; Repine, John E

    2015-05-06

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increasing, and facing these challenges is common in the operating rooms and critical care units worldwide. In this review we summarize the existing literature which supports the following recommendations for the perioperative ventilation in obese patients: (1) the use of protective ventilation with low tidal volumes (approximately 8 mL/kg, calculated based on predicted -not actual- body weight) to avoid volutrauma; (2) a focus on lung recruitment by utilizing PEEP (8-15 cmH2O) in addition to recruitment maneuvers during the intraoperative period, as well as incentivized deep breathing and noninvasive ventilation early in the postoperative period, to avoid atelectasis, hypoxemia and atelectrauma; and (3) a judicious oxygen use (ideally less than 0.8) to avoid hypoxemia but also possible reabsorption atelectasis. Obesity poses an additional challenge for achieving adequate protective ventilation during one-lung ventilation, but different lung isolation techniques have been adequately performed in obese patients by experienced providers. Postoperative efforts should be directed to avoid hypoventilation, atelectasis and hypoxemia. Further studies are needed to better define optimum protective ventilation strategies and analyze their impact on the perioperative outcomes of surgical patients with obesity.

  14. Intraoperative mechanical ventilation: state of the art.

    Science.gov (United States)

    Ball, Lorenzo; Costantino, Federico; Orefice, Giulia; Chandrapatham, Karthikka; Pelosi, Paolo

    2017-10-01

    Mechanical ventilation is a cornerstone of the intraoperative management of the surgical patient and is still mandatory in several surgical procedures. In the last decades, research focused on preventing postoperative pulmonary complications (PPCs), both improving risk stratification through the use of predictive scores and protecting the lung adopting so-called protective ventilation strategies. The aim of this review was to give an up-to-date overview of the currently suggested intraoperative ventilation strategies, along with their pathophysiologic rationale, with a focus on challenging conditions, such as obesity, one-lung ventilation and cardiopulmonary bypass. While anesthesia and mechanical ventilation are becoming increasingly safe practices, the contribution to surgical mortality attributable to postoperative lung injury is not negligible: for these reasons, the prevention of PPCs, including the use of protective mechanical ventilation is mandatory. Mechanical ventilation should be optimized providing an adequate respiratory support while minimizing unwanted negative effects. Due to the high number of surgical procedures performed daily, the impact on patients' health and healthcare costs can be relevant, even when new strategies result in an apparently small improvement of outcome. A protective intraoperative ventilation should include a low tidal volume of 6-8 mL/kg of predicted body weight, plateau pressures ideally below 16 cmH2O, the lowest possible driving pressure, moderate-low PEEP levels except in obese patients, laparoscopy and long surgical procedures that might benefit of a slightly higher PEEP. The work of the anesthesiologist should start with a careful preoperative visit to assess the risk, and a close postoperative monitoring.

  15. Analysis on present radon ventilation situation of Chinese uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Hu Penghua

    2010-01-01

    Mine Ventilation is the most important way in lowering radon of uranium mines. At present, radon and radon daughter concentration of underground air is 3∼5 times higher than any other air concentration of foreign uranium mines, as the same input for Protective Ventilation between Chinese uranium mines with compaction methodology and international advanced uranium mines. In this passage, through the analysis of Ventilation Radon Reduction status in Chinese uranium mines and the comparison of advantages and shortcomings between variety of ventilation and radon reduction, it illuminated the reasons of higher radon and radon daughter concentration in Chinese uranium mines and put forward some problems in three aspects, which are Ventilation Radon Reduction Theory, Ventilation Radon Reduction Measures and Ventilation Management. And to above problems, this passage put forward some proposals and measures about some aspects, such as strengthen examination and verification and monitoring practical situation, making clear ventilation plan, in according to mining sequence strictly, training Ventilation technician forcefully, enhance Ventilation System management, development of Ventilation Radon Reduction technology research in uranium mines and carrying out ventilation equipments as soon as possible in further and so on. (authors)

  16. Habituation of the cold shock response is inhibited by repeated anxiety: Implications for safety behaviour on accidental cold water immersions.

    Science.gov (United States)

    Barwood, Martin J; Corbett, Jo; Tipton, Mike; Wagstaff, Christopher; Massey, Heather

    2017-05-15

    Accidental cold-water immersion (CWI) triggers the life-threatening cold shock response (CSR) which is a precursor to sudden death on immersion. One practical means of reducing the CSR is to induce an habituation by undergoing repeated short CWIs. Habituation of the CSR is known to be partially reversed by the concomitant experience of acute anxiety, raising the possibility that repeated anxiety could prevent CSR habituation; we tested this hypothesis. Sixteen participants (12 male, 4 female) completed seven, seven-minute immersions in to cold water (15°C). Immersion one acted as a control (CON1). During immersions two to five, which would ordinarily induce an habituation, anxiety levels were repeatedly increased (CWI-ANX rep ) by deception and a demanding mathematical task. Immersions six and seven were counter-balanced with another high anxiety condition (CWI-ANX rep ) or a further control (CON2). Anxiety (20cm visual analogue scale) and cardiorespiratory responses (cardiac frequency [f c ], respiratory frequency [f R ], tidal volume [V T ], minute ventilation [V̇ E ]) were measured. Comparisons were made between experimental immersions (CON1, final CWI-ANX rep , CON2), across habituation immersions and with data from a previous study. Anxiety levels were sustained at a similar level throughout the experimental and habituation immersions (mean [SD] CON1: 7.0 [4.0] cm; CON2: 5.8 [5.2] cm cf CWI-ANX rep : 7.3 [5.5] cm; p>0.05). This culminated in failure of the CSR to habituate even when anxiety levels were not manipulated (i.e. CON2). These data were different (pCSR consequently habituated. Repeated anxiety prevented CSR habituation. A protective strategy that includes inducing habituation for those at risk should include techniques to lower anxiety associated with the immersion event or habituation may not be beneficial in the emergency scenario. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A historical perspective on ventilator management.

    Science.gov (United States)

    Shapiro, B A

    1994-02-01

    Paralysis via neuromuscular blockade in ICU patients requires mechanical ventilation. This review historically addresses the technological advances and scientific information upon which ventilatory management concepts are based, with special emphasis on the influence such concepts have had on the use of neuromuscular blocking agents. Specific reference is made to the scientific information and technological advances leading to the newer concepts of ventilatory management. Information from > 100 major studies in the peer-reviewed medical literature, along with the author's 25 yrs of clinical experience and academic involvement in acute respiratory care is presented. Nomenclature related to ventilatory management is specifically defined and consistently utilized to present and interpret the data. Pre-1970 ventilatory management is traced from the clinically unacceptable pressure-limited devices to the reliable performance of volume-limited ventilators. The scientific data and rationale that led to the concept of relatively large tidal volume delivery are reviewed in the light of today's concerns regarding alveolar overdistention, control-mode dyssynchrony, and auto-positive end-expiratory pressure. Also presented are the post-1970 scientific rationales for continuous positive airway pressure/positive end-expiratory pressure therapy, avoidance of alveolar hyperxia, and partial ventilatory support techniques (intermittent mandatory ventilation/synchronized intermittent mandatory ventilation). The development of pressure-support devices is discussed and the capability of pressure-control techniques is presented. The rationale for more recent concepts of total ventilatory support to avoid ventilator-induced lung injury is presented. The traditional techniques utilizing volume-preset ventilators with relatively large tidal volumes remain valid and desirable for the vast majority of patients requiring mechanical ventilation. Neuromuscular blockade is best avoided in these

  18. Ventilation of high-speed flows, an alternating methodology for the ventilator design

    International Nuclear Information System (INIS)

    Saldarriaga V, Juan G.; Navarrete, J.; Galeano B, Luis A.

    1996-01-01

    This article is about a research developed at Universidad de los Andes on the ventilation of high velocity flows as prevention against cavitations erosion. The research was a consequence of the results found in the physical model of the Guavio River Hydroelectric Project near Bogota and was based in a general model study of a spillway with ventilation system, which did not represent a particular prototype. In the Guavio study one conclusion was obtained:in every ventilation system there are three unknowns which are the air discharge injected to the water flow (design object variable), the sub pressure under the water jet and the jump length of that jet. In the research those three variables were studied using dimensional analysis and multivariable regressions in order to find a set of three equations that allow the design of this type of structures. The new equations are more general than those reported in technical literature

  19. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  20. Free Convection Personalized Ventilation (FCPV)

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally ...