WorldWideScience

Sample records for cold flow properties

  1. Prediction of cold flow properties of Biodiesel

    Directory of Open Access Journals (Sweden)

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  2. Evaluation of approaches for improving diesel cold flow properties

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, Ilshat; Stratiev, Dicho; Dinkov, Rossen [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria); Bachvarov, Assen [Edinburgh Univ. (United Kingdom); Petkov, Petko [Bourgas Univ. ' ' Assen Zlatarov' ' (Bulgaria)

    2012-06-15

    Four heavy diesel fractions (FBP according to ASTM D-2887 of about 420 C), one lower boilingmiddle distillate fraction (FBP according to ASTM D-2887 of 310 C) and kerosene fraction (FBP according to ASTM D-2887 of 271 C) obtained from the Lukoil Neftochim Burgas (LNB) process units during the processing of Russian Export Crude Blend (REBCO) along with four heavy diesel fractions (FBP according to ASTM D-2887 of about 370 C) obtained by fractionation of four crudes: Oil Blend, REBCO, Siberian Light Crude Oil (SLCO) and CPC (Caspian Consortium Pipeline) were investigated for their cold flow properties. It was found that undercutting diesel improves cloud point (CP) and cold filter plugging point (CFPP) by 4 C/10 C cut point. Blending of kerosene improves CP and CFPP by about 2 C/10% added kerosene. The treatment with CP depressants may improve CP by about 2 C if the proper combination diesel - depressant is selected and the improvement can reach up to 6 C for a definite diesel. The treatment with CFPP depressant is much more efficient achieving an improvement of 18 C. By assuming definite fuel prices (Platts) and by applying the LNB linear programming model using Honeywell's RPMS software it was found that catalytic dewaxing is the most efficient approach for producing diesel with improved cold flowproperties if the diesel yield from the dewaxing process is higher than 90%. (orig.)

  3. Optimizing the combustion and cold flow properties of biogasoils

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, Tamas; Hollo, Andras [MOL Hungarian Oil and Gas Plc., Szazhalombatta (Hungary); Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Normal paraffin containing mixtures produced from different natural triglycerides (conventional and improved vegetable oils, used cooking oils and fats, etc.) have high cetane number (9S-105 units), but their freezing points are high (between +15 and +32 C). This property needs to be improved. For this the most suitable process is the isomerization, because among paraffins with the same carbon number, the branched paraffins have a lower freezing point by 20-40 C, relative to normal paraffins. At the same time there is a cetane number decrease of 15-40 units. During the isomerization of these mixtures choosing the favorable process parameters the cold flow demands (< 5 C; < -20 C; < -32 C, etc.) can be fulfilled with high biogasoil product yield and with even high cetane number. The aim of the experimental work was the investigation of the effects of operational parameters (T = 280-380 C; P = 20-80 bar; LHSV = 0.25-4.0 h{sup -1}; apparent contact time: between 1/3 and 4.0 h (at LHSV = 3.0 h{sup -1}); H{sub 2}/feedstock = 400 Nm{sup 3}/m{sup 3}) on the isomerization of paraffin mixtures produced by the catalytic conversion of triglycerides. Biogasoils obtained over a 0.5% Pt/SAP0-11 catalyst had a CFPP values of +5 C; -20 C and -32 C, while the cetane number was 87, 70 and 65, the product yield was 98%, 92% and 86%, respectively. Accordingly they are suitable for bio-component of premium quality diesel fuel. Using biogasoils for the improvement of cetane number and for the reductions in density could provide some economic savings and some flexibility to refineries. (orig.)

  4. A comparison of cold flow properties of biodiesel produced from virgin and used frying oil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shanableh, Filiz [Food Engineering Department, Near East University (Cyprus); Evcil, Ali; Govsa, Cemal [Mechanical Engineering Department, Near East University (Cyprus); Savasdylmac, Mahmut A. [Mechanical Engineering Department, Booazici University (Turkey)

    2011-07-01

    Bio-diesel can be produced from different kinds of feedstock. The purpose of this paper is to research and make the comparison of the cold flow properties of bio-diesel produced from refined-virgin frying vegetable oil (RVFVO) and waste frying vegetable oil (WFVO). As is known, bio-diesel fuel will have higher cloud points (CP), cold filter plugging points (CFPP) and pour points (PP) if it is derived from fat or oil which consists of significant amounts of saturated fatty compounds. Both RVFVO and WFVO were derived from the same cafeteria on a Near East University campus and converted to biodiesel fuel through base catalyzed transesterification reaction. As the current results show, there is no considerable difference in cold flow properties of the bio-diesel produced from RVFVO and WFVO. So WFVO seems be better positioned to serve as raw material in biodiesel production because of its lower cost and its environmental benefits.

  5. Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2014-07-01

    Full Text Available Alternative fuels, like biodiesel, are being utilized as a renewable energy source and an effective substitute for the continuously depleting supply of mineral diesel as they have similar combustion characteristics. However, the use of pure biodiesel as a fuel for diesel engines is currently limited due to problems relating to fuel properties and its relatively poor cold flow characteristics. Therefore, the most acceptable option for improving the properties of biodiesel is the use of a fuel additive. In the present study, the properties of palm oil methyl esters with increasing additive content were investigated after addition of ethanol, butanol and diethyl ether. The results revealed varying improvement in acid value, density, viscosity, pour point and cloud point, accompanied by a slight decrease in energy content with an increasing additive ratio. The viscosity reductions at 5% additive were 12%, 7%, 16.5% for ethanol, butanol and diethyl ether, respectively, and the maximum reduction in pour point was 5 °C at 5% diethyl ether blend. Engine test results revealed a noticeable improvement in engine brake power and specific fuel consumption compared to palm oil biodiesel and the best performance was obtained with diethyl ether. All the biodiesel-additive blend samples meet the requirements of ASTM D6751 biodiesel fuel standards for the measured properties.

  6. Use of Isomerization and Hydroisomerization Reactions to Improve the Cold Flow Properties of Vegetable Oil Based Biodiesel

    Directory of Open Access Journals (Sweden)

    Stephen J. Reaume

    2013-01-01

    Full Text Available Biodiesel is a promising alternative to petroleum diesel with the potential to reduce overall net CO2 emissions. However, the high cloud point of biodiesel must be reduced when used in cold climates. We report on the use of isomerization and hydroisomerization reactions to reduce the cloud point of eight different fats and oils. Isomerization was carried out at 260 °C and 1.5 MPa H2 pressure utilizing beta zeolite catalyst, while hydroisomerization was carried out at 300 °C and 4.0 MPa H2 pressure utilizing 0.5 wt % Pt-doped beta zeolite catalyst. Reaction products were tested for cloud point and flow properties, in addition to catalyst reusability and energy requirements. Results showed that high unsaturated fatty acid biodiesels increased in cloud point, due to the hydrogenation side reaction. In contrast, low unsaturated fatty acid biodiesels yielded cloud point reductions and overall improvement in the flow properties. A maximum cloud point reduction of 12.9 °C was observed with coconut oil as the starting material. Results of the study have shown that branching can reduce the cloud point of low unsaturated fatty acid content biodiesel.

  7. Shaft Seal Compensates for Cold Flow

    Science.gov (United States)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  8. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  9. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  10. Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties.

    Science.gov (United States)

    Haushalter, Robert W; Kim, Woncheol; Chavkin, Ted A; The, Lionadi; Garber, Megan E; Nhan, Melissa; Adams, Paul D; Petzold, Christopher J; Katz, Leonard; Keasling, Jay D

    2014-11-01

    Microbial fermentation is emerging as an increasingly important resource for the production of fatty acids to serve as precursors for renewable diesel as well as detergents, lubricants and other industrial chemicals, as an alternative to traditional sources of reduced carbon such as petroleum. A major disadvantage of fuels derived from biological sources is their undesirable physical properties such as high cloud and pour points, and high viscosity. Here we report the development of an Escherichia coli strain that efficiently produces anteiso-branched fatty acids, which can be converted into downstream products with lower cloud and pour points than the mixtures of compounds produced via the native metabolism of the cell. This work addresses a serious limitation that must be overcome in order to produce renewable biodiesel and oleochemicals that perform as well as their petroleum-based counterparts. Published by Elsevier Inc.

  11. The Akzo-Fina cold flow improvement process

    Energy Technology Data Exchange (ETDEWEB)

    Free, H.W.H.; Schockaert, T.; Sonnemans, J.W.M. (Akzo Chemicals B.V., Amersfoort (Netherlands). Hydroprocessing Catalysts)

    1993-09-01

    The Akzo-Fina CFI process is a very flexible process in which improvement of cold flow properties, desulfurization and hydroconversion are achieved. One of the main characteristics is the dewaxing obtained by the selective hydrocracking of normal paraffins combined with hydro-desulfurization and hydroconversion. Since its introduction in 1988, five licenses have been sold. The units currently run for heavy gasoil upgrading show an excellent performance and reach pour point improvements of over 50[degree]C, long cycle lengths and product sulfur levels well below 0.05 wt%. 2 figs., 2 tabs.

  12. Residence Time Distributions in a Cold, Confined Swirl Flow

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near...

  13. Evolution of velocity dispersion along cold collisionless flows

    International Nuclear Information System (INIS)

    Banik, Nilanjan; Sikivie, Pierre

    2016-01-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components

  14. Cold Flows and Large Scale Tides

    NARCIS (Netherlands)

    Weygaert, R. van de; Hoffman, Y.

    1998-01-01

    Abstract: Several studies have indicated that the local cosmic velocity field is rather cold, in particular in the regions outside the massive, virialized clusters of galaxies. If our local cosmic environment is taken to be a representative volume of the Universe, the repercussion of this finding is

  15. Cold component flow in a two-component mirror machine

    International Nuclear Information System (INIS)

    Rognlien, T.D.

    1975-12-01

    Steady-state solutions are given for the flow characteristics along the magnetic field of the cold plasma component in a two-component mirror machine. The hot plasma component is represented by a fixed density profile. The fluid equations are used to describe the cold plasma, which is assumed to be generated in a localized region at one end of the machine. The ion flow speed, v/sub i/, is required to satisfy the Bohm sheath condition at the end walls, i.e., v/sub i/ greater than or equal to c/sub s/, where c/sub s/ is the ion-acoustic speed. For the case when the cold plasma density, n/sub c/, is much less than the hot plasma density, n/sub h/, the cold plasma is stagnant and does not penetrate through the machine in the zero temperature case. The effect of a finite temperature is to allow for the penetration of a small amount of cold plasma through the machine. For the density range n/sub c/ approximately n/sub h/, the flow solutions are asymmetric about the midplane and have v/sub i/ = c/sub s/ near the midplane. Finally, for n/sub c/ much greater than n/sub h/, the solutions become symmetric about the midplane and approach the Lee--McNamara type solutions with v/sub i/ = c/sub s/ near the mirror throats

  16. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  17. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  18. Cold flow model study of an oxyfuel combustion pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Guio-Perez, D.C.; Tondl, G.; Hoeltl, W.; Proell, T.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-12-15

    The fluid-dynamic behavior of a circulating fluidized bed pilot plant for oxyfuel combustion was studied in a cold flow model, down-scaled using Glicksman's criteria. Pressures along the unit and the global circulation rate were used for characterization. The analysis of five operating parameters and their influence on the system was carried out; namely, total solids inventory and the air velocity of primary, secondary, loop seal and support fluidizations. The cold flow model study shows that the reactor design allows stable operation at a wide range of fluidization rates, with results that agree well with previous observations described in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-01-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10"1"2 M _⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  20. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, California 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, California 91125 (United States); Steidel, Charles C. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, California 91125 (United States); Trainor, Ryan, E-mail: cmartin@srl.caltech.edu [Department of Astronomy, University of California, Berkeley, 501 15 Campbell Hall, Berkeley, CA 94720 (United States)

    2016-06-10

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  1. Astrochemical Properties of Planck Cold Clumps

    Energy Technology Data Exchange (ETDEWEB)

    Tatematsu, Ken’ichi; Sanhueza, Patricio; Nguyễn Lu’o’ng, Quang; Hirota, Tomoya [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Liu, Tie; Choi, Minho; Kang, Miju; Kim, Kee-Tae [Korea Astronomy and Space Science Institute, Daedeokdaero 776, Yuseong, Daejeon 305-348 (Korea, Republic of); Ohashi, Satoshi [Department of Astronomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Liu, Sheng-Yuan; Hirano, Naomi [Academia Sinica Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan (China); Thompson, Mark A. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB (United Kingdom); Fuller, Gary [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Wu, Yuefang [Department of Astronomy, Peking University, 100871, Beijing (China); Li, Di [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Francesco, James Di [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Wang, Ke [European Southern Observatory (Germany); Ristorcelli, Isabelle [IRAP, CNRS (UMR5277), Universite Paul Sabatier, 9 avenue du Colonel Roche, BP 44346, F-31028, Toulouse Cedex 4 (France); Juvela, Mika [Department of physics, University of Helsinki, FI-00014, Helsinki (Finland); Shinnaga, Hiroko, E-mail: k.tatematsu@nao.ac.jp [Department of Physics, Kagoshima University, 1-21-35, Korimoto, Kagoshima, 890-0065 (Japan); Collaboration: JCMT Large Program “SCOPE” collaboration; TRAO Key Science Program “TOP” collaboration; and others

    2017-02-01

    We observed 13 Planck cold clumps with the James Clerk Maxwell Telescope/SCUBA-2 and with the Nobeyama 45 m radio telescope. The N{sub 2}H{sup +} distribution obtained with the Nobeyama telescope is quite similar to SCUBA-2 dust distribution. The 82 GHz HC{sub 3}N, 82 GHz CCS, and 94 GHz CCS emission are often distributed differently with respect to the N{sub 2}H{sup +} emission. The CCS emission, which is known to be abundant in starless molecular cloud cores, is often very clumpy in the observed targets. We made deep single-pointing observations in DNC, HN{sup 13}C, N{sub 2}D{sup +}, and cyclic-C{sub 3}H{sub 2} toward nine clumps. The detection rate of N{sub 2}D{sup +} is 50%. Furthermore, we observed the NH{sub 3} emission toward 15 Planck cold clumps to estimate the kinetic temperature, and confirmed that most targets are cold (≲20 K). In two of the starless clumps we observed, the CCS emission is distributed as it surrounds the N{sub 2}H{sup +} core (chemically evolved gas), which resembles the case of L1544, a prestellar core showing collapse. In addition, we detected both DNC and N{sub 2}D{sup +}. These two clumps are most likely on the verge of star formation. We introduce the chemical evolution factor (CEF) for starless cores to describe the chemical evolutionary stage, and analyze the observed Planck cold clumps.

  2. Correlation of volumetric flow rate and skin blood flow with cold intolerance in digital replantation.

    Science.gov (United States)

    Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang

    2017-12-01

    Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers.A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed.A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF.Cold intolerance of digital replantation is associated

  3. Analysis of screeching in a cold flow jet experiment

    Science.gov (United States)

    Wang, M. E.; Slone, R. M., Jr.; Robertson, J. E.; Keefe, L.

    1975-01-01

    The screech phenomenon observed in a one-sixtieth scale model space shuttle test of the solid rocket booster exhaust flow noise has been investigated. A critical review is given of the cold flow test data representative of Space Shuttle launch configurations to define those parameters which contribute to screech generation. An acoustic feedback mechanism is found to be responsible for the generation of screech. A simple equation which permits prediction of screech frequency in terms of basic testing parameters such as the jet exhaust Mach number and the separating distance from nozzle exit to the surface of model launch pad is presented and is found in good agreement with the test data. Finally, techniques are recommended to eliminate or reduce the screech.

  4. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  5. Effect of cold drawing on mechanical properties of biodegradable fibers.

    Science.gov (United States)

    La Mantia, Francesco Paolo; Ceraulo, Manuela; Mistretta, Maria Chiara; Morreale, Marco

    2017-01-26

    Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.

  6. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  7. Investigation of the internal behavior in segmented PEMFCs of different flow fields during cold start process

    International Nuclear Information System (INIS)

    Lin, R.; Ren, Y.S.; Lin, X.W.; Jiang, Z.H.; Yang, Z.; Chang, Y.T.

    2017-01-01

    In this study, we have researched the internal behavior in segmented proton exchange membrane fuel cells (PEMFCs) with three different flow fields during cold start process. The change of internal current density and temperature in fuel cells with different flow fields could be obviously shown by the printed circuit board (PCB) technology, and the study shows that the flow field is significant for enhancing the cold start ability and durability. Single serpentine flow field has the best cold start performance, while triple channel serpentine flow field has the best uniformity. It is found that without a robust temperature rising tendency, the cell temperature reaching 0 °C does not definitely mean a successful cold start because the cell temperature might drop down 0 °C again. Polarization curves show that there is almost no performance degradation after successful cold start, but the cell degrades quickly after the failed cold start at −7 °C and −10 °C. Based on these characteristics, we optimized the rapid cold start strategy by using electric heating and make it possible to start up the PEMFC at temperatures down to −20 °C within about 11 min. - Highlights: • Segmented fuel cell were used to record the internal current density and temperature distributions during the cold start. • The effects of flow fields on the PEMFC cold start capacity were evaluated. • The effect of cold start on the performance of fuel cell was evaluated. • An optimized strategy was adopted to improve the cold start capacity.

  8. The Effect of Cold Work on Properties of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  9. Effect of cold work and aging on mechanical properties of a copper ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of cold working and aging on the mechanical properties of a ... toughness and ductility in various stages of cold work and aging may include high stress concentration at high ... copper is added to HSLA steels to cause precipitation.

  10. Improvement of the cold flow characteristics of biodiesel containing dissolved polymer wastes using acetone

    Directory of Open Access Journals (Sweden)

    Pouya Mohammadi

    2014-03-01

    Full Text Available Due to the fast fossil fuel depletion and at the same time global warming phenomenon anticipated for the next coming years, the necessity of developing alternative fuels e.g. biofuels (i.e. bioethanol, biodiesel, biogas and etc. has turned into an important concern. Recently, the application of the bio-solvency properties of biodiesel for recycling waste polymers has been highlighted. However, the impact of polymer dissolution on cold flow characteristics of biodiesel was never investigated. The present study was set to explore the impact of different solvents in stabilizing biodiesel-polymer solution. Among them, acetone was proved to be the best fuel stabilizer. Subsequently, cold flow characteristic i.e. cloud point, of the biodiesel-polymer-acetone fuel was found to have improved (decreased due to the inclusion of acetone. Finally, flash point analysis of the fuel blends containing acetone was done to ensured high safety of the fuel blend by dramatically increasing the flash point values of biodiesel-polymer fuel blends.

  11. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  12. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  13. Renal blood flow and metabolism after cold ischaemia

    DEFF Research Database (Denmark)

    Henriksen, J H; Petersen, H K

    1984-01-01

    Peroperative measurements of renal blood flow (RBF), renal O2-uptake, and renal venous lactate/pyruvate (L/P) ratio were performed before and after a period of 30-71 min of hypothermic (10-15 degrees C) renal ischaemia in nine patients, undergoing surgery for renal calculi. Before ischaemia, RBF.......01) immediately after re-established perfusion and 36% (P less than 0.02) 30 min later. In one additional patient, who had a short warm ischaemia (8 min), the flow pattern was the same. As arterial pressure remained constant, the reduced RBF signifies an increased renal vascular resistance. Renal O2-uptake...... and renal venous L/P ratio were almost constant, indicating no significant anaerobic processes being involved in the flow response. None of the patients showed any signs of reactive hyperaemia. It is concluded that hypothermic renal ischaemia may be followed by an increased renal vascular resistance even...

  14. Analysis of cold flow fluidization test results for various biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M.Z.; Husain, Z.; Pong, S.L.Y. [University Sains Malaysia, Penang (Malaysia). School of Mechanical Engineering

    2003-07-01

    A systematic theoretical and experimental study was conducted to obtain hydrodynamic properties such as particle size diameter, bulk density, fluidizing velocity, etc. for locally available biomass residue fuels in Malaysia like rice husk, sawdust, peanut shell, coconut shell, palm fiber as well as coal and bottom ash. The tests were carried out in a cold flow fluidization bed chamber of internal diameter 60 mm with air as fluidizing medium. Bed-pressure drop was measured as a function of superficial air velocity over a range of bed heights for each individual type of particle. The data were used to determine minimum fluidization velocity, which could be used to compare with theoretical values. The particle size of biomass residue fuel was classified according to Gildart's distribution diagram. The results show that Gildart's particle size (B) for sawdust, coal bottom ash, coconut shell have good fluidizing properties compared to rice husk, type (D) or palm fiber, type (A). The bulk density and voidage are found to be main factors contributing to fluidizing quality of the bed.

  15. The Structure of the Local Universe and the Coldness of the Cosmic Flow

    NARCIS (Netherlands)

    Van de Weygaert, R.; Hoffman, Y.

    1999-01-01

    Abstract: Unlike the substantial coherent bulk motion in which our local patch of the Cosmos is participating, the amplitude of the random motions around this large scale flow seems to be surprisingly low. Attempts to invoke global explanations to account for this coldness of the local cosmic

  16. The structure of the local universe and the coldness of the cosmic flow

    NARCIS (Netherlands)

    van de Weygaert, R; Hoffman, Y; Courteau, S; Strauss, MA; Willick, JA

    2000-01-01

    Unlike the substantial coherent bulk motion in which our local patch of the Cosmos is participating, the amplitude of the random motions around this large scale flow seems to be surprisingly low. Attempts to invoke global explanations to account for this coldness of the local cosmic velocity field

  17. Camphor induces cold and warm sensations with increases in skin and muscle blood flow in human.

    Science.gov (United States)

    Kotaka, Tomohiko; Kimura, Shoji; Kashiwayanagi, Makoto; Iwamoto, Jun

    2014-01-01

    Application of camphor to the skin has been empirically thought to improve blood circulation. However, camphor's effects on blood circulation to the skin and on thermal sensation have not been well elucidated. In this study, we examined its effects on the quality of sensation as well as on skin and muscle blood flow in human. Nine adults (average age 37±9.4 years) participated in the study. Petroleum jelly containing 5%, 10%, 20% camphor, or 2% menthol was separately applied to the skin on the medial side of one forearm of each subject. Just after the application, camphor at each concentration induced a cold sensation in a dose-dependent manner. Within 10 min, each subject reported that the cold sensation had faded, after which it was replaced by a warm sensation. As reported previously, a cold sensation was induced by application of 2% menthol, but the subjects did not adapt to that sensation. In addition, menthol did not induce a warm sensation at all. Application of menthol has been shown to increase blood flow in the skin. Finally, we measured blood flow in skin and muscle after the application of camphor or menthol. Application of camphor or menthol separately induced increases in local blood flow in the skin and muscle. The present results indicate that camphor induces both cold and warm sensations and improves blood circulation.

  18. Electrical Processes in a Flowing Plasma with Cold Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Distefano, E.; Fraidenraich, N. [Facultad de Ciencias Fisicas y Matematicas, University of Chile, Santiago (Chile)

    1968-11-15

    The voltage-current characteristics of a flowing plasma between two electrodes is of interest for MHD power generation because of the high voltage drop necessary to make a current flow through the cool boundary layer of the plasma, lowering the efficiency of the MHD generator when the duct walls are cooled. The V-I characteristics are obtained for a combustion driven shock-tube generated plasma, and the voltage distribution is measured by probes inserted across the plasma. The gas used is argon and the plasma parameters are: T = 9000 Degree-Sign K, p = 130 mmHg, u = 2500 m/sec, n{sub e} = 1.60 x 10{sup 15} cm{sup -3}. The probe technique has allowed experimental confirmation of the high voltage drop obtained in the vicinity of the cathode. A theoretical model has been set up in order to explain the main features of this phenomenon. The model considers the voltage drop along the following regions: the turbulent boundary layer and the viscous sublayer. The structure of the first two regions are taken into account according to the Coles transformation theory. The model considers three fluids, ions, electrons and neutrals: the mass and momentum particle conservation together with the Poisson equation and continuity of electric current allows us to set up a system of four differential equations with four unknowns. Pair production is taken into account in order to explain the necessary change over from electron current in the main body of the plasma to the predominantly ionic current in the neighbourhood of the cathode wall. Numerical computation of the system of equations has been done and the main features of the experimental results are explained. (author)

  19. Robustness of discrete flows and caustics in cold dark matter cosmology

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Sikivie, Pierre

    2005-01-01

    Although a simple argument implies that the distribution of dark matter in galactic halos is characterized by discrete flows and caustics, their presence is often ignored in discussions of galactic dynamics and of dark matter detection strategies. Discrete flows and caustics can in fact be irrelevant if the number of flows is very large. We estimate the number of dark matter flows as a function of galactocentric distance and consider the various ways in which that number can be increased, in particular, by the presence of structure on small scales (dark matter clumps) and the scattering of the flows by inhomogeneities in the matter distribution. We find that, when all complicating factors are taken into account, discrete flows and caustics in galactic halos remain a robust prediction of cold dark matter cosmology with extensive implications for observation and experiment

  20. Physical properties corresponding to vortical flow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2014-10-01

    We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.

  1. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  2. Study on the cold and hot properties of medicinal herbs by thermotropism in mice behavior.

    Science.gov (United States)

    Zhao, Yan-Ling; Wang, Jia-Bo; Xiao, Xiao-He; Zhao, Hai-ping; Zhou, Can-ping; Zhang, Xue-ru; Ren, Yong-shen; Jia, Lei

    2011-02-16

    It is a common sense that chewing a mint leaf causes a cold feeling, while masticating a piece of ginger root is associated with a hot sensation. The Traditional Chinese Medicine has termed this phenomenon as cold and hot properties of herbs and applied them in treating certain human diseases successfully for thousands of years. Here, we have developed an Animal Thermotropism Behavior Surveillance System, and by using this device and other approaches, we not only verified the existence of, but also characterized and quantitated the cold and hot properties of medicinal herbs in animal behavioral experiments. The results suggested that the hot and cold properties of herbal drugs indeed correlated with the alteration of animal behavior in search for residence temperature. Copyright © 2010. Published by Elsevier Ireland Ltd.

  3. Influence of cold-water immersion on limb blood flow after resistance exercise.

    Science.gov (United States)

    Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren

    2017-06-01

    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P lower (55%) than the control post-immersion (P water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.

  4. Stability properties of cold blanket systems for current driven modes

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1977-12-01

    The stability problem of the boundary regions of cold blanket systems with induced currents parallel to the lines of force is formulated. Particular interest is focused on two types of modes: first electrostatic modes driven by the combined effects of a transverse resistivity gradient due to a spatially non-uniform electron temperature and a longitudinal current, second electromagnetic kink like modes driven by the torque arising from a transverse current density gradient and magnetic field perturbations. It is found that the combination of various dissipative and neutral gas effects introduces strong stabilizing effects within specific parameter ranges. For particular steady-state models investigated it is shown that these effects become of importance in laboratory plasmas at relatively high densities, low temperatures and moderate magnetic field strengths. Stability diagrams based on specific steady-state cold plasma blanket models will be presented

  5. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    Science.gov (United States)

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  6. Effect of cold work on creep properties of oxygen-free copper

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.

    2009-03-01

    Spent nuclear fuel is in Sweden planned to be disposed by encapsulating in waste packages consisting of a cast iron insert surrounded by a copper canister. The cast iron is load bearing and the copper canister gives corrosion protection. The waste package is heavy. Throughout the manufacturing process from the extrusion/pierce-and-draw manufacturing to the final placement in the repository, the copper is subjected to handling which could introduce cold work in the material. It is well known that the creep properties of engineering materials at higher temperatures are affected by cold working. The study includes creep testing of four series of cold worked, oxygen-free, phosphorus doped copper (Cu-OFP) at 75 deg C. The results are compared to reference series for as series of copper cold worked in tension (12 and 24 %) and two series cold worked in compression (12 % parallel to creep load axis and 15 % perpendicular to creep load axis) were tested. The results show that pre-straining in tension of copper leads to prolonged creep life at 75 deg C. The creep rate and ductility are reduced. The influence on the creep properties increases with the amount of cold work. Cold work in compression applied along the creep load axis has no effect on the creep life or the creep rate. Nonetheless the ductility is still impaired. However, cold work in compression applied perpendicular to the creep load direction has a positive effect on the creep life. Cold work in both tension and compression results in a pronounced reduction of the initial creep strain, which is the strain obtained from the beginning of the loading until full creep load is achieved. Yet the area reduction is unaffected by the degree of cold work

  7. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  8. Temperature dependence of creep properties of cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Yuji; Nakajima, Hajime

    1995-01-01

    The creep properties of Hastelloy XR, in a solution treated, 10% or 20% cold-worked condition, were investigated at temperatures from 800 to 1,000degC for the duration of creep tests up to about 2,500 ks. At 800 and 850degC, the steady-state creep rate and rupture ductility decreased and the rupture life increased after cold work of 10% or 20%. Although the rupture life of the 10% cold-worked alloy was longer at 900degC than that of the solution treated one, the rupture lives of the 10% cold-worked and solution treated alloys were almost equal at 950degC, which is the highest helium temperature in an intermediate heat exchanger of the High Temperature Engineering Test Reactor (HTTR). The beneficial effect of 10% cold work on the rupture life and the steady-state creep rate disappeared at 1,000degC. The beneficial effect of 20% cold work disappeared at 950degC because significant dynamic recrystallization occurred during creep. While rupture ductility of this alloy decreased after cold work of 10% or 20%, it recovered to a considerable extend at 1,000degC. It is emphasized that these cold work effects should be taken into consideration in design, operation and residual life estimation of high temperature components of the HTTR. (author)

  9. Effect of initial microstructure on the microstructural evolution and mechanical properties of Ti during cold rolling

    International Nuclear Information System (INIS)

    Stolyarov, V.V.; Zhu, Y.T.; Raab, G.I.; Zharikov, A.I.; Valiev, R.Z.

    2004-01-01

    Ultrafine-grained (UFG) Ti rods were produced via cold rolling UFG and coarse-grained (CG) Ti stocks. The initial UFG stock was produced via equal channel angular pressing. It was found that the initial UFG structure had beneficial influence on the mechanical properties of the cold-rolled Ti rods. Compared with Ti rods with initial CG microstructure, the Ti rods with the initial UFG microstructure have both higher strength and higher ductility after being cold rolled to varying strains. Transmission electron microscopy revealed that the Ti rods with the initial UFG microstructure had finer, more homogeneous microstructures after cold rolling. This study demonstrates the merit of UFG Ti processed by ECAP for further shaping and forming into structural components with superior mechanical properties

  10. Application of Herbal Medicines with Bitter Flavor and Cold Property on Treating Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hongdong Chen

    2015-01-01

    Full Text Available Diabetes mellitus has been a global pandemic. Traditional Chinese Medicine has been used on diabetes mellitus for thousands of years and the modern Chinese medicine studies have found a curative effect of herbal medicine with bitter flavor and cold property on diabetes. This review will introduce the theory summary of flavor and property in TCM, argument basis, the evidences from clinical trails and animal experiments, the possible antidiabetic mechanisms, and advantages on lowering glucose of herbal medicines with bitter flavor and cold property and take rhizome, Chinese rhubarb, and Momordica charantia, the three herbal medicines with bitter flavor and cold property, as examples to illustrate the exact antidiabetic effect. It is hoped that this review can provide some ideas and inspiration for the treatment of diabetes with herbal medicine.

  11. Effect of cold plastic deformation on the properties of semihard-magnetic alloys

    International Nuclear Information System (INIS)

    Kovalev, P.M.; Khazanov, S.A.; Chernyak, A.A.

    1982-01-01

    The effect of pass and overall reduction during cold plastic deformation on magnetic properties of the 25KKh15 and 25KFN14 iron-cobalt alloys has been studied. It has been found out that gamma-α transformation which intensity id defined by the deformation temperature occurs during the 25KFN14 and 25KKh15 alloy cold rolling. The pass reduction decrease fostering complete proceeding of #betta#-α transformation is equivalent to the increase of overall reduction

  12. Coating Properties of WC-Ni Cold Spray Coating for the Application in Secondary Piping System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JeongWon; Kim, Seunghyun; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    As a result of FAC(flow accelerated corrosion), severe accidents, failure of carbon steel like a Mihama Unit-3 occurred. Chemical composition change of carbon steel or coating to inner surface is one of methods to improve corrosion properties. Among them, thermal spray coating is convenient solution to apply at industry. Powder is melted at blast furnace and ejected to substrate. After adhesion, substrate and coating layer is cooled down and coated layer protects steel from corrosion finally. However high thermal energy is transferred to substrate and coating layer so it leads high thermal residual stress in coating procedure. Besides, high temperature for melting powder makes unexpected chemical reaction of powder like an oxidation or carburization. Whereas, cold spray uses low temperature comparing with other thermal spray. Thermal energy is used for not melting powder but high kinetic energy of powder and plastic deformation during collision. Therefore, fuel such as oxygen-acetylene gas is not needed. It needs carrier gas, compressed air, nitrogen or helium, to increase kinetic energy of powder and move powder to substrate. Comparing cold spray with high velocity oxy fuel (HVOF), one of thermal spray, cold spray coating layer contains only WC and Co. One of other problem about WC is brittleness during coating. To improve deformability of WC, binder metal is added. For example, Co, Cr, Ni, Cu, Al, Fe or etc. Additionally, binder metal lowering melting temperature of composite powder increases coating properties. Among them, Co which is widely used as binder metal maintains mechanical properties like a hardness and improves corrosion properties. Therefore Co is not suitable for binder metal of WC coating. In contrast, Ni has better corrosion resistance to alkaline environment and makes lower melting temperature. Moreover, in a view of cold spray, FCC structure has better deformability than BCC or HCP, and BCC has lowest deformability. WC is BCC structure so it

  13. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    Science.gov (United States)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru

  14. Evolution of microstructure and property of NiTi alloy induced by cold rolling

    International Nuclear Information System (INIS)

    Li, Y.; Li, J.Y.; Liu, M.; Ren, Y.Y.; Chen, F.; Yao, G.C.; Mei, Q.S.

    2015-01-01

    We investigated the combination effect of plastic deformation and phase transformation on the evolution of microstructure and property of NiTi alloy. Samples of Ni 50.9 Ti 49.1 alloy were deformed by cold rolling to different strains/thickness reductions (4%–56%). X-ray diffraction, transmission electronic microscopy (TEM) and microhardness measurements were applied for characterization of the microstructure and property of the cold-rolled samples. Experimental results indicated the non-monotonic variations of microstructure parameters and mechanical property with strain, indicating the different processes in microstructure and property evolution of NiTi subjected to cold rolling. TEM observations further showed the dominating mechanisms of microstructure evolution at different strain levels, leading to the gradual reduction of grain size of NiTi to the nanoscale by cold rolling. The results were discussed and related to deformation of martensite, forward and reverse martensitic transformations and dynamic recrystallization. The present study provided experimental evidences for the enhanced formation of nanograins in NiTi by plastic deformation coupled with phase transformation. - Highlights: • Cold rolling of NiTi to thickness reductions from 4% to 56%. • Fluctuation behaviors in microstructure and property evolutions of NiTi. • Deformation coupled with phase transformation enhanced nanocrystallization of NiTi.

  15. Cold and hot model investigation of flow and mixing in a multi-jet flare

    Energy Technology Data Exchange (ETDEWEB)

    Pagot, P.R. [Petrobras Petroleo Brasileiro S.A., Rio de Janeiro (Brazil); Sobiesiak, A. [Windsor Univ., ON (Canada); Grandmaison, E.W. [Queen' s Univ., Kingston, ON (Canada). Centre for Advanced Gas Combustion Technology

    2003-07-01

    The oil and gas industry commonly disposes of hydrocarbon wastes by flaring. This study simulated several features of industrial offshore flares in a multi-jet burner. Cold and hot flow experiments were performed. Twenty-four nozzles mounted on radial arms originating from a central fuel plenum were used in the burner design. In an effort to improve the mixing and radiation characteristics of this type of burner, an examination of the effect of various mixing-altering devices on the nozzle exit ports was performed. Flow visualization studies of the cold and hot flow systems were presented, along with details concerning temperature, gas composition and radiation levels from the burner models. The complex flow pattern resulting when multiple jets are injected into a cross flow stream were demonstrated with the flow visualization studies from the cold model. The trajectory followed by the leading edge jet for the reference case and the ring attachments was higher but similar to the simple round jet in a cross flow. The precessing jets and the cone attachments were more strongly deflected by the cross flow with a higher degree of mixing between the jets in the nozzle region. For different firing rates, flow visualization, gas temperature, gas composition and radiative heat flux measurements were performed in the hot model studies. Flame trajectories, projected side view areas and volumes increased with firing rates for all nozzle configurations and the ring attachment flare had the smallest flame volume. The gas temperatures reached maximum values at close to 30 per cent of the flame length and the lowest gas temperature was observed for the flare model with precessing jets. For the reference case nozzle, nitrogen oxide (NOx) concentrations were in the 30 to 45 parts per million (ppm) range. The precessing jet model yielded NOx concentrations in the 22 to 24 ppm range, the lowest obtained. There was a linear dependence between the radiative heat flux from the flames

  16. Determination of the catalyst circulation rate in a FCC cold flow pilot unit using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Nuclear techniques of gamma transmission and radioactive tracer were used to estimate the catalyst circulation rate in a cold flow pilot plant unit of Fluid Catalytic Cracking (FCC). Catalyst circulation rate in a FCC unit, allow to determine operating conditions of the exchange catalyst and inlet data for fluid dynamic simulation computational program. The pilot unit was fabricated obeying geometrical parameters provided by the Petrobras Research Center (CENPES), based on hot pilot units to existing in that center. The cold flow pilot unit has a transfer line, two separation vessels flash type, a return column, a riser and a regenerator. The vertical sections as riser, return column, regenerator column and transfer line are made of transparent material (glass). The two separation vessels have bases with tapered cylindrical shapes and are made of steel plates. The riser is divided into four sections of different diameters (0.005 m, 0.010 m, 0.018 m and 0.025 m) and rising upwards, to simulate the increasing flow rate caused by the increase of volume with the increase of the number of moles due to molecules breakage. The radioactive tracer used was the catalyst itself (intrinsic tracer) irradiated by neutron activation, yielding the radioisotope 59 Fe. The velocity measurements were also obtained with aid of an electronic clock triggered by certain radiation levels across the two detectors. Besides estimates for the catalyst circulation rate was possible to identify the type of flow relative to the catalyst in return column. (author)

  17. Stereomicroscopic imaging technique for the quantification of cold flow in drug-in-adhesive type of transdermal drug delivery systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Katragadda, Usha; Khan, Mansoor A

    2014-05-01

    Cold flow is a phenomenon occurring in drug-in-adhesive type of transdermal drug delivery systems (DIA-TDDS) because of the migration of DIA coat beyond the edge. Excessive cold flow can affect their therapeutic effectiveness, make removal of DIA-TDDS difficult from the pouch, and potentially decrease available dose if any drug remains adhered to pouch. There are no compendial or noncompendial methods available for quantification of this critical quality attribute. The objective was to develop a method for quantification of cold flow using stereomicroscopic imaging technique. Cold flow was induced by applying 1 kg force on punched-out samples of marketed estradiol DIA-TDDS (model product) stored at 25°C, 32°C, and 40°C/60% relative humidity (RH) for 1, 2, or 3 days. At the end of testing period, dimensional change in the area of DIA-TDDS samples was measured using image analysis software, and expressed as percent of cold flow. The percent of cold flow significantly decreased (p < 0.001) with increase in size of punched-out DIA-TDDS samples and increased (p < 0.001) with increase in cold flow induction temperature and time. This first ever report suggests that dimensional change in the area of punched-out samples stored at 32°C/60%RH for 2 days applied with 1 kg force could be used for quantification of cold flow in DIA-TDDS. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. New counter flow heat exchanger designed for ventilation systems in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Nielsen, Toke Rammer

    2007-01-01

    In cold climates, mechanical ventilation systems with highly efficient heat recovery will experience problems with condensing water from the extracted humid indoor air. If the condensed water changes to ice in the heat exchanger, the airflow rate will quickly fall due to the increasing pressure...... problem is therefore desirable. In this paper, the construction and test measurements of a new counter flow heat exchanger designed for cold climates are presented. The developed heat exchanger is capable of continuously defrosting itself without using supplementary heating. Other advantages...... of the developed beat exchanger are low pressure loss, cheap materials and a simple construction. The disadvantage is that the exchanger is big compared with other heat exchangers. In this paper, the new heat exchanger's efficiency is calculated theoretically and measured experimentally. The experiment shows...

  19. Effects of recrystallization annealing on mechanical properties of cold-rolled PdNi5 wires

    Directory of Open Access Journals (Sweden)

    Aleksandra Ivanović

    2016-03-01

    Full Text Available The aim of this investigation was to determine the influence of the recrystallization temperature and recrystallization time on the microstructure and mechanical properties of the PdNi5 alloy subjected to cold deformation in the process of rolling at a constant deformation degree. The samples of PdNi5 alloy were recrystallization annealed within the temperature range of 200-1000ºC and annealing time range of 20-45 min after cold rolling with deformation degree of 97%. The tensile test was carried out using universal material testing machine. The hardness was also measured on the combined device for measuring Vickers and Brinell hardness. Metallographic observations were performed on an optical microscope. The analysis of the results of investigations regarding the microstructural changes and corresponding mechanical properties of cold-rolled PdNi5 strips shows that annealing temperature of 500ºC was sufficient to activate the energy for various recrystallization processes causing a change in the mechanical properties of cold-rolled PdNi5 strips. The annealing time, at constant annealing temperature, almost did not affect a recrystallization temperature and the mechanical properties of the cold-rolled PdNi5 strips.

  20. Dynamics of cold helium flow inside a cryoline used for large cryogenic distribution system

    International Nuclear Information System (INIS)

    Kumar, Uday; Jadon, Mohit; Choukekar, Ketan; Shukla, Vinit; Patel, Pratik; Kapoor, Himanshu; Shah, Nitin; Muralidhara, Srinivasa; Sarkar, Biswanath

    2015-01-01

    The Cryolines, which by definition transfers cryogens from the source, normally a cryogenic plant, to several systems requiring cooling at cryogenic temperature to the level of 4 K and 80 K. The operations of cryolines are normally assumed to be steady state following a cool down from room temperature to the cryogenic temperature. It is to be noted that in a distributed cryogenic system, especially in a nuclear facility such as ITER having confinement definition due to the regulatory requirements, do also attract the attention in the system design that the release from safety valves cannot be allowed inside a building. Therefore, all safety valves need to be discharged inside a confined space, which is a specific space requiring fulfillment of definition for a cryogenic line. The specificity in such cases is that such cryogenic lines will realize dynamic conditions for each release of safety valves or a combination of safety valves in terms of pressure, temperature and flow, leading to unexpected failures. Such operating scenarios also lead to serious impact on fatigue with a question mark on the reliability. Therefore, one can define such cryolines as Relief Collection Header (RCH) which collects discharged helium and transport it to the appropriate place as defined in the system design. The discharges of cold helium from safety relief discharge ports of equipment can result into significantly unsteady and compressible flow in RCH. The proper design of the RCH has to be supported by detailed dynamic of expected flow phenomena for specific cases. The paper presents the dynamics of cold helium flow inside the typical RCH that has been performed to investigate the variation in flow parameters (pressure, temperature, velocity and density) along the axis of RCH and predictions on its reliability. (author)

  1. Effect of cold water immersion on repeated cycling performance and limb blood flow.

    Science.gov (United States)

    Vaile, J; O'Hagan, C; Stefanovic, B; Walker, M; Gill, N; Askew, C D

    2011-08-01

    The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) -1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.

  2. Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires

    International Nuclear Information System (INIS)

    Garcia, C.; Chizhik, A.; Val, J.J. del; Zhukov, A.; Blanco, J.M.; Gonzalez, J.

    2005-01-01

    Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe 77.5 B 15 Si 7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability

  3. [Experimental study on two-way application of traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in cold and hot blood stasis syndrome I].

    Science.gov (United States)

    Hao, Er-Wei; Deng, Jia-Gang; Du, Zheng-Cai; Yan, Ke; Zheng, Zuo-Wen; Wang, Qin; Huang, Li-Zhen; Bao, Chuan-Hong; Deng, Xiu-Qiong; Lu, Xiao-Yan; Tang, Zhi-Ling

    2012-11-01

    To study the action characteristics of "two-way application and conditioned dominance" of traditional Chinese medicines with neutral property by observing the action characteristic of 10 traditional Chinese medicines capable of promoting blood circulation and removing blood stasis with neutral property in the microcirculation in rats with heat stagnation and blood stasis syndrome. The rat model with heat stagnation and blood stasis syndrome was established by injecting carrageenan and dry yeast, and the rat model with cold stagnation and blood stasis syndrome was built by the body freezing method. Ten traditional Chinese medicines with neutral property, including 5 with hot property and 5 with cold property, were selected for intervention to observe blood flow rate and flow state indicators in rat auricles and make a comparative analysis on action characteristics of traditional Chinese medicines with neutral property. ANOVA showed that among the 10 traditional Chinese medicines with neutral property, 6 such as Typhae Pollen, Sappan Lignum and Vaccariae Semen can obviously increase the blood flow rate (P traditional Chinese medicines with cold property can increase the blood flow rate (P medicines showed no notable effect; among the 5 traditional Chinese medicines with hot property, Carthamus tinctorius and Ligusticum chuanxiong can increase the blood flow rate (P traditional Chinese medicines with natural and cold properties showed similar effect on heat stagnation and blood stasis syndrome and better effect in increasing blood flow rate than those with hot property; those with natural and hot properties showed similar effect and better effect in increasing blood flow rate than those with cold property. Under the condition of heat stagnation and blood stasis syndrome, traditional Chinese medicines with neutral property have the similar action characteristics with those with cold property; wile under the condition of cold stagnation and blood stasis syndrome

  4. Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, J.P.; Noe, H.; Menant, B.

    1995-09-01

    The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.

  5. Average properties of bidisperse bubbly flows

    Science.gov (United States)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  6. Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies

    Science.gov (United States)

    Noguchi, Masafumi

    2018-01-01

    Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.

  7. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  8. Effect of cold work and aging on mechanical properties of a copper ...

    Indian Academy of Sciences (India)

    TECS

    cal properties of a Cu-bearing HSLA-100 steel microalloyed with Nb and Ti. Aging at 400°C after ... impact energy (24 J). C50A treatment involving 50 pct cold work and aging ... 2006) as well as by thermomechanical treatments along with suitable ... the transformed structure of ferrite, bainite or martensite. In a recent paper, ...

  9. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    Science.gov (United States)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  10. Physicochemical and phytochemical properties of cold and hot water extraction from Hibiscus sabdariffa.

    Science.gov (United States)

    Ramirez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2011-04-01

    Hibiscus cold (25 °C) and hot (90 °C) water extracts were prepared in various time-temperature combinations to determine equivalent extraction conditions regarding their physicochemical and phytochemical properties. Equivalent anthocyanins concentration was obtained at 25 °C for 240 min and 90 °C for 16 min. Total phenolics were better extracted with hot water that also resulted in a higher antioxidant capacity in these extracts. Similar polyphenolic profiles were observed between fresh and dried hibiscus extracts. Hibiscus acid and 2 derivatives were found in all extracts. Hydroxybenzoic acids, caffeoylquinic acids, flavonols, and anthocyanins constituted the polyphenolic compounds identified in hibiscus extracts. Two major anthocyanins were found in both cold and hot extracts: delphynidin-3-sambubioside and cyanidin-3-sambubioside. In general, both cold and hot extractions yielded similar phytochemical properties; however, under cold extraction, color degradation was significantly lower and extraction times were 15-fold longer. Hibiscus beverages are prepared from fresh or dried calyces by a hot extraction and pasteurized, which can change organoleptic, nutritional, and color attributes. Nonthermal technologies such as dense phase carbon dioxide may maintain their fresh-like color, flavor, and nutrients. This research compares the physicochemical and phytochemical changes resulting from a cold and hot extraction of fresh and dried hibiscus calyces and adds to the knowledge of work done on color, quality attributes, and antioxidant capacity of unique tropical products. In addition, the research shows how these changes could lead to alternative nonthermal processes for hibiscus.

  11. Reversed Microstructures and Tensile Properties after Various Cold Rolling Reductions in AISI 301LN Steel

    Directory of Open Access Journals (Sweden)

    Antti Järvenpää

    2018-02-01

    Full Text Available Heavy cold rolling is generally required for efficient grain size refinement in the martensitic reversion process, which is, however, not desirable in practical processing. In the present work, the influence of cold rolling reductions of 32%, 45% and 63% on the microstructure evolution and mechanical properties of a metastable austenitic AISI 301LN type steel were investigated in detail adopting scanning electron microscopy with the electron backscatter diffraction method and mechanical testing. A completely austenitic microstructure and a partially reversed counterpart were created. It was found that the fraction of grains with a size of 3 µm or larger, called medium-sized grains, increased with decreasing the prior cold rolling reduction. These grains are formed mainly from the shear-reversed austenite, transformed from slightly-deformed martensite, by gradual evolution of subgrains to grains. However, in spite of significant amounts of medium-sized grains, the tensile properties after the 32% or 45% cold rolling reductions were practically equal to those after the 63% reduction. The austenite stability against the formation of deformation-induced martensite in subsequent straining was reduced by lowering the cold rolling reduction, due to the larger grain size of medium-sized grains and the shift of their orientation towards {211} .

  12. Stressful Presentations: Mild Chronic Cold Stress in Mice Influences Baseline Properties of Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Kathleen Marie Kokolus

    2014-02-01

    Full Text Available The ability of dendritic cells to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to study immune responses. Physiological stress is well recognized to impair several arms of immune protection. The goals of this report are to briefly summarize previous work revealing how DCs respond to various forms of physiologically relevant stress and to present new data highlighting the potential for chronic mild cold stress inherent in mice housed at standard ambient temperatures required for laboratory mice to influence baseline DCs properties. Since recent data from our group shows that CD8+ T cell function is altered by mild chronic cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether mild cold stress may also be influencing DC properties. We found increased numbers of splenic DCs (CD11c+ in cold stressed mice compared to mice housed at a thermoneutral temperature, which significantly reduces cold stress. However, many of the DCs which are expanded in cold stressed mice express an immature phenotype. We also found that antigen presentation and ability of splenocytes to activate T cells were impaired compared to that seen in DCs isolated from mice at thermoneutrality. The new data presented here strongly suggest that the housing temperature of mice can affect fundamental properties of DC function which in turn could be influencing the response of DCs to added experimental stressors or other treatments.

  13. USE OF THE DEVICE TO INCREASE THE PLASTIC PROPERTIES OF COLD-SHAPED FITTINGS

    Directory of Open Access Journals (Sweden)

    T. A. Akhmetov

    2016-01-01

    Full Text Available The subjects of influence of the relationship of a limit of fluidity and full relative lengthening at the maximum load on deformation energy before destruction are considered in the article. Use of the block to decrease of internal tension in production of cold-shaped fittings allows to increase significantly its plastic properties, i. e. a power factor. At the same time combination of such device with the straightening unit similar to one used in production of thin wire and also minimization of specific reduction opens prospects for obtaining all necessary parameters of the fittings of a class «B» produced by cold rolling. 

  14. Fluid dynamics characterization of riser in a FCC cold flow model using gas radiotracer

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Was carried out the characterization of a diameter small riser of a cold flow model of a circulating fluidized bed (CFB), with aid of a radioactive tracer. Compressed air and catalytic cracking of petroleum flow through solids pneumatic transport regime, made of transparent material (glass, acrylic, PVC, polycarbonate) for study of problems in Fluid Catalytic Cracking (FCC) unit and development of methods of measurement of fluid dynamic parameters. The CFB model consisted of a mixer component solid-gas (compressed air at 25 deg C and 200 kN/m 2 ; cracking catalyst with an average diameter of 72μm and specific mass of 1,500 kg/m 3 ), comprising a riser pipe glass 0.02m internal diameter and 1.8m height, a gas solid separation vessel by flash effect, with the filter in the gas outlet, and a return column (a glass tube with an internal diameter of 0.0254m) to redirect the catalyst for the riser base. Recorded data allowed studies on residence time distribution of the gaseous phase in the riser, with the identification and characterization of the flow of gas-solid components in the CFB riser of small diameter. A plug flow type with deviations due to back mixing of catalyst close to the walls, associated with the density difference between this component was observed. (author)

  15. Process and magnetic properties of cold pressed Ne Fe B bonded magnets

    International Nuclear Information System (INIS)

    Rodrigues, DAniel; Concilio, Gilberto Vicente; Landgraf, Fernando Jose Gomes; Zanchetta, Antonio Carlos

    1996-01-01

    Bonded magnets are polymer composites based on a mixture of a hard magnetic powder and a polymer. This mixture is processed as a traditional powder metallurgy material, cold pressed, or like a thermoplastic material, by injection molding. The polymeric phase to a large extent determines the mechanical properties of the composite, while magnetic powder determines its magnetic properties. They are less expensive and easier to produce, specially in the case of high complexity parts. This paper presents the relationship between process variables and magnetic properties of cold pressed Nd Fe B bonded magnets produced from melt spun flakes mixed with thermosetting resins. The experiments were done using Statistical Design of Experiments. The variables investigates were: uniaxial compaction pressure, binder type; binder content; size of Nd Fe B particles; addition of lubricant; and addition of small quantities of magnetic additives, particles of ferrites, iron, or alnico. (author)

  16. The average-shadowing property and topological ergodicity for flows

    International Nuclear Information System (INIS)

    Gu Rongbao; Guo Wenjing

    2005-01-01

    In this paper, the transitive property for a flow without sensitive dependence on initial conditions is studied and it is shown that a Lyapunov stable flow with the average-shadowing property on a compact metric space is topologically ergodic

  17. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  19. Influence of cold-water immersion on limb and cutaneous blood flow after exercise.

    Science.gov (United States)

    Mawhinney, Chris; Jones, Helen; Joo, Chang Hwa; Low, David A; Green, Daniel J; Gregson, Warren

    2013-12-01

    This study aimed to determine the influence of cold (8°C) and cool (22°C) water immersion on femoral artery and cutaneous blood flow after exercise. Twelve men completed a continuous cycle exercise protocol at 70% peak oxygen uptake until a core temperature of 38°C was attained. Subjects were then immersed semireclined into 8°C or 22°C water to the iliac crest for 10 min or rested. Rectal and thigh skin temperature, deep and superficial muscle temperature, thigh and calf skin blood flow (laser Doppler flowmetry), and superficial femoral artery blood flow (duplex ultrasound) were measured before and up to 30 min after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature were similar (0.6°C-0.7°C) in all three trials (P = 0.38). The mean ± SD thigh skin temperature during recovery was 25.4°C ± 3.8°C in the 8°C trial, which was lower than the 28.2°C ± 1.4°C and 33.78°C ± 1.0°C in the 22°C and control trials, respectively (P lower (∼55%) compared with the control condition 30 min after immersion (P water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation by virtue of greater reductions in muscle temperature and not muscle blood flow.

  20. Investigation of Carboxymethyl Cellulose (CMC on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films

    Directory of Open Access Journals (Sweden)

    Mahsa Tabari

    2017-05-01

    Full Text Available The tendency to use biocompatible packages, such as biodegradable films, is growing since they contain natural materials, are recyclable and do not cause environmental pollution. In this research, cold water fish gelatin and carboxymethyl cellulose were combined for use in edible films. Due to its unique properties, gelatin is widely used in creating gel, and in restructuring, stabilizing, emulsifying, and forming foam and film in food industries. This research for the first time modified and improved the mechanical properties of cold water fish gelatin films in combination with carboxymethyl cellulose. Cold water fish gelatin films along with carboxymethyl cellulose with concentrations of 0%, 5%, 10%, 20% and 50% were prepared using the casting method. The mechanical properties were tested by the American National Standard Method. Studying the absorption isotherm of the resulting composite films specified that the humidity of single-layer water decreased (p < 0.05 and caused a reduction in the equilibrium moisture of these films. In the mechanical testing of the composite films, the tensile strength and Young’s modulus significantly increased and the elongation percent significantly decreased with the increase in the concentration of carboxymethyl cellulose. Considering the biodegradability of the films and the improvement of their mechanical properties by carboxymethyl cellulose, this kind of packaging can be used in different industries, especially the food industry, as an edible coating for packaging food and agricultural crops.

  1. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    Science.gov (United States)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  2. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers

    OpenAIRE

    Bartolomeo Coppola; Paola Scarfato; Loredana Incarnato; Luciano Di Maio

    2017-01-01

    In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn ...

  3. Cold flow simulation of an internal combustion engine with vertical valves using layering approach

    Science.gov (United States)

    Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.

    2015-11-01

    Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.

  4. The Effects of Ribose on Mechanical and Physicochemical Properties of Cold Water Fish Gelatin Films

    Directory of Open Access Journals (Sweden)

    Neda Javadian

    2014-06-01

    Full Text Available Native fish gelatin has some disadvantages such as high hydrophilic, and solubility in cold water. Mixing with other biopolymers and crosslinking by sugars may improve functional properties of fish gelatin. So in this research, the effects of ribose were investigated on moisture sorption isotherm, solubility in water, and mechanical properties of cold water fish gelatin (CWFG films. Ribose sugar was incorporated into CWFG solutions at different concentrations (e.g. 0, 2, 4, and 6% w/w dried gelatin. Physicochemical properties such as water solubility, moisture sorption isotherm and mechanical properties of the films were measured according to ASTM standards. Results showed that incorporation of ribose sugar significantly improved functional properties of CWFG films. Solubility, moisture content and monolayer water content of the matrixes were decreased by increasing the ribose contents. Mechanical properties of biocomposites were improved more than 20% and moisture sorption isotherm curve significantly shifted to lower moisture contents. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for packaging purposes.

  5. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked

  6. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    Science.gov (United States)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  7. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    Science.gov (United States)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous

  8. UHPLC/Q-TOFMS-based metabolomics for the characterization of cold and hot properties of Chinese materia medica.

    Science.gov (United States)

    Wang, Yang; Zhou, Shujun; Wang, Meng; Liu, Shuying; Hu, Yuanjia; He, Chengwei; Li, Peng; Wan, Jian-Bo

    2016-02-17

    The cold/hot property of Chinese materia medica (CMM) and the application of its corresponding knowledge in the diagnosis, differentiation and treatment of diseases have been considered to be the extremely important part of traditional Chinese medicine (TCM). As highly abstracted TCM theory, the cold/hot property of CMMs is still not fully understood and remains to be elucidated by systems biology approach. The cold and hot properties of CMM are mainly defined by the response of the body to a given CMM. Metabolomics is a promising systems biology method to profile entire endogenous metabolites and monitor their fluctuations related to an exogenous stimulus. Thus, a metabolomics approach was applied to characterize the cold and hot properties of CMMs. Mice were intragastrically administered three selected cold property CMMs (i.e., Rheum palmatum L., radix et rhizoma; Coptis chinensis Franch, rhizome and Scutellaria baicalensis Georgi, radix) and three hot property CMMs (i.e., Cinnamomum cassia (L.) J. Presl, cortex; Zingiber officinale Roscoe, rhizoma and Evodia rutaecarpa (Juss.) Benth., fructus) once daily for one week. The comprehensive metabolome changes in the plasma of mice after treatment with cold or hot property CMMs were characterized by ultra-high performance liquid chromatography/time of flight mass spectrometry (UHPLC/Q-TOF-MS), and the potential biomarkers related to cold and hot properties of CMM were explored. Metabolites perturbation in plasma occurs after treatment with cold CMMs and hot CMMs in mice, and 15 and 16 differential biomarkers were identified to be associated with the cold and hot properties of CMMs, respectively. Among them, LPC (18:0), LPC (18:1), LPC (20:4) and LPC (20:5) showed decreased trends in the cold property CMM treated groups, but increased in the hot property CMM treated groups. There is a strong connection between the cold/hot property of CMMs and lysophosphatidylcholines metabolism. This study offers new insight

  9. Development of cold moderator vessel for the spallation neutron source. Flow field measurements and thermal hydraulic analyses in cold moderator vessel

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute is developing a several MW-scale spallation target system under the High-Intensity Accelerator Project. A cold moderator using supercritical hydrogen is one of the key components in the target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the recirculation and stagnant flows which cause hot spots. In order to develop the conceptual design of the moderator structure in progress, the flow field was measured using a PIV (Particle Image Velocimetry) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow field such as recirculation flows, stagnant flows etc. was clarified. The hydraulic analytical results using the standard k-ε model agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out under liquid hydrogen conditions. Based on these results, we clarified the possibility of suppressing the local temperature rise within 3 K under 2 MW operating condition. (author)

  10. Influence of cold deformation on martensite transformation and mechanical properties of Ti-Nb-Ta-Zr alloy

    International Nuclear Information System (INIS)

    Wang Liqiang; Lu Weijie; Qin Jining; Zhang Fan; Zhang Di

    2009-01-01

    Ti-35Nb-2Ta-3Zr alloy was fabricated by vacuum consumable arc melting furnace and hot pressing. Microstructure and phase transformation of solution-treated (ST) and cold-rolled (CR) plates of Ti-Nb-Ta-Zr alloy were observed. Different microstructure of strain-induced martensite transformation during cold deformation were investigated. With the increase of reduction of cold rolling, microstructure of α''-phase changed from acicular martensite to butterfly shaped martensite and showed variant crossed and cross-hatched when the reduction of cold rolling was over 60%. Mechanical properties and SEM images of the fracture surface indicated that the alloy fabricated by cold deformation showed favorable strength and plasticity. Owing to the excellent cold workability and biomedical safety of elements of Nb, Ta and Zr, Ti-Nb-Ta-Zr alloy contributed much to medical applications

  11. Thermal creep effects on 20% cold worked AISI 316 mechanical properties

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1980-09-01

    The effects of thermal creep on subsequent mechanical properties of 20% cold worked AISI 316 pressurized tubes were investigated. Specimens were subjected to temperatures of 811 to 977 0 K and stresses of 86 MPa to 276 MPa. This resulted in strains up to 1.3%. Subsequent mechanical property tests included load change stress rupture tests (original test pressure increased or decreased), uniaxial tensile tests, and temperature ramp burst tests. Load change stress rupture tests were consistent with predictions from isobaric tests, and thus, consistent with the linear life fraction rule. Tests with large stress increases and tests at 866 0 K displayed a tendency for earlier than predicted failure. Tensile and temperature ramp burst tests had only slight effects on material properties (property changes were attributed to thermal recovery). The test results showed that, under the conditions of investigation, dislocation structure recovery was the most significant effect of creep. 9 figures, 5 tables

  12. Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    International Nuclear Information System (INIS)

    Ivanov, V V; Cornelussen, R A; Heuvell, H B van Linden van den; Spreeuw, R J C

    2004-01-01

    We have observed a distance-dependent absorption linewidth of cold 87 Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behaviour of the atoms near the surface. We observed an increase of the absorption linewidth by up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED

  13. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  14. Cold Water Mediates Greater Reductions in Limb Blood Flow than Whole Body Cryotherapy.

    Science.gov (United States)

    Mawhinney, Chris; Low, David A; Jones, Helen; Green, Daniel J; Costello, Joseph T; Gregson, Warren

    2017-06-01

    Cold-water immersion (CWI) and whole body cryotherapy (WBC) are widely used recovery methods in an attempt to limit exercise-induced muscle damage, soreness, and functional deficits after strenuous exercise. The aim of this study was to compare the effects of ecologically valid CWI and WBC protocols on postexercise lower limb thermoregulatory, femoral artery, and cutaneous blood flow responses. Ten males completed a continuous cycle exercise protocol at 70% maximal oxygen uptake until a rectal temperature of 38°C was attained. Participants were then exposed to lower-body CWI (8°C) for 10 min, or WBC (-110°C) for 2 min, in a randomized crossover design. Rectal and thigh skin, deep, and superficial muscle temperatures, thigh, and calf skin blood flow (laser Doppler flowmetry), superficial femoral artery blood flow (duplex ultrasound), and arterial blood pressure were measured before, and for 40 min post, cooling interventions. Greater reductions in thigh skin (CWI, -5.9°C ± 1.8°C; WBC, 0.2°C ± 0.5°C; P < 0.001) and superficial (CWI, -4.4°C ± 1.3°C; WBC, -1.8°C ± 1.1°C; P < 0.001) and deep (CWI, -2.9°C ± 0.8°C; WBC, -1.3°C ± 0.6°C; P < 0.001) muscle temperatures occurred immediately after CWI. Decreases in femoral artery conductance were greater after CWI (CWI, -84% ± 11%; WBC, -59% ± 21%, P < 0.02) and thigh (CWI, -80% ± 5%; WBC, -59% ± 14%, P < 0.001), and calf (CWI, -73% ± 13%; WBC, -45% ± 17%, P < 0.001) cutaneous vasoconstriction was greater after CWI. Reductions in rectal temperature were similar between conditions after cooling (CWI, -0.6°C ± 0.4°C; WBC, -0.6°C ± 0.3°C; P = 0.98). Greater reductions in blood flow and tissue temperature were observed after CWI in comparison with WBC. These novel findings have practical and clinical implications for the use of cooling in the recovery from exercise and injury.

  15. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  16. Cold forging stem of total hip prosthesis with hybrid mechanical properties

    International Nuclear Information System (INIS)

    Lopes, E.S.N.; Contieri, R.J.; Cardoso, F.F.; Cremasco, A.; Button, S.T.; Caram, R.

    2010-01-01

    Type β Ti alloy is one of the most versatile groups of materials with regard to mechanical properties. Aspects such as alloying elements selection, mechanical processing and heat treatment routes empower these materials in applications where hybrid mechanical behavior is necessary. The aim of this study is to produce stems of total hip prostheses with hybrid mechanical properties using Ti-Nb alloys. Ingots were produced by using arc melting. Following, samples were subjected to specific heat treatment aiming to make cold forging. Sample characterization includes X-ray diffraction, scanning electron microscopy, Vickers hardness tests and tensile test. The experiments performed allowed to examine the effects of heat treatment parameters on the microstructure and mechanical behavior. Finally, results obtained show that the application of specific heat treatments of quenching and aging makes feasible the manufacturing of orthopedic devices with hybrid mechanical properties with regions where high mechanical strength was prioritized, while in others, low elastic modulus was the main concern. (author)

  17. Correlation of fracture toughness with tensile properties for irradiated 20% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Hamilton, M.L.; Garner, F.A.; Wolfer, W.G.

    1983-08-01

    A correlation has been developed which allows an estimate to be made of the toughness of austenitic alloys using more easily obtained tensile data. Tensile properties measured on 20% cold-worked AISI 316 specimens made from ducts and cladding irradiated in EBR-II were used to predict values for the plane strain fracture toughness according to a model originally developed by Krafft. Some microstructural examination is required to determine a parameter designated as the process zone size. In contrast to the frequently employed Hahn-Rosenfeld model, this model gives results which agree with recent experimental determinations of toughness performed in the transgranular failure regime

  18. Population genetic structure in Sabatieria (Nematoda) reveals intermediary gene flow and admixture between distant cold seeps from the Mediterranean Sea.

    Science.gov (United States)

    De Groote, Annelies; Hauquier, Freija; Vanreusel, Ann; Derycke, Sofie

    2017-07-01

    There is a general lack of information on the dispersal and genetic structuring for populations of small-sized deep-water taxa, including free-living nematodes which inhabit and dominate the seafloor sediments. This is also true for unique and scattered deep-sea habitats such as cold seeps. Given the limited dispersal capacity of marine nematodes, genetic differentiation between such geographically isolated habitat patches is expected to be high. Against this background, we examined genetic variation in both mitochondrial (COI) and nuclear (18S and 28S ribosomal) DNA markers of 333 individuals of the genus Sabatieria, abundantly present in reduced cold-seep sediments. Samples originated from four Eastern Mediterranean cold seeps, separated by hundreds of kilometers, and one seep in the Southeast Atlantic. Individuals from the Mediterranean and Atlantic were divided into two separate but closely-related species clades. Within the Eastern Mediterranean, all specimens belonged to a single species, but with a strong population genetic structure (Φ ST  = 0.149). The haplotype network of COI contained 19 haplotypes with the most abundant haplotype (52% of the specimens) shared between all four seeps. The number of private haplotypes was high (15), but the number of mutations between haplotypes was low (1-8). These results indicate intermediary gene flow among the Mediterranean Sabatieria populations with no evidence of long-term barriers to gene flow. The presence of shared haplotypes and multiple admixture events indicate that Sabatieria populations from disjunct cold seeps are not completely isolated, with gene flow most likely facilitated through water current transportation of individuals and/or eggs. Genetic structure and molecular diversity indices are comparable to those of epiphytic shallow-water marine nematodes, while no evidence of sympatric cryptic species was found for the cold-seep Sabatieria.

  19. Principal component analysis in an experimental cold flow model of a fluid catalytic cracking unit by gammametry

    International Nuclear Information System (INIS)

    Araujo, Janeo Severino C. de; Dantas, Carlos Costa; Santos, Valdemir A. dos; Souza, Jose Edson G. de; Luna-Finkler, Christine L.

    2009-01-01

    The fluid dynamic behavior of riser of a cold flow model of a Fluid Catalytic Cracking Unit (FCCU) was investigated. The experimental data were obtained by the nuclear technique of gamma transmission. A gamma source was placed diametrically opposite to a detector in any straight section of the riser. The gas-solid flow through riser was monitored with a source of Americium-241 what allowed obtaining information of the axial solid concentration without flow disturbance and also identifying the dependence of this concentration profile with several independent variables. The MatLab R and Statistica R software were used. Statistica tool employed was the Principal Components Analysis (PCA), that consisted of the job of the data organization, through two-dimensional head offices to allow extract relevant information about the importance of the independent variables on axial solid concentration in a cold flow riser. The variables investigated were mass flow rate of solid, mass flow rate of gas, pressure in the riser base and the relative height in the riser. The first two components reached about 98 % of accumulated percentage of explained variance. (author)

  20. Friction and wear properties of Ti6Al4V/WC-Co in cold atmospheric plasma jet

    International Nuclear Information System (INIS)

    Xu Wenji; Liu Xin; Song Jinlong; Wu Libo; Sun Jing

    2012-01-01

    Highlights: ► Cold plasma jet can effectively reduce the friction coefficients of Ti6Al4V/WC-Co friction pairs. ► Cold plasma jet can easily form nitrides on the surface of Ti6Al4V and on new surfaces generated by tool wear. ► The nitrides can reduce the friction coefficients and protect the friction surface. - Abstract: The friction and wear properties of Ti6Al4V/WC-Co friction pair were studied using an autonomous atmospheric pressure bare electrode cold plasma jet generating device and block-on-ring friction/wear tester, respectively. The study was conducted under air, air jet, nitrogen jet, air cold plasma jet, and nitrogen cold plasma jet atmospheres. Both nitrogen cold and air cold plasma jets effectively reduced the friction coefficients of the friction pairs and decreased friction temperature. The friction coefficient in the nitrogen cold plasma jet decreased to almost 60% compared with that in the air. The scanning electron microscope, energy-dispersive X-ray spectroscope, and X-ray diffraction analyses illustrated that adhesive wear was relieved and the friction surfaces of Ti6Al4V were smoother, both in the nitrogen cold and air cold plasma jets. The roughness value R a of the Ti6Al4V friction surfaces can reach 1.107 μm. A large number of nitrogen particles in the ionic and excited states contained by cold plasma jets reacts easily on the friction surface to produce a large amount of nitrides, which can excellently reduce the wear of Ti6Al4V/WC-Co friction pairs in real-time.

  1. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  2. QUANTITATIVE CHANGES IN REGIONAL CEREBRAL BLOOD FLOW INDUCED BY COLD, HEAT AND ISCHEMIC PAIN: A CONTINUOUS ARTERIAL SPIN LABELING STUDY

    Science.gov (United States)

    Frölich, Michael A.; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-01-01

    Background The development of arterial spin labeling methods, has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. Methods We studied the differential effects of three pain conditions in ten healthy subjects on a 3T scanner during resting baseline, heat, cold and ischemic pain using continuous arterial spin labeling. Results Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann Area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, while the ischemic condition showed a reduction in mean absolute gray matter flow compared to rest. An association of subjects’ pain tolerance and cerebral blood flow was noted. Conclusions The observation that quantitative rCBF changes are characteristic of the pain task employed and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy. PMID:22913924

  3. Quantitative changes in regional cerebral blood flow induced by cold, heat and ischemic pain: a continuous arterial spin labeling study.

    Science.gov (United States)

    Frölich, Michael A; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-10-01

    The development of arterial spin labeling methods has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. The authors studied the differential effects of three pain conditions in 10 healthy subjects on a 3 Tesla scanner during resting baseline, heat, cold, and ischemic pain using continuous arterial spin labeling. Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, whereas the ischemic condition showed a reduction in mean absolute gray matter flow compared with rest. An association of subjects' pain tolerance and cerebral blood flow was noted. The observation that quantitative rCBF changes are characteristic of the pain task used and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy.

  4. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Successful speciation of inorganic and organic Hg with Fe{sup 3+}, Cu{sup 2+} and thiourea as catalysts. Black-Right-Pointing-Pointer Best sensitivity enhancement and similar sensitivity for MeHg and Hg{sup 2+} with Fe{sup 3+}. Black-Right-Pointing-Pointer Successful use of Hg{sup 2+} as the primary standard for quantification of inorganic and total-Hg. Black-Right-Pointing-Pointer Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. Black-Right-Pointing-Pointer Integration with FIA for rapid analysis with a sample throughput of 180 h{sup -1}. - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH{sub 4} were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe{sup 3+}, Cu{sup 2+} and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu{sup 2+} and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe{sup 3+} gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg{sup 2+}. Due to similarity of resulting sensitivity, Hg{sup 2+} was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury

  5. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  6. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  7. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Science.gov (United States)

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  8. Metabolomics coupled with similarity analysis advances the elucidation of the cold/hot properties of traditional Chinese medicines.

    Science.gov (United States)

    Jia, Yan; Zhang, Zheng-Zheng; Wei, Yu-Hai; Xue-Mei, Qin; Li, Zhen-Yu

    2017-08-01

    It recently becomes an important and urgent mission for modern scientific research to identify and explain the theory of traditional Chinese medicine (TCM), which has been utilized in China for more than four millennia. Since few works have been contributed to understanding the TCM theory, the mechanism of actions of drugs with cold/hot properties remains unclear. In the present study, six kinds of typical herbs with cold or hot properties were orally administered into mice, and serum and liver samples were analyzed using an untargeted nuclear magnetic resonance (NMR) based metabolomics approach coupled with similarity analysis. This approach was performed to identify and quantify changes in metabolic pathways to elucidate drug actions on the treated mice. Our results showed that those drugs with same property exerted similar effects on the metabolic alterations in mouse serum and liver samples, while drugs with different property showed different effects. The effects of herbal medicines with cold/hot properties were exerted by regulating the pathways linked to glycometabolism, lipid metabolism, amino acids metabolism and other metabolic pathways. The results elucidated the differences and similarities of drugs with cold/hot properties, providing useful information on the explanation of medicinal properties of these TCMs. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. Condensation heat transfer coefficient in horizontal stratified cocurrent flow of steam and cold water

    International Nuclear Information System (INIS)

    Kim, Kap; Kim, Hho Jung

    1986-01-01

    Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationship. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial parameters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here recommended since it is based on the turbulent properties which may be closely related to the condensation phenomena. (Author)

  10. Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits

    Science.gov (United States)

    Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.

    2018-05-01

    The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.

  11. Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites

    Science.gov (United States)

    Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.

    2018-02-01

    The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.

  12. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers

    Directory of Open Access Journals (Sweden)

    Bartolomeo Coppola

    2017-06-01

    Full Text Available In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA and an organomodified montmorillonite (Dellite 67G at three different loadings (3, 5 and 10 wt %. Fibers were produced by a single-screw extruder and drawn at five draw ratios (DRs: 7.25, 10, 13.5, 16 and 19. All nanocomposites, characterized by XRD, SEM, TEM, and FT-IR techniques, showed an intercalated/exfoliated morphology. The study evidenced that the nanoclay presence significantly increases both elastic modulus (up to +115% for fibers containing 10 wt % of D67G and drawability of as-spun nanocomposite fibers. Moreover, at fixed nanocomposite composition, the cold-drawing process increases fibers elastic modulus and tensile strength at increasing DRs. However, at high DRs, “face-to-edge” rearrangement phenomena of clay layers (i.e., clay layers tend to rotate and touch each other arise in fibers at high nanoclay loadings. Finally, nanocomposite fibers show a lower diameter reduction during drawing, with respect to the plain system, and surface feature of adjustable roughness by controlling the composition and the drawing conditions.

  13. Magnet properties of Mn70Ga30 prepared by cold rolling and magnetic field annealing

    International Nuclear Information System (INIS)

    Ener, Semih; Skokov, Konstantin P.; Karpenkov, Dmitriy Yu.; Kuz'min, Michael D.; Gutfleisch, Oliver

    2015-01-01

    The remanence and coercivity of arc melted Mn 70 Ga 30 can be substantially improved by cold rolling. For best performance the rolled material should be annealed at T=730 K in the presence of a magnetic field of 1 T. The so-obtained magnet has a remanence of 0.239 T and a coercivity of 1.24 T at room temperature. The underlying reason for the high coercivity and remanence is the increase of the content of a metastable ferrimagnetic D0 22 phase at the expense of the normally stable anti-ferromagnetic D0 19 . Magnetic field significantly increases the nucleation rate of the ferromagnetic D0 22 phase that leads to grain size refinement and as a consequence of improving remanence and coercive field. - Highlights: • Alternative synthesis method for D0 22 phase formation in Mn–Ga is developed. • Effect of cold rolling and annealing on magnetic properties of Mn 70 Ga 30 is examined. • Small magnetic fields are sufficient to accelerate nucleation of the D0 22 phase

  14. Using cold deformation methods in flow-production of steel high precision shaped sections

    International Nuclear Information System (INIS)

    Zajtsev, M.L.; Makhnev, I.F.; Shkurko, I.I.

    1975-01-01

    A final size with a preset tolerance and a required surface finish of steel high-precision sections could be achieved by a cold deformation of hot-rolled ingots-by drawing through dismountable, monolith or roller-type drawing tools or by cold rolling in roller dies. The particularities of the both techniques are compared as regards a number of complicated shaped sections and the advantages of cold rolling are showna more uniform distribution of deformations (strain hardening) across the section, that is a greater margin of plasticity with the same reductions, the less number of the operations required. Rolling is recommended in all the cases when possible as regards the section shape and the bulk volume. The rolling-mill for the calibration of high-precision sections should have no less than two shafts (so that the size could be controlled in both directions) and arrangements to withstand high axial stresses on the rollers (the stresses appearing during rolling in skew dies). When manufacturing precise shaped sections by the cold rolling method the operations are less plentiful than in the cold drawing manufacturing

  15. Evolution of microstructure and mechanical properties during annealing of cold-rolled AA8011 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rajat Kumar [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)], E-mail: r.roy@rediffmail.com; Kar, Sujoy [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Department of Materials Science and Engineering, The Ohio State University, OH 43210 (United States); Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)], E-mail: sdas@metal.iitkgp.ernet.in

    2009-01-22

    The evolution of recrystallized microstructure of cold-rolled aluminium alloy AA8011 is investigated with the help of optical metallography, orientation imaging microscopy (OIM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), electrical resistivity and microhardness measurements at different annealing conditions. Tensile testing of the isochronally annealed specimens is performed to examine the effect of annealing temperature and microstructure on mechanical properties. Precipitates affect the grain growth behaviour and texture evolution. Normal grain growth takes place prior to abnormal grain growth. A wide range of grain size distribution and a combination of cube, rolling and random texture is observed at complete recrystallized condition. Our results provide not only new insight into aluminium packaging materials (i.e., foils, cans, and air conditioning ducts) but also a platform to better understand the recrystallization of a wide range of related alloys.

  16. Contractile and morphological properties of hamster retractor muscle following 16 h of cold preservation

    NARCIS (Netherlands)

    de With, Miriam C. J.; van der Heijden, E. P. A. Brigitte; van Oosterhout, Matthijs F.; Kon, M.; Kroese, Alfons B. A.

    2009-01-01

    Introduction: Cold hypoxia is a common factor in cold tissue preservation and mammalian hibernation. The purpose of this study was to determine the effects of cold preservation on the function of the retractor (RET) muscle of the hamster in the non-hibernating state and compare these with previously

  17. Contractile and morphological properties of hamster retractor muscle following 16 h of cold preservation.

    NARCIS (Netherlands)

    de With, M.C.J.; Heijden, E.P.; van Oosterhout, M.F.M.; Kon, M.; Kroese, A.B.A.

    2009-01-01

    INTRODUCTION: Cold hypoxia is a common factor in cold tissue preservation and mammalian hibernation. The purpose of this study was to determine the effects of cold preservation on the function of the retractor (RET) muscle of the hamster in the non-hibernating state and compare these with previously

  18. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    Science.gov (United States)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  19. Texture and magnetic properties of non-oriented electrical steels processed by an unconventional cold rolling scheme

    Energy Technology Data Exchange (ETDEWEB)

    He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Hilinski, Erik J. [Formerly Research and Technology Centre, United States Steel Corporation, Munhall, PA (United States); Now Tempel Steel Co., Chicago, IL (United States)

    2016-05-01

    Two non-oriented electrical steels containing 0.9 wt% and 2.8 wt% of silicon were processed using an unconventional cold rolling scheme, i.e. the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) so that the initial texture before cold rolling and the rotation paths of crystals during cold deformation were both altered as compared to conventional cold rolling along the original HRD. The cold-rolled steel strips were then annealed, skin-pass rolled and final annealed. The texture and microstructure of the materials were characterized by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and optical microscopy, and considerable differences in average grain size and texture were observed at different inclination angles. The magnetic properties of the steel strips were measured at 400 Hz and 1.0 T/1.5 T using a specially designed Epstein frame, and apparent differences were also noticed at various angles. The magnetic quality of texture was evaluated using different texture factors/parameters and compared to the measured magnetic properties. Although apparent improvement on the magnetic quality of texture can be noted by inclining the CRD to HRD, the trend does not match the measured magnetic properties at 400 Hz, which may have been affected by other parameters in addition to crystallographic texture. - Highlights: • The cold rolling direction is inclined an angle to the hot rolling direction. • The deformation and annealing textures are both changed by the inclined rolling. • Magnetic quality of texture is improved at specific inclination angles. • Low silicon steel is more sensitive in texture change than high silicon steel. • High frequency core loss does not follow the computed magnetic quality of texture.

  20. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 deg. C

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Srivastava, Ankit; Sinha, R.K.; Chakravartty, J.K.; Seshu, P.; Pawaskar, D.N.

    2011-01-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 deg. C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  1. Catalyst volumetric fraction simulation in a riser of a cold flow pilot unit with aid of transmission gamma technique

    International Nuclear Information System (INIS)

    Santos, Kamylla A.L. dos; Lima Filho, Hilario J.B. de; Benachour, Mohand; Dantas, Carlos C.; Santos, Valdemir A. dos

    2013-01-01

    Was obtained the radial profile of the catalyst volume fraction in a riser of the cold flow pilot unit of the Fluid Catalytic Cracking (FCC) unit, which was used for adjustment of the entrance conditions of the catalyst in a simulation program by Computational Fluid Dynamics (CFD). The height of the riser of the Cold Flow Pilot Unity (CFPU) utilized is 6.0m and its inner diameter is 0.097 m. A radiation-γ source of Am-241 and a NaI (Tl) detector, with shielding made of lead, have been installed on a steel backing that maintains the geometry of the source-detector-riser and allows to vary the distance from the source to the detector and the radial position in a given cross section of the riser. The data associated with the simulation of volume fraction radial profile of the catalyst were: Fluent software, version 12.0; preprocessor GAMBIT, version 2.3.16; Eulerian approach; structured mesh, cell number of 60000; turbulence model used was k-ε and kinetic theory of granular flow (KTGF) was implemented to describe the solid phase. Comparison of radial profiles simulated and experimental of the catalyst volumetric fraction in the CFPU riser allowed the identification of needs adjustments in the simulation for the input of catalyst, with consequent validation for the proposed model simulation. (author)

  2. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    Science.gov (United States)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  3. Evidence for hydrogen-assisted recovery of cold-worked palladium: hydrogen solubility and mechanical properties studies

    Directory of Open Access Journals (Sweden)

    Maria Ferrer

    2017-07-01

    Full Text Available The influence of hydrogen as an agent to accelerate the thermal recovery of cold-worked palladium has been investigated. The techniques used to characterize the effects of hydrogen on the thermal recovery of palladium were hydrogen solubility and mechanical property measurements. Results show that the presence of modest amounts of hydrogen during annealing of cold-worked palladium does enhance the degree of thermal recovery, with a direct correlation between the amount of hydrogen during annealing and the degree of recovery. The results indicate that the damage resulting from cold-working palladium can be more effectively and efficiently reversed by suitable heat treatments in the presence of appropriate amounts of hydrogen, as compared to heat treatment in vacuum. The somewhat novel technique of using changes in the hydrogen solubility of palladium as an indicator of thermal recovery has been validated and complements the more traditional technique of mechanical property measurements.

  4. Effect of Caesalpinia sappan L. extract on physico-chemical properties of emulsion-type pork sausage during cold storage.

    Science.gov (United States)

    Jin, Sang-Keun; Ha, So-Ra; Choi, Jung-Seok

    2015-12-01

    This study was performed to investigate the effect of extract from heart wood of Caesalpinia sappan on the physico-chemical properties and to find the appropriate addition level in the emulsion-type pork sausage during cold storage. The pH of treatments with C. sappan extract was significantly lower than control and T1 during cold storage periods (Pextract. Also, the texture properties and sensory of sausages containing C. sappan extract were decreased compared to control. Inclusion of the C. sappan extract in sausages resulted in lower lightness and higher yellowness, chroma and hue values. However, the antioxidant, antimicrobial activity, and volatile basic nitrogen in the emulsion-type pork sausages with C. sappan extract showed increased quality characteristics during cold storage. In conclusion, the proper addition level of C. sappan extract was 0.1% on the processing of emulsion-type pork sausage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Three-dimensional calculation of the flow in the cold plenum of the Fast Breeder Reactor 1500 MW

    International Nuclear Information System (INIS)

    Chabard, J.P.; Daubert, O.; Gregoire, J.P.; Hemmerich, P.

    1987-01-01

    To solve thermalhydraulics problems which are rising for example on the various parts of nuclear reactors, several departments of the Direction des Etudes et Recherches are developing the N3S code, three-dimensional code using the finite element method. First, this paper presents the basic equations (Navies-Stokes with turbulence modelling and coupled with the thermal equation) and well suited algorithms to solve them. The industrial adequacy of the code is clearly demonstrated through the application to the computation of the flow in the cold plenum of the Fast Breeder Reactor 1500 MW on a mesh of about 20000 velocity nodes [fr

  6. Regularizing properties of Complex Monge-Amp\\`ere flows

    OpenAIRE

    Tô, Tat Dat

    2016-01-01

    We study the regularizing properties of complex Monge-Amp\\`ere flows on a K\\"ahler manifold $(X,\\omega)$ when the initial data are $\\omega$-psh functions with zero Lelong number at all points. We prove that the general Monge-Amp\\`ere flow has a solution which is immediately smooth. We also prove the uniqueness and stability of solution.

  7. Skin cooling on contact with cold materials: the effect of blood flow during short-term exposures.

    Science.gov (United States)

    Jay, Ollie; Havenith, George

    2004-03-01

    This study investigates the effect of blood flow upon the short-term (cooling response in order to ascertain whether sufferers of circulatory disorders, such as the vasospastic disorder Raynaud's disease, are at a greater risk of cold injury than people with a normal rate of blood flow. Eight female volunteers participated, touching blocks of stainless steel and nylon with a finger contact force of 2.9 N at a surface temperature of -5 degrees C under occluded and vasodilated conditions. Contact temperature (Tc) of the finger pad was measured over time using a T-type thermocouple. Forearm blood flow was measured using strain gauge plethysmography. Contact cooling responses were analysed by fitting a modified Newtonian cooling curve. A significant difference was found between the starting skin temperatures for the two blood flow conditions (Peffect of blood flow was found upon any of the derived cooling curve parameters characterizing the skin cooling response (P>0.05). It is hypothesized that the finger contact force used (2.9 N) and the resultant pressure upon the tissue of the contact finger pad restricted the blood supply to the contact area under both blood flow conditions; therefore, no effect of blood flow was found upon the parameters describing the contact cooling response. Whilst the findings of this study are sufficient to draw a conclusion for those in a working environment, i.e. contact forces below 2.9 N will seldom be encountered, a further study will be required to ascertain conclusively whether blood flow does affect the contact cooling response at a finger contact force low enough to allow unrestricted blood flow to the finger pad. Further protocol improvements are also recommended.

  8. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    Science.gov (United States)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  9. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    Science.gov (United States)

    Le, Trong Trung; Valdez-Nava, Zarel; Lebey, Thierry; Mazaleyrat, Frédéric

    2018-04-01

    In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT) and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz) for the new wide band gap semiconductors (SiC, GaN) allow to interleave switching cell at higher frequencies than silicon-based semiconductors (materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP) into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  10. UPTF/TEST10B/RUN081, Steam/Water Flow Phenomena Reflood PWR Cold Leg Break LOCA

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of test facility: The Upper Plenum Test Facility (UPTF) is a geometrical full-scale simulation of the primary system of the four-loop 1300 MWe Siemens/KWU pressurized water reactor (PWR) at Grafenrheinfeld. The test vessel, upper plenum and its internals, downcomer, primary loops, pressurizer and surge line are replicas of the reference plant. The core, coolant pumps, steam generators and containment of a PWR are replaced by simulators which simulate the boundary and initial conditions during end-of-blowdown, refill and reflood phase following a loss-of-coolant accident (LOCA) with a hot or cold leg break. The break size and location can be simulated in the broken loop. The emergency core coolant (ECC) injection systems at the UPTF are designed to simulate the various ECC injection modes, such as hot leg, upper plenum, cold leg, downcomer or combined hot and cold leg injection of different ECC systems of German and US/Japan PWRs. Moreover, eight vent valves are mounted in the core barrel above the hot leg nozzle elevation for simulation of ABB and B and W PWRs. The UPTF primary system is divided into the investigation and simulation areas. The investigation areas, which are the exact replicas of a GPWR, consist of the upper plenum with internals, hot legs, cold legs and downcomer. The realistic thermal-hydraulic behavior in the investigation areas is assured by appropriate initial and boundary conditions of the area interface. The boundary conditions are realized by above mentioned simulators, the setup and the operation of which are based on small-scale data and mathematical models. The simulation areas include core simulator, steam generator simulators, pump simulators and containment simulator. The steam production and entrainment in a real core during a LOCA are simulated by steam and water injection through the core simulator. 2 - Description of test: Investigation of steam/water flow phenomena at the upper tie plate and in the upper plenum and

  11. An investigation into the mechanism for enhanced mechanical properties in friction stir welded AA2024-T3 joints coated with cold spraying

    Science.gov (United States)

    Li, N.; Li, W. Y.; Yang, X. W.; Feng, Y.; Vairis, A.

    2018-05-01

    Using cold spraying (CS), a surface layer with a modified microstructure and enhanced mechanical properties was formed on a 3.2 mm thick friction stir welded (FSWed) AA2024-T3 joint. The combined effect of "shot peening effect (SPE)" and "heat flow effect (HFE)" during CS were used to enhance joint mechanical properties. The microstructure evolution of the FSWed AA2024-T3 joints in the surface layer following CS coatings and their effect on mechanical properties were systematically characterized with electron back-scattered diffraction, transmission electron microscopy, differential scanning calorimetry and mechanical tests. Based on these experiments, a grain refinement, finer and more S phases, and improved amount of Guinier-Preston-Bagaryatsky (GPB) zones produced by CS treatments are proposed. The deposition of aluminum coating on the joint, lead to hardness recovery in the stir zone and the development of two low hardness zones as the density of GPB increased. The tensile properties of FSWed AA2024-T3 joints improved with the application of the aluminum coatings. Experiments and analysis of the enhanced mechanical properties mechanism indicate that SPE with a high plastic deformation and HFE with an intensive heat flow are necessary for the production of refined grains and increased numbers of GPB zones.

  12. Effect of Cold Drawing Pass Schedule on Mechanical Properties and Microstructure of ST 52 during Cold Drawing of Seamless Tubes and its Influence on Springback

    Directory of Open Access Journals (Sweden)

    Dadabhau Baban Karanjule

    2017-07-01

    Full Text Available In-elastic recovery behavior of seamless tube material has been investigated by uniaxial tensile tests. Unloading Stress–Strain curves obtained under different passes of cold drawing process shows that the percentage of in-elastic recovery to the total recovery increased with plastic deformation. This paper is an experimental study that shows Young’s Modulus decreases with plastic strain for ST 52 material. It is found that with increase in plastic strain, Young’s Modulus reduces rapidly initially then reduces more slowly and finally settles to stable value due to increase in plastic deformation and ultimately increased residual stresses. This variation of Young’s’ Modulus is related to internal stresses, residual stresses, micro cracks, dislocations during plastic deformation. Similarly, Scan Electron Microscopy (SEM and Micro-hardness testing reveals that mechanical properties are better in the first pass sample of multiple cold drawing passes. The results of this study reveals that 10-20% degradation occurs in Young’s Modulus for 5-7% plastic strain and better mechanical properties are achieved in the first pass sample.

  13. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  14. Multidimensional analysis of fluid flow in the loft cold leg blowdown pipe during a loss-of-coolant experiment

    International Nuclear Information System (INIS)

    Demmie, P.N.; Hofmann, K.R.

    1979-03-01

    A computer analysis of fluid flow in the Loss-of-Fluid Test (LOFT) cold leg blowdown pipe during a loss-of-coolant experiment (LOCE) was performed using the computer program K-FIX/MOD1. The purpose of this analysis was to evaluate the capability of K-FIX/MOD1 to calculate theoretical fluid quantity distributions in the blowdown pipe during a LOCE for possible application to the analysis of LOFT experimental data, the determination of mass flow, or the development of data reduction models. A rectangular section of a portion of the LOFT blowdown pipe containing measurement Station BL-1 was modeled using time-dependent boundary conditions. Fluid quantities were calculated during a simulation of the first 26 s of LOFT LOCE L1-4. Sensitivity studies were made to determine changes in void fractions and velocities resulting from specific changes in the inflow boundary conditions used for this simulation

  15. Properties of flooding waves in vertical churn flow

    International Nuclear Information System (INIS)

    Wang, K.; Bai, B.; Yang, B.; Xie, C.

    2011-01-01

    It is more accurate to predict the critical heat flux (CHF) from the start of churn flow rather than the start of annular flow. High-speed photography has been employed for qualitative investigation of entrainment in vertical two-phase flow under churn flow condition. This paper mainly focuses on the evolution of the flooding waves close to the water inlet section and liquid distribution in the cross-section of tube. The properties of flooding wave such as frequency and amplitude have been obtained. (author)

  16. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  17. Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity

    International Nuclear Information System (INIS)

    Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2015-01-01

    Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)

  18. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi

    Science.gov (United States)

    Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah

    2017-12-01

    The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.

  19. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M.D.

    2013-01-01

    Prior cold worked (PCW) titanium-modified 14Cr–15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16–24% on creep properties of IFAC-1 SS, a titanium modified 14Cr–15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K

  20. Properties of cold-bonded lightweight artificial aggregate containing bottom ash with different curing regime

    Science.gov (United States)

    Mohamad Ibrahim, Norlia; Nizar Ismail, Khairul; Che Amat, Roshazita; Mohamad Ghazali, Mohamad Iqbal

    2018-03-01

    Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content.

  1. Simulation of tensile stress-strain properties of irradiated type 316 SS by heavily cold-worked material

    International Nuclear Information System (INIS)

    Muto, Yasushi; Jitsukawa, Shiro; Hishinuma, Akimichi

    1995-07-01

    Type 316 stainless steel is one of the most promising candidate materials to be used for the structural parts of plasma facing components in the nuclear fusion reactor. The neutron irradiation make the material brittle and reduces its uniform elongation to almost zero at heavy doses. In order to apply such a material of reduced ductility to structural components, the structural integrity should be examined and assured by the fracture mechanics. The procedure requires a formulated stress-strain relationship. However, the available irradiated tensile test data are very limited at present, so that the cold-worked material was used as a simulated material in this study. Property changes of 316 SS, that is, a reduction of uniform elongation and an enhancement of yield stress are seemingly very similar for both the irradiated 316 SS and the cold-worked one. The specimens made of annealed 316 SS, 20% (or 15%) cold worked one and 40% cold worked one were prepared. After the formulation of stress strain behavior, the equation for the cold-worked 316 SS was fitted to the data on irradiated material under the assumption that the yield stress is the same for both materials. In addition, the upper limit for the plastic strain was introduced using the data on the irradiated material. (author)

  2. Effect of cold rolling on microstructure and mechanical property of extruded Mg–4Sm alloy during aging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rongguang, E-mail: lirongguang1980@126.com [School of Mechanical Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); Xin, Renlong; Chapuis, Adrien; Liu, Qing [School of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Fu, Guangyan; Zong, Lin; Yu, Yongmei; Guo, Beitao; Guo, Shuguo [School of Mechanical Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China)

    2016-02-15

    Microstructure and mechanical properties of the Mg–4Sm (wt.%) alloy, prepared via combined processes of extrusion, cold rolling and aging, have been investigated. The hot extruded alloy exhibits a weak rare earth magnesium alloy texture with < 11 − 21 >//ED, while the cold-rolled alloy shows a stronger basal texture with < 0001 >//ND. Many tensile twins and double twins are observed in grains after rolling. The cold-rolled alloy shows a weak age-hardening response compared with the extruded alloy, which is the result of more precipitation in the twin boundary during aging. The rolled alloy exhibits almost no precipitate free zone during aging compared with the extruded alloy. The higher proof stress of the rolled alloy in peak-aged condition is attributed to the presence of twin boundaries, stronger basal texture, higher dislocation density, and the suppression of precipitate free zone compared with the extruded alloy. - Highlights: • No precipitate free zone appears in cold-rolled alloy after aging. • Segregation and precipitates are observed in twin boundaries and grain boundaries. • Cold-rolled alloy shows a weak age-hardening response.

  3. Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and p...

  4. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner.

    Science.gov (United States)

    Fernandes, Elizabeth S; Russell, Fiona A; Alawi, Khadija M; Sand, Claire; Liang, Lihuan; Salamon, Robin; Bodkin, Jennifer V; Aubdool, Aisah A; Arno, Matthew; Gentry, Clive; Smillie, Sarah-Jane; Bevan, Stuart; Keeble, Julie E; Malcangio, Marzia; Brain, Susan D

    2016-01-11

    The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. We provide evidence that environmental

  5. Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite

    Directory of Open Access Journals (Sweden)

    Trong Trung Le

    2018-04-01

    Full Text Available In power electronics, there is the need to develop solutions to increase the power density of converters. Interleaved multicellular transformers allow interleaving many switching cells and, as a result, a possible increase in the power density. This converter is often composed of a magnetic core having the function of an intercell transformer (ICT and, depending on the complexity of the designed architecture, its shape could be extremely complex. The switching frequencies (1-10 MHz for the new wide band gap semiconductors (SiC, GaN allow to interleave switching cell at higher frequencies than silicon-based semiconductors (<1 MHz. Intercell transformers must follow this increase in frequency times-fold the number of switching cells. Current applications for ICT transformers use Mn-Zn based materials, but their limit in frequency drive raises the need of higher frequency magnetic materials, such Ni-Zn ferrites. These materials can operate in medium and high power converters up to 10 MHz. We propose to use Ni0,30Zn0,57Cu0,15Fe2O4 ferrite and to compress it by cold isostatic pressing (CIP into a a green ceramic block and to machine it to obtain the desired ICT of complex shape prior sintering. We compare the magnetic permeability spectra and hysteresis loops the CIP and uniaxially pressed ferrites. The effect of temperature and sintering time as well as high-pressure on properties will be presented in detail. The magnetic properties of the sintered cores are strongly dependent on the microstructure obtained.

  6. The Properties of Planck Galactic Cold Clumps in the L1495 Dark Cloud

    Science.gov (United States)

    Tang, Mengyao; Liu, Tie; Qin, Sheng-Li; Kim, Kee-Tae; Wu, Yuefang; Tatematsu, Ken’ichi; Yuan, Jinghua; Wang, Ke; Parsons, Harriet; Koch, Patrick M.; Sanhueza, Patricio; Ward-Thompson, D.; Tóth, L. Viktor; Soam, Archana; Lee, Chang Won; Eden, David; Di Francesco, James; Rawlings, Jonathan; Rawlings, Mark G.; Montillaud, Julien; Zhang, Chuan-Peng; Cunningham, M. R.

    2018-04-01

    Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2, and the PMO 13.7 m telescope. Thirty dense cores were identified in 16 PGCCs from 2D Gaussian fitting. The dense cores have dust temperatures of T d = 11–14 K, and H2 column densities of {N}{{{H}}2} = (0.36–2.5) × 1022 cm‑2. We found that not all PGCCs contain prestellar objects. In general, the dense cores in PGCCs are usually at their earliest evolutionary stages. All the dense cores have non-thermal velocity dispersions larger than the thermal velocity dispersions from molecular line data, suggesting that the dense cores may be turbulence-dominated. We have calculated the virial parameter α and found that 14 of the dense cores have α 2. This suggests that some of the dense cores are not bound in the absence of external pressure and magnetic fields. The column density profiles of dense cores were fitted. The sizes of the flat regions and core radii decrease with the evolution of dense cores. CO depletion was found to occur in all the dense cores, but is more significant in prestellar core candidates than in protostellar or starless cores. The protostellar cores inside the PGCCs are still at a very early evolutionary stage, sharing similar physical and chemical properties with the prestellar core candidates.

  7. An analysis direct-contact condensation in horizontal cocurrent stratified flow of steam and cold water

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    The physical benchmark problem on the direct-contact condensation under the horizontal cocurrent stratified flow was analyzed using the RELAP5/MOD2 and /MOD3 one-dimensional model. Analysis was performed for the Northwestern experiments, which involved condensing steam/water flow in a rectangular channel. The study showed that the RELAP5 interfacial heat transfer model, under the horizontal stratified flow regime, predicted the condensation rate well though the interfacial heat transfer area was underpredicted. However, some discrepancies in water layer thickness and local heat transfer coefficient with experimental results were found especially when there is a wavy interface, and those were satisfied only within the range. (Author)

  8. Effects of physical properties on thermo-fluids cavitating flows

    Science.gov (United States)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  9. CDOM Optical Properties and Connectivity in the Western Gulf of Alaska, the Unimak Pass and the Southeastern Bering Sea in the Spring During a Cold Year

    Science.gov (United States)

    D'Sa, E. J.; Goes, J. I.; Mouw, C. B.

    2016-02-01

    Flow through the Aleutian Passes connects the North Pacific to the Bering Sea with the Unimak Pass forming an important conduit for the flow of Gulf of Alaska water to the southeastern Bering shelf. While the biophysical properties have been studied for this region, little is known about the dissolved organic matter (DOM) and its optically active chromophoric component (CDOM) which play key roles in ocean color and several biogeochemical and photochemical processes. Dissolved organic carbon (DOC), and CDOM absorption and fluorescence properties were measured at locations in the western Gulf of Alaska, Unimak Pass and the southeastern Bering Sea in spring 2012, a relatively cold year as indicated by hydrographic field and satellite sea surface temperature data. DOC concentrations were on average higher in the western Gulf of Alaska (112.21 ± 20.05 µM) and Unimak Pass (106.14 ± 16.10 µM), than the southeastern Bering Sea shelf (73.28 ± 11.71 µM) suggesting Gulf of Alaska shelf water to be an important source of DOM to the eastern Bering Sea. Overall, CDOM absorption was relatively low while parallel factor (PARAFAC) analysis of DOM fluorescence identified two humic-like (terrestrial and marine) and one protein-like (tryptophan-like) component in the DOM pool. Relationships between the DOM optical properties and the physical regime will be further examined in this study.

  10. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  11. Observations of Cold Pool Properties during GoAmazon2014/5

    Science.gov (United States)

    Mayne, S. L.; Schumacher, C.; MacDonald, L.; Turner, D. D.

    2017-12-01

    Convectively generated cold pools are instrumental in both the development of the sub-cloud layer and the organization of deep convection. Despite this, analyses of cold pools in the tropics are constrained by a lack of observational data; insight into the phenomena therefore relies heavily on numerical models. GoAmazon2014/5, a 2-year DOE-sponsored field campaign centered on Manacapuru, Brazil in the central Amazon, provides a unique opportunity to characterize tropical cold pools and allows for the comparison of observational data with theoretical results from model cold pool simulations and parameterizations. This investigation analyzes radar, disdrometer, and profiler measurements at the DOE mobile facility site to study tropical cold pool characteristics. The Brazilian military (SIPAM) operational S-band radar in Manaus is used to provide a broad context of convective systems, while measurements from Parsivel disdrometers are used to assess drop-size distributions (DSDs) at the surface. A unique aspect of this research is the use of the Atmospheric Emitted Radiance Interferometer (AERI) instrument, which utilizes down-welling IR measurements to obtain vertical profiles of thermodynamic quantities such as temperature and water vapor in the lowest few km of the atmosphere. Combined with surface observations and sounding data, these datasets will result in a thorough investigation of the horizontal and vertical characteristics of cold pools over the tropical rain forest. Preliminary analyses of 20 events reveal a mean cold pool height of 220 m and a mean radius of approximately 8.5 km. The average cold pool experienced a temperature (specific humidity) decrease of approximately 1 K (0.4 g/kg) at the surface. The temperature decrease is consistent with modeling studies and limited observations from previous studies over the tropics. The small decrease in specific humidity is attributed to the high moisture content within the cold pools. AERI retrievals of

  12. Development of microstructure and mechanical properties during annealing of a cold-swaged Co-Cr-Mo alloy rod.

    Science.gov (United States)

    Mori, Manami; Sato, Nanae; Yamanaka, Kenta; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko

    2016-12-01

    In this study, we investigated the evolution of the microstructure and mechanical properties during annealing of a cold-swaged Ni-free Co-Cr-Mo alloy for biomedical applications. A Co-28Cr-6Mo-0.14N-0.05C (mass%) alloy rod was processed by cold swaging, with a reduction in area of 27.7%, and then annealed at 1173-1423K for various periods up to 6h. The duplex microstructure of the cold-swaged rod consisted of a face-centered cubic γ-matrix and hexagonal closed-packed ε-martensite developed during cold swaging. This structure transformed nearly completely to the γ-phase after annealing and many annealing twin boundaries were observed as a result of the heat treatment. A small amount of the ε-phase was identified in specimens annealed at 1173K. Growth of the γ-grains occurred with increasing annealing time at temperatures ≥1273K. Interestingly, the grain sizes remained almost unchanged at 1173K and a very fine grain size of approximately 8μm was obtained. The precipitation that occurred during annealing was attributed to the limited grain coarsening during heat treatment. Consequently, the specimens treated at this temperature showed the highest tensile strength and lowest ductility among the specimens prepared. An elongation-to-failure value larger than 30% is sufficient for the proposed applications. The other specimens treated at higher temperatures possessed similar tensile properties and did not show any significant variations with different annealing times. Optimization of the present rod manufacturing process, including cold swaging and interval annealing heat treatment, is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Renal blood flow and metabolism after cold ischaemia: peroperative measurements in patients with calculi

    DEFF Research Database (Denmark)

    Petersen, H K; Henriksen, Jens Henrik Sahl

    1984-01-01

    Peroperative measurements of renal blood flow (RBF), renal O2-uptake, and renal venous lactate/pyruvate (L/P) ratio were performed before and after a period of 30-71 min of hypothermic (10-15 degrees C) renal ischaemia in nine patients, undergoing surgery for renal calculi. Before ischaemia, RBF.......01) immediately after re-established perfusion and 36% (P less than 0.02) 30 min later. In one additional patient, who had a short warm ischaemia (8 min), the flow pattern was the same. As arterial pressure remained constant, the reduced RBF signifies an increased renal vascular resistance. Renal O2-uptake...... and renal venous L/P ratio were almost constant, indicating no significant anaerobic processes being involved in the flow response. None of the patients showed any signs of reactive hyperaemia. It is concluded that hypothermic renal ischaemia may be followed by an increased renal vascular resistance even...

  14. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  15. Effect of Li content on microstructure, texture and mechanical properties of cold rolled Mg–3Al–1Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying [College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Jiang, Bin, E-mail: jiangbinrong@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Li, Ruihong; He, Junjie [College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Xia, Xiangsheng [No. 59 Institute of China Ordnance Industry, Chongqing 400039 (China); Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China)

    2015-04-17

    Cold rolling of the as-extruded Mg–3Al–1Zn (AZ31) sheets containing different Li contents (Li=1, 3, 5; wt%) was performed at room temperature with a rolling reduction of 5%, and the microstructure, texture and tensile properties of the cold rolled and annealed sheets were investigated. The results indicated that the AZ31 sheet with a high Li content exhibited a high degree of dynamic recrystallization (DRX). Besides, the strain hardening rate of the annealed AZ31 sheets with a high Li content was more likely to be volatile, which can be attributed to Li atoms interacting with dislocations and influencing the movement of dislocations during the process of deformation. Furthermore, the Li addition to AZ31 alloy decreased the axial ratio (c/a) and led to a weak basal texture tilted towards the transverse direction (TD), and therefore improved the ductility and formability of the cold rolled and annealed AZ31 sheets. AZ31–3Li (LAZ331) sheet possessed excellent comprehensive mechanical properties and presented to be the best option in industrial processes considering the costing saving and property improvement.

  16. Influence of prior cold rolling reduction on microstructure and mechanical properties of a reversion annealed high-Mn austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Behjati, P., E-mail: p.behjatipournaki@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karjalainen, L.P.; Järvenpää, A.; Jaskari, M. [Centre for Advanced Steels Research, University of Oulu, FIN-90014 Oulu (Finland); Samaei Baghbadorani, H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Najafizadeh, A. [Foulad Institute of Technology, Fouladshahr, Isfahan 84916-63763 (Iran, Islamic Republic of); Hamada, A. [Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721 (Egypt)

    2016-01-05

    The martensitic reversion is known to be effective in refining the grain size of metastable austenitic stainless steels. However, severe cold rolling reductions are generally required for this process. In this study, the influence of the degree of prior cold rolling and subsequent annealing on the microstructure and mechanical properties of a metastable high-Mn austenitic steel was investigated. Three cold rolling reductions of 20%, 35% and 50% were applied at ambient temperature before the annealing at 700 °C for the durations of 10, 100 and 1000 s. Microstructures were examined by optical, scanning and transmission electron microscopes. Mechanical properties were measured by hardness and tensile tests. The microstructure changes were followed by magnetic measurements and X-ray diffraction. It was shown that a relatively small reduction of 35% and 100 s annealing could provide efficient grain refinement (the average size of 0.5 µm) and accordingly an outstanding combination of strength-ductility properties with the yield strength 890 MPa, tensile strength 1340 MPa and elongation 41% was achieved. The occurrence of martensite reversion and recrystallization processes with different contributions in dependence on degree of prior deformation before annealing was discussed.

  17. A comparative study of the flow enhancing properties of bentonite ...

    African Journals Online (AJOL)

    A comparative study of granule flow enhancing property of bentonite, magnesium stearate, talc and microcrystalline cellulose (MCC) was undertaken. Bentonite was processed into fine powder. A 10 %w/w of starch granules was prepared and separated into different sizes (˂180, 180-500, 500-710 and 710-850 μm).

  18. Scalar statistics in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Boersma, B.J.; Pecnik, R.

    2017-01-01

    Direct numerical simulation of fully developed, internally heated channel flows with isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes equation to investigate the influence of temperature-dependent properties on turbulent scalar statistics. Different constitutive

  19. CFD Calculations of the Air Flow Along a Cold Vertical Wall with an Obstacle

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per

    This paper deals with the ability of Computational Fluid Dynamics to predict downdraught at a plane wall and at a wall with large obstacles. Quite simple boundary conditions were used in this study. Predictions of the main flow characteristics and the velocity levels in the occupied zone showed...

  20. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  1. Mechanical properties of superelastic Cu–Al–Be wires at cold temperatures for the seismic protection of bridges

    International Nuclear Information System (INIS)

    Zhang Yunfeng; Zhu Songye; Camilleri, Joseph A

    2008-01-01

    This paper examines the suitability of superelastic copper–aluminum–beryllium (Cu–Al–Be) alloy wires for the seismic protection of bridges in cold regions. Experimental results for the mechanical properties of superelastic Cu–Al–Be alloy wires at a variety of temperatures and loading rates are presented. This research is motivated by the recent use of shape memory alloys for bridge restrainers subject to harsh winter conditions, especially in cold regions. Bridge restrainers made of superelastic Cu–Al–Be wire strands are expected to be used for protecting bridge decks from excessive displacement when subjected to strong earthquakes. Using a temperature chamber, superelastic Cu–Al–Be wires with a diameter of 1.4 mm were tested under uniaxial cyclic loading at various loading rates and cold temperatures. The test results from 23 to −50 °C demonstrate that Cu–Al–Be exhibits superelastic behavior at cold temperatures down to −85 °C. It is also found that with decreasing temperature the transformation plateau stress is reduced while its fatigue life increases under cyclic testing

  2. Effect of cold working on the corrosion resistance of JPCA stainless steel in flowing Pb–Bi at 450 °C

    International Nuclear Information System (INIS)

    Rivai, Abu Khalid; Saito, Shigeru; Tezuka, Masao; Kato, Chiaki; Kikuchi, Kenji

    2012-01-01

    Development of a high performance proton beam window material is one of the critical issues for the deployment of the accelerator-driven transmutation system (ADS) with liquid Pb–Bi eutectic as a spallation target and coolant. In the present study, we applied 20% cold work treatment to JPCA austenitic stainless steel and investigated it from the corrosion behavior viewpoint. The corrosion test of 20% cold-worked JPCA SS has been carried in the JLBL-1 (JAEA Lead–Bismuth Loop-1) apparatus. The maximum temperature, the temperature difference, the flow velocity and the exposure time of the liquid Pb–Bi were 450 °C, 100 °C, 1 m/s, and 1000 h, respectively. For comparison analysis, JPCA SS without cold working was also tested in the same time and conditions with the 20% cold-worked JPCA SS. The results showed a different corrosion behavior between the JPCA SS without and with cold working. As for the JPCA SS without cold working, Pb–Bi penetrated into the matrix through a ferrite layer which was formed because of constituent metals dissolution from the matrix into Pb–Bi. As for the 20% cold-worked JPCA SS, dissolution attack occurred only partially and formed localized superficial pitting corrosion. It was found that the different corrosion behavior occurred because the cold working induced a structure transformation from γ-austenite to α′-martensite and affected the corrosion resistance of the JPCA SS in flowing Pb–Bi at 450 °C.

  3. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  4. Magnetic property zonation in a thick lava flow

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  5. Dielectric properties of lava flows west of Ascraeus Mons, Mars

    Science.gov (United States)

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.

    2009-01-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  6. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 4; Cold Flow Analyses and CFD Analysis Capability Development

    Science.gov (United States)

    1995-01-01

    An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.

  7. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  8. Cold deformation effect on the microstructures and mechanical properties of AISI 301LN and 316L stainless steels

    International Nuclear Information System (INIS)

    Silva, Paulo Maria de O.; Abreu, Hamilton Ferreira G. de; Albuquerque, Victor Hugo C. de; Neto, Pedro de Lima; Tavares, Joao Manuel R.S.

    2011-01-01

    As austenitic stainless steels have an adequate combination of mechanical resistance, conformability and resistance to corrosion they are used in a wide variety of industries, such as the food, transport, nuclear and petrochemical industries. Among these austenitic steels, the AISI 301LN and 316L steels have attracted prominent attention due to their excellent mechanical resistance. In this paper a microstructural characterization of AISI 301LN and 316L steels was made using various techniques such as metallography, optical microscopy, scanning electronic microscopy and atomic force microscopy, in order to analyze the cold deformation effect. Also, the microstructural changes were correlated with the alterations of mechanical properties of the materials under study. One of the numerous uses of AISI 301LN and 316L steels is in the structure of wagons for metropolitan surface trains. For this type of application it is imperative to know their microstructural behavior when subjected to cold deformation and correlate it with their mechanical properties and resistance to corrosion. Microstructural analysis showed that cold deformation causes significant microstructural modifications in these steels, mainly hardening. This modification increases the mechanical resistance of the materials appropriately for their foreseen application. Nonetheless, the materials become susceptible to pitting corrosion.

  9. Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel

    Science.gov (United States)

    Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm, or soybean and has a number of properties that make it compatible in compression-ignition engines. Despite...

  10. Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter

    Science.gov (United States)

    Azizi, K.; Er, N.

    2018-02-01

    The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.

  11. Properties of early-stage concrete with setting-accelerating tablet in cold weather

    International Nuclear Information System (INIS)

    Ryou, Jae-Suk; Lee, Yong-Soo

    2012-01-01

    Highlights: ► Tablets were used as accelerators, which have a merit in cold weather. ► Tablets are almost not used at all as construction materials (powdered admixtures). ► 0.5 and 1.0% tablets satisfied workability and strength for early-frost prevention. ► It was found that it is possible for the 0.5 and 1.0% tablets in cold weather. - Abstract: Various methods are used at the early stages to control setting-time and strength of concrete, when cold-weather concrete is utilized. Among these methods is one that involves the use of an accelerator. Although economical, accelerators have difficulty securing workability because their early hydration makes them react rapidly. Therefore, how to make a tablet for cold-weather concrete, as with the existing medicines and foods, is discussed in this study, including the following items: mortar setting-time, workability by elapsed time, early strength to assure the development of adequate strength, and freezing–thawing resistance. As a result, both the 0.5 and 1.0% tablets were found to be superior. Thus, workability can be secured, as well as the development of early strength to prevent early frost.

  12. Waterhammer modeling for the Ares I Upper Stage Reaction Control System cold flow development test article

    Science.gov (United States)

    Williams, Jonathan Hunter

    The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  13. Cold flow study of liquid cooled pebble bed reactor (LC-PBR) through radioisotope techniques

    International Nuclear Information System (INIS)

    Verma, Rupesh; Upadhyay, Rajesh K.; Pant, H.J.

    2017-01-01

    As the world's demand for energy continues to increase burning of coal, oil and natural gases continue to increase which will eventually cause build-up in emission of greenhouse gasses. To overcome this challenge worldwide effort is in progress to develop an economical, more efficient and safer nuclear power. Higher thermal efficiency and enhances safety feature of Generation IV liquid cooled pebble bed reactor (LC-PBR) makes it viable option to replace existing nuclear reactor. However, this reactor is still in research stage and need detailed study before commercialization. In current work, hydrodynamics of LC-PBR is studied by using radioisotope based techniques, radioactive particle tracking and gamma-ray densitometry. Pebble flow profile and distribution are measured for different operating conditions. Optimal operating parameters are identified for operating LC-PBR based on hydrodynamics. (author)

  14. Cold modalities with different thermodynamic properties have similar effects on muscular performance and activation.

    Science.gov (United States)

    Vieira, A; Oliveira, A B; Costa, J R; Herrera, E; Salvini, T F

    2013-10-01

    Although tissue cooling is widely used in the treatment of musculoskeletal injuries there is still controversy about its effects on muscular performance. The combination of cooling and exercise justifies the study of this topic. The aim was to compare the effects of ice pack and cold-water immersion on the muscular performance parameters of plantar flexors and muscular activation of the triceps surae. 41 healthy men (mean age: 22.1 years, SD: 2.9) were randomly assigned to cooling with either ice pack (n=20) or cold-water immersion (n=21). Independent variables were cold modality (ice pack or cold-water immersion) and pre- and post-cooling measurement time. Dependent variables were muscular performance (measured during isometric and concentric contractions of plantar flexors) and electromyography parameters of the triceps surae (median frequency and root mean square amplitude). Dependent-samples t-tests were used to compare pre- and post-cooling data and independent-samples t-tests were used to compare the difference (pre- and post-cooling) between groups. Ice pack increased isometric peak torque (mean: 9.00 Nm, P=0.01) and both cold modalities reduced muscular activation in triceps surae (Pimmersion and ice pack reduced peak torque and total work during dynamic isokinetic contraction at both velocities (mean: -11,00 Nm, Pimmersion decrease concentric muscular performance. These results indicate that these cooling methods should be chosen with caution, considering the type of task required during training or rehabilitation. New studies investigating other muscle groups and joints are necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    Science.gov (United States)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  16. Role of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through cold isostatic pressing

    Science.gov (United States)

    Ramudu, M.; Rajkumar, D. M.

    2018-04-01

    The effect of aging time on the magnetic properties of Sm2Co17 permanent magnets processed through a novel method of cold isostatic pressing was investigated. Sintered Sm2Co17 samples were subjected to different aging times in the range of 10-30 h and their respective microstructures were correlated with the magnetic properties obtained. The values of remanant magnetization (Br) were observed to be constant in samples aged from 10-20 h beyond which a gradual decrease in Br values was observed. The values of coercivity (Hc) displayed a sharp increase in samples aged from 10 to 20 h beyond which the coercivity values showed marginal improvement. Hence a good combination of magnetic properties could be achieved in samples aged for 20 h. A maximum energy product of 27 MGOe was achieved in the 20 h aged sample processed through a novel route.

  17. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    Science.gov (United States)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  18. Evaluation of some physico-chemical properties of restructured trout and hake mince during cold gelation and chilled storage

    DEFF Research Database (Denmark)

    Moreno, H.M.; Javier Borderias, A.; Baron, Caroline

    2010-01-01

    Cold gelation was carried out on trout (Oncorhynchus mykiss) or on hake (Merluccius mertuccius) mince with or without addition of fish oil and using microbial transglutaminase (MTGase). Products were stored at 4 QC for 6 days and lipid oxidation, protein oxidation, texture, water binding capacity......, and colour were followed. Results indicated that MTGase was able to generate gels with good properties for both trout and hake. Gels prepared with trout were oxidised whilst gels prepared with hake were stable toward oxidation even in the presence of 5% fish oil. However, in the presence of oil...

  19. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  20. Evaluation of Some Medicinal Herbs Cold Pressed Oils According Their Physicochemical Properties with Chemometry

    OpenAIRE

    Üstün Argon, Zeliha; Gökyer, Ali; Gümüş, Zinar Pınar; Büyükhelvacıgil, Mevlüt

    2017-01-01

    In thisstudy, we investigated the effects of cold pressed oil on physicochemical propertiesof milk thistle (Silybum marianum), aniseseed (Pimpinella anisum), fennel seed(Foeniculum vulgare), terebinth (Pistacia terebinthus), coriander (Coriandrum sativum) and nettle seed (Urtica dioica). Selected oils from CentralAnatolia Regions, were investigated in terms of the fatty acid methyl esters (FAME)compositions, peroxide value (PV), free fatty acid (FFA), refraction index (RI)at 40 ° C and oilsee...

  1. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    Science.gov (United States)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  2. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    Energy Technology Data Exchange (ETDEWEB)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Notonegoro, Hamdan Akbar [Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa,Cilegon 42435 (Indonesia); Thosin, Kemas Ahmad Zaini [Pusat Penelitian Fisika,LIPI, Serpong (Indonesia)

    2016-06-17

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initial hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.

  3. Some properties of a channeling model of fracture flow

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.; Neretnieks, I.

    1986-12-01

    The Gamma distribution and the log-normal distribution were used to describe the density distribution of the apertures within a channel. For every set of parameter values (correlation length, and the parameters of the distributions) 95 different statistically equivalent channels were generated. The aperture distribution along the channels are then used to determine the total channel volume, the hydraulic conductivity and the flow rate and residence time for a given gradient. The volumes of the channels were found to vary little whereas the hydraulic conductivity, which is primarily determined by the smallest aperture along the channels, varies considerably. For a wide density distribution the hydraulic conductivity easily spans several orders of magnitude. The flow rate and the velocity variations are primarily influenced by the conductivity variations and are only to a small extent influenced by the volume variations in the channel. The average specific area of the whole channel exhibits small variations. The hydraulic and transport properties of hypothetical fractures containing several channels are investigated by randomly picking several of the generated channels, coupling them in parallel and subjecting them to the same hydraulic head difference. The flow rate and residence time distribution of the coupled channels is used to investigate the dispersion properties of the fracture. It was found that the dispersion expressed as Peclet numbers was on the order of 1 to 4 for most of the distributions used but could attain very large Peclet numbers for (unrealistically) narrow aperture distributions. Simulations of breakthrough curves for tracers in single fracture flow experiments indicate that when few channels participate and the dispersion in the individual channels is small, the breakthrough curve is expected not to be entirely smooth but to contain distinct plateaus. This property has been noted in several experiments. (orig./HP)

  4. A numerical study of the effect of vent flow angle on the heat transfer rate from a cold window with a below-window hot-air vent

    Energy Technology Data Exchange (ETDEWEB)

    Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering

    2010-07-01

    This study investigated the effects of the discharge angle on air leaving a hot air vent mounted below a window. The window was represented by a plane isothermal section recessed into a wall and was colder than air in the rest of the room. The vent was placed against the wall and had a uniform discharge velocity. Flow was assumed to be steady. Both laminar and turbulent flows were evaluated using a commercial computational fluid dynamics (CFD) simulation tool. A k-epsilon turbulence model was used to determine turbulent flow calculations. The study determined the Rayleigh number based on window height, the Reynolds number based on the vent discharge velocity, the angle of the vent discharge flow, the Prandtl number, and dimensionless vent discharge temperature differences. The study showed that a relatively thin layer of cold air adjacent to the floor is present at high Rayleigh numbers, where the downward natural convective flow over the window dominates the overall flow. At low Rayleigh numbers, the cold air flows upward towards the ceiling and temperatures in the room are nearly uniform. 47 refs., 11 figs.

  5. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  6. Flow Reactor for studying Physicochemical and aging properties of SOA

    Science.gov (United States)

    Babar, Z. B.

    2016-12-01

    Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.

  7. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  8. The effects of superchilled storage at -2 C on the microbiological and organoleptic properties of cold-smoked salmon before retail display

    Energy Technology Data Exchange (ETDEWEB)

    Beaufort, A. [AFSSA Lerqap, 23 avenue du General de Gaulle, FR-94706 Maisons-Alfort Cedex (France); Cardinal, M. [IFREMER, STAM, rue de l' Ile d' Yeu, FR- 44311 Nantes Cedex 3 (France); Le-Bail, A. [ENITIAA, UMR GEPEA, CNRS 6144, rue de la Geraudiere, BP 82225, FR-44322 Nantes (France); Midelet-Bourdin, G. [AFSSA Lerppe, boulevard du Bassin Napoleon, FR-62200 Boulogne-sur-Mer (France)

    2009-11-15

    The aim of this study was to investigate the impact of superchilling (-2 C) on the evolution of Listeria monocytogenes and organoleptic characteristics of cold-smoked salmon samples. An Hadamard matrix experimental design was carried out on artificially inoculated samples stored at +4 C for 10 d and at +8 C for 18 d to know the influence of four factors: salt content, strain, cold stiffening and superchilling time, on the level of L.monocytogenes in cold-smoked salmon. The growth of L. monocytogenes in naturally contaminated cold-smoked salmon and the organoleptic properties were investigated under superchilling conditions. Superchilling (-2 C for 28 d) had a limited impact on some of the organoleptic properties but the level of L. monocytogenes at the end of the shelf-life (4 C for 10 d and 8 C for 18 d) could exceed the microbiological criterion set by the European legislation. (author)

  9. Radio properties of central dominant galaxies in cluster cooling flows

    International Nuclear Information System (INIS)

    O'dea, C.P.; Baum, S.A.

    1986-01-01

    New VLA observations of central dominant (cd) galaxies currently thought to be in cluster cooling flows are combined with observations from the literature to examine the global properties of a heterogeneous sample of 31 cd galaxies. The radio sources tend to be of low or intermediate radio power and have small sizes (median extent about 25 kpc). The resolved sources tend to have distorted morphologies (e.g., wide-angle tails and S shapes). It is not yet clear whether the radio emission from these cd galaxies is significantly different from those not thought to be in cluster cooling flows. The result of Jones and Forman (1984), that there is a possible correlation between radio power and excess X-ray luminosity in the cluster center (above a King model fit to the X-ray surface brightness), is confirmed. 43 references

  10. Yield and flow properties of aluminum alloy AA 8001

    International Nuclear Information System (INIS)

    Lyons, J.S.; Johnson, H.W.; Han, E.G.

    1995-01-01

    Aluminum alloy AA 8001 is being used at the Westinghouse Savannah River Company (WSRC) for nuclear reactor fuel and target components. The objective of this research was to determine parameters for predictive models of the compressive flow properties of AA 8001. Seventy-five true strain-rate, hot compression tests were performed. New, quantitative information about the yield and flow behavior of aluminum alloy AA 8001 was determined. Parameters were determined to use in a hyperbolic sine constitutive law so that the yield stress, the peak stress, and the peak strain can be predicted from the temperature-compensated strain-rate, Z. It was found that the onset of strain softening was more strongly dependent on Z than the onset of yielding was

  11. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    Science.gov (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  12. Gas flow rate and powder flow rate effect on properties of laser metal deposited Ti6Al4V

    CSIR Research Space (South Africa)

    Pityana, S

    2013-03-01

    Full Text Available . The powder flow rate and the gas flow rate were varied to study their effect on the physical, metallurgical and mechanical properties of the deposits. The physical properties studied are: the track width, the track height and the deposit weight...

  13. Flow-specific physical properties of coconut flours

    Science.gov (United States)

    Manikantan, Musuvadi R.; Kingsly Ambrose, Rose P.; Alavi, Sajid

    2015-10-01

    Coconut milk residue and virgin coconut oil cake are important co-products of virgin coconut oil that are used in the animal feed industry. Flour from these products has a number of potential human health benefits and can be used in different food formulations. The objective of this study was to find out the flow-specific physical properties of coconut flours at three moisture levels. Coconut milk residue flour with 4.53 to 8.18% moisture content (w.b.) had bulk density and tapped density of 317.37 to 312.65 and 371.44 to 377.23 kg m-3, respectively; the corresponding values for virgin coconut oil cake flour with 3.85 to 7.98% moisture content (wet basis) were 611.22 to 608.68 and 663.55 to 672.93 kg m-3, respectively. The compressibility index and Hausner ratio increased with moisture. The angle of repose increased with moisture and ranged from 34.12 to 36.20 and 21.07 to 23.82° for coconut milk residue flour and virgin coconut oil cake flour, respectively. The coefficient of static and rolling friction increased with moisture for all test surfaces, with the plywood offering more resistance to flow than other test surfaces. The results of this study will be helpful in designing handling, flow, and processing systems for coconut milk residue and virgin coconut oil cake flours.

  14. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  15. Laboratory assessment of the mechanical properties of bituminous mixes recycled in situ with cold bitumen processes

    OpenAIRE

    BROSSEAUD, Y; BEGHIN, A; PLACIN, F; GAUDEFROY, V; DELFOSSE, F; BAENA, J

    2006-01-01

    Dans le cadre du programme SCORE (Superior COld REcycling of asphalt pavements), contrat européen du 5ème PCRD, le LCPC a été le leader de la tache 7, concernant l'évaluation des propriétés mécaniques en laboratoire des enrobés recyclés en place au moyen de liants bitumineux à froid. Préalablement à l'étude, un essai croisé sur la détermination du module par traction indirecte a été entrepris entre les laboratoires impliqués dans cette tach pour évaluer les dispersions tant dans la préparatio...

  16. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    Science.gov (United States)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  17. Magnet properties of Mn{sub 70}Ga{sub 30} prepared by cold rolling and magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ener, Semih, E-mail: ener@fm.tu-darmstadt.de [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Skokov, Konstantin P. [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Karpenkov, Dmitriy Yu. [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Faculty of Physics, Tver State University, 170100 Tver (Russian Federation); Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Kuz' min, Michael D. [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gutfleisch, Oliver [Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Fraunhofer IWKS, Project Group for Material Cycles and Resource Strategy, 63457 Hanau (Germany)

    2015-05-15

    The remanence and coercivity of arc melted Mn{sub 70}Ga{sub 30} can be substantially improved by cold rolling. For best performance the rolled material should be annealed at T=730 K in the presence of a magnetic field of 1 T. The so-obtained magnet has a remanence of 0.239 T and a coercivity of 1.24 T at room temperature. The underlying reason for the high coercivity and remanence is the increase of the content of a metastable ferrimagnetic D0{sub 22} phase at the expense of the normally stable anti-ferromagnetic D0{sub 19}. Magnetic field significantly increases the nucleation rate of the ferromagnetic D0{sub 22} phase that leads to grain size refinement and as a consequence of improving remanence and coercive field. - Highlights: • Alternative synthesis method for D0{sub 22} phase formation in Mn–Ga is developed. • Effect of cold rolling and annealing on magnetic properties of Mn{sub 70}Ga{sub 30} is examined. • Small magnetic fields are sufficient to accelerate nucleation of the D0{sub 22} phase.

  18. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    Science.gov (United States)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  19. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  20. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    Science.gov (United States)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  1. Simulation study for the influences of fluid physical properties on void fraction of moderator cell of cold neutron source

    International Nuclear Information System (INIS)

    Li Xiaoming; Feng Quanke; Bi Qincheng; Chen Tingkuan; Du Shejiao

    2004-01-01

    The void fraction at different heights in the annular channel of moderator cell mockup was measured with a differential pressure transducer. The tests proved that the ratio of surface tension to density of liquid phase is the main factor that determines the physical properties on void fraction. The larger the ratio, the smaller the void fraction. The ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen. Therefore, Freon 113 can be used as working fluid to study the void fraction in the hydrogen two-phase thermo-siphon loop in the cold neutron source (CNS) of China Advanced Research Reactor (CARR), and the results are conservative

  2. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    Science.gov (United States)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  3. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    Science.gov (United States)

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  4. Steady-state properties of coupled hot and cold Ising chains

    International Nuclear Information System (INIS)

    Lavrentovich, Maxim O

    2012-01-01

    Recently, the present author and Zia (2011 Europhys. Lett. 91 50003) reported on exact results for a far-from-equilibrium system in which two coupled semi-infinite Ising chains at temperatures T h and T c , with T h > T c , establish a flux of energy across their junction. This paper provides a complete derivation of those results, more explicit expressions for the energy flux, and a more detailed characterization of the system at arbitrary T c and T h . We consider the two-point correlation functions and the energy flux F(x) between each spin, located at integer position x, and its associated heat bath. In the T h → ∞ limit, the flux F(x) decays exponentially into the cold bath (spins with x = 1, 2, …) for all T c > 0 and transitions into a power-law decay as T c → 0. We find an asymptotic expansion for large x in terms of modified Bessel functions that captures both of these behaviors. We perform Monte Carlo simulations that give excellent agreement with both the exact and asymptotic results for F(x). The simulations are also used to study the system at arbitrary T h and T c . (paper)

  5. Effect of vacuum and modified atmosphere packaging on microbiological properties of cold-smoked trout

    Science.gov (United States)

    Đorđević, J.; Pavlićević, N.; Bošković, M.; Janjić, J.; Glišić, M.; Starčević, M.; Baltić, M. Ž.

    2017-09-01

    Because of the importance of different packaging methods for the extension of fish shelf life, as a highly perishable food, the aim of the present study was to examine the effect of vacuum and modified atmosphere packaging on the total Enterobacteriaceae and lactic acid bacteria counts of cold-smoked Salmon trout (Oncorhynchus mykiss) stored at 3°C during six weeks. Trout fillets were vacuumed packaged (VP) or packaged in one of two different modified atmospheres, with gas ratio of 50%CO2/50%N2 (MAP1) and 90%CO2/10%N2 (MAP2) and analysed on days 0, 7, 14, 21, 28, 35 and 42. Both the total Enterobacteriaceae and total lactic acid bacteria counts increased in the trout fillets in all packaging types during storage. A significantly lower total Enterobacteriaceae count was determined in the MAP fish compared to the VP fish, with the weakest growth rate and lowest numbers attained in MAP2 fillets. The lactic acid bacteria count was higher in trout packaged in MAP compared to VP, with the highest number in the MAP with 90% CO2 (MAP2).

  6. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  7. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    Science.gov (United States)

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  8. Waste Slurry Particle Properties for Use in Slurry Flow Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J. R.; Conrads, T. J.; Julyk, L. J.; Reynolds, D. A.; Jensen, L.; Kirch, N. W.; Estey, S. D.; Bechtold, D. B.; Callaway III, W. S.; Cooke, G. A.; Herting, D. L.; Person, J. C.; Duncan, J. B.; Onishi, Y.; Tingey, J. M.

    2003-02-26

    Hanford's tank farm piping system must be substantially modified to deliver high-level wastes from the underground storage tanks to the Waste Treatment Plant now under construction. Improved knowledge of the physical properties of the solids was required to support the design of the modified system. To provide this additional knowledge, particle size distributions for composite samples from seven high-level waste feed tanks were measured using two different laser lightscattering particle size analyzers. These measurements were made under a variety of instrumental conditions, including various flow rates through the sample loop, various stirring rates in the sample reservoir, and before and after subjecting the particles to ultrasonic energy. A mean value over all the tanks of 4.2 {micro}m was obtained for the volume-based median particle size. Additional particle size information was obtained from sieving tests, settling tests and microscopic observations.

  9. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  10. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  11. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle

    International Nuclear Information System (INIS)

    Zboray, Robert; Kickhofel, John; Damsohn, Manuel; Prasser, Horst-Michael

    2011-01-01

    Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.

  12. Local properties of countercurrent stratified steam-water flow

    International Nuclear Information System (INIS)

    Kim, H.J.

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed

  13. Thermomechanical and hygroelastic properties of an epoxy system under humid and cold-warm cycling conditions

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Saghir, Shahid; Verdu, Jacques; Askari, Abe H.

    2014-01-01

    In this paper, we study the hygrothermal aging of an anhydride-cured epoxy under temperature and hygrometry conditions simulating those experienced by an aircraft in wet tropical or subtropical regions. Gravimetric and dimensional measurements were performed and they indicate that there are three stages in this aging process: the first one, corresponding to the early cycles can be called the "induction stage". The second stage of about 1000 cycles duration, could be named the "swelling stage", during which the volume increase is almost equal to the volume of the (liquid) water absorbed. Both the first and second stages are accompanied by modifications of the mechanical properties and the glass transition temperature. During the third ("equilibrium") stage, up to 3000 cycles, there is no significant change in the physical properties despite the continuous increase of water uptake. This can be explained by the fact that only physically sorbed water can influence physical properties. © 2013 Elsevier Ltd. All rights reserved.

  14. Measurement of coronary flow response to cold pressor stress in asymptomatic women with cardiovascular risk factors using spiral velocity-encoded cine MRI at 3 Tesla

    International Nuclear Information System (INIS)

    Maroules, Christopher D.; Peshock, Ronald M.; Chang, Alice Y.; Kontak, Andrew; Dimitrov, Ivan; Kotys, Melanie

    2010-01-01

    Background: Coronary sinus (CS) flow in response to a provocative stress has been used as a surrogate measure of coronary flow reserve, and velocity-encoded cine (VEC) magnetic resonance imaging (MRI) is an established technique for measuring CS flow. In this study, the cold pressor test (CPT) was used to measure CS flow response because it elicits an endothelium-dependent coronary vasodilation that may afford greater sensitivity for detecting early changes in coronary endothelial function. Purpose: To investigate the feasibility and reproducibility of CS flow reactivity (CSFR) to CPT using spiral VEC MRI at 3 Tesla in a sample of asymptomatic women with cardiovascular risk factors. Material and Methods: Fourteen asymptomatic women (age 38 years ± 10) with cardiovascular risk factors were studied using 3D spiral VEC MRI of the CS at 3 T. The CPT was utilized as a provocative stress to measure changes in CS flow. CSFR to CPT was calculated from the ratio of CS flow during peak stress to baseline CS flow. Results: CPT induced a significant hemodynamic response as measured by a 45% increase in rate-pressure product (P<0.01). A significant increase in CS volume flow was also observed (baseline, 116 ± 26 ml/min; peak stress, 152 ± 34 ml/min, P=0.01). CSFR to CPT was 1.31 ± 0.20. Test-retest variability of CS volume flow was 5% at baseline and 6% during peak stress. Conclusion: Spiral CS VEC MRI at 3 T is a feasible and reproducible technique for measuring CS flow in asymptomatic women at risk for cardiovascular disease. Significant changes in CSFR to CPT are detectable, without demanding pharmacologic stress

  15. Preparation and properties of high-strength recycled concrete in cold areas

    Directory of Open Access Journals (Sweden)

    Haitao, Y.

    2015-06-01

    Full Text Available Concrete waste was processed into recycled coarse aggregate (RCA, subsequently used to prepare high-strength (> 50 MPa recycled concrete. The resulting material was tested for mechanical performance (ULS. The recycled concrete was prepared to the required design strength by adjusting the water/cement ratio. Concrete containing 0, 20, 50, 80 and 100% recycled aggregate was prepared and studied for workability, deformability and durability. The ultimate aim of the study was to prepare high-strength recycled concrete apt for use in cold climates as a theoretical and experimental basis for the deployment of recycled high-strength concrete in civil engineering and building construction.En este estudio se preparó un hormigón de altas resistencias (> 50 MPa utilizando residuos de hormigón como árido grueso reciclado (RCA. El material resultante se ensayó para determinar sus prestaciones mecánicas (ULS. Para adaptarse a los requerimientos resistentes, se ajustó la relación agua/cemento del hormigón reciclado. Se estudió la trabajabilidad, deformabilidad y durabilidad del hormigón con contenidos del 0, 20, 50, 80 y 100% de árido reciclado. El objetivo final del estudio fue preparar hormigón reciclado de altas resistencias apto para su uso en climas fríos como base teórica y experimental para el desarrollo de este tipo de materiales en obra civil y edificación.

  16. Effect of cold deformation on latent energy value and high-temperature mechanical properties of 12Cr18Ni10Ti steel

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Shiganakov, Sh.B.; Gusev, M.N.

    1997-01-01

    Energetic and magnetic characteristics and also the high-temperature mechanical properties depending on the preliminary cold deformation of 12Cr18Ni10Ti steel are presented. It is shown that the value of storage energy in the steel has being grown with increase of the deformation. The rate of its growth has been increased after beginning of martensitic γ→α'- transformation when value of comparative storage energy at first decreased and then has been stay practically constant. Level of mechanical properties of the steel at 1073 K has been determined not only by value of cold deformation but and structural reconstruction corresponding to deformations 35-45% and accompanying with α'-phase martensite formation and change of energy accumulating rate. Preliminary cold deformation (40-60 %) does not improve high- temperature plasticity of steel samples implanted by helium. refs. 7, figs. 2

  17. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  18. Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Akramifard, H.R., E-mail: akrami.1367@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-08

    The AA1050 aluminum alloy and AISI 304L stainless steel sheets were stacked together to fabricate Al/304L/Al clad sheet composites by the cold roll bonding process, which was performed at temperatures of ∼100 and 23 °C to produce austenitic and austenitic–martensitic microstructures in the AISI 304L counterpart, respectively. The peel test results showed that the threshold reduction required to make a suitable bond at room temperature is below 10%, which is significantly lower than the required reduction for cold roll bonding of Al sheets. The tearing of the Al sheet during the peel test signified that the bond strength of the roll bonded sheets by only 38% reduction has reached the strength of Al, which is a key advantage of the developed sheets. The extrusion of Al through the surface cracks and settling inside the 304L surface valleys due to strong affinity between Al and Fe was found to be the bonding mechanism. Subsequently, the interface and tensile behaviors of three-layered clad sheets after soaking at 200–600 °C for 1 h were investigated to characterize the effect of annealing treatment on the formation and thickening of intermetallic compound layer and the resultant mechanical properties. Field emission scanning electron microscopy, X-ray diffraction, and optical microscopy techniques revealed that an intermediate layer composed mainly of Al{sub 13}Fe{sub 4}, FeC and Al{sub 8}SiC{sub 7} forms during annealing at 500–600 °C. A significant drop in tensile stress–strain curves after the maximum point (UTS) was correlated to the interface debonding. It was found that the formation of intermediate layer by post heat treatment deteriorates the bond quality and encourages the debonding process. Moreover, the existence of strain-induced martensite in clad sheets was found to play a key role in the enhancement of tensile strength.

  19. Effect of thickness and cold substrate on transport properties of thermally evaporated CdTe thin films

    International Nuclear Information System (INIS)

    El-Mongy, A.Abd; Hashem, H.M.; Ramadan, A.A.

    2005-01-01

    The correlation between the structural characteristics (stoichiometry and crystallite size) of CdTe films and their electronic transport properties were the aims of the present study to bring attention to the dual importance of grain size and conversion of the semiconductivity type with changing film thickness. Two main parameters were considered: the substrate temperature and film thickness. Transport properties were influenced by grain boundaries as well as by native doping. Optical measurements showed two main direct transitions at energies: E 1 ∼1.55 eV (fundamental gap) and E 2 ∼2.49 eV (due to valence band splitting). Both transitions were found to be thickness dependent with a marked change at a film thickness of about 300 nm. In the case of low substrate temperature, the scaling relation between resistivity and grain size showed a deviation from linear behavior at a size of 20 nm and the transmission coefficient is reduced. Also, the deposition on cold substrate enhanced both dark and photoconductivity for films of thickness ≥300 nm. It is also proved that the carrier transport was affected by the transmission coef-ficient for carriers to pass a single grain boundary as well as the number of grain boundaries per mean free path. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Effect of thickness and cold substrate on transport properties of thermally evaporated CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Mongy, A.Abd; Hashem, H.M.; Ramadan, A.A. [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt)

    2005-08-01

    The correlation between the structural characteristics (stoichiometry and crystallite size) of CdTe films and their electronic transport properties were the aims of the present study to bring attention to the dual importance of grain size and conversion of the semiconductivity type with changing film thickness. Two main parameters were considered: the substrate temperature and film thickness. Transport properties were influenced by grain boundaries as well as by native doping. Optical measurements showed two main direct transitions at energies: E{sub 1} {approx}1.55 eV (fundamental gap) and E{sub 2}{approx}2.49 eV (due to valence band splitting). Both transitions were found to be thickness dependent with a marked change at a film thickness of about 300 nm. In the case of low substrate temperature, the scaling relation between resistivity and grain size showed a deviation from linear behavior at a size of 20 nm and the transmission coefficient is reduced. Also, the deposition on cold substrate enhanced both dark and photoconductivity for films of thickness {>=}300 nm. It is also proved that the carrier transport was affected by the transmission coef-ficient for carriers to pass a single grain boundary as well as the number of grain boundaries per mean free path. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. [In vitro study of the flow duration of antibiotics solutions prepared in elastomeric infusion devices: effect of cold storage for 3 to 7days].

    Science.gov (United States)

    Grangeon-Chapon, C; Robein-Dobremez, M-J; Pin, I; Trouiller, P; Allenet, B; Foroni, L

    2015-09-01

    Within the cystic fibrosis patients' home care, EMERAA network ("Together against Cystic fibrosis in Rhone-Alpes and Auvergne") organizes parenteral antibiotics cures at home prepared in elastomeric infusion devices by hospital pharmacies. However, patients and nurses found that the durations of infusion with these devices were often longer than the nominal duration of infusion indicated by their manufacturer. This study aimed to identify the potential different causes in relation to these discordances. Three hundred and ninety devices of two different manufacturers are tested in different experimental conditions: three antibiotics each at two different doses, duration of cold storage (three days or seven days) or immediate tests without cold storage, preparation and storage of the solution in the device (protocol Device) or transfer in the device just before measurement (protocol Pocket). All tests highlighted a longer flow duration for devices prepared according to the protocol Device versus the protocol Pocket (P=0.004). Flow duration is increased in the case of high doses of antibiotics with high viscosity such as piperacilline/tazobactam. The results of this in vitro study showed the impact of: (1) the time between the filling of the device and the flow of the solution; (2) cold storage of elastomeric infusion devices; (3) concentration of antibiotics and therefore the viscosity of the solution to infuse. It is therefore essential that health care teams are aware of factors, which may lead to longer infusion durations with these infusion devices. When the additional time for infusion remain acceptable, it should be necessary to inform the patient and to relativize these lengthening compared to many benefits that these devices provide for home care. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Compatibility of Safety Properties and Possibilistic Information Flow Security in MAKS

    OpenAIRE

    Bauereiss , Thomas; Hutter , Dieter

    2014-01-01

    Part 6: Information Flow Control; International audience; Motivated by typical security requirements of workflow management systems, we consider the integrated verification of both safety properties (e.g. separation of duty) and information flow security predicates of the MAKS framework (e.g. modeling confidentiality requirements). Due to the refinement paradox, enforcement of safety properties might violate possibilistic information flow properties of a system. We present an approach where s...

  3. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  4. Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)

    International Nuclear Information System (INIS)

    Payri, F.; Broatch, A.; Serrano, J.R.; Piqueras, P.

    2011-01-01

    Wall-flow particulate filters have been placed as a standard technology for Diesel engines because of the increasing restrictions to soot emissions. The inclusion of this system within the exhaust line requires the development of computational tools to properly simulate its flow dynamics and acoustics behaviour. These aspects become the key to understand the influence on engine performance and driveability as a function of the filter placement. Since the pressure drop and the filtration process are strongly depending on the pore structure properties – permeability, porosity and pore size – a reliable definition of these characteristics is essential for model development. In this work a methodology is proposed to determine such properties based on the combination of the pressure drop rement in a steady flow test rig and two theoretical approaches. The later are a lumped model and a one-dimensional (1D) unsteady compressible flow model. The purpose is to simplify the integration of particulate filters into the global engine modelling and development processes avoiding the need to resort to specific and expensive characterisation tests. The proposed methodology was validated against measurements of the response of an uncoated diesel particulate filter (DPF) under different flow conditions as cold steady flow, impulsive flow and hot pulsating flow. -- Highlights: ► Experimental and modelling tools to characterise wall-flow DPFs pressure drop. ► Decomposition of inertial pressure drop contributions in canned DPFs. ► Methodology to define pore structure properties in clean wall-flow DPFs. ► Evaluation of specific permeability, porosity and mean pore diameter. ► Significant influence of slip-flow effect on uncoated wall-flow DPFs.

  5. Skyrme interaction and the properties of cold and hot neutron matter

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Hassan, M.Y.M.; Ramadan, S.

    1986-08-01

    The binding energy per particle, effective mass, magnetic susceptibility, etc for neutron matter are calculated using the Skyrme interaction SKII. Relativistic corrections to the non-relativistic Skyrme effective interaction to order 1/C 2 are also used to calculate the corrections for the binding energy of neutron matter. The correction is very small for small values of k h and increases as k n is increased. The thermal properties of neutron matter are calculated also using SKII force. The temperature dependences of the volume and spin pressure are determined. The results obtained show a similar trend as previous theoretical estimates by different methods of calculation. (author)

  6. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ on ρtot/. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity correlation function

  7. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  8. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

    Science.gov (United States)

    Xiaoming, ZHU; Heng, GUO; Jianfeng, ZHOU; Xiaofei, ZHANG; Jian, CHEN; Jing, LI; Heping, LI; Jianguo, TAN

    2018-04-01

    Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin-dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin-dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.

  9. Visualization of microscale phase displacement proceses in retention and outflow experiments: nonuniquensess of unsaturated flow properties

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Glass, R.J.; Hollenbeck, K.J.

    2001-01-01

    -scale heterogeneities. Because the mixture of these microscale processes yields macroscale effective behavior, measured unsaturated flow properties are also a function of these controls. Such results suggest limitations on the current definitions and uniqueness of unsaturated hydraulic properties....

  10. Nanostructure and mechanical properties of heavily cold-drawn steel wires

    International Nuclear Information System (INIS)

    Yang, Y.S.; Bae, J.G.; Park, C.G.

    2009-01-01

    The effects of microstructure on the mechanical properties of the high-carbon steel wires were investigated. The wires were fabricated with carbon content of 0.82 and 1.02 wt.% and drawing strain from 4.12 to 4.32. The bending fatigue resistance and torsion ductility were measured by a Hunter fatigue tester and a torsion tester specially designed for fine wires. As the carbon content and drawing strain increased, the fatigue resistance and the torsional ductility of the steel wires decreased, and the tensile strength increased. To elucidate the causes of these behaviors, the microstructure in terms of lamellar spacing (λ P ), cementite thickness (t C ) and morphology of cementite was observed using transmission electron microscopy (TEM) and 3-dimensional atom probe (3-DAP).

  11. Evaluation of Two Passes Cold Pilgering Property for PLUS7TM Guide Thimble and Instrumentation Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Park, Ki Bum; Kim, In Kyu; Lee, Young Hee; Kahng, Jong Yeol [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2015-05-15

    The thermo-mechanical property of zirconium alloy tube is well known to be influenced by pilgering pass schedule and its tooling; thus the control of its microstructure and mechanical property in the final tube production stage for nuclear fuel applications is a major concern of tube manufacture. To fabricate final tube, the 3 passes pilgering is applied in general by using TREX(Tube Reduced EXtrusion), 63.5mm outer diameter(OD), in KEPCO NF and most of Zr tube manufacturing companies. They are also taking big efforts to reduce pilgering step for the sake of increasing the efficiency of production in the forming stage of tube. The objective of this study is to develop two passes of pilgering schedule from the conventional three passes of pilgering schedule for manufacturing the Guide Thimble and Instrumentation tube conforming to specification, which are newly developing component for the advanced nuclear fuel assembly in KEPCO NF. CSR, hydride orientation, and structural integrity are well conformed to the desired targets so it is expected that both die and mandrel were newly designed for the PLUS7TM guide thimble and instrumentation tube with higher Q factor for two passes of pilgering at 50LC and 25LC pilger machine, instead of three passes of pilgering, are able to be applicable to this design of fuel component. If developed two passes pilgering is applied to current manufacturing process, it would improve not only productivity but also yield rate by reducing 3 steps(pilgering, heat-treatment, pickiling and cleaning) of manufacturing process. But additional tests(including in-pile test) should be performed in order to evaluate integrity in reactor.

  12. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  13. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, H; Shirazi, H [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of); Nili-Ahmadabadi, M, E-mail: sut.caster.81710018@gmail.co, E-mail: nili@ut.ac.i [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, P.O. Box 14395-731 (Iran, Islamic Republic of) and Center of Excellence for High Performance Materials, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of)

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was {epsilon} {approx}7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  14. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    Science.gov (United States)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  15. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Miao, Song

    2014-11-26

    Emulsion-filled protein gels (EFP gels) were prepared through a cold-set gelation process, and they were used to deliver volatile compounds. An increase in the whey protein isolate (WPI) content from 4 to 6% w/w did not show significant effect on the gelation time, whereas an increase in the oil content from 5 to 20% w/w resulted in an earlier onset of gelation. Gels with a higher WPI content had a higher storage modulus and water-holding capacity (WHC), and they presented a higher force and strain at breaking, indicating that a more compact gel network was formed. An increase in the oil content contributed to gels with a higher storage modulus and force at breaking; however, this increase did not affect the WHC of the gels, and gels with a higher oil content became more brittle, resulting in a decreased strain at breaking. GC headspace analysis showed that volatiles released at lower rates and had lower air-gel partition coefficients in EFP gels than those in ungelled counterparts. Gels with a higher WPI content had lower release rates and partition coefficients of the volatiles. A change in the oil content significantly modified the partition of volatiles at equilibrium, but it produced a minor effect on the release rate of the volatiles. The findings indicated that EFP gels could be potentially used to modulate volatile release by varying the rheological properties of the gel.

  16. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  17. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  18. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Dingle, H. B.

    1999-01-01

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  19. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  20. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  1. LES and experimental studies of cold and reacting flow in a swirled partially remixed burner with and without fuel modulation

    NARCIS (Netherlands)

    Sengissen, A.X.; van Kampen, J.F.; Huls, R.A.; Stoffels, Genie G.M.; Kok, Jacobus B.W.; Poinsot, T.J.

    2007-01-01

    In devices where air and fuel are injected separately, combustion processes are influenced by oscillations of the air flow rate but may also be sensitive to fluctuations of the fuel flow rate entering the chamber. This paper describes a joint experimental and numerical study of the mechanisms

  2. Modelling flow and work hardening behaviour of cold worked Zr–2.5Nb pressure tube material in the temperature range of 30–600 oC

    International Nuclear Information System (INIS)

    Dureja, A.K.; Sinha, S.K.; Pawaskar, D.N.; Seshu, P.; Chakravartty, J.K.; Sinha, R.K.

    2014-01-01

    Under a postulated accident scenario of loss of cooling medium in an Indian Pressurised Heavy Water Reactor (IPHWR), temperature of the pressure tubes can rise and lead to large deformations. In order to investigate the modes of deformation of pressure tube – calandria tube assembly, material property data defining the flow behaviour over a temperature range from room temperature (RT) to 800 o C are needed. It is of practical importance to formulate mathematical equations to describe the stress–strain relationships of a material for a variety of reasons, such as the analysis of forming operations and the assessment of component's performance in service. A number of constitutive relations of empirical nature have been proposed and they have been found very suitable to describe the behaviour of a material. Although these relations are of empirical nature, various metallurgical factors appear to decide applicability of each of these relations. For example, grain size influences mainly the friction stress while the strain hardening is governed by dislocation density. In a recent work, tensile deformation behaviour of pressure tube material of IPHWR has been carried out over a range of temperature and strain rates (Dureja et al., 2011). It has been found that the strength parameters (yield and ultimate tensile strength) vary along the length of the tube with higher strength at the trailing end as compared to the leading end. This stems from cooling of the billet during the extrusion process which results in the variation of microstructure, texture and dislocation density from the leading to the trailing end. In addition, the variation in metallurgical parameters is also expected to influence the work hardening behaviour, which is known to control the plastic instability (related to uniform strain). In the present investigation, the tensile flow and work-hardening behaviour of a cold worked Zr–2.5Nb pressure tube material of IPHWRs has been studied over the

  3. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  4. Influence of steady shear flow on dynamic viscoelastic properties of ...

    Indian Academy of Sciences (India)

    Unknown

    temporary network formed by the fibres, their entangle- ment etc. The structural density is also a function of vol- ume fraction of reinforcing fibres (Amari et al 1992). The complex flow pattern encountered during moulding/ stamping are generally far from simple steady or oscilla- tory shear flow. Therefore, it is important to ...

  5. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    Czech Academy of Sciences Publication Activity Database

    Čížek, J.; Matejková, M.; Dlouhý, I.; Šiška, Filip; Kay, C.M.; Karthikeyan, J.; Kuroda, S.; Kovařík, O.; Siegl, J.; Loke, K.; Khor, K.A.

    2015-01-01

    Roč. 24, č. 5 (2015), s. 758-768 ISSN 1059-9630 Institutional support: RVO:68081723 Keywords : Cold spray * Fatigue * Grit-blast Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.568, year: 2015

  6. Assessment of fluid distribution and flow properties in two phase fluid flow using X-ray CT technology

    Science.gov (United States)

    Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi

    2018-04-01

    To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.

  7. Evaluating and managing Cold War era historic properties : the cultural significance of U.S. Air Force defensive radar systems.

    Energy Technology Data Exchange (ETDEWEB)

    Whorton, M.

    1999-01-20

    Aircraft and later missile radar early warning stations played an important role in the Cold War. They are associated with important technological, social, political, and military themes of the Cold War and are worthy of preservation. The scope and scale of these systems make physical preservation impractical, but the U.S. Air Force program of historical evaluation and documentation of these systems will provide valuable information to future generations studying this historic period.

  8. Variable property, steady, axi-symmetric, laminar, continuum plasma flow over spheroidal particles

    International Nuclear Information System (INIS)

    Wen Yuemin; Jog, Milind A.

    2005-01-01

    Steady, continuum, laminar plasma flow over spheroidal particles has been numerically investigated in this paper using a finite volume method. To body-fit the non-spherical particle surface, an adaptive orthogonal grid is generated. The flow field and the temperature distribution are calculated for oblate and prolate particle shapes. A number of particle surface temperatures and far field temperatures are considered and thermo-physical property variation is fully accounted for in our model. The particle shapes are represented in terms of axis ratio which is defined as the ratio of axis perpendicular to the flow direction to the axis along the flow direction. For oblate shape, axis ratios from 1.6 (disk-like) to 1 (sphere) are used whereas for prolate shape, axis ratios of 1(sphere) to 0.4 (cylinder-like) are used. Effects of flow Reynolds number, particle shape, surface and far field temperatures, and variable properties, on the flow field, temperature variations, drag coefficient, and Nusselt number are outlined. Results show that particle shape has significant effect on flow and heat transfer to particle surface. Compared to a constant property flow, accounting for thermo-physical property variation leads to prediction of higher temperature and velocity gradients in the vicinity of the particle surface. Based on the numerical results, a correlation for the Nusslet number is proposed that accounts for the effect of particle shape in continuum flow with large thermo-physical property variation

  9. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    International Nuclear Information System (INIS)

    Coddet, Pierre; Verdy, Christophe; Coddet, Christian; Debray, François

    2016-01-01

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  10. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Coddet, Pierre, E-mail: pierre-laurent.coddet@univ-orleans.fr [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France); Verdy, Christophe; Coddet, Christian [UTBM, Site de Sévenans, 90010 Belfort Cedex (France); Debray, François [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France)

    2016-04-26

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  11. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    Science.gov (United States)

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  12. Some geometric properties of magneto-fluid flows

    OpenAIRE

    Gangwar, S. S.; Babu, Ram

    1982-01-01

    By employing an anholonomic description of the governing equations, certain geometric results are obtained for a class of non-dissipative magnetofluid flows. The stream lines are geodesics on a normal congruence of the surfaces which are the Maxwellian surfaces.

  13. Physical, chemical and microbiological properties of mixed hydrogenated palm kernel oil and cold-pressed rice bran oil as ingredients in non-dairy creamer

    Directory of Open Access Journals (Sweden)

    Kunakorn Katsri

    2014-02-01

    Full Text Available The physical, chemical and microbiological properties of hydrogenated palm kernel oil (PKO and cold-pressed rice bran oil (RBOas ingredients in the production of liquid and powdered non-dairy creamer (coffee whitener were studied. The mixing ratios between hydrogenated PKO and cold-pressed RBO were statistically designed as of 100:0, 90:10,80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 10:90 and 0:100.The color, absorbanceand viscosity of the mixtures were investigated. As the ratio of cold-pressed RBO increased, the color became darker (L*of 93.06 to 86.25 and the absorbance significantly increased, while the viscosity of the mixtures of 20:80, 10:90 and 0:100 (54 cp. were the highest amongst the ratios tested.The hydrogenated PKO and cold-pressed RBO mixtures were further chemically tested for fatty acids, -oryzanol, -tocopherol, trans-fat contents andantioxidant activity. There were 10 fatty acids present in hydrogenated PKO with saturated fatty acid being the most predominant. Comparatively, there were only 5 fatty acids found in cold-pressed RBO with monounsaturated fatty acid being the major fatty acid. -Oryzanol and -tocopherol contents were higher with increasingcold-pressed RBO from 0-100% (0 to 1,155.00 mg/100g oil and 0.09 to 30.82 mg/100g oil, respectively. Antioxidant activity was increased with increasing cold-pressed RBO from 0-100% (9.26 to 94.24%.The pure hydrogenated PKO contained higher trans-fat content than that of the 90:10 and 80:20 mixtures (2.73, 1.93 and 1.85mg/100g oil,respectively while other samples had no trans-fat. No microorganisms were present in any of the samples.Therefore, substitution of hydrogenated PKO by cold-pressed RBO from 30-100% would offer more nutritional values and better chemical and physical properties of non-dairy creamer.

  14. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  15. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions

  16. STRUCTURES OF TURBULENT VORTICES AND THEIR INFLUENCE ON FLOW PROPERTIES

    Directory of Open Access Journals (Sweden)

    Alfonsas Rimkus

    2015-03-01

    Full Text Available In spite of the many investigations that have been conducted on turbulent flows, the generation and development of turbulent vortices has not been investigated sufficiently yet. This prevents to understand well the processes involved in the flow. That is unfavorable for the further investigations. The developing vortex structures are interacting, and this needs to be estimated. Physical summing of velocities, formed by all structures, can be unfavorable for investigations, therefore they must be separated; otherwise bias errors can occur. The difficulty for investigations is that the widely employed Particle Image Velocity (PIV method, when a detailed picture of velocity field picture is necessary, can provide photos covering only a short interval of flow, which can’t include the largest flow structures, i.e. macro whirlpools. Consequently, action of these structures could not be investigated. Therefore, in this study it is tried to obtain the necessary data about the flow structure by analyzing the instantaneous velocity measurements by 3D means, which lasts for several minutes, therefore the existence and interaction of these structures become visible in measurement data. The investigations conducted in this way have been already discussed in the article, published earlier. Mostly the generation and development of bottom vortices was analyzed. In this article, the analysis of these turbulent velocity measurements is continued and the additional data about the structure of turbulent vortices is obtained.

  17. Coherent Vortical Structures and Their Relation to Hot/Cold Spots in a Thermal Turbulent Channel Flow

    Directory of Open Access Journals (Sweden)

    Suranga Dharmarathne

    2018-02-01

    Full Text Available Direct numerical simulations of a turbulent channel flow with a passive scalar at R e τ = 394 with blowing perturbations is carried out. The blowing is imposed through five spanwise jets located near the upstream end of the channel. Behind the blowing jets (about 1 D , where D is the jet diameter, we observe regions of reversed flow responsible for the high temperature region at the wall: hot spots that contribute to further heating of the wall. In between the jets, low pressure regions accelerate the flow, creating long, thin, streaky structures. These structures contribute to the high temperature region near the wall. At the far downstream of the jet (about 3 D , flow instabilities (high shear created by the blowing generate coherent vortical structures. These structures move hot fluid near the wall to the outer region of the channel; thereby, these are responsible for cooling of the wall. Thus, for engineering applications where cooling of the wall is necessary, it is critical to promote the generation of coherent structures near the wall.

  18. Measurement of Gas Velocities in the Presence of Solids in the Riser of a Cold Flow Circulating Fluidized Bed

    International Nuclear Information System (INIS)

    Spenik, J.; Ludlow, J.C.; Compston, R.; Breault, R.W.

    2007-01-01

    The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component of a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated

  19. Nonlocal rheological properties of granular flows near a jamming limit.

    Science.gov (United States)

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  20. Effect of cold rolling on the superconducting and electronic properties of two amorphous alloys; Nb50Zr35Si15 and Nb70Zr15Si15

    International Nuclear Information System (INIS)

    Inoue, A.; Masumoto, T.

    1984-01-01

    The effect of cold rolling on the superconducting properties was examined for amorphous Nb 50 Zr 35 Si 15 and Nb 70 Zr 15 Si 15 superconductors. Cold rolling to 10 to 20% reduction in thickness results in a rise of superconducting transition temperature (Tsub(c)) and a decrease in transition width (ΔTsub(c)), upper critical field gradient near Tsub(c) [dHsub(c2)/dT)sub(Tsub(c)], critical current density [Jsub(c)(H)] and normal electrical resistivity (rhosub(n)). Changes of about 7% for Tsub(c), 33% for ΔTsub(c), 12% for -(dHsub(c2)/dT)sub(Tsub(c) and 70% for Jsub(c)(H) are found. The rise of Tsub(c) upon cold rolling was considered to originate from the increase in the electron-phonon coupling constant (lambda) due to an increase in the electronic density of states at the Fermi level [N(Esub(f))] and a decrease in the phonon frequency (ω), while the decreases in ΔTsub(c), Jsub(c)(H) and rhosub(n) were attributed to the decrease in fluxoid pinning force due to an increase in homogeneity in the amorphous structure. From the results described above, the following two conclusions were derived: (a) cold rolling causes changes in electronic and phonon-states in the quenched amorphous phase, and (b) deformation upon cold rolling occurs not only in the coarse deformation bands observable by optical microscopy, but also on a much finer scale comparable to the coherence length (approx. = 7.7 nm). (author)

  1. Experimental determination of the effects of annealing on the micro-structures and mechanical properties of cold-worked alpha-brass

    Science.gov (United States)

    Edward, Aghogho Bright; Izelu, Christopher

    2013-12-01

    Experimental determination of the effect of annealing on the microstructure and mechanical properties of a cold work 70 - 30 brass, was carried out by subjecting specimens of the material to various degrees of cold-work (20%, 40% and 60%), by straining using a tensile machine. The specimens for each degree of cold work were then annealed at 250°C, 350°C, 450°C and 600°C, for 30 minutes. The approach involves the use of metallographic techniques: grinding, polishing and etching to reveal the microstructure while tensile test was carried out on the specimen using a Monsanto tensometer so as to obtain the load/extension graph from which the tensile strength and hardness values were obtained. From the results obtained, it was conclusive that annealing produced finer grains and eliminates prior cold work whereby the material becomes ductile. However, there should be an appreciable deformation for this effect to be noticed. One important aspect of re-crystallization in structural materials is that there is a loss of strength which accompanies disappearance of the cold-worked grains when subjected to high temperature applications. Yet, it is often difficult to establish the exact range of permissible temperature. This work establishes a range for the re-crystallization of alpha brass as 350°C < TC < 450°C, where TC is the re-crystallization temperature. Thus, it will be safe to apply this material at temperatures below 350°C, without fear of structural changes with accompanying lost in strength.

  2. PIV measurements of the turbulence integral length scale on cold combustion flow field of tangential firing boiler

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-fei; Xie, Jing-xing; Gong, Zhi-jun; Li, Bao-wei [Inner Mongolia Univ. of Science and Technology, Baotou (China). Inner Mongolia Key Lab. for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Lab.

    2013-07-01

    The process of the pulverized coal combustion in tangential firing boiler has prominent significance on improving boiler operation efficiency and reducing NO{sub X} emission. This paper aims at researching complex turbulent vortex coherent structure formed by the four corners jets in the burner zone, a cold experimental model of tangential firing boiler has been built. And by employing spatial correlation analysis method and PIV (Particle Image Velocimetry) technique, the law of Vortex scale distribution on the three typical horizontal layers of the model based on the turbulent Integral Length Scale (ILS) has been researched. According to the correlation analysis of ILS and the temporal average velocity, it can be seen that the turbulent vortex scale distribution in the burner zone of the model is affected by both jet velocity and the position of wind layers, and is not linear with the variation of jet velocity. The vortex scale distribution of the upper primary air is significantly different from the others. Therefore, studying the ILS of turbulent vortex integral scale is instructive to high efficiency cleaning combustion of pulverized coal in theory.

  3. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  4. Some geometric properties of magneto-fluid flows

    Directory of Open Access Journals (Sweden)

    S. S. Gangwar

    1982-01-01

    Full Text Available By employing an anholonomic description of the governing equations, certain geometric results are obtained for a class of non-dissipative magnetofluid flows. The stream lines are geodesics on a normal congruence of the surfaces which are the Maxwellian surfaces.

  5. Ergodic Properties of the Quantum Geodesic Flow on Tori

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, SLawomir [Indiana University Purdue University Indianapolis, Department of Mathematics (United States); Kondracki, Witold [Polish Academy of Sciences, Institute of Mathematics (Poland)

    2005-05-15

    We study ergodic averages for a class of pseudo-differential operators on the flat N-dimensional torus with respect to the Schroedinger evolution. The later can be consider a quantization of the geodesic flow on T{sup N}. We prove that, up to semi-classically negligible corrections, such ergodic averages are translationally invariant operators.

  6. A Flow-Sensitive Analysis of Privacy Properties

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2007-01-01

    that information I send to some service never is leaked to another service? - unless I give my permission? We shall develop a static program analysis for the pi- calculus and show how it can be used to give privacy guarantees like the ones requested above. The analysis records the explicit information flow...

  7. Effect of chemistry variations on the short-term rupture life and tensile properties of 20% cold-worked type 316 stainless steel

    International Nuclear Information System (INIS)

    Duncan, D.R.; Paxton, M.M.

    1977-01-01

    The effects of compositional variations on the rupture life of 20% cold-worked Type 316 stainless steel were investigated at 19-ksi (131-MPa) uniaxial tensile stress and at 1400 0 F (1033 K). Forty-nine different alloys were studied, with compositional variations from nominal in carbon, nitrogen, phosphorus, sulfur, boron, manganese, copper, silicon, molybdenum, cobalt, chromium and nickel. This alloy and cold-work level represents the duct and fuel cladding material choice for the first four core loadings of the Fast Flux Test Facility, a key element in the Liquid-Metal Fast Breeder Reactor Program. Tensile properties of four of the alloys were studied at temperatures from room temperature to 1600 0 F (1144 K). Boron, nitrogen, and molybdenum plus silicon additions significantly increased rupture life, while chromium and carbon additions decreased rupture life. Molybdenum plus silicon additions increased yield and ultimate strength and ductility at 1200 0 F (922 K) and below

  8. What is the Relationship Between the Properties of Photospheric Flows and Flares?

    Science.gov (United States)

    Welsch, Brian; Li, Y.; Schuck, P. W.; Fisher, G. H.

    2009-05-01

    We estimated photospheric velocities by separately applying the Fourier Local Correlation Tracking (FLCT) and Differential Affine Velocity Estimator (DAVE) methods to 2708 co-registered pairs of SOHO/MDI magnetograms, with nominal 96-minute cadence, from 46 active regions (ARs) from 1996-1998 over the time interval κ45 when each AR was within 45° of disk center. For each magnetogram pair, we computed the average estimated radial magnetic field, BR and each tracking method produced an independently estimated flow field, u. We then quantitatively characterized these magnetic and flow fields by computing several extrinsic and intrinsic properties of each; extrinsic properties scale with AR size, while intrinsic properties do not depend directly on AR size. Intrinsic flow properties included moments of speeds, horizontal divergences, and radial curls; extrinsic flow properties included included sums of these properties, and a crude proxy for the ideal Poynting flux, ∑ |u| BR2. Several quantities derived from BR were also computed, including: total unsigned flux, Φ a measure of the amount of unsigned flux near strong-field polarity inversion lines (SPILs), R and ∑ BR2. Next, using correlation and discriminant analysis, we investigated the associations between derived properties and average flare flux determined from the GOES flare catalog, when averaged over both κ45 and shorter time windows, of 6 and 24 hours. Our AR sample included both flaring and flare-quiet ARs; the latter did not flare above GOES C1.0 level during κ45. Among magnetic properties, we found R to be most strongly associated with flare flux. Among extrinsic flow properties, the proxy Poynting flux, ∑ |u| BR2, was most strongly associated with flux, at a level comparable to that of R. All intrinsic flow properties studied were more poorly associated with flare flux than these magnetic properties.

  9. NASA Cold Land Processes Experiment (CLPX 2002/03): Field measurements of snowpack properties and soil moisture

    Science.gov (United States)

    Kelly Elder; Don Cline; Glen E. Liston; Richard Armstrong

    2009-01-01

    A field measurement program was undertaken as part NASA's Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and...

  10. Statistical properties of Charney-Hasegawa-Mima zonal flows

    International Nuclear Information System (INIS)

    Anderson, Johan; Botha, G. J. J.

    2015-01-01

    A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxes to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed

  11. Cellular properties of slug flow in vertical co-current gas-liquid flow: slug-churn transition

    International Nuclear Information System (INIS)

    Lusseyran, Francois

    1990-01-01

    This research thesis reports the study and description of the structure of a slug flow regime in a co-current vertical cylindrical duct, and the characterization and prediction of its transition towards a slug-churn (de-structured) regime. Flow physical mechanisms highlighted by the measurement of two important dynamics variables (wall friction and thickness of liquid films) are related to hypotheses of cellular models. The author first proposes an overview of slug flow regimes: theoretical steady and one-dimensional analysis, mass assessment equations of cellular models, application to the assessment of the flow rate and of the thickness of the film surrounding the gas slug. In the second part, the author addresses the slug flow regime transition towards the slug-churn regime: assessment of the evolution of flow dynamic properties, use of average wall friction analysis to obtain a relevant transition criterion. The third part presents experimental conditions, and measurement methods: conductometry for thickness measurement, polarography for wall friction measurement, and gas phase detection by using an optic barrier or optic fibres [fr

  12. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  13. Is central dogma a global property of cellular information flow?

    Science.gov (United States)

    Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar

    2012-01-01

    The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.

  14. Is central dogma a global property of cellular information flow?

    Directory of Open Access Journals (Sweden)

    Vincent ePiras

    2012-11-01

    Full Text Available The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcript to protein show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.

  15. Cold forging stem of total hip prosthesis with hybrid mechanical properties; Forjamento a frio de hastes de protese total de quadril com propriedades mecanicas hibridas

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, E.S.N.; Contieri, R.J.; Cardoso, F.F.; Cremasco, A.; Button, S.T.; Caram, R., E-mail: ederlopes@fem.unicamp.b [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais

    2010-07-01

    Type {beta} Ti alloy is one of the most versatile groups of materials with regard to mechanical properties. Aspects such as alloying elements selection, mechanical processing and heat treatment routes empower these materials in applications where hybrid mechanical behavior is necessary. The aim of this study is to produce stems of total hip prostheses with hybrid mechanical properties using Ti-Nb alloys. Ingots were produced by using arc melting. Following, samples were subjected to specific heat treatment aiming to make cold forging. Sample characterization includes X-ray diffraction, scanning electron microscopy, Vickers hardness tests and tensile test. The experiments performed allowed to examine the effects of heat treatment parameters on the microstructure and mechanical behavior. Finally, results obtained show that the application of specific heat treatments of quenching and aging makes feasible the manufacturing of orthopedic devices with hybrid mechanical properties with regions where high mechanical strength was prioritized, while in others, low elastic modulus was the main concern. (author)

  16. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field

    Directory of Open Access Journals (Sweden)

    Linlin Si

    2018-02-01

    Full Text Available Crop productivity in cold waterlogged paddy fields can be constrained by chronic flooding stress and low temperature. Farmers typically use chemical fertilizer to improve crop production, but this conventional fertilization is not very effective in a cold waterlogged paddy field. Biochar amendment has been proposed as a promising management approach to eliminating these obstacles. However, little is known about the performance of biochar when combined with N fertilizer and P fertilizer in cold waterlogged soils. The aim of this study was, therefore, to assess the main effects and interactive effects of rice straw biochar, N and P fertilizer on rice growth and soil properties in a cold waterlogged paddy field. The field treatments consisted of a factorial combination of two biochar levels (0 and 2.25 t ha−1, two N fertilizer levels (120.0 and 180.0 kg ha−1 and two P fertilizer levels (37.5 and 67.5 kg ha−1 which were arranged in a randomized block design, with three replicates. Results confirmed that biochar application caused a significant increase in the soil pH due to its liming effect, while this application resulted in a significant decrease in soil exchangeable cations, such as exchangeable Ca, Mg, Al and base cations. The interactive effect of N fertilizer, P fertilizer and biochar was significant for soil total N. Moreover, a negative effect of biochar on the internal K use efficiency suggested that K uptake into rice may benefit from biochar application. According to the partial Eta squared values, the combined application of N fertilizer and biochar was as effective as pure P fertilization at increasing straw P uptake. The addition of biochar to farmers’ fertilization practice treatment (180.0 kg N ha−1, 67.5 kg P2O5 ha−1 and 67.5 kg K2O ha−1 significantly increased rice yield, mainly owing to improvements in grains per panicle. However, notable effects of biochar on rice yield and biomass production were not detected

  17. Influence of cold rolling and ageing treatment on microstructure and mechanical properties of Ti-30Nb-5Ta-6Zr alloy.

    Science.gov (United States)

    Wang, Yu; Zhao, Juan; Dai, Shijuan; Chen, Feng; Yu, Xinquan; Zhang, Youfa

    2013-11-01

    In this study, the relationship between deformation mechanism and rolling reductions was investigated, and the effects of deformation reductions on the microstructure and mechanical properties of the alloys both cold rolled and aged were revealed. It was found that the equiaxed β grains of the Ti-30Nb-5Ta-6Zr alloy have elongated gradually with increasing the deformation reduction. The deformation mechanism of dislocation slipping, deformed twins and SIM α″ phase appeared in the alloy deformed by 23% and 66%. The type of twins of the alloy deformed by 23% and 66% are {112}〈111〉 and {332}〈113〉 respectively. When the reduction was up to 85%, dislocation slipping was the main mode of deformation accompanying with SIM α″ phase occurred. With increasing deformation reduction, the average size of lenticular precipitation α phase decreased gradually. The strength of cold rolled and aged samples increased with increasing deformation reduction, while elastic modulus decreased. Due to the precipitation α phase, the elastic modulus of aged samples was higher than cold rolled. © 2013 Elsevier Ltd. All rights reserved.

  18. The multiwavelength spectrum of NGC 3115: hot accretion flow properties

    Science.gov (United States)

    Almeida, Ivan; Nemmen, Rodrigo; Wong, Ka-Wah; Wu, Qingwen; Irwin, Jimmy A.

    2018-04-01

    NGC 3115 is the nearest galaxy hosting a billion solar mass black hole and is also a low-luminosity active galactic nucleus (LLAGN). X-ray observations of this LLAGN are able to spatially resolve the hot gas within the sphere of gravitational influence of the supermassive black hole. These observations make NGC 3115 an important test bed for black hole accretion theory in galactic nuclei since they constrain the outer boundary conditions of the hot accretion flow. We present a compilation of the multiwavelength spectral energy distribution (SED) of the nucleus of NGC 3115 from radio to X-rays. We report the results from modelling the observed SED with radiatively inefficient accretion flow (RIAF) models. The radio emission can be well-explained by synchrotron emission from the RIAF without the need for contribution from a relativistic jet. We obtain a tight constraint on the RIAF density profile, ρ (r) ∝ r^{-0.73 _{-0.02} ^{+0.01}}, implying that mass-loss through subrelativistic outflows from the RIAF is significant. The lower frequency radio observation requires the synchrotron emission from a non-thermal electron population in the RIAF, similarly to Sgr A*.

  19. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Guy-Daniel Dutel

    2017-04-01

    Full Text Available Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  20. Measurement of Flow Properties of Mammalian Blood with Different Hematocrit Values Using Falling Needle Rheometer

    Directory of Open Access Journals (Sweden)

    Takamasa Suzuki

    2014-08-01

    Full Text Available The development of viscometry with high accuracy and quick operation, as well as the establishment of a data evaluation method by pathology are largely required. Especially, the flow properties of human blood are an important factor in the evaluation of blood disease on the medicine, but the method of viscometry and the data collection are not so easy. This study has been described on the viscosity measurement and their evaluations for mammalian blood (rabbit, pig and horse including human blood. A compact-sized falling needle rheometer (FNR and a flow analysis method using this device for blood have been developed, and the relationship between the apparent viscosity and physical properties (density, hematocrit value of blood have also been evaluated. Measured flow properties of blood are evaluated as a flow curve showing the relationship between the shear stress and shear rate. Observed flow curves of mammalian bloods show three typical fluid regions, these are, the Non-newtonian fluid region for a low shear rate range, the transition region and the Newtonian fluid region for a high shear rate range. Flow properties of blood in the Casson fluid region and the apparent viscosity (μ in the Newtonian fluid region are measured, and they are compared between mammals.

  1. Improved Flow Property Determination from Nanotomography of Porous Media

    DEFF Research Database (Denmark)

    Jha, Diwaker

    tomogram often contains ring artifacts, which have no physical significance but that introduce false pores or solids when the image is segmented. I developed an algorithm that successfully suppresses these artifacts and can be operated automatically over large SXCT datasets. Another hindrance for an SXCT......, the extracted properties show a higher dependence on image resolution than sample volume. This indicates that high resolution tomography is not always needed for some rock types. A straightforward application of 3D tomograms for a pore scale NMR simulation gave a false estimation of available surfaces...

  2. Evaluation of setting time and flow properties of self-synthesize alginate impressions

    Science.gov (United States)

    Halim, Calista; Cahyanto, Arief; Sriwidodo, Harsatiningsih, Zulia

    2018-02-01

    Alginate is an elastic hydrocolloid dental impression materials to obtain negative reproduction of oral mucosa such as to record soft-tissue and occlusal relationships. The aim of the present study was to synthesize alginate and to determine the setting time and flow properties. There were five groups of alginate consisted of fifty samples self-synthesize alginate and commercial alginate impression product. Fifty samples were divided according to two tests, each twenty-five samples for setting time and flow test. Setting time test was recorded in the s unit, meanwhile, flow test was recorded in the mm2 unit. The fastest setting time result was in the group three (148.8 s) and the latest was group fours). The highest flow test result was in the group three (69.70 mm2) and the lowest was group one (58.34 mm2). Results were analyzed statistically by one way ANOVA (α= 0.05), showed that there was a statistical significance of setting time while no statistical significance of flow properties between self-synthesize alginate and alginate impression product. In conclusion, the alginate impression was successfully self-synthesized and variation composition gives influence toward setting time and flow properties. The most resemble setting time of control group is group three. The most resemble flow of control group is group four.

  3. Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-07-01

    In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.

  4. Altered coronary endothelial function in young smokers detected by magnetic resonance assessment of myocardial blood flow during the cold pressor test.

    Science.gov (United States)

    Ichikawa, Yasutaka; Kitagawa, Kakuya; Kato, Shingo; Dohi, Kaoru; Hirano, Tadanori; Ito, Masaaki; Sakuma, Hajime

    2014-06-01

    Endothelial dysfunction is a key element in early atherogenesis. The purposes of this study were to evaluate the feasibility of magnetic resonance (MR) assessment of altered myocardial blood flow (MBF) in response to the cold pressor test (CPT) and to determine if coronary endothelial dysfunction in young smokers can be detected with this noninvasive approach. Fourteen healthy non-smokers (31 ± 6 years) and 12 smokers (34 ± 8 years) were studied. Breath-hold phase-contrast cine MR imaging (PC-MRI) of the coronary sinus (CS) were obtained at rest and during the CPT. MBF was measured as CS flow divided by left ventricle mass and the rate pressure product. In non-smokers, MBF was 0.88 ± 0.19 ml/min/g at rest and significantly increased to 1.13 ± 0.26 ml/min/g during the CPT (P = 0.0001). In smokers, MBF was 0.94 ± 0.26 ml/min/g at rest and 0.96 ± 0.30 ml/min/g during the CPT (P = 0.73). ΔMBF (MBF during the CPT-MBF at rest) was significantly reduced in smokers compared with non-smokers (0.02 ± 0.20 vs. 0.26 ± 0.18 ml/min/g, P = 0.005). The intra-class correlation coefficient between measurements by two observers was 0.90 for ΔMBF. A significant reduction in MBF response to CPT was demonstrated in young smokers with PC-MRI at 1.5 T. This noninvasive method has great potential for assessment of coronary endothelial function.

  5. Uncertainty evaluation of fluid dynamic models and validation by gamma ray transmission measurements of the catalyst flow in a FCC cold pilot unity

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Francisco A.S.; Santos, Ebenezer F.; Dantas, Carlos C., E-mail: francisco.teles@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Melo, Silvio B., E-mail: sbm@cin.ufpe.br [Universidade Federal de Pernambuco (CIN/UFPE), Recife, PE (Brazil). Centro de Informatica; Santos, Valdemir A. dos, E-mail: vas@unicap.br [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Quimica; Lima, Emerson A.O., E-mail: emathematics@gmail.com [Universidade de Pernambuco (POLI/UPE), Recife, PE (Brazil). Escola Politecnica

    2013-07-01

    In this paper, fluid dynamics of Fluid Catalytic Cracking (FCC) process is investigated by means of a Cold Flow Pilot Unit (CFPU) constructed in Plexiglas to visualize operational conditions. Axial and radial catalyst profiles were measured by gamma ray transmission in the riser of the CFPU. Standard uncertainty was evaluated in volumetric solid fraction measurements for several concentrations at a given point of axial profile. Monitoring of the pressure drop in riser shows a good agreement with measured standard uncertainty data. A further evaluation of the combined uncertainty was applied to volumetric solid fraction equation using gamma transmission data. Limit condition of catalyst concentration in riser was defined and simulation with random numbers provided by MATLAB software has tested uncertainty evaluation. The Guide to the expression of Uncertainty in Measurement (GUM) is based on the law of propagation of uncertainty and on the characterization of the quantities measured by means of either a Gaussian distribution or a t-distribution, which allows measurement uncertainty to be delimited by means of a confidence interval. A variety of supplements to GUM are being developed, which will progressively enter into effect. The first of these supplements [3] describes an alternative procedure for the calculation of uncertainties: the Monte Carlo Method (MCM).MCM is an alternative to GUM, since it performs a characterization of the quantities measured based on the random sampling of the probability distribution functions. This paper also explains the basic implementation of the MCM method in MATLAB. (author)

  6. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  7. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  8. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  9. Uncertainty evaluation of fluid dynamic models and validation by gamma ray transmission measurements of the catalyst flow in a FCC cold pilot unity

    International Nuclear Information System (INIS)

    Teles, Francisco A.S.; Santos, Ebenezer F.; Dantas, Carlos C.; Melo, Silvio B.; Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    In this paper, fluid dynamics of Fluid Catalytic Cracking (FCC) process is investigated by means of a Cold Flow Pilot Unit (CFPU) constructed in Plexiglas to visualize operational conditions. Axial and radial catalyst profiles were measured by gamma ray transmission in the riser of the CFPU. Standard uncertainty was evaluated in volumetric solid fraction measurements for several concentrations at a given point of axial profile. Monitoring of the pressure drop in riser shows a good agreement with measured standard uncertainty data. A further evaluation of the combined uncertainty was applied to volumetric solid fraction equation using gamma transmission data. Limit condition of catalyst concentration in riser was defined and simulation with random numbers provided by MATLAB software has tested uncertainty evaluation. The Guide to the expression of Uncertainty in Measurement (GUM) is based on the law of propagation of uncertainty and on the characterization of the quantities measured by means of either a Gaussian distribution or a t-distribution, which allows measurement uncertainty to be delimited by means of a confidence interval. A variety of supplements to GUM are being developed, which will progressively enter into effect. The first of these supplements [3] describes an alternative procedure for the calculation of uncertainties: the Monte Carlo Method (MCM).MCM is an alternative to GUM, since it performs a characterization of the quantities measured based on the random sampling of the probability distribution functions. This paper also explains the basic implementation of the MCM method in MATLAB. (author)

  10. Cold Sore

    Science.gov (United States)

    ... may reduce how often they return. Symptoms A cold sore usually passes through several stages: Tingling and itching. Many people feel an itching, burning or tingling sensation around their lips for a day or so ...

  11. γ→α′ Martensitic transformation and magnetic property of cold rolled Fe–20Mn–4Al–0.3C steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Biao; Li, Changsheng, E-mail: lics@ral.neu.edu.cn; Han, Yahui; Wang, Jikai

    2016-12-01

    Direct γ→α′ martensitic transformation during cold rolling deformation was investigated for a high-Mn non-magnetic steel. Its influence on magnetic property was also analyzed. The magnetization under rolling reduction less than 50% almost presents a linear increase with the applied magnetic field. With deformation up to 73% and 93% thickness reductions, strain induced α′-martensite transformation starts to occur, causing the steel to be slightly magnetized. The α′-martensite prefers to nucleate directly at either microband–microband or microband-twin intersections without participation of intermediate ε-martensite. The volume fraction of α′-martensite is estimated as 0.070% and 0.17%, respectively, based on the magnetic hysteresis loops. Such a small fraction of ferromagnetic α′-martensite shows little influence on the magnetic induction intensity and low relative permeability. - Highlights: • Magnetic property of high-Mn austenitic steel was examined after cold rolling. • Nucleation mode for direct γ→α′ martensitic transformation was observed and discussed. • Volume fraction of strain induced α′-martensite was estimated by magnetic measurement.

  12. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    Science.gov (United States)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  13. [Optimization of fermentation conditions for cold-adapted amylase production by Micrococcus antarcticus and its enzymatic properties].

    Science.gov (United States)

    Fan, Hong-xi; Liu, Ying; Liu, Zhi-pei

    2009-08-15

    By single factor experiments, the fermentation conditions for cold-adapted amylase production from Micrococcus antarcticus were determined as follows(medium g/L): Na2 HPO4 2.0, KH2PO4 1.0, MgSO4 x 7H2O 0.1, NaCl 5.0, (NH4)2SO4 2.5, maltose 5.0, trace element solution 5.0 mL, pH 8.0, 100 mL/Erlenmeyer flask (500 mL); cultivation was in a rotating shaker at 12 degrees C and 160 r/min for 64 h.Under those conditions,the highest total enzyme activity (2.6 U/mL) was obtained and increased by 10.8 fold compared with the original value of 0.24 U/mL before optimization. This amylase was purified by concentration with ultrafiltration membrane module, Hitrap Q anion exchange chromatography and Superdex 200 gel filtration chromatography. The optimal temperature and pH for the purified amylase were 30 degrees C and 6.0, respectively.It still showed high activity at low temperature 10-15 degrees C. It was sensitive to high temperature but was stable at pH 6.0-10.0 with at least 70% activity remained. These results indicated that it was a typical cold-adapted enzyme. The enzyme activity was stimulated by Ca2+, Mn2+, Co2+ and Mg2+; but inhibited by Zn2+, Ba2+, Ag+, Cu2+, Al3+, Fe2, Fe3+, Hg2+, EDTA and citrate. This cold-adapted amylase showed resistance to inactivation of 0.1% nonionic surfactants such as Tween 80, TrintonX-100, etc. Its Km was 0.90 mg/mL.

  14. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  15. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  16. Properties of an Arithmetic Code for Geodesic Flows

    International Nuclear Information System (INIS)

    Chaves, Daniel P B; Palazzo, Reginaldo Jr; Rios Leite, Jose R

    2011-01-01

    Topological analysis of chaotic dynamical systems emerged in the nineties as a powerful tool in the study of strange attractors in low-dimensional dynamical systems. It is based on identifying the stretching and squeezing mechanisms responsible for creating a strange attractor and organize all the unstable periodic orbits in this attractor. This method is concerned with the manifold generated by the chaotic system. Furthermore, as a mathematical object, the manifolds have a well studied geometric and algebraic structure, particularly for the case of compact surfaces. Intending to use this structure in the analysis and application of chaotic systems through their topological characteristics, we determine properties of geodesic codes for compact surfaces necessary for the construction of encoders from the symbolic sequences of experimental data generated by the unstable periodic orbits of the strange attractor (related to the behavior changes of the system with the variation of control parameters) to the geodesic code sequences, which permits to use the surface structure to study the system orbits.

  17. Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings

    Science.gov (United States)

    Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.

  18. Influence of air flow rate on structural and electrical properties of undoped indium oxide thin films

    International Nuclear Information System (INIS)

    Mirzapour, S.; Rozati, S.M.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.

    1993-01-01

    Using the spray pyrolysis technique thin films of indium oxide were prepared on Corning glass (7059) at a substrate temperature of 425 C at different flow rates. The electrical and structural properties of these films were studied. The Hall measurements at room temperature showed that the films prepared in an air flow rate of 7 litre min -1 have the highest mobility of 47 cm 2 V -1 s -1 and a minimum resistivity of 1.125 x 10 -3 Ω cm. The X-ray diffraction patterns showed that the films have a preferred orientation of [400] which peaks at the air flow rate of 7 litre min -1 . (orig.)

  19. Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649

    Directory of Open Access Journals (Sweden)

    Dongjuan Yuan

    2014-06-01

    Full Text Available Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1 from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1, Penicillium camembertii lipase U-150 (PCL, and Aspergillus oryzae lipase (AOL. Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.

  20. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    Science.gov (United States)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  1. The influence of the dose of calcium bisglycinate on physicochemical properties, sensory analysis and texture profile of kefirs during 21 days of cold storage.

    Science.gov (United States)

    Pawlos, Małgorzata; Znamirowska, Agata; Szajnar, Katarzyna; Kalicka, Dorota

    2016-01-01

    In the process of enrichment of dairy products a priority element is the proper selection of compounds that are a mineral carrier. Calcium bisglycinate is better absorbed by the body than inorganic forms of calcium. Moreover, the lactic acid which is produced in kefir fermentation and the presence of lactose have also a positive effect on the improvement of absorption of calcium. The aim of the present study was to determine the influence of the applied dose of calcium in the form of calcium bisglycinate on the physicochemical and sensory properties and texture of kefirs during 21-day period of cold storage. Processed cow milk was enriched with 0, 5, 10, 15, 20, 25 and 30 mg of calcium (for 100 g of milk), repasteurized (72°C, 1 min), cooled down (26°C), inoculated with Commercial VITAL kefir culture (Danisco, Poland) and fermented for 16 hours (26°C). The assessment of the influence of addition   of calcium bisglycinate on acidity, syneresis, texture and sensory characteristics (1-9 points) of kefirs was conducted at four fixed dates (after 1 day, 7 days, 14 days and 21 days of storage). During successive weeks of cold storage in all experimental groups there was observed a tendency to decrease general acidity. On the 1st and 7th days of cold storage reduced whey leakage was observed in kefirs enriched with 25 mg and 30 mg Ca/100 g of milk. With increasing doses of enrichment with calcium both the hardness, adhesiveness and gumminess of kefirs decreased. The applied doses of calcium did not cause changes in the sensory characteristics such as colour and consistency of the fermented beverages. Calcium bisglycinate may be used to enrich kefirs with calcium even with 30 mg of calcium in 100 g of milk without the modification of the product's parameters.

  2. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    Science.gov (United States)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-05-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  3. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhigang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Huai, Xiulan; Tao, Yujia; Chen, Huanzhuo [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-12-15

    Three-dimensional conjugate numerical simulations using the inlet, average and variable thermal properties respectively were performed for the laminar water flow and heat transfer in rectangular microchannels with D{sub h} of 0.333 mm at Re of 101-1775. Both average and variable properties are adopted in data reduction. The calculated local and average characteristics of flow and heat transfer are compared among different methods, and with the experiments, correlations and simplified theoretical solution data from published literatures. Compared with the inlet property method, both average and variable property methods have significantly lower f{sub app}, but higher convective heat transfer coefficient h{sub z} and Nu{sub z}. Compared with the average property method, the variable property method has higher f{sub app}Re{sub ave} and lower h{sub z} at the beginning, but lower f{sub app}Re{sub ave} and higher h{sub z} at the later section of the channel. The calculated Nu{sub ave} agree well with the Sieder-Tate correlation and the recently reported experiment, validating the traditional macroscale theory in predicting the flow and heat transfer characteristics in the dimension and Re range of the present work. (author)

  4. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  5. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  6. Properties of the positive column of a glow discharge in flowing hydrogen

    International Nuclear Information System (INIS)

    Brunet, H.; Rocca Serra, J.; Mabru, M.

    1981-01-01

    Results of a theoretical model for predicting the effects of gas flow on the properties of the positive column in a glow discharge are presented. A cylindrical discharge at low pressure ( 2 molecules and H atoms produced by the discharge are calculated. Comparison with available experimental data is made

  7. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  8. Influence of fluid-property variation on turbulent convective heat transfer in vertical annular CHANNEL FLOWS

    International Nuclear Information System (INIS)

    Joong Hun Bae; Jung Yul Yoo; Haecheon Choi

    2005-01-01

    Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)

  9. Assessment of microstructure stability of cold worked Ti-modified austenitic stainless steel during aging using ultrasonic velocity measurements and correlation with mechanical properties

    International Nuclear Information System (INIS)

    Vasudevan, M.; Palanichamy, P.

    2003-01-01

    As ultrasonic velocity is sensitive to the changes in texture, it is a more reliable technique than mechanical property measurements for assessment of microstructural stability (recrystallization behaviour) of cold worked alloy where recrystallization is coupled with precipitation. Hence ultrasonic velocity measurements have been employed for studying the influence of Ti/C ratio on the microstructural stability of cold worked Ti-modified austenitic stainless steel during isochronal aging. In this alloy precipitation of TiC is known to retard recovery and recrystallization. The variation in ultrasonic velocity with aging temperature exhibited a three stage behaviour at all three frequencies employed (2, 10 and 20 MHz) and correlated well with the microstructural changes. Based on the microstructural investigations, the three stages have been identified to be recovery, progress of recrystallization and completion of recrystallization. There was one to one correspondence between the variation in the hardness, strength values and the variation in the ultrasonic velocity values as a function of aging temperature in assessing the microstructural changes, except when the interaction between the TiC precipitation and recrystallization is stronger

  10. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    Science.gov (United States)

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  11. Flow and transport in unsaturated fractured rock: Effects of multiscale heterogeneity of hydrogeologic properties

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.

    2002-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain

  12. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M.C.; Arun Kumar, A.; Padmanabhan, P.V.A.; Deshmukh, R.R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A.S.

    2016-01-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  13. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Ram Kumar, M.C.; Arun Kumar, A. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Padmanabhan, P.V.A. [PSN College of Engineering and Technology, Tirunelveli 627 152 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Bah, M.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, M.; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-05-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  14. A Comparative Analysis of the Flow Properties between Two Alumina-Based Dry Powders

    Directory of Open Access Journals (Sweden)

    Milene Minniti de Campos

    2013-01-01

    Full Text Available We measured and compared the flow properties of two alumina-based powders. The alumina powder (AP is irregularly shaped and has a smooth surface and moisture content of 0.16% (d.b., and the ceramic powder (CP, obtained after atomization in a spray dryer, is spherical and has a rough surface and moisture content of 1.07%. We measured the Hausner ratio (HR, the static angle of repose (AoR, the flow index (FI, the angle of internal friction, and the wall's friction angle. The properties measured using aerated techniques (AoR and HR demonstrated that AP presents true cohesiveness (and therefore a difficult flow, while CP presents some cohesiveness and its flow might be classified as half way between difficult and easy flow. Their FI values, which were obtained using a nonaerated technique, enable us to classify the alumina as cohesive and the ceramic powder as an easy-flow powder. The large mean diameter and morphological characteristics of CP reduce interparticle forces and improve flowability, in spite of the higher moisture content of their granules. The angles of internal friction and of wall friction were not significantly different when comparing the two powders.

  15. An investigation of flow properties of metal matrix composites suspensions for injection molding

    International Nuclear Information System (INIS)

    Ahmad, F.; Bevis, M.J.

    1997-01-01

    Flow properties of metal matrix composites suspensions have significant effects on the fibre orientation during mould filling. The results presented in this paper relate to the flow properties of aluminium powder and glass fibres compounded into a sacrificial thermoplastics binder. For this purpose, a range of aluminium compounds and aluminium composite suspensions were investigated over a wide shear rate range expected to occur during injection mould process. Aluminium composites wee prepared by substituting glass fibres for aluminium in aluminium compound. Aluminium composite containing a maximum critical volume fraction of fibres which did not exhibit an increase n viscosity was determined. The effect of temperature on the flow behaviour of aluminium composite was also investigated. (author)

  16. The tamers of cold chaos; Die Dompteure des kalten Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Hergersberg, P.

    2008-07-01

    The ISS International Space Station hosts only a select number of scientific experiments - like those of GREGOR E. MORFILL and his staff at the MAX PLANCK INSTITUTE FOR EXTRATERRESTRIAL PHYSICS. These physicists whip cold plasmas consisting of charged microparticles into line in order to study their crystallization, turbulence or flow properties through a nozzle. The results of these studies are relevant for applications in medicine and the microchip industry. (orig.)

  17. Properties of two-temperature dissipative accretion flow around black holes

    Science.gov (United States)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  18. Heat-flow properties of systems with alternate masses or alternate on-site potentials

    Science.gov (United States)

    Pereira, Emmanuel; Santana, Leonardo M.; Ávila, Ricardo

    2011-07-01

    We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.

  19. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    Science.gov (United States)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  20. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  1. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  2. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  3. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    Science.gov (United States)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  4. Surface modification of polypropylene mesh devices with cyclodextrin via cold plasma for hernia repair: Characterization and antibacterial properties

    Science.gov (United States)

    Sanbhal, Noor; Mao, Ying; Sun, Gang; Xu, Rui Fang; Zhang, Qian; Wang, Lu

    2018-05-01

    Light weight polypropylene (PP) mesh is the most widely used implant among all other synthetic meshes for hernia repair. However, infection is the complication associated to all synthetic meshes after hernia repair. Thus, to manage mesh related infection; antibacterial drug is generally loaded to surgical implants to supply drug locally in mesh implanted site. Nevertheless, PP mesh restricts the loading of antibacterial drug at operated area due to its low wettability. The aim of this study was to introduce a novel antimicrobial PP mesh modified with β-cyclodextrine (CD) and loaded with antimicrobial agent for infection prevention. A cold oxygen plasma treatment was able to activate the surfaces of polypropylene fibers, and then CD was incorporated onto the surfaces of PP fibers. Afterward, triclosan, as a model antibacterial agent, was loaded into CD cavity to provide desired antibacterial functions. The modified polypropylene mesh samples CD-Tric-1, CD-Tric-3 exhibited excellent inhibition zone and continuous antibacterial efficacy against E. coli and S. aureus up to 6 and 7 days respectively. Results of AFM, SEM, FTIR and antibacterial tests evidenced that oxygen plasma process is necessary to increase chemical connection between CD molecules and PP fibers. The samples were also characterized by using EDX, XRD, TGA, DSC and water contact angle.

  5. Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Witherspoon, P.A.

    1983-01-01

    A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations

  6. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    Science.gov (United States)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  7. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

    1999-01-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: ρd of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density (ρd: 1.4--2.0 Mg/m 3 ) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10 -13 m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite

  8. Hagfish slime and mucin flow properties and their implications for defense

    Science.gov (United States)

    Böni, Lukas; Fischer, Peter; Böcker, Lukas; Kuster, Simon; Rühs, Patrick A.

    2016-07-01

    When hagfish (Myxinidae) are attacked by predators, they form a dilute, elastic, and cohesive defensive slime made of mucins and protein threads. In this study we propose a link between flow behavior and defense mechanism of hagfish slime. Oscillatory rheological measurements reveal that hagfish slime forms viscoelastic networks at low concentrations. Mucins alone did not contribute viscoelasticity, however in shear flow, viscosity was observed. The unidirectional flow, experienced by hagfish slime during suction feeding by predators, was mimicked with extensional rheology. Elongational stresses were found to increase mucin viscosity. The resulting higher resistance to flow could support clogging of the attacker’s gills. Shear flow in contrast decreases the slime viscosity by mucin aggregation and leads to a collapse of the slime network. Hagfish may benefit from this collapse when trapped in their own slime and facing suffocation by tying a sliding knot with their body to shear off the slime. This removal could be facilitated by the apparent shear thinning behavior of the slime. Therefore hagfish slime, thickening in elongation and thinning in shear, presents a sophisticated natural high water content gel with flow properties that may be beneficial for both, defense and escape.

  9. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  10. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  11. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  12. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  13. Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels

    International Nuclear Information System (INIS)

    Spaetig, P.; Bonade, R.; Odette, G.R.; Rensman, J.W.; Campitelli, E.N.; Mueller, P.

    2007-01-01

    We investigate the plastic flow properties at low and high temperature of the tempered martensitic steel Eurofer97. We show that below room temperature, where the Peierls friction on the screw dislocation is active, it is necessary to modify the usual Taylor's equation between the flow stress and the square root of the dislocation density and to include explicitly the Peierls friction stress in the equation. Then, we compare the fracture properties of the Eurofer97 with those of the F82H steel. A clear difference of the fracture toughness-temperature behavior was found in the low transition region. The results indicate a sharper transition for Eurofer97 than for the F82H. Finally, the shift of the median toughness-temperature curve of the F82H steel was determined after two neutron irradiations performed in the High Flux Reactor in Petten

  14. Effect of density step on stirring properties of a strain flow

    International Nuclear Information System (INIS)

    Gonzalez, M; Paranthoen, P

    2009-01-01

    The influence of steep density gradient on stirring properties of a strain flow is addressed by considering the problem in which an interface separating two regions with different constant densities is stabilized within a stagnation-point flow. The existence of an analytic solution for the two-dimensional incompressible flow field allows the exact derivation of the velocity gradient tensor and of parameters describing the local flow topology. Stirring properties are affected not only by vorticity production and jump of strain intensity at the interface, but also by rotation of strain principal axes resulting from anisotropy of pressure Hessian. The strain persistence parameter, which measures the respective effects of strain and effective rotation (vorticity plus rotation rate of strain basis), reveals a complex structure. In particular, for large values of the density ratio, it indicates dominating effective rotation in a restricted area past the interface. Information on flow structure derived from the Okubo-Weiss parameter, by contrast, is less detailed. The influence of the density step on stirring properties is assessed by the Lagrangian evolution of the gradient of a passive scalar. Even for a moderate density ratio, alignment of the scalar gradient and growth rate of its norm are deeply altered. Past the interface effective rotation indeed drives the scalar gradient to align with a direction determined by the local strain persistence parameter, away from the compressional strain direction. The jump of strain intensity at the interface, however, opposes the lessening effect of the latter mechanism on the growth rate of the scalar gradient norm and promotes the rise of the gradient.

  15. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    Science.gov (United States)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  16. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  17. Theoretical study of turbulent channel flow - Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Science.gov (United States)

    Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.

    1990-01-01

    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.

  18. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Directory of Open Access Journals (Sweden)

    J. F. Salazar

    2018-03-01

    Full Text Available Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land–atmosphere interactions (mainly precipitation recycling that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  19. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    Science.gov (United States)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán

    2018-03-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  20. Fracture Flow Characterization from Seismic and Electric Properties: Insight from Experimental and Numerical Approaches

    Science.gov (United States)

    Sawayama, K.; Kitamura, K.; Tsuji, T.; Fujimitsu, Y.

    2017-12-01

    The estimation of fluid flow and its distribution in the fracture is essential to evaluate subsurface fluid (e.g., geothermal water, ground water, oil and gas). Recently, fluid flow in the geothermal reservoir has been attracting attention to develop EGS (enhanced geothermal system) technique. To detect the fluid distribution under the ground, geophysical exploration such as seismic and electromagnetic methods have been broadly applied. For better interpretation of these exploration data, more detailed investigation about the effect of fluid on seismic and electric properties of fracture is required. In this study, we measured and calculated seismic and electric properties of a cracked rock to discuss the effect of water distribution and saturation on them as well as fluid flow. For the experimental observation, we developed the technique to measure electrical impedance, P-wave velocity and water saturation simultaneously during the fluid-flow test. The test has been conducted as follows; a cracked andesite core sample was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure and then, brine (1wt.%-KCl, 1.75 S/m) was injected into the sample to replace the gas. During the test, water saturation, permeability, electrical impedance and P-wave velocity were measured. As a result of this experimental study, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine in the broad fracture. After the brine injection, electrical impedance decreased with injection pressure by up to 40% while P-wave velocity was almost constant. This decrease of electrical impedance could be related to the flow to the narrow path (microcrack) which cannot be detected by P-wave velocity. These two types of fluid flow mechanism were also suggested from other parameters such as

  1. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kanwarjeet, E-mail: kanwar722@yahoo.com; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-11-15

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10{sup −3} s{sup −1}, 3 × 10{sup −4} s{sup −1} and 3 × 10{sup −5} s{sup −1}). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  2. Tensile properties and flow behavior analysis of modified 9Cr-1Mo steel clad tube material

    Science.gov (United States)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M. D.; Laha, K.; Jayakumar, T.

    2014-11-01

    The tensile properties and flow behavior of modified 9Cr-1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300-923 K) and strain rates (3 × 10-3 s-1, 3 × 10-4 s-1 and 3 × 10-5 s-1). The tensile flow behavior of modified 9Cr-1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation.

  3. R134a Flow Boiling Analysis with Modified Thermodynamic Property File of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Son, Gyumin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Previous study showed application of RELAP5 code to solar energy facility with molten salt (60% NaNO3 and 40% KNO3) as working fluid. Based on external experimental correlations, thermodynamic properties of molten salt were evaluated as a function of pressure and temperature and those equations were used to generate tpf. To validate external tpf, experimental values were compared with RELAP5 analysis. In nuclear field, utilization of other fluid is also important since many thermal-hydraulic experiments used various fluids such as FC-72, R123, and R134a. Theses refrigerants have been used to simulate the high pressure environment of nuclear power plants due to their low boiling point, and density ratio between vapor and liquid. Thus, this study aims for tpf generation of R134a and verification by analyzing real case. R134a is selected as a fluid to be implemented and analyzed because it is currently used in refrigerator and frequently used in flow boiling experiment related with heat transfer coefficient and CHF measurement. R134a property file were generated with fitted equation using temperature and pressure as variables, originated from external data source. For validation, flow boiling experiment case were made into simplified input. Analysis with tpfr134a showed that application of Gnielinksi correlation could enhance single phase flow accuracy. Large error of HTC from two phase analysis requires parameter study. Future work aims for more specified experimental case comparison and correlation enhancement for two phase analysis.

  4. Tensile properties and flow behavior analysis of modified 9Cr–1Mo steel clad tube material

    International Nuclear Information System (INIS)

    Singh, Kanwarjeet; Latha, S.; Nandagopal, M.; Mathew, M.D.; Laha, K.; Jayakumar, T.

    2014-01-01

    The tensile properties and flow behavior of modified 9Cr–1Mo steel clad tube have been investigated in the framework of various constitutive equations for a wide range of temperatures (300–923 K) and strain rates (3 × 10 −3 s −1 , 3 × 10 −4 s −1 and 3 × 10 −5 s −1 ). The tensile flow behavior of modified 9Cr–1Mo steel clad tube was most accurately described by Voce equation. The variation of instantaneous work hardening rate (θ = dσ/dε) and σθ with stress (σ) indicated two stage behavior characterized by rapid decrease at low stresses (transient stage) followed by a gradual decrease in high stresses (Stage III). The variation of work hardening parameters and work hardening rate in terms of θ vs. σ and σθ vs. σ with temperature exhibited three distinct regimes. Rapid decrease in flow stress and work hardening parameters and rapid shift of θ vs. σ and σθ vs. σ towards low stresses with increase in temperature indicated dynamic recovery at high temperatures. Tensile properties of the material have been best predicted from Voce equation

  5. Effect of Annealing Temperature on the Microstructure, Tensile Properties, and Fracture Behavior of Cold-Rolled High-Mn Light-Weight Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hyun; Cho, Kyung Mox [Pusan National University, Busan (Korea, Republic of); Park, Seong-Jun; Moon, Joonoh; Kang, Jun-Yun; Park, Jun-Young; Lee, Tae-Ho [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-05-15

    The effects of the annealing temperature on the microstructure and tensile properties of cold-rolled light-weight steels are investigated using two Fe-30Mn-xAl-0.9C alloys that contain different Al content. The initial alloy microstructure is composed of a single austenite or a mixture of austenite and ferrite depending on the nominal aluminum content. For the alloy with 9 wt%Al content, the recrystallization and grain growth of austenite occurrs depending on the annealing temperature. However, for the alloy with 11 wt%Al content, the β-Mn phase is observed after annealing for 10 min at 550~800 ℃. The β-Mn transformation kinetics is the fastest at 700 ℃. The formation of the β-Mn phase has a detrimental effect on the ductility, and this leads to significant decreases in the total elongation. The same alloy also forms κ-carbide and DO3 ordering at 550~900 ℃. The investigated alloys exhibit a fully recrystallized microstructure after annealing at 900 ℃ for 10 min, which results in a high total elongation of 25~55%with a high tensile strength of 900~1170 MPa.

  6. Morphologic and Chemical Properties of PMMA/ATH Layers with Enhanced Abrasion Resistance Realised by Cold Plasma Spraying at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    L. Wallenhorst

    2018-01-01

    Full Text Available This study investigated the morphologic and chemical properties of coatings based on PMMA/ATH powder and deposited by cold plasma spraying on wood and glass. Since the deposition of pure PMMA/ATH powder with air as process gas yielded coatings with insufficient abrasion resistance, two modifications of the basic process were investigated. Previous studies showed that replacing air as process gas with forming gas did not enhance the abrasion resistance, but the addition of a phenol-formaldehyde resin (PF succeeded in stabilising the particle coatings. In this work, results from morphologic and chemical analysis suggested an encasement of the PMMA/ATH particles by plasma-modified PF and thus a fusion of individual particles, explaining the enhanced bonding. Moreover, adhesion tests confirmed an outstanding bonding between the coating and wood as well as glass, which is assumed to result from interactions between the PF’s hydroxyl groups and functional groups on the substrates’ surfaces. Studies on the wettability revealed a hydrophobic character of such coatings, therefore generally indicating a possible application, for example, to reduce water uptake by wooden materials.

  7. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.

    Science.gov (United States)

    Chaharlang, Mahmood; Samavati, Vahid

    2015-08-01

    The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Effusive-Flow Properties of Target/Vapor-Transport Systems for Radioactive Ion Beam Applications

    CERN Document Server

    Kawai, Yoko; Liu, Yuan

    2005-01-01

    Radioactive atoms produced by the ISOL technique must diffuse from a target, effusively flow to an ion source, be ionized, be extracted, and be accelerated to research energies in a time commensurate with the lifetime of the species of interest. We have developed a fast valve system (closing time ~100 us) that can be used to accurately measure the effusion times of chemically active or inactive species through arbitrary geometry and size vapor transport systems with and without target material in the reservoir. The effusive flow times are characteristic of the system and thus serve as figures of merit for assessing the quality of a given vapor transport system as well as for assessing the permeability properties of a given target design. This article presents effusive flow data for noble gases flowing through a target reservoir and ion source system routinely used to generate radioactive species at the HRIBF with and without disks of 6 times and 10 times compressed Reticulated Vitreous Carbon Foam (RVCF) with...

  9. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows

    Science.gov (United States)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo

    2018-02-01

    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  10. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    Science.gov (United States)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  11. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  12. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  13. Thin-coating as an alternative approach to improve flow properties of ibuprofen powder

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Ehlers, Henrik

    2010-01-01

    In the present study, thin-coating as a potential method for improving flow properties of cohesive ibuprofen powder was introduced. Briefly, the technique was based on the successive deposition of ultrasound-assisted fine polymer mist onto the surface of the powdered active pharmaceutical...... ingredient (API), producing individual particles with a hydrophilic thin-coat. A 0.15% m/V aqueous solution of hydroxypropyl methylcellulose (HPMC) was used. Particle size and surface analysis revealed a decrease in the cohesiveness of ibuprofen powder and an increase in the homogeneity of particle surfaces...

  14. Non-Newtonian flow between concentric cylinders calculated from thermophysical properties obtained from simulations

    International Nuclear Information System (INIS)

    Narayan, A.P.; Rainwater, J.C.; Hanley, H.J.M.

    1995-01-01

    A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder

  15. Statistical Properties of Lorenz-like Flows, Recent Developments and Perspectives

    Science.gov (United States)

    Araujo, Vitor; Galatolo, Stefano; Pacifico, Maria José

    We comment on the mathematical results about the statistical behavior of Lorenz equations and its attractor, and more generally on the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer-assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statistical behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated with the existence of physical measures: in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors: (1) there exists an invariant foliation whose leaves are forward contracted by the flow (and further properties which are useful to understand the statistical properties of the dynamics); (2) there exists a positive Lyapunov exponent at every orbit; (3) there is a unique physical measure whose support is the whole attractor and which is the equilibrium state with respect to the center-unstable Jacobian; (4) this measure is exact dimensional; (5) the induced measure on a suitable family of cross-sections has exponential decay of correlations for Lipschitz observables with respect to a suitable Poincaré return time map; (6) the hitting time associated to Lorenz-like attractors satisfy a logarithm law; (7) the geometric Lorenz flow satisfies the Almost Sure Invariance Principle (ASIP) and the Central Limit Theorem (CLT); (8) the rate of decay of large deviations for the volume measure on the ergodic basin of

  16. Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes.

    Science.gov (United States)

    Favier, Aurélie; Hot, Julie; Habert, Guillaume; Roussel, Nicolas; d'Espinose de Lacaillerie, Jean-Baptiste

    2014-02-28

    Geopolymers are presented in many studies as alternatives to ordinary Portland cement. Previous studies have focused on their chemical and mechanical properties, their microstructures and their potential applications, but very few have focussed on their rheological behaviour. Our work highlights the fundamental differences in the flow properties, which exist between geopolymers made from metakaolin and Ordinary Portland Cement (OPC). We show that colloidal interactions between metakaolin particles are negligible and that hydrodynamic effects control the rheological behaviour. Metakaolin-based geopolymers can then be described as Newtonian fluids with the viscosity controlled mainly by the high viscosity of the suspending alkaline silicate solution and not by the contribution of direct contacts between metakaolin grains. This fundamental difference between geopolymers and OPC implies that developments made in cement technology to improve rheological behaviour such as plasticizers will not be efficient for geopolymers and that new research directions need to be explored.

  17. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    Science.gov (United States)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  18. Nanoclay Effect on the Flow and Thermal Properties of PP/SEBS-g-MA Blend

    Directory of Open Access Journals (Sweden)

    M. Ranjbar

    2014-01-01

    Full Text Available The effect of nanoclay (Cloisite® 15A was studied in relation to the flow behavior, mechanical and thermal properties of polypropylene/maleic anhydride-g-(styrene-ethylene-butylene-styrene triblock copolymer (PP/SEBS(15%-g-MA blend. In this regard, the composites based on the blend and various amounts of nanoclay (1,3,5 wt% were melt compounded using an internal mixer at the temperature of 190°C, rotor speed of 75rpm for 12min. The prepared samples were compression molded in a hot-press machine under the conditions of 190°C, 31 MPa pressure for 9 min to obtain the sheets in various thicknesses. The sheets were then cooled to ambient temperature with cooling water at the rate of 1.5°C.s-1. X-ray diffraction (XRD and transmission electron microscopy (TEM were used to study the structure and morphology of the samples. In addition, the mechanical and thermal properties were determined by standard methods. The results of X-ray diffraction and transmission electron photographs confirmed both exfoliated and intercalated structures in the prepared samples. There were balanced strength/toughness properties in all the prepared nanocomposites by addition of both SEBS-g-MA and clay simultaneously. The measurement of rheological properties showed that as the shear rate increased, the apparent viscosity of the samples decreased (shear thinning behavior. Gradual increase in incorporation of nanoclay also decreased the melt flow index (MFI values. In addition, increases in nanoclay content had an insignificant effect on the thermal behavior and in that respect there were slight increases in degree of crystallinity, heat deflection temperature (HDT as well as Vicat softening point by slight increase in temperatureThe effect of nanoclay (Cloisite® 15A was studied in relation to the flow behavior, mechanical and thermal properties of polypropylene/maleic anhydride-g-(styrene-ethylene-butylene-styrene triblock copolymer (PP/SEBS(15%-g-MA blend. In this regard

  19. Development of cold source moderator structure

    International Nuclear Information System (INIS)

    Aso, Tomokaze; Ishikura, Syuichi; Terada, Atsuhiko; Teshigawara, Makoto; Watanabe, Noboru; HIno, Ryutaro

    1999-01-01

    The cold and thermal neutrons generated at the target (which works as a spallation neutron source under a 5MW proton beam condition) is filtered with cold source moderators using supercritical hydrogen. Preliminary structural analysis was carried out to clarify technical problems on the concept of the thin-walled structure for the cold source moderator. Structural analytical results showed that the maximum stress of 1 12MPa occurred on the moderator surface, which exceeded the allowable design stresses of ordinary aluminum alloys. Flow patterns measured by water flow experiments agreed well with hydraulic analytical results, which showed that an impinging jet flow from an inner pipe of the moderator caused a recirculation flow on a large scale. Based on analytical and experimental results, new moderator structures with minute frames, blowing flow holes etc. were proposed to keep its strength and to suppress the recirculation flow. (author)

  20. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 600/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Isore, A; Miyada, L T

    1975-05-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280/sup 0/C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600/sup 0/C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions.

  1. Inelastic properties evolution of alloy steels in martensitic and cold-worked states subjected to heat treatments up to 6000C

    International Nuclear Information System (INIS)

    Isore, A.; Miyada, L.T.

    1975-01-01

    Two internal friction peaks were observed in a ball-bearing steel in the martensitic and cold-worked states, near 220 and 280 0 C for a frequency of about 1,3 Hz. From peaks evolution by annealing up to 600 0 C, it is possible to follow the decomposition stages of martensitic and recrystallization of cold-worked pearlite. Annealed martensite and cold worked pearlite have the same anelastic behaviour. From existing atomistic models, it is possible to interpret these peaks by dislocations-interstitial carbon and dislocations-carbides interactions

  2. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  3. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  4. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    Science.gov (United States)

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  5. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India); Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar 382 428, Gujarat (India)

    2013-02-15

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10{sup −3} s{sup −1}. The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n{sub v}’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed.

  6. Selected properties of laser cladding coatings shaped using Flow drill technology

    Directory of Open Access Journals (Sweden)

    Bartkowski Dariusz

    2017-01-01

    Full Text Available The paper presents the investigations of selected chemical and mechanical properties as well as macro- and microstructure of materials formed using thermal drilling process (Flow drill. The aim of this study was to determine the microstructure of the coatings produced using laser cladding with powder technology. The coatings were produced on the low-carbon steel using 1 kW disc laser. After modification of surface, the thermal drilling process was applied. To produce all coatings, the pure copper powder was used. In this study the laser power equal of 500, 700 and 900 W were used. The microstructure, chemical composition (EDS and microhardness were investigation. It was found that the surface modification of low carbon steel and next conducted thermal drilling process caused change the surface properties on the hole flange. It was found that surface modification of steel using laser cladding with cooper powder and next Flow drill process contributes to the change in microhardness and chemical composition on hole flange.

  7. Effect of tungsten on tensile properties and flow behaviour of RAFM steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Nandagopal, M.; Sam, Shiju; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-01-01

    Effect of tungsten in the range of 1–2 wt.% on tensile properties and flow behaviour of 9Cr–W–Ta–V Reduced Activation Ferritic–Martensitic (RAFM) steel has been investigated. The tungsten in the investigated range was found to have only minor effect on the tensile properties of the steel over the temperature range of 300–873 K and at a strain rate of 3 × 10 −3 s −1 . The tensile flow behaviour of the RAFM steels was adequately described by the Voce’s constitutive equation. The tensile strength of the steels were predicted well from the parameters of the Voce’s constitutive equation. The Voce’s strain hardening parameter ‘n v ’ was found to be quite sensitive to the tungsten content and predicted the onset of dislocation climbing process at relatively higher testing temperature with the increase in tungsten content. The equivalence between tensile and creep deformations and the influence of tungsten have been discussed

  8. In vitro and ex vivo effect of hyaluronic acid on erythrocyte flow properties

    Directory of Open Access Journals (Sweden)

    Palatnik S

    2010-02-01

    Full Text Available Abstract Background Hyaluronic acid (HA is present in many tissues; its presence in serum may be related to certain inflammatory conditions, tissue damage, sepsis, liver malfunction and some malignancies. In the present work, our goal was to investigate the significance of hyaluronic acid effect on erythrocyte flow properties. Therefore we performed in vitro experiments incubating red blood cells (RBCs with several HA concentrations. Afterwards, in order to corroborate the pathophysiological significance of the results obtained, we replicated the in vitro experiment with ex vivo RBCs from diagnosed rheumatoid arthritis (RA patients, a serum HA-increasing pathology. Methods Erythrocyte deformability (by filtration through nucleopore membranes and erythrocyte aggregability (EA were tested on blood from healthy donors additioned with purified HA. EA was measured by transmitted light and analyzed with a mathematical model yielding two parameters, the aggregation rate and the size of the aggregates. Conformational changes of cytoskeleton proteins were estimated by electron paramagnetic resonance spectroscopy (EPR. Results In vitro, erythrocytes treated with HA showed increased rigidity index (RI and reduced aggregability, situation strongly related to the rigidization of the membrane cytoskeleton triggered by HA, as shown by EPR results. Also, a significant correlation (r: 0.77, p Conclusions Our results lead us to postulate the hypothesis that HA interacts with the erythrocyte surface leading to modifications in erythrocyte rheological and flow properties, both ex vivo and in vitro.

  9. The flow properties of colliery spoil rockpaste as used in the infilling of abandoned mine workings

    Energy Technology Data Exchange (ETDEWEB)

    Ghataora, G.S.; Jarvis, S.T. [University of Birmingham, Birmingham (United Kingdom)

    1998-07-01

    Colliery spoil is the major constituent of colliery spoil 'rockpaste' which has been used to infill abandoned limestone mines in the West Midlands of England since the early 1980s. The other constituents of rockpaste are pulverised fuel ash, lime and water. A key property of the rockpaste is its ability to flow within the mine workings over considerable distances before setting. This paper describes the work carried out to identify suitable sites as sources of colliery spoil for making rockpaste and goes on to consider the flow properties of the material and the monitoring methods used on-site. A full-scale trial comprising infilling a 6600 m{sup 3} section of an abandoned mine was conducted prior to the infilling of the Littleton Street Mine which had a volume of about 500 000 m{sup 3}. As well as describing the methods used for monitoring the movement of rockpaste material, a description is also given of a dip-meter developed specifically for the purpose of measuring the level of paste in the mine. The monitoring systems developed for use in the two case studies presented in this paper are now being used extensively for infilling other abandoned mine workings. 5 refs., 16 figs., 1 tab., 1 plate.

  10. Tribological properties of high-speed steel treated by compression plasma flow

    International Nuclear Information System (INIS)

    Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.

    2004-01-01

    Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface

  11. Study of the rheological properties and the finishing behavior of abrasive gels in abrasive flow machining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A. C.; Liu, C. H.; Liang, K. Z.; Pai, S. H. [Ching Yun University, Taipei (China)

    2007-10-15

    Abrasive flow machining (AFM) is an effective method to finish the smooth surface in the complex holes. Abrasive media are key elements which dominate the polished results in AFM. But it is hard to develop the machining model of these abrasive gels because of its complicated mechanism. In this research, a non-Newtonian flow is used to set up the abrasive mechanism of the abrasive media in AFM. Power law is a main equation of the non-Newtonian flow to describe the motion of the abrasive media. Viscosities vs. shear rates of different abrasive gels are used to establish the power law in CFD-ACE{sup +} software first. And the working parameters of AFM were applied as input to study the properties of the abrasive gels in AFM. Finally, the relationships between the simulations and the experiments were found. And the abrasive mechanism of the abrasive gels was set up in AFM. The simulated results show that the abrasive gel with high viscosity can entirely deform in the complex hole than the abrasive gel with low viscosity. And the abrasive gel with high viscosity generates a larger shear force than the abrasive gel with low viscosity in the same area. Moreover, the strain rate is seriously changed when the abrasive gel cross over the narrow cross-section of the complex hole. It also means that abrasive gel will produce large finish force in that area. And these results indeed consist with the experiments in AFM.

  12. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  13. Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping

    NARCIS (Netherlands)

    Groenink, M.; de Roos, A.; Mulder, B. J.; Verbeeten, B.; Timmermans, J.; Zwinderman, A. H.; Spaan, J. A.; van der Wall, E. E.

    2001-01-01

    PURPOSE: To investigate the feasibility of magnetic resonance (MR) flow mapping in the assessment of aortic biophysical properties in patients with Marfan syndrome and to detect differences in biophysical properties in the normal-sized aorta distal to the aortic root between these patients and

  14. Training to Fight Training and Education During the Cold War

    National Research Council Canada - National Science Library

    Winkler, David

    1997-01-01

    ... requirements of military missions." One of Legacy's nine task areas is the Cold War Project, which seeks to "inventory, protect, and conserve DoD's physical and literary property and relics" associated with the Cold War. In early 1993, Dr...

  15. Medium carbon steel deep drawing: A study on the evolution of mechanical properties, texture and simulations, from cold rolling to the end product

    Energy Technology Data Exchange (ETDEWEB)

    Plaut, Ronald L. [University of Sao Paulo, Sao Paulo (Brazil)], E-mail: rlplaut@usp.br; Padilha, Angelo F. [University of Sao Paulo, Sao Paulo (Brazil); Lima, N.B. [IPEN-CNEN/SP, Sao Paulo (Brazil); Herrera, Clara [Max-Planck-Institut fuer Eisenforschung (Germany); Filho, Antenor Ferreira [Industrial Director, Brasmetal Waelzholz S/A, Diadema (Brazil); Yoshimura, Leandro H. [CCS Consulting, Sao Paulo (Brazil)

    2009-01-15

    Medium carbon steels are mostly used for simple applications; nevertheless new applications have been developed for which good sheet formability is required. This class of steels has an inherent low formability. A medium carbon hot rolled SAE 1050 steel has been selected for this study. It has been cold rolled with reductions in the 7-80% range. Samples have been used to assess the cold work hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment has been performed to obtain recrystallization. The material has been characterized in the 'as received', cold rolled and annealed conditions, using several methods: optical microscopy, X-ray diffraction (texture), Vickers hardness and tensile testing. The 50% cold rolled and recrystallized material has been further studied in terms of sheet metal formability and texture evolution during the actual stamping of a steel toecap that has been used to validate the finite element simulations.

  16. Modifications of Carbonate Fracture Hydrodynamic Properties by CO 2 -Acidified Brine Flow

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-15

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel

  17. A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c – gene cloning, overexpression, purification and properties

    Directory of Open Access Journals (Sweden)

    Kur Józef

    2009-07-01

    Full Text Available Abstract Background The development of a new cold-active β-D-galactosidases and microorganisms that efficiently ferment lactose is of high biotechnological interest, particularly for lactose removal in milk and dairy products at low temperatures and for cheese whey bioremediation processes with simultaneous bio-ethanol production. Results In this article, we present a new β-D-galactosidase as a candidate to be applied in the above mentioned biotechnological processes. The gene encoding this β-D-galactosidase has been isolated from the genomic DNA library of Antarctic bacterium Arthrobacter sp. 32c, sequenced, cloned, expressed in Escherichia coli and Pichia pastoris, purified and characterized. 27 mg of β-D-galactosidase was purified from 1 L of culture with the use of an intracellular E. coli expression system. The protein was also produced extracellularly by P. pastoris in high amounts giving approximately 137 mg and 97 mg of purified enzyme from 1 L of P. pastoris culture for the AOX1 and a constitutive system, respectively. The enzyme was purified to electrophoretic homogeneity by using either one step- or a fast two step- procedure including protein precipitation and affinity chromatography. The enzyme was found to be active as a homotrimeric protein consisting of 695 amino acid residues in each monomer. Although, the maximum activity of the enzyme was determined at pH 6.5 and 50°C, 60% of the maximum activity of the enzyme was determined at 25°C and 15% of the maximum activity was detected at 0°C. Conclusion The properties of Arthrobacter sp. 32cβ-D-galactosidase suggest that this enzyme could be useful for low-cost, industrial conversion of lactose into galactose and glucose in milk products and could be an interesting alternative for the production of ethanol from lactose-based feedstock.

  18. Influence of ammonia flow rate for improving properties of polycrystalline GaN

    Science.gov (United States)

    Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.

    2018-06-01

    Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.

  19. Uncertainty in sap flow-based transpiration due to xylem properties

    Science.gov (United States)

    Looker, N. T.; Hu, J.; Martin, J. T.; Jencso, K. G.

    2014-12-01

    Transpiration, the evaporative loss of water from plants through their stomata, is a key component of the terrestrial water balance, influencing streamflow as well as regional convective systems. From a plant physiological perspective, transpiration is both a means of avoiding destructive leaf temperatures through evaporative cooling and a consequence of water loss through stomatal uptake of carbon dioxide. Despite its hydrologic and ecological significance, transpiration remains a notoriously challenging process to measure in heterogeneous landscapes. Sap flow methods, which estimate transpiration by tracking the velocity of a heat pulse emitted into the tree sap stream, have proven effective for relating transpiration dynamics to climatic variables. To scale sap flow-based transpiration from the measured domain (often area) to the whole-tree level, researchers generally assume constancy of scale factors (e.g., wood thermal diffusivity (k), radial and azimuthal distributions of sap velocity, and conducting sapwood area (As)) through time, across space, and within species. For the widely used heat-ratio sap flow method (HRM), we assessed the sensitivity of transpiration estimates to uncertainty in k (a function of wood moisture content and density) and As. A sensitivity analysis informed by distributions of wood moisture content, wood density and As sampled across a gradient of water availability indicates that uncertainty in these variables can impart substantial error when scaling sap flow measurements to the whole tree. For species with variable wood properties, the application of the HRM assuming a spatially constant k or As may systematically over- or underestimate whole-tree transpiration rates, resulting in compounded error in ecosystem-scale estimates of transpiration.

  20. Cold trap disposed within a tank

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1983-01-01

    Purpose: To improve the reliability and the durability of cold traps by simplifying the structure and recycling liquid metals without using electromagnetic pumps. Constitution: The reactor container is partitioned by an intermediate container enhousing primary recycling pumps and cold traps. The inlet and the exit for the liquid metal of each cold trap are opened to the outside and the inside of the intermediate container respectively. In such a structure, the pressure difference between the inside and the outside of the intermediate container is exerted on the cold traps due to the exhaust pressure of the recycling pumps in which the liquid metal flowing into the cold traps is purified through filters, cooled and then discharged from the exit to the cold plenum. In this way, liquid metal can be recycled without using an electromagnetic pump whose reliability has not yet been established. (Kamimura, M.)

  1. TEXTURAL, FLOW AND SENSORY PROPERTIES OF FIVE “FRUZELINA” WITH SOUR CHERRIES

    Directory of Open Access Journals (Sweden)

    Irena Bojdo Tomasiak

    2010-05-01

    Full Text Available Gel with sour cherries called “Fruzelina” is a new product in the Polish market widely used in food industry as a decorative element or filling for pastries, as an ingredient in fruit desserts, as an additive to ice creams, whipped cream and waffles. The cherry gels are the product prepared using different types of chemically modified starches. Starch is an additive used to ensure rich and short texture and high viscosity of “Fruzelina”. Food texture and viscosity may be measured by senses and instrumentally. Because of fact that sensory analysis is time consuming and very costly, it is easier and cheaper to determine food properties, especially their texture and flow behaviour by appropriate mechanical tests. The aim of this work was to study the rheological behavior of five cherry gels and evaluate the correlation between textural, flow and sensory properties of these gels measured instrumentally and by human senses. The back extrusion test has been found to be applicable to study the textural properties of cherry gels. There was high positive correlation between gel texture measured by senses and texture parameters measured in back extrusion test. Similar high correlation was identified for consistency coefficient K obtained in Ostwald de Waele model and gel texture assessed by sensory panel. It was found that values of sensory parameters such as taste and odour decreased as the rheological parameters increased. High negative correlations were observed in these cases. Therefore, instrumental measurements can be alternative for more expensive sensory methods. doi:10.5219/53

  2. The influence of interfacial properties on two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Hayes, K.F.; Demond, A.H.

    1991-09-01

    The purpose of this project is to investigate how changes in interfacial chemical properties affect two-phase transport relationships. Specifically, the objective is to develop a quantitative means that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow, from changes in interfacial properties, such as adsorption and electrophoretic mobility, through a knowledge of their effect on wettability. The information presented here summarizes the progress we have made in the past eight months of the second project period. Working with a system composed of air-water-silica-cetyltrimethylammonium bromide (CTAB), we have obtained a relationship between degree of adsorption and the surface charge of silica (as measured by electrophoretic mobility), and the drainage and imbibition capillary pressure relationships of system. The bulk of this report describes the completed set of measurements for the air-water-silica-CTAB system at pH 6. We are currently working on a comparable set of measurements for the xylene-water-silica-CTAB system at pH 6. Described here are the interfacial tension, contact angle and preliminary drainage capillary pressure measurements. Our work to date shows a dependence of surface properties on pH. Consequently, in the coming year, we will also complete a set of measurements at another pH value to show the effect of pH on capillary pressure relationships

  3. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Tamoh, K.

    2015-07-01

    Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher. (Author)

  4. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  5. Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method.

    Science.gov (United States)

    Solymosi, Tamás; Angi, Réka; Basa-Dénes, Orsolya; Ránky, Soma; Ötvös, Zsolt; Glavinas, Hristos; Filipcsei, Genovéva; Heltovics, Gábor

    2015-08-01

    The oral bioavailability of Sirolimus is limited by poor dissolution of the compound in the gastrointestinal tract resulting in a low bioavailability and large inter-individual differences in blood levels. Several different formulation approaches were applied to overcome these disadvantageous pharmacokinetic properties including the marketed oral solution and a tablet form containing wet milled nanocrystals. These approaches deliver improved pharmacokinetics, yet, they share the characteristics of complex production method and composition. We have developed a nanostructured Sirolimus formulation prepared by the controlled continuous flow precipitation of the compound from its solution in the presence of stabilizers. We have shown that contrary to the batch production the process could be easily intensified and scaled up; apparently the uniformity of the precipitation is heavily dependent on the production parameters, most likely the mixing of the solvent and antisolvent. We compared the physicochemical and pharmacokinetic properties of the nanostructured formula with the marketed nanoformula. We found that our method produces particles in the size range of less than 100nm. The solid form redispersed instantaneously in water and in biorelevant media. Both the solid form and the redispersed colloid solution showed excellent stability even in accelerated test conditions. The oral administration of the nanostructured formula resulted in faster absorption, higher exposure and higher trough concentrations when compared to the marked form. These advantageous properties could allow the development of solid oral Sirolimus formulae with lower strength and gel based topical delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool

    Science.gov (United States)

    D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.

    2014-06-01

    The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a cold pool (CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components one, two and five) and two protein-like (a tyrosine-like component three, and a tryptophan-like component four) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355, m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.185 ± 0.05 m-1, 79.24 ± 18.01 μM) shelves, respectively. DOC concentrations, however were not significantly different, suggesting CDOM sources and sinks to be uncoupled from DOC. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components one, two, and five were most elevated in the inner shelf most likely from riverine inputs. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a

  7. Analysis of heterogeneous hydrological properties of a mountainous hillslope using intensive water flow measurements

    Science.gov (United States)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Mizuyama, Takahisa; Tsutsumi, Daizo

    2013-04-01

    Heterogeneous hydrological properties in a foot slope area of mountainous hillslopes should be assessed to understand hydrological phenomena and their effects on discharge and sediment transport. In this study, we analyzed the high-resolution and three-dimensional water movement data to clarify the hydrological process, including heterogeneous phenomena, in detail. We continuously monitored the soil matric pressure head, psi, using 111 tensiometers installed at grid intervals of approximately 1 meter within the soil mantle at the study hillslope. Under a no-rainfall condition, the existence of perennial groundwater seepage flow was detected by exfiltration flux and temporal psi waveforms, which showed delayed responses, only to heavy storm events, and gradual recession limbs. The seepage water spread in the downslope direction and supplied water constantly to the lower section of the slope. At some points in the center of the slope, a perched saturated area was detected in the middle of soil layer, while psi exhibited negative values above the bedrock surface. These phenomena could be inferred partly from the bedrock topography and the distribution of soil hydraulic conductivity assumed from the result of penetration test. At the peak of a rainfall event, on the other hand, continuous high pressure zones (i.e., psi > 50 cmH2O) were generated in the right and left sections of the slope. Both of these high pressure zones converged at the lower region, showing a sharp psi spike up to 100 cmH2O. Along the high pressure zones, flux vectors showed large values and water exfiltration, indicating the occurrence of preferential flow. Moreover, the preferential flow occurred within the area beneath the perched water, indicating the existence of a weathered bedrock layer. This layer had low permeability, which prevented the vertical infiltration of water in the upper part of the layer, but had high permeability as a result of the fractures distributed heterogeneously inside

  8. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    inertial-range energy dissipation fields of experimental turbulent flows at Re(sub lambda) = 110 and 1100. Based on this agreement, and the expectation that both dissipation and particle concentration are controlled by the same cascade process, we hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of the spatially averaged statistical properties of preferentially concentrated particles in higher Re(sub lambda) turbulent flows.

  9. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    The spatial variability of layer-scale hydrogeologic properties of the unsaturated zone (UZ) at Yucca Mountain, Nevada, is investigated using inverse modeling. The thick UZ is grouped into five hydrostratigraphic units and further into 35 hydrogeologic layers. For each layer, lateral variability is represented by the variations in calibrated values of layer-scale properties at different individual deep boreholes. In the calibration model, matrix and fracture properties are calibrated for the one-dimensional vertical column at each individual borehole using the ITOUGH2 code. The objective function is the summation of the weighted misfits between the ambient unsaturated flow (represented by measured state variables: water saturation, water potential, and pneumatic pressure) and the simulated one in the one-dimensional flow system. The objective function also includes the weighted misfits between the calibrated properties and their prior information. Layer-scale state variables and prior rock properties are obtained from their core-scale measurements. Because of limited data, the lateral variability of three most sensitive properties (matrix permeability, matrix of the van Genuchten characterization, and fracture permeability) is calibrated, while all other properties are fixed at their calibrated layer-averaged values. Considerable lateral variability of hydrogeologic properties is obtained. For example, the lateral variability of is two to three orders of magnitude and that of and is one order of magnitude. The effect of lateral variability on site-scale flow and transport will be investigated in a future study

  10. Oesophageal heat transfer properties indication of segmental blood flow changes during distension

    DEFF Research Database (Denmark)

    Liao, Donghua; Frøkjær, Jens Brøndum; Brock, Christina

    2008-01-01

    The pain perception to distension of the oesophagus can be explained by activation of receptors responding to mechanical deformation or to distension-induced ischaemia. The aim of this study was to develop a new method for detection of changes in segmental blood flow during distension based...... on measurement of heat transfer. A bag was distended in the distal oesophagus of six healthy subjects followed by cooling or heating of the bag fluid to 5 or 60 degrees C. After equilibrium, the temperature was allowed to change back to body temperature. The temperature was recorded together with intraluminal...... ultrasound imaging, allowing assessment of the heat transfer properties at different bag volumes. The heat transfer constants were higher after heating the bag than after cooling the bag (Tukey, P

  11. The flow properties and presence of crystals in drug-polymer mixtures

    DEFF Research Database (Denmark)

    Aho, J; Van Renterghem, J; Arnfast, L

    2017-01-01

    and ibuprofen with polyethylene oxide and methacrylate copolymer (Eudragit(®) E PO) were observed by polarized microscopy simultaneously while measuring their rheological properties within temperature ranges relevant for melt processes, such as hot melt extrusion and fused deposition modeling 3D printing....... The dissolution of solid crystalline matter into the molten polymer and its effects on the rheological parameters showed that the plasticization effect of the drug was highly dependent on the temperature range, and at a temperature high enough, plasticization induced by the small-molecule drugs could enhance...... morphological changes in the drug-polymer and the flow behavior of the drug-polymer mixtures at different temperature ranges and deformation modes....

  12. Rapid flow cytometry analysis of antimicrobial properties of nettle powder and cranberry powder

    Science.gov (United States)

    Hattuniemi, Maarit; Korhonen, Johanna; Jaakkola, Mari; Räty, Jarkko; Virtanen, Vesa

    2010-11-01

    Both nettle (Urtica dioica) and cranberry (Vaccinium oxycoccus) are widely known to have good influence on health. The aim of this study was to investigate antimicrobial properties of nettle powder and cranberry powder against Escherichia coli (E. coli) and monitor the growth of the bacteria by a rapid flow cytometry (FCM) method. For FCM measurements samples were stained with fluorescent dyes. The inhibitory effects of plant material on growth of E. coli were estimated by comparing the results of control sample (E. coli) to E. coli samples with plant material. FCM offers both a brilliant tool to investigate the kinetics of the growth of bacterium, since subsamples can be taken from the same liquid medium during the growing period and with fluorescent dyes a rapid method to investigate viability of the bacterium.

  13. Predicting areas of sustainable error growth in quasigeostrophic flows using perturbation alignment properties

    Science.gov (United States)

    Rivière, G.; Hua, B. L.

    2004-10-01

    A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.

  14. 3D Acoustic Modelling of Dissipative Silencers with Nonhomogeneous Properties and Mean Flow

    Directory of Open Access Journals (Sweden)

    E. M. Sánchez-Orgaz

    2014-07-01

    Full Text Available A finite element approach is proposed for the acoustic analysis of automotive silencers including a perforated duct with uniform axial mean flow and an outer chamber with heterogeneous absorbent material. This material can be characterized by means of its equivalent acoustic properties, considered coordinate-dependent via the introduction of a heterogeneous bulk density, and the corresponding material airflow resistivity variations. An approach has been implemented to solve the pressure wave equation for a nonmoving heterogeneous medium, associated with the problem of sound propagation in the outer chamber. On the other hand, the governing equation in the central duct has been solved in terms of the acoustic velocity potential considering the presence of a moving medium. The coupling between both regions and the corresponding acoustic fields has been carried out by means of a perforated duct and its acoustic impedance, adapted here to include absorbent material heterogeneities and mean flow effects simultaneously. It has been found that bulk density heterogeneities have a considerable influence on the silencer transmission loss.

  15. Effect of sub-pore scale morphology of biological deposits on porous media flow properties

    Science.gov (United States)

    Ghezzehei, T. A.

    2012-12-01

    Biological deposits often influence fluid flow by altering the pore space morphology and related hydrologic properties such as porosity, water retention characteristics, and permeability. In most coupled-processes models changes in porosity are inferred from biological process models using mass-balance. The corresponding evolution of permeability is estimated using (semi-) empirical porosity-permeability functions such as the Kozeny-Carman equation or power-law functions. These equations typically do not account for the heterogeneous spatial distribution and morphological irregularities of the deposits. As a result, predictions of permeability evolution are generally unsatisfactory. In this presentation, we demonstrate the significance of pore-scale deposit distribution on porosity-permeability relations using high resolution simulations of fluid flow through a single pore interspersed with deposits of varying morphologies. Based on these simulations, we present a modification to the Kozeny-Carman model that accounts for the shape of the deposits. Limited comparison with published experimental data suggests the plausibility of the proposed conceptual model.

  16. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  17. Analytical approaches and experimental verification to describe the influence of cold work and heat treatment on the mechanical properties of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Steinberg, E.; Schaa, A.; Weidinger, H.G.

    1984-01-01

    Well-controlled laboratory heat treatments were performed in the range from 460 to 610 0 C(733 to 883 K) and from 1 to 8 h at temperature on Zircaloy-4 cladding tubes with three different degrees of initial cold work (40%, 64%, and 76%). Within this range the influence of annealing temperature T and time t and of cold work on the yield strength R /SUB pO.2/ at 400 0 C(673 K) and on the degree R of recrystallization was experimentally determined. This data base was used to verify a semi-empirical approach to describe analytically the dependence of yield strength and recrystallization on the aforementioned technological parameters T and t for the annealing and /phi/ = ln l/l /SUB o/ as a measure for the applied cold work

  18. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  19. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  20. Cold quark matter in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

    2013-03-25

    We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

  1. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    Some selective cold plasma processing modify specific surface properties of ... obtain information on the chemical and physical processing involved in ... charges of suitable gases. such plasma species can give rise to several concurrent.

  2. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties.

    Science.gov (United States)

    Li, Yong; Zhang, Xiyue; Zhao, Yu; Ding, Jie; Lin, Songyi

    2018-05-01

    The study is aimed to investigate phase behavior, thermodynamic, and structural properties based on complex coacervation between fish skin gelatin (FSG) from cold-water fish and gum arabic (GA). Phase separation behavior between FSG and GA was investigated as a function of pH through varying mixing ratios from 4:1 to 1:4 at 25 °C and 1.0 wt% of total biopolymer concentration. The turbidity of FSG-GA mixture reached the maximum (1.743) at the 1:2 of mixing ratio and pH opt 3.5, and stabilized at zero. Then physicochemical properties of FSG-GA coacervates at pH opt 3.5 and FSG-GA mixtures at pH 6.0 (>pH c ) were evaluated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) showed that the interactions between FSG and GA occurred at pH opt 3.5 and were very weak at pH 6.0 (>pH c ). The isothermal titration calorimetry (ITC) results including the negative Gibbs free energy change (ΔG = -18.71 ± 1.300 kJ/mol), binding enthalpy (ΔH = -41.81 ± 1.300 kJ/mol) and binding entropy (TΔS = -23.10 kJ/mol) indicated that the complexation between FSG and GA was spontaneous and driven by negative enthalpy owing to the electrostatic interaction and hydrogen bondings. The zeta potential (ZP) of FSG-GA coacervates at pH opt 3.5 was -9.00 ± 0.79 mV that was not close to electrically neutral, indicating other interactions besides electronic interaction. Hydrogen bondings in FSG-GA mixtures at pH 6.0 and 3.5 were found to be stronger than pure FSG at pH 6.0 and 3.5 owing to that the amide II peaks shifted to high wavenumbers. Electronic interaction was proven to exist in FSG-GA mixtures at pH 6.0 through the vanishment of asymmetric COO - stretching. However, the electronic interaction in FSG-GA coacervates at pH opt 3.5 was obviously stronger than FSG-GA mixtures at pH 6.0, resulting from the vanishment of asymmetric and symmetric COO - stretching vibration and the positively charged FSG and GA. The intrinsic

  3. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  4. Interactions Between Stratigraphy and Interfacial Properties on Flow and Trapping in Geologic Carbon Storage

    Science.gov (United States)

    Liang, Bo; Clarens, Andres F.

    2018-01-01

    Gas leakage from geologic carbon storage sites could undermine the long-term goal of reducing emissions to the atmosphere and negatively impact groundwater resources. Despite this, there remain uncertainties associated with the transport processes that would govern this leakage. These stem from the complex interaction between governing forces (e.g., gravitational, viscous, and capillary), the heterogeneous nature of the porous media, and the characteristic length scales of these leakage events, all of which impact the CO2 fluid flow processes. Here we assessed how sub-basin-scale horizons in porous media could impact the migration and trapping of a CO2 plume. A high-pressure column packed with two layers of sand with different properties (e.g., grain size and wettability) was used to create a low-contrast stratigraphic horizon. CO2 in supercritical or liquid phase was injected into the bottom of the column under various conditions (e.g., temperature, pressure, and capillary number) and the transport of the resulting plume was recorded using electrical resistivity. The results show that CO2 trapping was most strongly impacted by shifting the wettability balance to mixed-wet conditions, particularly for residual saturation. A 16% increase in the cosine of the contact angle for a mixed-wet sand resulted in nearly twice as much residual trapping. Permeability contrast, pressure, and temperature also impacted the residual saturation but to a lesser extent. Flow rate affected the dynamics of saturation profile development, but the effect is transient, suggesting that the other effects observed here could apply to a broad range of leakage conditions.

  5. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow

    Science.gov (United States)

    Jun, Yonggun; Steinberg, Victor

    2017-10-01

    We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively

  6. The influence of heat transfer and the variations of the properties of the fluids in turbulent flow in tube

    International Nuclear Information System (INIS)

    Menon, G.J.; Sielwa, J.T.

    1977-01-01

    The study is presented of the effects of heat transfer and the variations of the properties of the fluids in turbulent flow in tube. One model for the turbulent Eddy viscosity and termal Eddy diffusivity developed by CEBECI; NA and HABIB was utilized. The theoretical results agree well with experimental results [pt

  7. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    Science.gov (United States)

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  8. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    Science.gov (United States)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  9. The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium.

    Science.gov (United States)

    Rubinson, K A; Baker, P F

    1979-08-31

    The flow properties of axoplasm have been studied in a defined chemical environment. Axoplasm extruded from squid giant axons was introduced into porous cellulose acetate tubes of diameter roughly equal to that of the original axon. Passage of axoplasm along the tube rapidly coated the tube walls with a layer of protein. By measuring the rate of low back and forth along the tube, the rheological properties of the axoplasm plug were investigated at a range of pressures and in a variety of media. Axoplasm behaves as a classical Bingham body the motion of which can be characterized by a yield stress (theta) and a plastic viscosity (eta p). In a potassium methanesulphonate medium containing 65 nM free Ca2+, theta averaged 109 +/- 46 dyn/cm2 and eta p1 146 +/- 83 P. These values were little affected by ATP, COLCHICINE, CYTOCHOLASIN B or by replacing K by Na but were sensitive to the anion composition of the medium. The effectiveness of different anions at reducing theta and eta p1 was in the order SCN greater than I greater then Br greater than Cl greater than methanesulphonate. Theta and eta p1 were also drastically reduced by increasing the ionized Ca. This effect required millimolar amounts of Ca, was unaffected by the presence of ATP and was irreversible. It could be blocked by the protease inhibitor TLCK. E.p.r. measurements showed that within the matrix of the axoplasm gel there is a watery space that is largely unaffected by anions or calcium.

  10. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  11. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  12. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  13. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  14. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  15. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  16. Cold medicines and children

    Science.gov (United States)

    ... ingredient. Avoid giving more than one OTC cold medicine to your child. It may cause an overdose with severe side ... the dosage instructions strictly while giving an OTC medicine to your child. When giving OTC cold medicines to your child: ...

  17. Cold plasma brush generated at atmospheric pressure

    International Nuclear Information System (INIS)

    Duan Yixiang; Huang, C.; Yu, Q. S.

    2007-01-01

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 deg. C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds

  18. Computing and Comparing Effective Properties for Flow and Transport in Computer-Generated Porous Media

    KAUST Repository

    Allen, Rebecca; Sun, Shuyu

    2017-01-01

    We compute effective properties (i.e., permeability, hydraulic tortuosity, and diffusive tortuosity) of three different digital porous media samples, including in-line array of uniform shapes, staggered-array of squares, and randomly distributed squares. The permeability and hydraulic tortuosity are computed by solving a set of rescaled Stokes equations obtained by homogenization, and the diffusive tortuosity is computed by solving a homogenization problem given for the effective diffusion coefficient that is inversely related to diffusive tortuosity. We find that hydraulic and diffusive tortuosity can be quantitatively different by up to a factor of ten in the same pore geometry, which indicates that these tortuosity terms cannot be used interchangeably. We also find that when a pore geometry is characterized by an anisotropic permeability, the diffusive tortuosity (and correspondingly the effective diffusion coefficient) can also be anisotropic. This finding has important implications for reservoir-scale modeling of flow and transport, as it is more realistic to account for the anisotropy of both the permeability and the effective diffusion coefficient.

  19. Computing and Comparing Effective Properties for Flow and Transport in Computer-Generated Porous Media

    KAUST Repository

    Allen, Rebecca

    2017-02-13

    We compute effective properties (i.e., permeability, hydraulic tortuosity, and diffusive tortuosity) of three different digital porous media samples, including in-line array of uniform shapes, staggered-array of squares, and randomly distributed squares. The permeability and hydraulic tortuosity are computed by solving a set of rescaled Stokes equations obtained by homogenization, and the diffusive tortuosity is computed by solving a homogenization problem given for the effective diffusion coefficient that is inversely related to diffusive tortuosity. We find that hydraulic and diffusive tortuosity can be quantitatively different by up to a factor of ten in the same pore geometry, which indicates that these tortuosity terms cannot be used interchangeably. We also find that when a pore geometry is characterized by an anisotropic permeability, the diffusive tortuosity (and correspondingly the effective diffusion coefficient) can also be anisotropic. This finding has important implications for reservoir-scale modeling of flow and transport, as it is more realistic to account for the anisotropy of both the permeability and the effective diffusion coefficient.

  20. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  1. Spherical crystallization: A technique use to reform solubility and flow property of active pharmaceutical ingredients.

    Science.gov (United States)

    Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra

    2017-01-01

    Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.

  2. Sealing properties of mechanical seals for an axial flow blood pump.

    Science.gov (United States)

    Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H

    1999-08-01

    A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.

  3. Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Hwang, Gan-Jin; Oh, Yong-Hwan; Ryu, Cheol-Hwi; Choi, Ho-Sang

    2014-01-01

    Two commercial carbon plates were evaluated as a current collector (bipolar plate) in the all vanadium redox-flow battery (V-RFB). The performance properties of V-RFB were test in the current density of 60 mA/cm 2 . The electromotive forces (OCV at SOC 100%) of V-RFB using A and B current collector were 1.47 V and 1.54 V. The cell resistance of V-RFB using A current collector was 4.44-5.00 Ω·cm 2 and 3.28-3.75 Ω·cm 2 for charge and discharge, respectively. The cell resistance of V-RFB using B current collector was 4.19-4.42Ω·cm 2 and 4.71-5.49Ω·cm 2 for charge and discharge, respectively. The performance of V-RFB using each current collector was evaluated. The performance of V-RFB using A current collector was 93.1%, 76.8% and 71.4% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of V-RFB using B current collector was 96.4%, 73.6% and 71.0% for average current efficiency, average voltage efficiency and average energy efficiency, respectively

  4. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  5. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  6. Quantitative analysis of arterial flow properties for detection of non-calcified plaques in ECG-gated coronary CT angiography

    Science.gov (United States)

    Wei, Jun; Zhou, Chuan; Chan, Heang-Ping; Chughtai, Aamer; Agarwal, Prachi; Kuriakose, Jean; Hadjiiski, Lubomir; Patel, Smita; Kazerooni, Ella

    2015-03-01

    We are developing a computer-aided detection system to assist radiologists in detection of non-calcified plaques (NCPs) in coronary CT angiograms (cCTA). In this study, we performed quantitative analysis of arterial flow properties in each vessel branch and extracted flow information to differentiate the presence and absence of stenosis in a vessel segment. Under rest conditions, blood flow in a single vessel branch was assumed to follow Poiseuille's law. For a uniform pressure distribution, two quantitative flow features, the normalized arterial compliance per unit length (Cu) and the normalized volumetric flow (Q) along the vessel centerline, were calculated based on the parabolic Poiseuille solution. The flow features were evaluated for a two-class classification task to differentiate NCP candidates obtained by prescreening as true NCPs and false positives (FPs) in cCTA. For evaluation, a data set of 83 cCTA scans was retrospectively collected from 83 patient files with IRB approval. A total of 118 NCPs were identified by experienced cardiothoracic radiologists. The correlation between the two flow features was 0.32. The discriminatory ability of the flow features evaluated as the area under the ROC curve (AUC) was 0.65 for Cu and 0.63 for Q in comparison with AUCs of 0.56-0.69 from our previous luminal features. With stepwise LDA feature selection, volumetric flow (Q) was selected in addition to three other luminal features. With FROC analysis, the test results indicated a reduction of the FP rates to 3.14, 1.98, and 1.32 FPs/scan at sensitivities of 90%, 80%, and 70%, respectively. The study indicated that quantitative blood flow analysis has the potential to provide useful features for the detection of NCPs in cCTA.

  7. Solving the heat transfer in the cold rain of a cross flow cooling tower. N3S code - cooling tower release

    International Nuclear Information System (INIS)

    Grange, J.L.

    1996-09-01

    A simplified model for heat and mass transfer in the lower rainfall of a counter-flow cooling toward had to be implemented in the N3S code-cooling tower release It is built from an old code: ZOPLU. The air velocity field is calculated by N3S. The air and water temperature fields are solved by a Runge-Kutta method on a mesh in an adequate number of vertical plans. Heat exchange and drags correlations are given. And all the necessary parameters are specified. All the subroutines are described. They are taken from ZOPLU and modified in order to adapt their abilities to the N3S requirements. (author). 6 refs., 3 figs., 3 tabs., 3 appends

  8. Place, Capital Flows and Property Regimes: The Elites’ Former Houses in Beijing’s South Luogu Lane

    Directory of Open Access Journals (Sweden)

    Zhifen Cheng

    2014-12-01

    Full Text Available Place is seen as a process whereby social and cultural forms are reproduced. This process is closely linked to capital flows, which are, in turn, shaped by changing property regimes. However, relatively little attention has been paid to the relationship between property regimes, capital flows and place-making. The goal of this paper is to highlight the role of changing property regimes in the production of place. Our research area is South Luogu Lane (SLL in Central Beijing. We take elites’ former houses in SLL as the main unit of analysis in this study. From studying this changing landscape, we draw four main conclusions. First, the location of SSL was critical in enabling it to emerge as a high-status residential community near the imperial city. Second, historical patterns of capital accumulation influenced subsequent rounds of private investment into particular areas of SLL. Third, as laws relating to the ownership of land and real estate changed fundamentally in the early 1950s and again in the 1980s, the target and intensity of capital flows into housing in SLL changed too. Fourth, these changes in capital flow are linked to ongoing changes in the place image of SLL.

  9. Influence of trimethylsilane flow on the microstructure, mechanical and tribological properties of CrSiCN coatings in water lubrication

    Science.gov (United States)

    Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi; Zhou, Zhifeng; Yan, Jiwang; Li, Lawrence Kwok-Yan

    2015-11-01

    CrSiCN coatings with different silicon and carbon contents were deposited on silicon wafers and 316L stainless steels using unbalanced magnetron sputtering via adjusting trimethylsilane (TMS) flow, and their microstructure and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectrons spectroscopy(XPS) and nano-indenter, respectively. The tribological properties of CrSiCN coatings sliding against SiC balls in water were investigated using ball-on-disk tribometer. The results showed that the CrSiCN coatings had fine composite microstructure consisting of nanocrystallites of Cr(C, N) crystal and amorphous phases such as a-Si3N4 and a-C(a-CNx). The typical columnar structures changed from fine cluster to coarse ones when the Si content was beyond 3.4 at.%. With an increase in the TMS flow, the hardness and Young's modulus of Corsican coatings all first increased, and then rapidly decreased, but the compressive stress in the coatings varied in the range of 2.8-4.8 GPa. When the TMS flow was 10 sccm, the CrSiCN coatings exhibited the highest hardness of 21.3 GPa and the lowest friction coefficient (0.11) and wear rate (8.4 × 10-8 mm3/N m). But when the TMS flow was beyond 15 sccm, the tribological properties of CrSiCN coatings in water became poor.

  10. Environmental effects on properties of structural alloys

    International Nuclear Information System (INIS)

    Chopra, O.K.; Smith, D.L.

    1984-01-01

    Corrosion data are presented for several austenitic and ferritic steels exposed at temperatures between 700 and 755 K in flowing lithium and Pb-17Li environments. The results indicate that dissolution rates for both steels are an order of magnitude greater in Pb-Li than in lithium. Tensile data for cold-worked type 316 stainless steel show that a flowing environment has no effect on the tensile properties of type 316 stainless steel at temperatures between 473 and 773 K

  11. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    .58 times more than that of conventional tillage system. Yields under no-tillage and reduced tillage were higher (4% and 6% respectively than conventional tillage. Grain yields under direct drilling were similar to those obtained using the reduced-tillage (Chisel packer system. Conclusions Based on the results of a 4-year field study on a dryland production system in the northwestern cold continental climate of Iran, minimum- or no-till winter wheat crop production in a vetch–wheat rotation were the most efficient soil management practice from the standpoint of grain yield production and rain use efficiency. Overall, in this study, the no-tillage treatment is proposed as the best treatment in terms of grain and biomass yields and mechanical properties of soil.

  12. The radial flow method: constraints from laboratory experiments on the evolution of hydraulic properties of fractures during frictional sliding experiments

    Science.gov (United States)

    Kewel, M.; Renner, J.

    2017-12-01

    The variation of hydraulic properties during sliding events is of importance for source mechanics and analyses of the evolution in effective stresses. We conducted laboratory experiments on samples of Padang granite to elucidate the interrelation between shear displacement on faults and their hydraulic properties. The cylindrical samples of 30 mm diameter and 75 mm length were prepared with a ground sawcut, inclined 35° to the cylindrical axis and accessed by a central bore of 3 mm diameter. The conventional triaxial compression experiments were conducted at effective pressures of 30, 50, and 70 MPa at slip rates of 2×10-4 and 8×10-4 mm s-1. The nominally constant fluid pressure of 30 MPa was modulated by oscillations with an amplitude of up to 0.5 MPa. Permeability and specific storage capacity of the fault were determined using the oscillatory radial-flow method that rests on an analysis of amplitude ratio and phase shift between the oscillatory fluid pressure and the oscillatory fluid flow from and into the fault plane. This method allowed us to continuously monitor the hydraulic evolution during elastic loading and frictional sliding. The chosen oscillation period of 60 s guaranteed a resolution of hydraulic properties for slip increments as small as 20 μm. The determined hydraulic properties show a fairly uniform dependence on normal stress at hydrostatic conditions and initial elastic loading. The samples exhibited stable frictional sliding with modest strengthening with increasing strain. Since not all phase-shift values fell inside the theoretical range for purely radial pressure diffusion during frictional sliding, the records of equivalent hydraulic properties exhibit some gaps. In the phases with evaluable phase-shift values, permeability fluctuates by almost one order of magnitude over slip intervals of as little as 100 μm. We suppose that the observed fluctuations are related to comminution and reconfiguration of asperities on the fault planes

  13. The Effect of Trimethylaluminum Flow Rate on the Structure and Optical Properties of AlInGaN Quaternary Epilayers

    Directory of Open Access Journals (Sweden)

    Dongbo Wang

    2017-03-01

    Full Text Available In this work, a series of quaternary AlxInyGa1−x−yN thin films have been successfully achieved using metal organic chemical vapor deposition (MOCVD method with adjustable trimethylaluminum (TMA flows. Surface morphology and optical properties of AlxInyGa1−x−yN films have been evaluated. The indium segregation effect on the enhancement of UV luminescence emission in AlxInyGa1-x-yN films with increasing TMA flows was investigated. Our results shed some lights on future optical materials design and LED/LD applications.

  14. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Narinder [Semiconductor Materials and Device Laboratory, Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100715 (Korea, Republic of); Kumar, Manoj [School of Mechanical, Materials & Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab (India); Sharma, Sanjeev K.; Kim, Deuk Young [Semiconductor Materials and Device Laboratory, Department of Semiconductor Science, Dongguk University-Seoul, Seoul 100715 (Korea, Republic of); Kumar, S.; Chavan, N.M.; Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), Hyderabad 500005 (India); Singh, Narinder [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [School of Mechanical, Materials & Energy Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab (India)

    2015-02-15

    Highlights: • A presynthesized Ni-20Cr nanocrystalline powder was successfully deposited on T22 and SA 516 boilers steels using cold spray process. • The coatings are observed to have more than 2-folds microhardness in comparison with the base steels. • The coating was successful in reducing the weight gain of T22 and SA 516 steel by 71% and 94%. - Abstract: In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nanostructured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 °C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 °C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness.

  15. Numerical study of natural melt convection in cylindrical cavity with hot walls and cold bottom sink

    Directory of Open Access Journals (Sweden)

    Ahmanache Abdennacer

    2013-01-01

    Full Text Available Numerical study of natural convection heat transfer and fluid flow in cylindrical cavity with hot walls and cold sink is conducted. Calculations are performed in terms of the cavity aspect ratio, the heat exchanger length and the thermo physical properties expressed via the Prandtl number and the Rayleigh number. Results are presented in the form of isotherms, streamlines, average Nusselt number and average bulk temperature for a range of Rayleigh number up to 106. It is observed that Rayleigh number and heat exchanger length influences fluid flow and heat transfer, whereas the cavity aspect ratio has no significant effects.

  16. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  17. The effect of clove bud powder at a spice level on antioxidant and quality properties of emulsified pork sausage during cold storage.

    Science.gov (United States)

    Jin, Sang-Keun; Choi, Jung-Seok; Jeong, Jin-Yeon; Kim, Gap-Don

    2016-09-01

    Clove bud is a widely used spice in meat and meat products, and it contains high level of phenolic compounds. The effectiveness of the clove as a spice has not been fully studied at a general level of addition in the meat products. Therefore, in the present study, the antioxidant, antimicrobial, and nitrite scavenging abilities of clove bud powder (CBP) was assessed at spice level (0.1% and 0.2%) in emulsified pork sausage, during 6 weeks of cold storage. CBP had DPPH radical scavenging ability, but CBP addition at 0.1% and 0.2% did not decrease the TBARS value. An antimicrobial effect of CBP was also not observed during the cold storage. However, residual nitrite at storage weeks 4 and 6 was shown to be lower (P 0.05). The positive effect on nitrite scavenging could be expected by the addition of 0.2% CBP as a spice. However, antioxidant and antimicrobial abilities were not observed, as well as improvement in the quality of characteristics, in emulsified pork sausage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Cold neutron source with self-regulation

    International Nuclear Information System (INIS)

    Kawai, T.

    2003-01-01

    A way to increase the cold neutron flux is to cool moderator from where cold neutrons are extracted. Although various kinds of cooling system are considered, the closed thermo-siphon cooling system is adopted in many institutes. The notable feature of this system is to be able to keep the liquid level stable in the moderator cell against thermal disturbances, by using self-regulation, which allows a stable supply of cold neutrons. The main part of the closed thermo-siphon consists of a condenser, a moderator transfer tube and moderator cell, which is called the hydrogen cold system. When an extra heat load is applied to the hydrogen cold system having no flow resistance in a moderator transfer tube, the system pressure rises by evaporation of liquid hydrogen. Then the boiling point of hydrogen rises. The liquefaction capacity of the condenser is increasing with a rise of temperature, because a refrigerating power of the helium refrigerator increases linearly with temperature rise of the system. Therefore, the effect of thermal heat load increase is compensated and cancelled out. The closed thermo-siphon has this feature generally, when the moderator transfer tube is designed to be no flow resistance. The report reviews the concept of self-regulation, and how to design and construct the cold neutron source with self-regulation. (author)

  19. Influence of trimethylsilane flow on the microstructure, mechanical and tribological properties of CrSiCN coatings in water lubrication

    International Nuclear Information System (INIS)

    Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi; Zhou, Zhifeng; Yan, Jiwang; Li, Lawrence Kwok-Yan

    2015-01-01

    Highlights: • CrSiCN coatings with different Si and C contents were deposited. • CrSiCN coatings consisted of Cr(C,N) nanocrystallites and amorphous phases such as a-Si_3N_4(SiC, SiCN) and a-C(a-CN_x). • CrSiCN coatings exhibited the highest hardness of 21.3 GPa at the TMS flow of 10 sccm. • CrSiCN coatings deposited at the TMS flow of 10 sccm possessed the excellent tribological properties in water. • The wear mechanism changed from tribochemical wear to mechanical wear when the TMS flow increased. - Abstract: CrSiCN coatings with different silicon and carbon contents were deposited on silicon wafers and 316L stainless steels using unbalanced magnetron sputtering via adjusting trimethylsilane (TMS) flow, and their microstructure and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectrons spectroscopy(XPS) and nano-indenter, respectively. The tribological properties of CrSiCN coatings sliding against SiC balls in water were investigated using ball-on-disk tribometer. The results showed that the CrSiCN coatings had fine composite microstructure consisting of nanocrystallites of Cr(C, N) crystal and amorphous phases such as a-Si_3N_4 and a-C(a-CN_x). The typical columnar structures changed from fine cluster to coarse ones when the Si content was beyond 3.4 at.%. With an increase in the TMS flow, the hardness and Young's modulus of Corsican coatings all first increased, and then rapidly decreased, but the compressive stress in the coatings varied in the range of 2.8–4.8 GPa. When the TMS flow was 10 sccm, the CrSiCN coatings exhibited the highest hardness of 21.3 GPa and the lowest friction coefficient (0.11) and wear rate (8.4 × 10"−"8 mm"3/N m). But when the TMS flow was beyond 15 sccm, the tribological properties of CrSiCN coatings in water became poor.

  20. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    Science.gov (United States)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  1. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Pruess, Karsten

    2001-01-01

    Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO 3 solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO 3 solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO 3 solutions into a new TOUGH2 equation-of-state module EWASG-NaNO 3 , which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary pressure and tortuosity. The

  2. Multiphase Flow Dynamics 4 Turbulence, Gas Adsorption and Release, Diesel Fuel Properties

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 4 of the successful monograh package “Multiphase Flow Dynamics”is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift fo...

  3. Documentation for the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6

    Science.gov (United States)

    Provost, Alden M.; Langevin, Christian D.; Hughes, Joseph D.

    2017-08-10

    This report describes the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6. The XT3D option extends the capabilities of MODFLOW by enabling simulation of fully three-dimensional anisotropy on regular or irregular grids in a way that properly takes into account the full, three-dimensional conductivity tensor. It can also improve the accuracy of groundwater-flow simulations in cases in which the model grid violates certain geometric requirements. Three example problems demonstrate the use of the XT3D option to simulate groundwater flow on irregular grids and through three-dimensional porous media with anisotropic hydraulic conductivity.Conceptually, the XT3D method of estimating flow between two MODFLOW 6 model cells can be viewed in terms of three main mathematical steps: construction of head-gradient estimates by interpolation; construction of fluid-flux estimates by application of the full, three-dimensional form of Darcy’s Law, in which the conductivity tensor can be heterogeneous and anisotropic; and construction of the flow expression by enforcement of continuity of flow across the cell interface. The resulting XT3D flow expression, which relates the flow across the cell interface to the values of heads computed at neighboring nodes, is the sum of terms in which conductance-like coefficients multiply head differences, as in the conductance-based flow expression the NPF Package uses by default. However, the XT3D flow expression contains terms that involve “neighbors of neighbors” of the two cells for which the flow is being calculated. These additional terms have no analog in the conductance-based formulation. When assembled into matrix form, the XT3D formulation results in a larger stencil than the conductance-based formulation; that is, each row of the coefficient matrix generally contains more nonzero elements. The “RHS” suboption can be used to avoid expanding the stencil by placing the additional terms on the right-hand side

  4. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity

    International Nuclear Information System (INIS)

    Bouhdjar, A.; Benyoucef, B.; Harhad, A.

    2005-01-01

    Fluid flow and temperature field in a cavity are numerically simulated using finite volume techniques. The fluid flow in the vertical cylindrical cavity is assumed to be two-dimensional. Inflow occurs at the top through a ring like entrance and outflow takes place at the bottom through an exit of the same shape. The study considers a transient mixed convection flow. The governing equations are the conservation equations for laminar natural convection flow based on the Boussinesq approximation. Forced convection flow is superimposed through the appropriate boundary conditions (inflow and outflow conditions). The influence of the mass flow rate and of the fluid is made through the Reynolds number and the Prandtl number. Stratification analysis is made qualitatively through temperature distribution. In a previous study, consideration was given to low Reynolds numbers i.e. Re +4 ) in considering water (Pr=3.01) as the working fluid for the thermal energy storage. Correlations for the storage efficiency are deduced with respect to the Reynolds number and cavity aspect ratios of 1/0.5, 1/1 and 1/2. So the objective of the work is to get more information on the influence of flow rate on the storage efficiency as well as on the medium mean temperature. (author)

  5. Influence of fluid properties, flow rate and aspect ratios on stratification in a cylindrical cavity

    International Nuclear Information System (INIS)

    Bouhdjar, A.; Harhad, A.; Guerri, O.

    2003-01-01

    The fluid flow and temperature field in a cavity are numerically simulated using finite volume techniques. The fluid flow in the vertical cylindrical cavity is assumed to be two-dimensional. Inflow occurs at the top through a ring like entrance and outflow takes place at the bottom through an exit of the same shape. The study considers a transient mixed convection flow. The governing equations are the conservation equations for laminar natural convection flow based on the Boussinesq approximation. Forced convection flow is superimposed through the appropriate boundary conditions (inflow and outflow conditions). The influence of the mass flow rate and of the fluid is made through the Reynolds number and the Prandtl number. Stratification analysis is made qualitatively through temperature distribution. The study considers two fluids i.e. water (Pr=4.5) and ethylene glycol (Pr=51) and cavity aspect ratios of 1/0.5 and 1 /2. So the objective of the work is to get more information on the influence of flow rate on the performance of the thermal energy storage. Correlations for the storage efficiency are deduced with respect to the Reynolds number. (author)

  6. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  7. Properties of Phase Transition of Traffic Flow on Urban Expressway Systems with Ramps and Accessory Roads

    International Nuclear Information System (INIS)

    Mei Chaoqun; Liu Yejin

    2011-01-01

    In this paper, we develop a cellular automaton model to describe the phase transition of traffic flow on urban expressway systems with on-off-ramps and accessory roads. The lane changing rules are given in detailed, the numerical results show that the main road and the accessory road both produce phase transitions. These phase transitions will often be influenced by the number of lanes, lane changing, the ramp flow, the input flow rate, and the geometry structure. (interdisciplinary physics and related areas of science and technology)

  8. Study of corrosion resistance properties of nitrided carbon steel using radiofrequency N{sub 2}/H{sub 2} cold plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.f [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-10-15

    C38 carbon steel have been plasma-nitrided using a radiofrequency cold plasma discharge treatment in order to investigate the influence of gas composition on corrosion behaviour of nitrided substrates. The investigated C38 steel was nitrided by a RF plasma discharge treatment using two different gas mixtures (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) at different times of plasma-treatment on non-heated substrates. Electron Probe Microanalysis (EPMA) showed that the nitrided layer formed using 75% N{sub 2}/25% H{sub 2} gas mixture was thicker compared to those formed in the case of 25% N{sub 2}/75% H{sub 2} or pure N{sub 2}. The modifications of the corrosion resistance characteristics of plasma-nitrided C38 steel in 1 M HCl solution were investigated by weight loss measurements and ac impedance technique. The results obtained from these two evaluation methods were in good agreement. It was shown that the nitriding treatment in both cases (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) improves the corrosion resistance of investigated carbon steel, while the better performance is obtained for the 75% N{sub 2}/25% H{sub 2} gas mixture. X-ray photoelectron spectroscopy (XPS) was carried out before and after immersion in corrosive medium in order to establish the mechanism of corrosion inhibition using N{sub 2}/H{sub 2} cold plasma nitriding process.

  9. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  10. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)

  11. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.

  12. On the properties and mechanisms of microjet arrays in crossflow for the control of flow separation

    Science.gov (United States)

    Fernandez, Erik J.

    By utilizing passive and active methods of flow control, the aerodynamic performance of external and internal components can be greatly improved. Recently however, the benefits of applying active flow control methods to turbomachinery components for improved fuel efficiency, reduced engine size, and greater operational envelope has sparked a renewed interest in some of these flow control techniques. The more attractive of these, is active control in the form of jets in cross flow. With their ability to be turned on and off, as well as their negligible effect on drag when not being actuated, they are well suited for applications such as compressor and turbine blades, engine inlet diffusers, internal engine passages, and general external aerodynamics. This study consists of two parts. The first is the application of active control on a low-pressure turbine (LPT) cascade to determine the effectiveness of microjet actuators on flow separation at relatively low speeds. The second study, motivated by the first, involves a parametric study on a more canonical model to examine the effects of various microjet parameters on the efficacy of separation control and to provide a better understanding of the relevant flow physics governing this control approach. With data obtained from velocity measurements across the wide parametric range, correlations for the growth of the counter-rotating vortex pairs generated by these actuators are deduced. From the information and models obtained throughout the study, basic suggestions for microjet actuator design are presented.

  13. Draught Risk from Cold Vertical Surfaces

    DEFF Research Database (Denmark)

    Heiselberg, Per

    Glazed facades and atria have had a boom in the 1980's as an architectural feature in building design. Natural convective flows from these cold surfaces are in winter time, however, often the cause of thermal discomfort and there is a need for research to improve the design methods. The objective...

  14. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  15. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  16. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  17. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  18. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  19. Microstructural interpretation of the fluence and temperature dependence of the mechanical properties of irradiated AISI 316

    International Nuclear Information System (INIS)

    Johnson, G.D.; Garner, F.A.; Brager, H.R.; Fish, R.L.

    1980-01-01

    The effects of neutron irradiation on the mechanical properties of annealed and 20% cold-worked AISI 316 irradiated in EBR-II were determined for the temperature regime of 370 to 760 0 C for fluences up to 8.4 x 10 22 n/cm 2 (E > 0.1 MeV). At irradiation temperatures below about 500 0 C, both annealed and cold-worked material exhibit a substantial increase in the flow stress with increasing fluence. Furthermore, both materials eventually exhibit the same flow stress, which is independent of fluence. At temperatures in the range of 538 to 650 0 C, the cold-worked material exhibits a softening with increasing fluence. Annealed AISI 316 in this temperature regime exhibits hardening and at a fluence of 2 to 3 x 10 22 n/cm 2 (E > 0.1 MeV) reaches the same value of flow stress as the cold-worked material

  20. Dynamic properties of blood flow and leukocyte mobilization in infected flaps

    International Nuclear Information System (INIS)

    Feng, L.J.; Price, D.C.; Mathes, S.J.; Hohn, D.

    1990-01-01

    Two aspects of the inflammatory response to infection--blood flow alteration and leukocyte mobilization--are investigated in the canine model. The elevation of paired musculocutaneous (MC) and random pattern (RP) flaps allowed comparison of healing flaps with significant differences in blood flow (lower in random pattern flaps) and resistance to infection (greater in musculocutaneous flaps). Blood flow changes as determined by radioactive xenon washout were compared in normal skin and distal flap skin both after elevation and following bacterial inoculation. Simultaneous use of In-111 labeled leukocytes allowed determination of leukocyte mobilization and subsequent localization in response to flap infection. Blood flow significantly improved in the musculocutaneous flap in response to infection. Although total leukocyte mobilization in the random pattern flap was greater, the leukocytes in the musculocutaneous flap were localized around the site of bacterial inoculation within the dermis. Differences in the dynamic blood flow and leukocyte mobilization may, in part, explain the greater reliability of musculocutaneous flaps when transposed in the presence of infection

  1. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Directory of Open Access Journals (Sweden)

    T. S. Santra

    2012-06-01

    Full Text Available Diamond-like nanocomposite (DLN thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS and atomic force microscopy (AFM respectively. We have analyzed the hardness by intensity ratio (ID/IG of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  2. Bimodal polyethylenes form one pot synthesis : effect of flow induced crystallization on physical properties

    NARCIS (Netherlands)

    Kukalyekar, N.P.

    2007-01-01

    The ultimate properties of a polymer are governed not only by the chemical structure of the polymer chains but also by the processing conditions applied during fabrication of the final product, in particular as a result of orientation of long-chain molecules. The intrinsic properties of a polymer

  3. Evaluation of Workability on the Microstructure and Mechanical Property of Modified 9Cr-2W Steel for Fuel Cladding by Cold Drawing Process and Intermediate Heat Treatment Condition

    Directory of Open Access Journals (Sweden)

    Hyeong-Min Heo

    2018-03-01

    Full Text Available In this study, we evaluated the cold drawing workability of two kinds of modified 9Cr-2W steel containing different contents of boron and nitrogen depending on the temperature and time of normalizing and tempering treatments. Using ring compression tests at room temperature, the effect of intermediate heat treatment condition on workability was investigated. It was found that the prior austenite grain size can be changed by the austenite transformation and that the grain size increases with increasing temperature during normalizing heat treatment. Alloy B and Alloy N showed different patterns after normalizing heat treatment. Alloy N had higher stress than Alloy B, and the reduction in alloy N increased while the reduction in alloy B decreased. Alloy B showed a larger number of initially formed cracks and a larger average crack length than Alloy N. Crack length and number increased proportionally in Alloy B as the stress increased. Alloy B had lower crack resistance than Alloy N due to boron segregation.

  4. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  5. A study on mechanical properties and flow-induced vibrations of coil-shaped holddown spring

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2010-01-01

    The fuel assemblies used in the OPR1000s in Korea employ four coil-shaped hold-down springs to exert compressive load at the top of fuel assembly so that the assemblies may not be damaged by preventing its hydraulic-induced lifting-off from its lower seating surface. However, the coolant flow generates the flow-induced vibration at the coil-shaped hold-down springs which may cause wear on the spring surfaces. A hold-own spring may be fractured if torsional stress acting on its worn area exceeds a stress limit, resulting in the loss of hold-down spring force of the fuel assembly. In this paper, flow-induced vibration tests were performed for standard and improved coil type hold-down springs to investigate the effects of these two hold-down spring designs on flow-induced vibration wear. In parallel, a wide spectrum of mechanical tests was performed to obtain vibration-related characteristics of these two hold-down springs, which can be used as input data for the fuel assembly static and dynamic analysis. It is found that the improved hold-down spring design is better against flow-induced vibration wear than the standard one. With the use of the three-dimensional Solidwork model, the stress-related design lifetime of the improved hold-down spring was estimated by extrapolating its wear data measured from the flow-induced vibration tests, which indicates that the improved HD spring design will maintain integrity during the fuel design lifetime in OPR1000s in Korea.

  6. Asymptotic properties of axisymmetric Stokes flow of a viscous liquid with intersecting boundaries

    International Nuclear Information System (INIS)

    Voinov, O.V.

    2004-01-01

    The general axisymmetric problem on the liquid flow by the low Reynolds number when the boundary surfaces (both of the solid body and free one) are intersecting at the certain angle on the moving line, is considered. The work is aimed at establishing the asymptotic regularities of the behavior of the current function and voltages in the small vicinity of the intersection (contact) line of the boundary surfaces. The asymptotic analysis makes it possible to consider the arbitrary axisymmetric Stokes flow with the intersecting boundaries [ru

  7. Determination of Critical Properties of Endothermic Hydrocarbon Fuel RP-3 Based on Flow Visualization

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-01-01

    The critical pressure and temperature of an endothermic hydrocarbon fuel RP-3 were determined by flow visualization. The flow pattern images of RP-3 at different pressures and temperatures were obtained. The critical pressure is identified by disappearance of the phase change while the critical temperature is determined by appearance of the opalescence phenomenon under the critical pressure. The opalescence phenomenon is unique to the critical point. The critical pressure and temperature of RP-3 are determined to be 2.3 MPa and 646 K, respectively.

  8. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  9. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  10. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  11. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    Science.gov (United States)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  12. The Combined Effect of Cold and Moisture on Manual Performance.

    Science.gov (United States)

    Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather

    2018-02-01

    Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.

  13. A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment

    Science.gov (United States)

    Zuidema, Paquita; Torri, Giuseppe; Muller, Caroline; Chandra, Arunchandra

    2017-11-01

    Pools of air cooled by partial rain evaporation span up to several hundreds of kilometers in nature and typically last less than 1 day, ultimately losing their identity to the large-scale flow. These fundamentally differ in character from the radiatively-driven dry pools defining convective aggregation. Advancement in remote sensing and in computer capabilities has promoted exploration of how precipitation-induced cold pool processes modify the convective spectrum and life cycle. This contribution surveys current understanding of such cold pools over the tropical and subtropical oceans. In shallow convection with low rain rates, the cold pools moisten, preserving the near-surface equivalent potential temperature or increasing it if the surface moisture fluxes cannot ventilate beyond the new surface layer; both conditions indicate downdraft origin air from within the boundary layer. When rain rates exceed ˜ 2 mm h^{-1}, convective-scale downdrafts can bring down drier air of lower equivalent potential temperature from above the boundary layer. The resulting density currents facilitate the lifting of locally thermodynamically favorable air and can impose an arc-shaped mesoscale cloud organization. This organization allows clouds capable of reaching 4-5 km within otherwise dry environments. These are more commonly observed in the northern hemisphere trade wind regime, where the flow to the intertropical convergence zone is unimpeded by the equator. Their near-surface air properties share much with those shown from cold pools sampled in the equatorial Indian Ocean. Cold pools are most effective at influencing the mesoscale organization when the atmosphere is moist in the lower free troposphere and dry above, suggesting an optimal range of water vapor paths. Outstanding questions on the relationship between cold pools, their accompanying moisture distribution and cloud cover are detailed further. Near-surface water vapor rings are documented in one model inside but

  14. Influence of Nitrogen Gas Flow Rate on The Microstructural and Mechanical Properties of Tin Deposited Carbon Steel Synthesized by Cae

    Directory of Open Access Journals (Sweden)

    A. Mubarak

    2017-11-01

    Full Text Available This paper reports on the preparation of titanium nitride (TiN thin films on carbon steel plates, using cathodic arc evaporation CAE PVD technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN-coated carbon steel plates. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM with energy dispersive X-ray (EDX, Xray diffraction (XRD with glazing incidence angle (GIA technique, scratch tester, hardness testing machine, surface roughness tester and atomic force microscope (AFM. SEM analyses showed that all the films had columnar and dense structures with clearly defined substrate-film interfacial layers. The hardness of TiN-coated carbon steel was noted six times more than the hardness of uncoated one. An increase in nitrogen gas flow rate showed; decrease in the formation of macro-droplets, average roughness (Ra and root-mean-square (RMS values in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Microhardness of TiN-coated carbon steel showed about six times increase in hardness than the uncoated one. Scratch tester results showed an average adhesion between the coating material and substrate. Thanks to the high resolution power could be observed that by increasing nitrogen gas flow rate there was percentage increase in the bearing ratio while percentage decrease in histogram.

  15. Influence of nitrogen flow rates on materials properties of CrNx films ...

    Indian Academy of Sciences (India)

    An elemental analysis of the samples was realized by means of energy dispersive spectroscopy. The electrical studies indicated the semiconducting behaviour of the films at the nitrogen flow rate of 15 ... important industrial process which is used to protect base ... than 40 μm can be obtained on a variety of engineering sub-.

  16. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model

    Science.gov (United States)

    J. McKean; D. Tonina; C. Bohn; C. W. Wright

    2014-01-01

    New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...

  17. Semi-local scaling and turbulence modulation in variable property turbulent channel flows

    NARCIS (Netherlands)

    Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.

    2015-01-01

    We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and

  18. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  19. A Microfluidics Study to Quantify the Impact of Microfracture Properties on Two-Phase Flow in Tight Rocks

    Science.gov (United States)

    Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2017-12-01

    Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including

  20. Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties

    Science.gov (United States)

    Wafa Chouaib; Peter V. Caldwell; Younes Alila

    2018-01-01

    This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the...

  1. The use of a diffuse interface model to estimate effective transport properties for two-phase flows in porous media

    International Nuclear Information System (INIS)

    Fichot, Floriana; Duval, Fabiena; Garcia, Aureliena; Belloni, Julien; Quintard, Michel

    2005-01-01

    Full text of publication follows: In the framework of its research programme on severe nuclear reactor accidents, IRSN investigates the water flooding of an overheated porous bed, where complex two-phase flows are likely to exist. The goal is to describe the flow with a general model, covering rods and debris beds regions in the vessel. A better understanding of the flow at the pore level appears to be necessary in order to justify and improve closure laws of macroscopic models. Although the Direct Numerical Simulation (DNS) of two-phase flows is possible with several methods, applications are now limited to small computational domains, typically of the order of a few centimeters. Therefore, numerical solutions at the reactor scale can only be obtained by using averaged models. Volume averaging is the most traditional way of deriving such models. For nuclear safety codes, a control volume must include a few rods or a few debris particles, with a characteristic dimension of a few centimeters. The difficulty usually met with averaged models is the closure of several transport or source terms which appear in the averaged conservation equations (for example the interfacial drag or the heat transfers between phases) [2]. In the past, the closure of these terms was obtained, when possible, from one-dimensional experiments that allowed measurements of heat flux or pressure drops. For more complex flows, the experimental measurement of local parameters is often impossible and the effective properties cannot be determined easily. An alternative way is to perform 'numerical experiments' with numerical simulations of the local flow. As mentioned above, the domain of application of DNS corresponds to the size of control volumes necessary to derive averaged models. Therefore DNS appears as a powerful tool to investigate the local features of a two-phase flow in complex geometries. Diffuse interface methods provide a way to model flows with interfacial phenomena through an

  2. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-05-01

    Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.

  3. Effect of Hydroxypropyl Methylcellulose-Beeswax Composite Edible Coatings Formulated with or without Antifungal Agents on Physicochemical Properties of Plums during Cold Storage

    Directory of Open Access Journals (Sweden)

    Sule Gunaydin

    2017-01-01

    Full Text Available The influence of hydroxypropyl methylcellulose- (HPMC- beeswax (BW composite edible coatings formulated with or without food additives with antifungal properties on physicochemical and sensory properties of plums (Prunus salicina cv. “Friar” stored for 11 and 22 d at 1°C followed by a shelf life period of 5 d at 20°C was evaluated. Food preservatives selected from previous research included potassium sorbate (PS, sodium methyl paraben (SMP, and sodium ethyl paraben (SEP. Emulsions had 7% of total solid content and were prepared with glycerol and stearic acid as plasticizer and emulsifier, respectively. All the coatings reduced plum weight and firmness loss and coated fruit showed higher titratable acidity, soluble solids content, and hue angle values at the end of the storage period. In addition, physiological disorders such as flesh browning and bleeding were reduced in coated samples compared to uncoated controls. Paraben-based coatings were the most effective in controlling weight loss and the SMP-based coating was the most effective in maintaining plum firmness. Respiration rate, sensory flavor, off-flavors, and fruit appearance were not adversely affected by the application of antifungal coatings. Overall, these results demonstrated the potential of selected edible coatings containing antifungal food additives to extend the postharvest life of plums, although further studies should focus on improving some properties of the coatings to enhance gas barrier properties and further increase storability.

  4. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    Science.gov (United States)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  5. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    International Nuclear Information System (INIS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A.K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A.K.; Dayal, R.K.; Rajan, K.K.; Khatak, H.S.

    2008-01-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes

  6. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  7. The molecular and cellular basis of cold sensation.

    Science.gov (United States)

    McKemy, David D

    2013-02-20

    Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.

  8. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-01-01

    DOE's waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE's efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids' surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships

  9. Property relationships of the physical infrastructure and the traffic flow networks

    Science.gov (United States)

    Zhou, Ta; Zou, Sheng-Rong; He, Da-Ren

    2010-03-01

    We studied both empirically and analytically the correlation between the degrees or the clustering coefficients, respectively, of the networks in the physical infrastructure and the traffic flow layers in three Chinese transportation systems. The systems are bus transportation systems in Beijing and Hangzhou, and the railway system in the mainland. It is found that the correlation between the degrees obey a linear function; while the correlation between the clustering coefficients obey a power law. A possible dynamic explanation on the rules is presented.

  10. Neural network: an instrument to study flow and packing properties of pharmaceutical powders

    OpenAIRE

    Mulas, Gilberto; Kachrimanis, K.; Gavini, Elisabetta; Giunchedi, Paolo; Malamataris, S.

    2006-01-01

    In the present study five brands of microcrystalline cellulose (Ph101, Vivapur, Ph 301, Emcocel and Prosolv), three brands of Crospovidone (XL, XL-10 and INF) and pregelatinized Starch were mixed with 2% w/w of Aerosil 200, Aerosil R972 (two different kinds of colloidal silicon dioxide) or Mg stearate, to obtain 27 distinct mixtures. Flow rate, bulk and tapped density of mixtures were measured and tablets were prepared.

  11. The effect of particle size and concentration on the flow properties of a homogeneous slurry

    International Nuclear Information System (INIS)

    Abbas, M.A.; Crowe, C.T.

    1986-01-01

    This paper presents the results of the effects of particle size and concentration on the velocity distribution in the fully developed flow of a homogeneous slurry. The slurry consisted of chloroform and silica gel with matched index of refraction to enable Laser-Doppler anemometry (LDA) measurements through the mixture. Slurries with two particle sizes and solids concentration up to 30% by volume were studied. Measurements were made over a Reynolds number range of 1,200 to 30,000

  12. Effects of fluid properties on the cross-flow between subchannels

    International Nuclear Information System (INIS)

    Azuma, Mie; Hotta, Akitoshi; Shirai, Hiroshi; Ninokata, Hisashi

    2004-01-01

    This study is one part of the fundamental research on the development of generalized boiling transition analysis methodology applicable to a wide variety of BWR-type fuel bundle geometries. In this study, quantitative identification of the void drift component in cross-flow is conducted by the combination of the Computational Fluid Dynamics (CFD) interface tracking technique and the Multiple Auto Regressive (MAR) method. The numerical model consists of two subchannels with a communication slit. The cross section is modeled in a reference of the Tapucu model, which is extracted from a symmetrical cell pair of actual square lattice fuel rod bundles. An air-water mixture in the slug and churn regimes at atmospheric pressure and room temperature is used as the working fluid. As a result, a concept on extraction of void drift and turbulent mixing components from cross-flow according to experimental data is confirmed by a numerical approach in which pressure is adjusted at each channel outlet using a model of two parallel channels with a communication slit. Criteria to extract components of the turbulent mixing and the void drift components from cross-flow assuming a multi-component mixture are proposed. Effects of surface tension and density ratio of water and air on the cross-flow between subchannels are investigated under conditions to maintain the gas-liquid evolution process based on the proposed criteria. The qualitative evaluation technique with dependency on surface tension and density ratio was proposed. It is expected to provide supplemental information which is difficult to obtain from experiments. (author)

  13. Electric and thermodynamic properties of plasma flows created by a magnetoplasma compressor

    International Nuclear Information System (INIS)

    Puric, J; Dojcinovic, I P; Astashynski, V M; Kuraica, M M; Obradovic, B M

    2004-01-01

    A magnetoplasma compressor of compact geometry (MPC-CG) with a semi-transparent electrode system that operates in the ion current transfer regime was constructed and studied. The electric and thermodynamic parameters of the discharge and the plasma flow created in different gases and their mixtures (hydrogen, nitrogen, argon and Ar + 3% H 2 ) have been measured to optimize the working conditions within the 100-3000 Pa pressure range for input energy up to 6.4 kJ. A special construction of the accelerator electrode system shielded by the self-magnetic field results in protection from erosion, which is the main cause of the high current cut-off in conventional plasma accelerators. It was found that the compression plasma flow velocity, electron density and temperature predominantly depend on the energy conversion rate from the energy supply to the plasma, since the current cut-off is avoided. The maximum energy conversion rate for MPC-CG was found when operating in hydrogen. The plasma flow velocity and electron density maximum values are measured close to 100 km s -1 and 10 17 cm -3 , respectively, for input energy of 6.4 kJ at 1000 Pa pressure in hydrogen. Our results appear in good agreement with existing theoretical and experimental data

  14. Chilling Out With Colds

    Science.gov (United States)

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  15. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  16. Effect of nitrogen gas flow rate on the tribological properties of TiN coated HSS using CAE PVD technique

    International Nuclear Information System (INIS)

    Mubarak, A.; Hamzah, E.; Toff, M.R.M.

    2005-01-01

    High-Speed Steel (HSS) is a material that used in various Hi-Tech industries for many reasons. The aim of this study is to investigate the tribological properties of TiN (Titanium Nitride)-coated HSS. Using Physical Vapour Deposition (PVD) Cathodic Arc Evaporation (CAE) technique coated samples. The goal of this work is to determine usefulness of TiN coatings in order to improve tribological properties of HSS, as vastly use in cutting tool industry for various applications. A Pin-on-Disc test showed that the minimum value recorded for friction coefficient was reduced from 0.294 to 0.239 when the nitrogen gas flow rate was increased from 100 sccm to 200 sccm. The decrease in friction coefficient resulted from the reduction in macrodroplets by increasing the nitrogen gas flow rate during deposition. The worn surface morphology of the TiN coated HSS was observed on a Field Emission Scanning Electron Microscope (FE-SEM), and the elemental composition on the wear scar were investigated by means of EDXS. (Author)

  17. Studies on the effect of compatibilizers on mechanical, thermal and flow properties of polycarbonate/poly (butylene terephthalate) blends

    Science.gov (United States)

    Kumar, Ravindra; Kar, Kamal K.; Kumar, Vijai

    2018-01-01

    Bisphenol-A polycarbonate (PC) and poly(butylene terephthalate) (PBT) were melt blended with ethylene-n-butylacrylate-glycidylmethacrylate terpolymer (E-BA-GMA) at various proportions in order to study the effects of compatibilizers on mechanical, thermal and flow properties of blends. Furthermore, on the basis of this study, PC and PBT were melt-blended at 60/40 proportion with three different compatibilizers viz., ethylene-n-butylacrylate copolymer (E-BA), E-BA-GMA and random copolymer of ethylene and glycidylmethacrylate (E-GMA) at 3 phr loading in a co-rotating twin screw extruder. Tensile, flexural and impact tests were carried out on injection molded samples of PC/PBT blends. The notched izod impact strength increases enormously (˜2-3 times) on addition of any one of the three compatibilizers, and elongation at break (%) also improves tremendously (3, 5 and 4 times) on incorporation of E-BA, E-BA-GMA and E-GMA copolymer, respectively while other mechanical properties decreases slightly (3%-8%) on addition of any one of these compatibilizers. The heat deflection temperature (HDT) raises ˜8 °C-9 °C on addition of either E-BA-GMA or E-GMA, while E-BA shows a negative effect on HDT. The melt flow index diminishes significantly (˜5%-20%) on incorporation of these compatibilizers. The morphology studies via scanning electron microscopy of these four blends were carried out to confirm the mechanical results.

  18. Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties

    Directory of Op