WorldWideScience

Sample records for cold energy utilization

  1. Performance of cryogenic thermoelectric generators in LNG cold energy utilization

    International Nuclear Information System (INIS)

    Sun Wei; Hu Peng; Chen Zeshao; Jia Lei

    2005-01-01

    The cold energy of liquefied natural gas (LNG) is generally wasted when the LNG is extracted for utilization. This paper proposes cryogenic thermoelectric generators to recover this cold energy. The theoretical performance of the generator has been analyzed. An analytical method and numerical method of calculation of the optimum parameters of the generator have been demonstrated

  2. Energetic recovery from LNG gasification plant : cold energy utilization in agro-alimentary industry

    International Nuclear Information System (INIS)

    Messineo, A.; Panno, D.

    2009-01-01

    It is known how the complete gasification of liquefied natural gas (LNG) can return about 230 kWh/t of energy. Nevertheless out of 51 gasification plants in the world, only 31 of them are equipped with systems for the partial recovery of the available energy. At the moment most of these plants mainly produce electric energy; however the employment of the cold energy results very interesting, in fact, it can be recovered for agrofood transformation and conservation as well as for some loops in the cold chain. Cold energy at low temperatures requires high amounts of mechanical energy and it unavoidably increases as the required temperature diminishes. Cold energy recovery from LNG gasification would allow considerable energy and economic savings to these applications, as well as environmental benefits due to the reduction of climate-changing gas emissions. The task of this work is to assess the possibility to create around a gasification plant an industrial site for firms working on the transformation and conservation of agrofood products locally grown. The cold recovered from gasification would be distributed to those firms through an opportune liquid Co 2 network distribution capable of supplying the cold to the different facilities. A LNG gasification plant in a highly agricultural zone in Sicily would increase the worth of the agrofood production, lower transformation and conservation costs when compared to the traditional systems and bring economic and environmental benefits to the interested areas. [it

  3. Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2010-01-01

    The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process. A modular LNG regasification unit is proposed having the regasification capacity of 2 BCM/year of gas and it is based on use of a Power Cycle working with Ethane, this unit allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the Power Cycle, but the purpose of the modular unit is to deliver cold suitable for industrial and commercial use in the proper temperature range utilizing Carbon dioxide as secondary fluid to transfer cold from regasification site to far end users. The subject is divided in two papers: this paper deals with facilities delivering cold released during LNG regasification and related pipeline facilities to transfer cold at far end users while the other paper pertains to analysis of end users applications. Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.

  4. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  5. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    system concept. -- Highlights: → The paper presents novel concept for datacenter thermal management using heat-pipe based energy conservation system utilizing cold ambient energy. → Two type of system: ice storage and cold water storage has been identified and discussed. → Ice storage or two-phase system can provide long term storage and can be used as datacenter emergency support system. → Cold water or single-phase system can be employed as precooler for coolant before it is cooled by electrical chiller. → These two types of storage approaches can help to minimize chiller electrical load thus saving electricity and associated cost.

  6. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Unutilized energy utilizing systems. ; Power and levelling measures and unutilized energies. Miriyo energy katsuyo system. ; Denryoku fuka heijunka taisaku to miriyo energy

    Energy Technology Data Exchange (ETDEWEB)

    Kuromoto, E. (The Tokyo Electric Power Co. Inc., Tokyo (Japan))

    1993-02-12

    This paper explains quantitatively performance of heat storage tanks contributing largely to levelling power loads, and promoting and spreading more effective use of unutilized energies. A model case was used to compare differences in effectiveness of unutilized energy utilization with and without use of heat storage tanks. The heat demand used was a value in a day with a peak room cooling demand, and a heat supply system using water heat source heat pumps that utilize sewage treated water was used to manufacture cold water. As a result, the effective utilization rate of unutilized energy was increased to about 1.3 times when heat storage tanks were used. Effectiveness of a heat storage tank comes from its capability that excess amount of cold water manufactured during nighttime when heat demand falls by utilizing sewage treated water is stored in the heat storage tank, and the stored cold water can be supplied being mixed with cold water manufactured during daytime when heat demand rises sharply in daytime. Because sewage treated water has its annual temperature difference stabilized at about 10[degree]C, a heat pump utilizing the sewage treated water can reduce power required to produce heat of 1 Gcal by about 40% during room heating and about 15% during room cooling over the heating tower type heat pump. 8 figs., 1 tab.

  8. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    Ishii, Makoto

    1995-01-01

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  9. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  10. Report on a feasibility survey of the cold accumulated heat use energy system in Hokkaido; Hokkaido ni okeru reichikunetsu riyo energy system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted of various systems which use in summer cold heat from the snow stored in winter. A model of the cold accumulated heat system of the type which has a high possibility of the introduction was built to study a possibility of the realization. Types of the model system were selected assuming the utilization of cold heat energy of snow in Sapporo, a typical large city in the cold heavy-snow area. Studies were made on each model of urban type commercial facilities, urban type offices, suburban type shopping center, and suburban type hospitals. For each model, more than one systems were studied according to types and forms of the storage tank, and heat recovery methods. As a result, it was found that cold heat energy of snow can be utilized almost effectively by making an appropriate study of the energy balance like the possible supply of cold heat exceeded the demand in two models of an urban type office building and an suburban type hospital. Further, operating expenses of typical models were roughly calculated. 51 figs., 20 figs.

  11. Study on garbage disposal mode with low energy consumption for villages and towns in cold region

    Directory of Open Access Journals (Sweden)

    Ma Yi

    2016-01-01

    Full Text Available Through field research of typical villages and towns in China's northern cold region, this paper research energy consumption and resource recovery in the process of village and town garbage collection and disposal and organizes current situation and problems of village and town garbage collection and disposal. At present, village and town garbage collection and disposal means and thoughts are traditional and lag behind in China's northern cold region. There is the lack of garbage collection and disposal mode suitable for cold villages and towns. Thus, village and town resources are not effectively utilized, and residents’ living environment is affected continuously. This paper selects two mature garbage disposal methods: sanitary landfill and incineration power generation. Meanwhile, energy consumption and ultimate emission utilization of two schemes in garbage collection and disposal links are overall compared to propose garbage collection and disposal mode with low energy consumption suitable for green villages and towns in cold region. Besides, various control indexes of village and town garbage disposal schemes are explained in detail in combination of specific conditions.

  12. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running

    Directory of Open Access Journals (Sweden)

    Dominique Daniel Gagnon

    2013-05-01

    Full Text Available Cold exposure modulates the use of carbohydrates and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids, glycerol, glucose, beta-hydroxybutyrate, plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (-0.03 ± 0.02, greater fat oxidation (+0.14 ± 0.13 g•min-1 and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal•min-1. No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in non-esterified fatty acids, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.

  13. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  14. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system

    International Nuclear Information System (INIS)

    Bao, Junjiang; Lin, Yan; Zhang, Ruixiang; Zhang, Ning; He, Gaohong

    2017-01-01

    Highlights: • A two-stage condensation Rankine cycle (TCRC) system is proposed. • Net power output and thermal efficiency increases by 45.27% and 42.91%. • The effects of the condensation temperatures are analyzed. • 14 working fluids (such as propane, butane etc.) are compared. - Abstract: For the low efficiency of the traditional power generation system with liquefied natural gas (LNG) cold energy utilization, by improving the heat transfer characteristic between the working fluid and LNG, this paper has proposed a two-stage condensation Rankine cycle (TCRC) system. Using propane as working fluid, compared with the combined cycle in the conventional LNG cold energy power generation method, the net power output, thermal efficiency and exergy efficiency of the TCRC system are respectively increased by 45.27%, 42.91% and 52.31%. Meanwhile, the effects of the first-stage and second-stage condensation temperature and LNG vaporization pressure on the performance and cost index of the TCRC system (net power output, thermal efficiency, exergy efficiency and UA) are analyzed. Finally, using the net power output as the objective function, with 14 organic fluids (such as propane, butane etc.) as working fluids, the first-stage and second-stage condensation temperature at different LNG vaporization pressures are optimized. The results show that there exists a first-stage and second-stage condensation temperature making the performance of the TCRC system optimal. When LNG vaporization pressure is supercritical pressure, R116 has the best economy among all the investigated working fluids, and while R150 and R23 are better when the vaporization pressure of LNG is subcritical.

  15. Heat to electricity conversion by cold carrier emissive energy harvesters

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved

  16. Methanation process utilizing split cold gas recycle

    Science.gov (United States)

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  17. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  18. Light Duty Utility Arm system pre-operational (cold test) test plan

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1995-01-01

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  19. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    Science.gov (United States)

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.

  20. Specific energy of cold crack initiation in welding low alloy high-strength steels

    International Nuclear Information System (INIS)

    Brednev, V.I.; Kasatkin, B.S.

    1988-01-01

    Methods for determination of energy spent on cold crack initiation, when testing welded joint samples by the Implant method, are described. Data on the effect of the steel alloying system, cooling rate of welded joints, content of diffusion hydrogen on the critical specific energy spent on the development of local plastic deformation upto cold crack initiation are presented. The value of specific energy spent on cold crack initiation is shown to be by two-three orders lower than the value of impact strength minimum accessible. The possibility to estimate welded joint resistance to cold crack initiation according to the critical specific energy is established

  1. FY1995 research report on the survey of cryogenic energy utilization systems for environmentally friendly energy community project. Case studies of LNG cryogenic energy cascade-wise utilization; 1995 nendo kankyo chowagata energycommunity jigyo ni kakawaru reinetsu riyo system kento chosa hokokusho. LNG reinetsu no cascade teki riyo case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Japan's import of LNG (liquefied natural gas) has increased in these 15 years from 13-million tons to 43-million tons at a high rate of 2-million tons a year. At present LNG is used only in power generation and town gas business, and its cryogenic feature which may be useful in various fields is not being utilized. In this survey, factors impeding the wider application of the cryogenic energy are investigated, methods for using the energy more widely and mechanisms required therefor are studied, and discussion is made about the feasibility of the utilization of the energy in a cascade-wise form under the environmentally friendly energy community project. Researches are conducted and the results are evaluated in a study carried out on the comprehensive utilization of LNG cryogenic energy. These researches involve the actualities and trends of LNG cryogenic energy utilization in Japan; current status and prospect of the involvement of LNG bases with their neighboring industries and communities; technological measures for cryogenic energy utilization; technological measures related to low-temperature media and cold heat transportation systems; technological measures for the cascade-wise multidirectional utilization of cryogenic energy; and case studies on assumed local models. (NEDO)

  2. Utilization of cold neutron beams at intermediate flux reactors

    International Nuclear Information System (INIS)

    Clark, D.D.

    1992-01-01

    With the advent of cold neutron beam (CNB) facilities at U.S. reactors [National Institute of Standards and Technology (NIST) in 1991; Cornell University and the University of Texas at Austin, anticipated in 1992], it is appropriate to reexamine the types of research for which they are likely to be best suited or uniquely suited. With the exception of a small-angle neutron scattering facility at Brookhaven National Laboratory, there has been no prior experience in the United States with such beams, but they have been extensively used at European reactors where cold neutron sources and neutron guides were developed some years age. This paper does not discuss specialized cases such as ultracold neutrons or very high flux facilities such as the Institute Laue-Langevin ractor and the proposed advanced neutron source. Instead, it concentrates on potential utilization of CNBs at intermediate-flux reactors such as at Cornell and Texas, i.e., in the 1-MW range and operated <24 h a day

  3. Efficient utilization of energy in office buildings. Planning manual; Effiziente Energienutzung in Buerogebaeuden. Planungsleitfaden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    Regarding to the energy efficiency of office buildings, a high standard is set to architects: Office buildings need more energy for the cooling in the summer than for the heating in the winter. Additionally, there is an energy consumption for lighting, ventilation and operation of office equipment. Under this aspect, in the planning manual under consideration ten demands for an efficient energy utilization at office buildings are described: (a) Integral concept for the minimization of the entire power demand; (b) Compact building method and very good structural thermal protection; (c) Adapted glass areas and quality of vitrifications; (d) Integrals ventilation planning; (e) Efficient ventilation systems; (f) Efficient room climate concept and minimization of internal and outside heat loads; (g) Utilization of daylight with adapted architectural draft; (h) Efficient artificial lighting; (i) Supply of warmth and coldness with minimum characteristic values for primary energy; (j) Energy monitoring and optimization of operation. This manual also is valid for other buildings such as schools, administration buildings or swimming pools.

  4. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  5. Basic survey on the residence using hybrid energy in snowy cold regions; Sekisetsu kanreichi ni okeru hybrid energy katsuyogata jutaku nado ni kansuru kiso chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The conceptual model and feasibility of the hybrid energy system for residences and public facilities in snowy cold regions were studied. Based on the existing data, the existing and available amounts of natural energy and unused energy in the target area, Sapporo were estimated. Based on the predicted energy demands of 4 kinds of building models, the energy systems for such models were studied. The use of the following energies was considered: photovoltaic power generation and solar heat for all the models, household sewage energy for the multiple-dwelling house model, and wind power generation for the public facility model. The annual energy balance was calculated to evaluate it. The use of additional commercial electricity was necessary, while surplus solar heat energy was found in summer which can push up the self-sufficiency rates of the residence and public facility models to 70% and 44%, respectively. The multiple- dwelling house model which can use a large amount of household sewage energy could utilize 80% of new energy, while the other 3 models utilized only 60-70% of that. 81 figs., 42 tabs.

  6. FY1995 research report on the survey of cryogenic energy utilization systems for environmentally friendly energy community project. Case studies of LNG cryogenic energy cascade-wise utilization; 1995 nendo kankyo chowagata energycommunity jigyo ni kakawaru reinetsu riyo system kento chosa hokokusho. LNG reinetsu no cascade teki riyo case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Japan's import of LNG (liquefied natural gas) has increased in these 15 years from 13-million tons to 43-million tons at a high rate of 2-million tons a year. At present LNG is used only in power generation and town gas business, and its cryogenic feature which may be useful in various fields is not being utilized. In this survey, factors impeding the wider application of the cryogenic energy are investigated, methods for using the energy more widely and mechanisms required therefor are studied, and discussion is made about the feasibility of the utilization of the energy in a cascade-wise form under the environmentally friendly energy community project. Researches are conducted and the results are evaluated in a study carried out on the comprehensive utilization of LNG cryogenic energy. These researches involve the actualities and trends of LNG cryogenic energy utilization in Japan; current status and prospect of the involvement of LNG bases with their neighboring industries and communities; technological measures for cryogenic energy utilization; technological measures related to low-temperature media and cold heat transportation systems; technological measures for the cascade-wise multidirectional utilization of cryogenic energy; and case studies on assumed local models. (NEDO)

  7. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  8. Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

    Science.gov (United States)

    2010-07-01

    This work was performed in support of the AUTC project Utilization of Screw Piles in : High Seismicity Areas of Cold and Warm Permafrost under the direction of PI Dr. Kenan : Hazirbaba. Surface wave testing was performed at 30 sites in the City...

  9. Technology assessment of long distance liquid natural gas pipelines. Phase 8. Cold utilization and rural service

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    This phase of the investigation presents a summary of material relating to: (1) actual or potential applications for the very large refrigeration effects inherent in the vaporization of liquid natural gas; and (2) rural service gas supplies adjacent to the route of a trunk liquid natural gas line. A variety of concepts for cold utilization are discussed. The Canadian prospects for cold utilization include: electric power generation; oxygen production for integration with a coal gasification project; and the use of refrigeration stages in the petrochemical processing of natural gas, for example, ethane separation and processing to produce ethylene and ammonia.

  10. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...

  11. Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain

    International Nuclear Information System (INIS)

    Li, Yu-Chu M.; Chen, Yen-Hong A.

    2016-01-01

    Development a novel inorganic salt eutectic solution for cold energy storage material (ESM) have succeeded conducted in this study. The eutectic solutions shows a low melting temperature and high latent heat of fusion value as effect of addition nano copper powder into the eutectic solution. We report a new simulation technique of thermal property as well as test results of three inorganic salts. The thermal property of three inorganic salts were simulated using the differential scanning calorimetry (DSC) method with the help of three binary phase diagrams. The simulation shows the liquidus temperature of each binary phase diagram conforming nicely to the theoretical prediction of the Gibbs-Duhem equation. In order to predict cold storage keeping time, we derived a heat transfer model based on energy conservation law. Three ESMs were tested for their cold energy storage performance and thermal properties aging for durability. The empirical results indicate that, for food cold chain, the melting point rule is superior with less deviation. With this information, one can pre-estimate the basic design parameters with great accuracy; the cost of design and development for a new cold storage logistics system can be dramatically reduced. - Highlights: • For these three ESMs, their modified values of melting point and latent heat are presented in Table 2. • But, TC is usually not a constant like TE. • The freezing time underwent a drop ∼10% in the binary eutectic region.

  12. Detection of cold gas releases in space via low energy neutral atom imaging

    International Nuclear Information System (INIS)

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-eV hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper the authors examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, they examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then they review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of angstrom) foils and then electrostatically analyzing these newly created ions to reject the large (> 10 10 cm -2 s -1 ) UV background to which the low energy detectors are sensitive. They conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment

  13. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing

    International Nuclear Information System (INIS)

    Koku, Oludolapo; Perry, Simon; Kim, Jin-Kuk

    2014-01-01

    Highlights: • Development of thermal integration modelling framework for the utilisation of LNG cold energy. • Feasibility study for various design options for the integration of low-temperature cold energy. • Provision of a design approach for achieving efficient use of cold energy in LNG terminals. • Understanding of techno-economic impacts associated with the thermal integration of LNG cold energy. - Abstract: This paper addresses a conceptual study investigating the techno-economic feasibility for the thermal Integration of LNG cold vaporisation energy in power generation applications. In conventional regasification systems, this valuable LNG cold energy is often being wasted to ambient heat sources, representing a thermodynamic inefficient process with a significant thermal impact on the local environment. A combined facility consisting of a non-integrated Combined Cycle Power Plant (CCPP) and an LNG receiving terminal employing traditional Open Rack Vaporisers (ORV) technology, has been modelled, as a base case. Retrofit strategies for the integration of LNG cold energy have been investigated, and their impacts on power production and system efficiency are systematically compared. Retrofit design options considered in this work include the use of a propane Rankine cycle coupled with the direct expansion of natural gas, the integration of a closed-loop water cycle or open-loop water circuit with a steam Rankine cycle, and the facilitation of integrated air cooling for a gas turbine

  14. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  15. Optimization of waste heat utilization in cold end system of thermal power station based on neural network algorithm

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.

  16. Performance analysis of different ORC configurations for thermal energy and LNG cold energy hybrid power generation system

    Science.gov (United States)

    Sun, Zhixin; Wang, Feng; Wang, Shujia; Xu, Fuquan; Lin, Kui

    2017-01-01

    This paper presents a thermal energy and Liquefied natural gas (LNG) cold energy hybrid power generation system. Performances of four different Organic Rankine cycle (ORC) configurations (the basic, the regenerative, the reheat and the regenerative-reheat ORCs) are studied based on the first and the second law of thermodynamics. Dry organic fluid R245fa is selected as the typical working fluid. Parameter analysis is also conducted in this paper. The results show that regeneration could not increase the thermal efficiency of the thermal and cold energy hybrid power generation system. ORC with the reheat process could produce more specific net power output but it may also reduce the system thermal efficiency. The basic and the regenerative ORCs produce higher thermal efficiency while the regenerative-reheat ORC performs best in the exergy efficiency. A preheater is necessary for the thermal and cold energy hybrid power generation system. And due to the presence of the preheater, there will be a step change of the system performance as the turbine inlet pressure rises.

  17. Optimal energy management for a mechanical-hybrid vehicle with cold start conditions

    NARCIS (Netherlands)

    Berkel, van K.; Klemm, W.P.A.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2013-01-01

    This paper presents the design of an optimal Energy Management Strategy (EMS) for a hybrid vehicle that starts with a cold powertrain. The cold start negatively affects the combustion and transmission efficiency of the powertrain, caused by the higher frictional losses due to increased hydrodynamic

  18. Energy utilities and the Internet

    International Nuclear Information System (INIS)

    2000-01-01

    The chances for energy utilities in the Netherlands to present themselves on the Internet are briefly outlined. It appears that other businesses are ahead of the Dutch utilities in offering electronic services with respect to energy

  19. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  20. Environmental issues: I - Energy utilization

    International Nuclear Information System (INIS)

    Dincer, I.

    2001-01-01

    In this article, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and consequent environmental issues and policies. Overall, the paper also examines several issues related to energy utilization, environment, sustainable development from both current and future perspectives, and energy use and its environmental impacts in the transportation sector. Finally, the conclusions and recommendations are presented in the form to be beneficial to energy scientists, engineers and energy policy makers. (author)

  1. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  2. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  3. Ultimate energy density of observable cold baryonic matter.

    Science.gov (United States)

    Lattimer, James M; Prakash, Madappa

    2005-03-25

    We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.

  4. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  5. Building America Case Study: Retrofitting a 1960s Split-Level, Cold-Climate Home, Westport, Connecticut; Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    ??National programs such as Home Performance with ENERGY STAR(R) and numerous other utility air sealing programs have brought awareness to homeowners of the benefits of energy efficiency retrofits. Yet, these programs tend to focus on the low-hanging fruit: air-sealing the thermal envelope and ductwork where accessible, switch to efficient lighting, and low-flow fixtures. At the other end of the spectrum, deep-energy retrofit programs are also being encouraged by various utilities across the country. While deep energy retrofits typically seek 50% energy savings, they are often quite costly and most applicable to gut-rehab projects. A significant potential for lowering energy usage in existing homes lies between the low hanging fruit and deep energy retrofit approaches - retrofits that save approximately 30% in energy over the existing conditions. A key is to be non-intrusive with the efficiency measures so the retrofit projects can be accomplished in occupied homes. This cold climate retrofit project involved the design and optimization of a home in Connecticut that sought to improve energy savings by at least 30% (excluding solar PV) over the existing home's performance. This report documents the successful implementation of a cost-effective solution package that achieved performance greater than 30% over the pre-retrofit - what worked, what did not, and what improvements could be made. Confirmation of successfully achieving 30% source energy savings over the pre-existing conditions was confirmed through energy modeling and comparison of the utility bills pre- and post- retrofit.

  6. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen; Vasquez, Deb

    2017-01-01

    The Federal Energy Management Program's 'Utility Energy Service Contracts: Enabling Documents' provide legislative information and materials that clarify the authority for federal agencies to enter into utility energy service contracts, or UESCs.

  7. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  8. The status of 'cold fusion'

    International Nuclear Information System (INIS)

    Nagel, David J.

    1998-01-01

    The questions raised by reports of nuclear reactions at low energies, so called 'cold fusion', are not yet answered to the satisfaction of many scientists. Further experimental investigations of these and related questions seems desirable, at least for scientific if not practical reasons. Properly conducted, such investigations would be indistinguishable from normal research. They would yield information germane to accepted areas of scientific inquiry and technological utility

  9. Body mass, Thermogenesis and energy metabolism in Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Wan-long Zhu

    2012-05-01

    Full Text Available In order to study the relationship between energy strategies and environmental temperature, basal metabolic rate (BMR, nonshivering thermogenesis (NST, the total protein contents, mitochondrial protein contents, state and state respiratory ability, cytochrome C oxidase activity Ⅲ Ⅳ of liver, heart, diaphragm, gastrocnemius and brown adipose tissue (BAT, serum leptin level and serum thyroid hormone levels were measured in tree shrews (Tupaia belangeri during cold exposure (5±1oC for 1 day, 7 days,14days,21 days. The results showed that body mass increased, BMR and NST increased, the change of liver mitochondrial protein content was more acutely than total protein. The mitochondrial protein content of heart and BAT were significantly increased during cold-exposed, however the skeletal muscle more moderate reaction. The state Ⅲ and state Ⅳ mitochondrial respiration of these tissues were enhanced significantly than the control. The cytochrome C oxidase activity with cold acclimation also significantly increased except the gastrocnemius. Liver, muscle, BAT, heart and other organs were concerned with thermoregulation during the thermal regulation process above cold-exposed. There is a negative correlation between leptin level and body mass. These results suggested that T. belangeri enhanced thermogenic capacity during cold acclimation, and leptin participated in the regulation of energy balance and body weight in T. belangeri.

  10. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  11. Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Kim, Kyung Chun

    2014-01-01

    Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction. - Highlights: • Thermodynamic analysis was performed for a combined cycle utilizing LNG cold energy. • Ammonia–water Rankine cycle and LNG Rankine cycle was combined. • A parametric study was conducted to examine the effects of the key parameters. • Characteristics of the exergy efficiency and heat transfer capability were proposed. • The system performance was influenced significantly by the ammonia mass fraction

  12. Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions

    Science.gov (United States)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.

  13. Is increased energy utilization linked to greater cultural complexity? Energy utilization by Australian Aboriginals and traditional swidden agriculturalists

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [Expertisecentrum Duurzame Ontwikkeling en Instituut voor Biodiversiteit en Ecosysteem Dynamica ECDO/IBED, University of Amsterdam, Amsterdam (Netherlands)

    2006-09-15

    Theories have been proposed that link increases in energy utilization to increases in cultural complexity. Indeed, available estimates of per capita non-food energy utilization by hunter - gatherers and by people practising swidden agriculture in wooded areas, focusing on fuel wood use, are roughly 1 - 2 orders of magnitude lower than for industrial societies. The latter are in the range of 0.8 - 3.4 x 10{sup 5} MJ year{sup -1}. However, apart from the use of fuel wood, the former estimates have not included work performed by burning vegetation. Here quantitative estimates are given of recent energy utilization linked to burning biomass by Australian Aboriginals and people practising traditional swidden agriculture. Per capita energy utilization linked to biomass burning by Australian Aboriginals is estimated at 1.6 x 10{sup 6} to 4.0 x 10{sup 7} MJ year{sup -1}. Estimated per capita energy utilization associated with burning biomass in traditional swidden agriculture in the tropical rainforests of Kalimantan and Venezuela, the dry forest of north-eastern Brazil and the miombo woodland of Zambia is in the range of 1.0 x 10{sup 5} to 6.3 x 10{sup 5} MJ year{sup -1}. The values for non-food energy utilization reported here are at variance with theories that link increases in energy utilization to increases in cultural complexity.

  14. Analysis on energy-saving path of rural buildings in hot summer and cold winter zone

    Science.gov (United States)

    Huang, Mingqiang; Li, Jinheng

    2018-02-01

    Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on

  15. Comfort and performance of power line maintainers' gloves during electrical utility work in the cold.

    Science.gov (United States)

    Hunt, S; Boyle, C; Wells, R

    2014-01-01

    Electrical utility workers wear thick rubber gloves and often work in the cold. To document the challenge of working in the cold and the effectiveness of different glove/liner combinations in keeping workers' hands warm. Ten experienced male electrical utility employees worked in a controlled temperature walk-in chamber at -20 °C for 45 minutes for each of five glove conditions: standard five-finger rubber gloves with cotton liners and gauntlets, mitten style gloves, a prototype wool liner, and two heating options; glove or torso. Dependent measures were maximum grip force, skin temperatures, finger dexterity and sensitivity to touch, ratings of perceived effort and a rating of thermal sensation. Participants' hand skin temperatures decreased, they perceived their hands to be much colder, their finger sensitivity decreased and their ratings of perceived exertion increased, however their performance did not degrade over the 45 minute trials. The mitten-style gloves showed a smaller drop in skin temperature for the 3rd and 5th digits (pglove conditions. Mitten style gloves kept workers' hands warmer than the standard five finger glove.

  16. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  17. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  18. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an integrated receiving terminal. In the offshore process, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The offshore process is self-supported with power, hot and cold utilities and can operate with little rotating equipment and without flammable refrigerants. In the onshore process, the cryogenic exergy in LNG is used to cool and liquefy the cold carriers, which reduces the power requirement to 319 kWh/tonne LNG. Pinch and exergy analyses are used to determine thermodynamically optimized offshore and onshore processes with exergy efficiencies of 87% and 71%, respectively. There are very low emissions from the processes. The estimated specific costs for the offshore and onshore process are 8.0 and 14.6 EUR per tonne LNG, respectively, excluding energy costs. With an electricity price of 100 EUR per MWh, the specific cost of energy in the onshore process is 31.9 EUR per tonne LNG

  19. Predictive tool of energy performance of cold storage in agrifood industries: The Portuguese case study

    International Nuclear Information System (INIS)

    Nunes, José; Neves, Diogo; Gaspar, Pedro D.; Silva, Pedro D.; Andrade, Luís P.

    2014-01-01

    Highlights: • A predictive tool for assessment of the energy performance in agrifood industries that use cold storage is developed. • The correlations used by the predictive tool result from the greatest number of data sets collected to date in Portugal. • Strong relationships between raw material, energy consumption and volume of cold stores were established. • Case studies were analyzed that demonstrate the applicability of the tool. • The tool results are useful in the decision-making process of practice measures for the improvement of energy efficiency. - Abstract: Food processing and conservation represent decisive factors for the sustainability of the planet given the significant growth of the world population in the last decades. Therefore, the cooling process during the manufacture and/or storage of food products has been subject of study and improvement in order to ensure the food supply with good quality and safety. A predictive tool for assessment of the energy performance in agrifood industries that use cold storage is developed in order to contribute to the improvement of the energy efficiency of this industry. The predictive tool is based on a set of characteristic correlated parameters: amount of raw material annually processed, annual energy consumption and volume of cold rooms. Case studies of application of the predictive tool consider industries in the meat sector, specifically slaughterhouses. The results obtained help on the decision-making of practice measures for improvement of the energy efficiency in this industry

  20. Energy utilization in Canada

    International Nuclear Information System (INIS)

    Klassen, J.

    1976-04-01

    The situation of the energy supply of Canada is characterized by its geographic location and by the dispersal of the energy consumers over a wide area. At present, the energy supply leaving the successful CANDU nuclear energy programme out of account, is based mainly on crude oil, natural gas, and electricity as well as on coal imported from the USA. The targets of Canadian enery policies and energy research are stated as follows: a) Reducing and optimizing energy consumption, b) introducing district heating, and c) utilizing the extensive local coal deposits. (GG) [de

  1. Solar energy storage and utilization

    Science.gov (United States)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  2. Towards sustainability in cold chains : development of a quality, energy and environmental assessment tool (QEEAT)

    OpenAIRE

    Gwanpua , S.G.; Verboven , P.; Brown , T.; Leducq , D.; Verlinden , B.E.; Evans , J.; Van Der Sluis , S.; Wissink , E.B.; Taoukis , P.; Gogou , E.; Stahl , V.; El Jabri , M.; Thuault , D.; Claussen , I.; Indergard , E.

    2014-01-01

    International audience; Quantification of the impact of refrigeration technologies in terms of the quality of refrigerated food, energy usage, and environmental impact is essential to assess cold chain sustainability. In this paper, we present a software tool QEEAT (Quality, Energy and Environmental Assessment Tool) for evaluating refrigeration technologies. As a starting point, a reference product was chosen for the different main food categories in the European cold chain. Software code to ...

  3. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. New Energy Utility Business Models

    International Nuclear Information System (INIS)

    Potocnik, V.

    2016-01-01

    Recently a lot of big changes happened in the power sector: energy efficiency and renewable energy sources are quickly progressing, distributed or decentralised generation of electricity is expanding, climate change requires reduction of greenhouse gas emissions and price volatility and incertitude of fossil fuel supply is common. Those changes have led to obsolescence of vertically integrated business models which have dominated in energy utility organisations for a hundred years and new business models are being introduced. Those models take into account current changes in the power sector and enable a wider application of energy efficiency and renewable energy sources, especially for consumers, with the decentralisation of electricity generation and complying with the requirements of climate and environment preservation. New business models also solve the questions of financial compensations for utilities because of the reduction of centralised energy generation while contributing to local development and employment.(author).

  5. Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Ju [Univ. of Colorado, Boulder, CO (United States)

    2017-01-01

    Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.

  6. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Yann Ravussin

    Full Text Available Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements.

  7. Utilities and energy efficiency Denmark report

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Lyck, N.C.

    1996-11-01

    The report is the Danish contribution to the project `Utilities and Energy Efficiency` produced for the European Commission by IET, Nikkel straat 15, 4823 AE Breda, The Netherlands. Information is given under the headings of existing situation and desired situation. Recommendations are also given under the headings of legislation concerning the objectives of the utilities, of government programs and targets, of organizational structure, required market dependence and internal objectives of the utilities, for regulation and standardization, and of tariff structure. Flow diagrams are presented for the Danish energy system 1990, 1993. The 1993 follow up of the energy plan `Energy 2000` points out that the goals set up at that time, first and foremost the 20% reduction in CO{sub 2} emissions in 2005 compared to the 1988 level, will not be reached without changes in policy, such as an increase in the use of renewable energy, more transparent and consistent tariff systems as a greater incentive for energy conservation, regulations on thermal insulation of houses, increase in public information activities,a new subsidy scheme to stimulate improvements of energy efficiency in buildings and regulations on energy supply to large buildings. (ARW) 55 refs.

  8. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    Directory of Open Access Journals (Sweden)

    Alexander N. Obraztsov

    2013-08-01

    Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  9. Time-grated energy-selected cold neutron radiography

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Brun, T.O.; Claytor, T.N.; Farnum, E.H.; Greene, G.L.; Morris, C.

    1998-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as Time-Gated Energy-Selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross section drops significantly. This difference in scattering characteristics can be recorded in the TGES radiography and, because the Bragg cutoff occurs at different energy levels for various materials, the approach can be used to differentiate among these materials. This paper outlines the TGES radiography technique and shows an example of radiography using the approach

  10. Improved Windows for Cold Climates

    DEFF Research Database (Denmark)

    Laustsen, Jacob Birck; Svendsen, Svend

    2005-01-01

    considerably by reducing the frame width, which results in a larger transparent area causing a larger solar gain but still main-taining a low thermal transmittance. Using three layers of glass with large gaps, using very slim frame profiles, and omitting the edge constructions that normally causes thermal...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

  11. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Energy-, environmental and economic evaluation of energy crops utilization

    International Nuclear Information System (INIS)

    1994-06-01

    This preliminary project is prepared in order to clarify the economic possibilities and rentability of energy crops. Examples of energy crop resource potential, environmental and economic consequences are calculated on the basis of existing data. Utilization of annual and perennial crops is evaluated with regard to the usual following of agricultural areas, and to the traditional power generation in a coal-fueled plant. Two technological options are discussed: one based on energy crop fuels supplementing the conventional coal fuel, and the other based on a separate biomass-fueled boiler, connected to the conventional coal-fueled unit. Implementation of the main project,following the preliminary one will permit to estimate the future prospects and strategies of energy crop utilization as a profitable energy resource. (EG)

  13. Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget

    Science.gov (United States)

    Jennings, Keith S.; Kittel, Timothy G. F.; Molotch, Noah P.

    2018-05-01

    Cold content is a measure of a snowpack's energy deficit and is a linear function of snowpack mass and temperature. Positive energy fluxes into a snowpack must first satisfy the remaining energy deficit before snowmelt runoff begins, making cold content a key component of the snowpack energy budget. Nevertheless, uncertainty surrounds cold content development and its relationship to snowmelt, likely because of a lack of direct observations. This work clarifies the controls exerted by air temperature, precipitation, and negative energy fluxes on cold content development and quantifies the relationship between cold content and snowmelt timing and rate at daily to seasonal timescales. The analysis presented herein leverages a unique long-term snow pit record along with validated output from the SNOWPACK model forced with 23 water years (1991-2013) of quality controlled, infilled hourly meteorological data from an alpine and subalpine site in the Colorado Rocky Mountains. The results indicated that precipitation exerted the primary control on cold content development at our two sites with snowfall responsible for 84.4 and 73.0 % of simulated daily gains in the alpine and subalpine, respectively. A negative surface energy balance - primarily driven by sublimation and longwave radiation emission from the snowpack - during days without snowfall provided a secondary pathway for cold content development, and was responsible for the remaining 15.6 and 27.0 % of cold content additions. Non-zero cold content values were associated with reduced snowmelt rates and delayed snowmelt onset at daily to sub-seasonal timescales, while peak cold content magnitude had no significant relationship to seasonal snowmelt timing. These results suggest that the information provided by cold content observations and/or simulations is most relevant to snowmelt processes at shorter timescales, and may help water resource managers to better predict melt onset and rate.

  14. Economic and financial aspects of geothermal energy utilization

    International Nuclear Information System (INIS)

    Gazo, F.M.; Datuin, R.

    1990-01-01

    This paper reports on the historical development of geothermal energy in the Philippines, its present status and future possibilities. It also illustrates the average power generation and utilization from primary energy sources (hydro, oil, coal, and geothermal energy) in the country from 1981 to 1988. A comparison is made between electricity generating costs and results of operations from these power sources, showing that geothermal energy utilization is very competitive. Moreover, it also discusses the economic viability of geothermal energy utilization as a result of separate studies conducted by World Bank and an Italian energy consulting firm

  15. Fiscal 2000 report on result of development project of marine resources utilization system for energy conservation. Development of marine resources utilization system for energy conservation (Model demonstrative research and basic study); 2000 nendo energy shiyo gorika kaiyo shigen katsuyo system kaihatsu jigyo seika hokokusho. Energy shiyo gorika kaiyo shigen katsuyo system kaihatsu (model jissho kenkyu oyobi kiban kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    This paper explains the development of marine resources utilization system for energy conservation. The conceptual system is designed to take a large amount of deep sea water of 100 thousand to 1 million tons a day, to utilize it from the viewpoint of energy conservation using its coldness and purity characteristics, to then discharge it to the area of the sea in minimizing the environmental effect as well as obtaining effect such as absorption of carbon dioxide gas through cultivation of phyto-plankton. In pump-up technology, a piping system attaching on sea bed or floating with one or multiple constraints is applicable at present to all sites of geographical and oceanographic conditions. In utilization technology, use of deep-sea water as cooling water at a steam power plant, for example, improves generation efficiency by one point or more. In discharge and environment-related technologies, the research revealed that the deep-sea water from 300 m below releases carbon dioxide gas at surface, while photosynthesis can absorb the gas in the process of using nutrition contained in the deep-sea water; therefore, comprehensive examination is necessary taking energy utilization effect into account. Candidate sites were selected in areas of 200 m depth and within 5 km off-shore, with the optimum system examined at each site. (NEDO)

  16. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  17. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  18. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  19. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  20. The 1991 Japan Solar Energy Society. Japan Wind Energy Association Joint Conference

    Science.gov (United States)

    1991-09-01

    Thie paper summarizes the lectures presented at the research presentation conference held by the Japan Solar Energy Society and the Japan Wind Energy Association. The contents include a lecture relating to photovoltaic cells intended for efficiency improvement; a lecture relating to a light power generation system including the field test reports, improvements on peripheral devices and output characteristics; a lecture relating to optical chemistry; a lecture relating to heat pumps utilizing solar heat and well water; a lecture relating air conditioning utilizing photovoltaic cells; a lecture relating to heat systems utilizing solar heat directly; a lecture relating to heat collection; a lecture relating to cold heat for cooling using earth tubes; a lecture relating to direct utilization of ground water heat and solar heat; a lecture relating to underground heat storage; a lecture relating to accumulation of cold heat and hot heat; a lecture relating to insolation on the amount of insolation and spectroscopy; a lecture relating to light collection intended of energy saving; a lecture relating to improving materials including light collecting plates and thin films; a lecture relating to development and characteristics of solar cars; and a lecture relating to wind energy.

  1. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  2. Cold-fusion as safe and hazardless energy-source of the 21st century

    International Nuclear Information System (INIS)

    Gupta, R.C.; Gupta, Sushant

    2012-01-01

    Out of the two processes for nuclear-energy; nuclear-fission is plagued with problem of nuclear-radiation hazard, whereas though nuclear-fusion is safe but almost impossible to be done on earth specially at room- temperature. In 1989, two scientists Fleischmann and Pons in USA proposed a table-top, room temperature electrolysis-experiment of heavy-water with palladium-electrode; this is commonly called cold-fusion wherein nuclear-fusion is said to be taking place. This created a big storm and controversy in the scientific community. Initially the cold-fusion was heavily criticized and several objections (such as: non-reproducibility, non-observation of telltale signature of nuclear-reaction) were raised. The research-work of McKubre and others have clarified the objections and have established that for cold-fusion to take place certain threshold conditions (such as purity of electrode, current-density, deuterium to palladium loading ratio) needs to be satisfied. In due course of time, the Truth prevailed and the cold-fusion got more and more support by many scientists in several countries including India (BARC historic role has been appreciated worldwide). Biggest objection, however, was lack of a proper theory for how Coulomb-repulsion is overcome in cold-fusion. A possible explanation for how the Coulomb-repulsion is overcome, is given in this paper; which is based on a new-found Gupta-Dinu effect, which is a natural outcome of special-relativity via modification in Lorentz force formula. The recent nuclear-accidents have raised international-opinion against nuclear-fission, whereas sin-like hot-fusion on earth is not possible. Now it seems that ultimately it is the cold-fusion which will provide hazardless neat and cheap energy for the 21 st century and India could play a leading role in this direction. (author)

  3. Utilization of renewable energy in architectural design

    Institute of Scientific and Technical Information of China (English)

    TIAN Lei; QIN Youguo

    2007-01-01

    Renewable energy does not simply equal to using a photovoltaic (PV) board.In addition to heating,ventilation and air conditioning (HVAC) engineering considerations,the design approaches of architects are crucial to the utilization condition and methods of renewable energy.Through profound comprehension of the relationship between renewable energy utilization and design approaches,we can achieve a dual-standard of building environment performance and esthetics.

  4. Direct utilization of geothermal energy

    International Nuclear Information System (INIS)

    Lund, J. W.

    2010-01-01

    The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010) which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005). This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MW th , almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO 2 being released to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity). (author)

  5. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  6. Deep inelastic collisions at near-barrier energies and search for cold donor-fragment production

    International Nuclear Information System (INIS)

    Chatterjee, M.B.

    1992-01-01

    Deep inelastic collisions in the near barrier energies of the mass asymmetric systems are of importance since controversial results on energy partition are being reported. Energy dissipation and the partition of dissipated energy among the reaction partners are of interest. Search for cold donor-fragment production at near barrier energies were carried out on a mass asymmetric system like Ni+Pb. (author). 13 refs., 8 figs

  7. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Yang

    2016-03-01

    Full Text Available If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE, which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE.

  8. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.H.; Son, J.E.; Lee, S.D.; Cho, S.I.; Ashtiani-Araghi, A.; Rhee, J.Y.

    2016-11-01

    If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE), which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE. (Author)

  9. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    Science.gov (United States)

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  10. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  11. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I.

    2006-01-01

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year

  12. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  13. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  14. Energy utilization, environmental pollution and renewable energy sources in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K. [Karadeniz Technical University, Trabzon (Turkey). Dept. of Chemistry

    2004-04-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors.

  15. Energy utilization, environmental pollution and renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K.

    2004-01-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors

  16. Aligning Utility Incentives with Investment in Energy Efficiency

    Science.gov (United States)

    Describes the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to more aggressive and sustained utility investment in energy efficiency.

  17. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    Science.gov (United States)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  18. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  19. Solar thermal–photovoltaic powered potato cold storage – Conceptual design and performance analyses

    International Nuclear Information System (INIS)

    Basu, Dipankar N.; Ganguly, A.

    2016-01-01

    Highlights: • Loss of food crop is a huge problem in India due to the shortage of cold storage. • Conceptual design of a power system using solar energy for a potato cold storage. • Integration of flat plate collector and SPV module with suitable operating strategy. • System provides a net energy surplus of about 36 MW h over a calendar year. • Rudimentary economic analysis found payback period of less than four years. - Abstract: Wastage of food crops due to the dearth of proper cold storage facilities is a huge problem in underdeveloped and developing countries of the world. Conceptual design of a potato cold storage is presented here, along with performance appraisal over a calendar year. The microclimate inside the cold storage is regulated using a water–lithium bromide absorption system. Proposed system utilizes both solar thermal and photovoltaic generated electrical energy for its operation. A suitable operation strategy is devised and the performance of the integrated system is analyzed from energy and exergy point of view to identify the required numbers of thermal collectors and photovoltaic modules. The proposed system is found to provide a net surplus of about 36 MW h energy over a calendar year, after meeting the in-house requirements. A rudimentary economic analysis is also performed to check the financial viability of the proposed system. Both the thermal and photovoltaic components are found to have payback periods less than four years.

  20. Fiscal 1997 survey report. Investigational study on the cascade utilization of thermal energy (cold heat and hot heat) (feasibility study by the off-line system); 1997 nendo chosa hokokusho. Netsu energy (reinetsu to onnetsu) no cascade riyo ni kansuru chosa kenkyu (off-line hoshiki ni yoru feasibility study)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper studied a system to effectively use unused and low-grade thermal energy (cold heat and hot heat) in the Tokyo-Yokohama seaside area. For transportation of thermal energy, the batch transportation, that is, off-line system was discussed which uses insulated tank loaded barges and railroad freight trains. Thermal energy supply sources are 1) 0.3 million kW class thermal power plant, and 2) LNG storage base of 3 million ton/year class. Thermal energy users are Tokyo (Haneda) Airport D.H.C. (District Heating/Cooling Co.), MM 21 D.H.C. and Shin-Kawasaki D.H.C. The cold heat energy supplied to these three is about 1.5 million Mcal/daytimes300 days/year, and the hot heat energy supplied is about 1.33 million Mcal/daytimes150 days/year. Cold heat is obtained from seawater after the LNG vaporization, and hot heat from heat extracted from thermal turbine. Subcooled ice was selected for cold heat medium, and PCM-120A for hot heat medium. For batch transportation, an STL heat storage system is used which transports plastic capsules sealed with heat medium. Oil saving of 62,000 tons/year and CO2 reduction of about 53,000 tons/year can be expected. 85 figs., 98 tabs.

  1. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  2. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  3. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    International Nuclear Information System (INIS)

    Piattella, O.F.; Martins, D.L.A.; Casarini, L.

    2014-01-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100

  4. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  5. Energy conservation indicators cold and heat storage. Revision factsheet cold and heat storage 2009; Besparingskentallen koude- en warmteopslag. Herziening factsheet koude- en warmteopslag 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bosselaar, L. [SenterNovem, Utrecht (Netherlands); Koenders, M.J.B.; Van Helden, M.J.C.; Kleinlugtenbelt, J.H. [IF Technology, Arnhem (Netherlands)

    2009-08-15

    The aim of the title revision is to update the existing indicators for cold and heat storage as given in the Protocol Monitoring Sustainable Energy [Dutch] Het doel van het onderzoek is om de bestaande set van kentallen voor koude- en warmteopslag uit het Protocol Monitoring Duurzame Energie te actualiseren.

  6. On the possibility of generation of cold and additional electric energy at thermal power stations

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  7. Towards sustainability in cold chains: Development of a quality, energy and environmental assessment tool (QEEAT)

    NARCIS (Netherlands)

    Gwanpua, S.G.; Verboven, P.; Brown, T.; Leducq, D.; Verlinden, B.E.; Evans, J.; Van Der Sluis, S.; Wissink, E.B.; Taoukis, P.; Gogou, E.; Stahl, V.; El Jabri, M.; Thuault, D.; Claussen, I.; Indergård, E.; M. Nicolai, B.; Alvarez, G.; Geeraerd, A.H.

    2014-01-01

    Quantification of the impact of refrigeration technologies in terms of the quality of refrigerated food, energy usage, and environmental impact is essential to assess cold chain sustainability. In this paper, we present a software tool QEEAT (Quality, Energy and Environmental Assessment Tool) for

  8. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Allen, Myria W.

    2014-01-01

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  9. Can we improve the identification of cold homes for targeted home energy-efficiency improvements?

    International Nuclear Information System (INIS)

    Hutchinson, Emma J.; Wilkinson, Paul; Hong, Sung H.; Oreszczyn, Tadj

    2006-01-01

    Objective: To investigate the extent to which homes with low indoor-temperatures can be identified from dwelling and household characteristics. Design: Analysis of data from a national survey of dwellings, occupied by low-income households, scheduled for home energy-efficiency improvements. Setting: Five urban areas of England: Birmingham, Liverpool, Manchester, Newcastle and Southampton. Methods: Half-hourly living-room temperatures were recorded for two to four weeks in dwellings over the winter periods November to April 2001-2002 and 2002-2003. Regression of indoor on outdoor temperatures was used to identify cold-homes in which standardized daytime living-room and/or nighttime bedroom-temperatures were o C (when the outdoor temperature was 5 o C). Tabulation and logistic regression were used to examine the extent to which these cold-homes can be identified from dwelling and household characteristics. Results: Overall, 21.0% of dwellings had standardized daytime living-room temperatures o C, and 46.4% had standardized nighttime bedroom-temperatures below the same temperature. Standardized indoor-temperatures were influenced by a wide range of household and dwelling characteristics, but most strongly by the energy efficiency (SAP) rating and by standardized heating costs. However, even using these variables, along with other dwelling and household characteristics in a multi-variable prediction model, it would be necessary to target more than half of all dwellings in our sample to ensure at least 80% sensitivity for identifying dwellings with cold living-room temperatures. An even higher proportion would have to be targeted to ensure 80% sensitivity for identifying dwellings with cold-bedroom temperatures. Conclusion: Property and household characteristics provide only limited potential for identifying dwellings where winter indoor temperatures are likely to be low, presumably because of the multiple influences on home heating, including personal choice and

  10. Energy and generating mechanism of a subsurface, cold core eddy in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Babu, M.T.; Rao, D.P.

    Computation of available potential energy (APE) of a recently observed cold core, subsurface eddy (centered at 17 degrees 40'N and 85 degrees 19'E) in the Bay of Bengal revealed that the energy maxima associated with the eddy was of the order of 1...

  11. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  12. Utilization of Titanium Particle Impact Location to Validate a 3D Multicomponent Model for Cold Spray Additive Manufacturing

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; King, P. C.; Busch, C.; Masood, S. H.; Jahedi, M.; Nagarajah, R.; Gulizia, S.

    2017-12-01

    Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles' velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.

  13. Engine cold start analysis using naturalistic driving data: City level impacts on local pollutants emissions and energy consumption.

    Science.gov (United States)

    Faria, Marta V; Varella, Roberto A; Duarte, Gonçalo O; Farias, Tiago L; Baptista, Patrícia C

    2018-07-15

    The analysis of vehicle cold start emissions has become an issue of utmost importance since the cold phase occurs mainly in urban context, where most of the population lives. In this sense, this research work analyzes and quantifies the impacts of cold start in urban context using naturalistic driving data. Furthermore, an assessment of the influence of ambient temperature on the percentage of time spent on cold start was also performed. Regarding the impacts of ambient temperature on cold start duration, a higher percentage of time spent on cold start was found for lower ambient temperatures (80% of the time for 0°C and ~50% for 29°C). Results showed that, during cold start, energy consumption is >110% higher than during hot conditions while emissions are up to 910% higher. Moreover, a higher increase on both energy consumption and emissions was found for gasoline vehicles than for diesel vehicles. When assessing the impacts on a city perspective, results revealed that the impacts of cold start increase for more local streets. The main finding of this study is to provide evidence that a higher increase on emissions occurs on more local streets, where most of the population lives. This kind of knowledge is of particular relevance to urban planners in order to perform an informed definition of public policies and regulations to be implemented in the future, to achieve a cleaner and healthier urban environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Optimization of joint energy micro-grid with cold storage

    Science.gov (United States)

    Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen

    2018-02-01

    To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.

  15. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    International Nuclear Information System (INIS)

    Tomasi, T.E.; Horwitz, B.A.

    1987-01-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T 4 U), and triiodothyronine utilization rate (T 3 U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using 125 I-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T 4 U, and a 204% increase in T 3 U. The much greater increase in T 3 U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposure induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T 3 U more accurately reflects thyroid function than does T 4 U. A mechanism for the cold-induced change in BMR is proposed

  16. Structure requirements for magnetic energy storage devices

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Huang, X.

    1993-01-01

    Large variety of large and small magnetic energy storage systems have been designed and analyzed in the last 20 years. Cryoresistive and superconductive energy storage (SMES) magnets have been considered for applications such as load leveling for electric utilities, pulsed storage for electromagnetic launchers and accelerator devices, and space borne superconductive energy storage systems. Large SMES are supported by a combination of cold and warm structure while small SMES are supported only by cold structure. In this article we provide analytical and numerical tools to estimate the structure requirements as function of the stored energy and configuration. Large and small solenoidal and toroidal geometries are used. Considerations for both warm and cold structure are discussed. Latest design concepts for both large and small units are included. (orig.)

  17. The sun also can cold. In the summer, the adsorption chillers utilizes the capacity of solar thermal energy; Die Sonne kann auch kalt. Adsorptionskaeltemaschine lastet im Sommer die Solarthermie besser aus

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Andre [SorTec AG, Halle an der Saale (Germany)

    2013-06-15

    A combination of solar thermal systems with adsorption chillers from SorTech (Speyer, Federal Republic of Germany) enables an environmentally friendly and efficient recovery of coldness for the solar cooling of buildings by means of excess heat energy.

  18. Land use and energy utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.; Nathans, R.; Palmedo, P.F.

    1977-06-01

    Land use plays an important role in structuring the basic patterns in which energy is consumed in many areas of the U.S. Thus, in considering policies at a national or local level, which are aimed at either utilizing energy supplies in a more efficient manner, or in establishing the compatibility of new energy supply, conversion, and end use technologies with our existing social patterns of energy use, it is important to understand the interdependencies between land use and energy. The Land Use-Energy Utilization Project initiated in July 1974 was designed to explore the quantitative relationships between alternative regional land-use patterns and their resultant energy and fuel demands and the impacts of these demands on the regional and national energy supply-distribution systems. The project studies and analyses described briefly in this report provide a framework for delineating the energy system impacts of current and projected regional land-use development; a base of information dealing with the energy intensiveness of assorted land-use activities; models that enable Federal and regional planners to estimate the ranges of potential energy savings that could be derived from employing alternative land-use activity configurations; and a user manual for allowing local land use planners to carry out their own land use-energy impact evaluations. Much remains to be done to elucidate the complicated interdependencies between land use and energy utilization: what is accomplished here is an initial structuring of the problem. On the other hand, the recent increase in interest in establishing new ways for the U.S. to achieve energy conservation suggests that actions will be taken in the near future to tie land-use development to national and local targets for conservation.

  19. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  20. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  1. Achievement report for fiscal 1998. Research and development of new technologies for storing farm products utilizing low-temperature energy (2nd fiscal year); 1998 nendo seika hokokusho. Teion energy wo riyoshita nosanbutsu no shinki chozo gijutsu no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim of the work was to create new industrial technologies utilizing low-temperature energy satisfying local needs through developing new technologies, including air conditioning technologies high in reliability and excellent in energy efficiency. The objectives of the effort were to elucidate the behavior of moisture in the atmosphere below the freezing point and to develop farm product preserving technologies, to develop highly efficient energy conversion technologies for use in the low-temperature zone, latent heat storing cold heat technologies, and system evaluation. Constructed in connection with the last-said system evaluation were three technologies, which were a below-zero high-humidity air conditioning technology based on the outcome of agricultural verification of farm product storage, energy-efficient low-temperature storage of farm products which was a combination of a low-temperature oriented energy-efficient energy conversion technology and a clathrate hydrate-aided cold heat storing technology, and a technology applicable to business in the low-temperature processing field accessorial to the said technologies. They were compared with the conventional technologies, and then it was found that the most energy-efficient system, as endorsed by a 40-50% reduction it caused in electricity rate, was a combination of a low-temperature storage, frozen food storage, hydrate cold heat storage tank, recovery facility for farm waste incineration-produced waste heat, and a pulse tube freezer. (NEDO)

  2. Coupling model of energy consumption with changes in environmental utility

    International Nuclear Information System (INIS)

    He Hongming; Jim, C.Y.

    2012-01-01

    This study explores the relationships between metropolis energy consumption and environmental utility changes by a proposed Environmental Utility of Energy Consumption (EUEC) model. Based on the dynamic equilibrium of input–output economics theory, it considers three simulation scenarios: fixed-technology, technological-innovation, and green-building effect. It is applied to analyse Hong Kong in 1980–2007. Continual increase in energy consumption with rapid economic growth degraded environmental utility. First, energy consumption at fixed-technology was determined by economic outcome. In 1990, it reached a critical balanced state when energy consumption was 22×10 9 kWh. Before 1990 (x 1 9 kWh), rise in energy consumption improved both economic development and environmental utility. After 1990 (x 1 >22×10 9 kWh), expansion of energy consumption facilitated socio-economic development but suppressed environmental benefits. Second, technological-innovation strongly influenced energy demand and improved environmental benefits. The balanced state remained in 1999 when energy consumption reached 32.33×10 9 kWh. Technological-innovation dampened energy consumption by 12.99%, exceeding the fixed-technology condition. Finally, green buildings reduced energy consumption by an average of 17.5% in 1990–2007. They contributed significantly to energy saving, and buffered temperature fluctuations between external and internal environment. The case investigations verified the efficiency of the EUEC model, which can effectively evaluate the interplay of energy consumption and environmental quality. - Highlights: ► We explore relationships between metropolis energy consumption and environmental utility. ► An Environmental Utility of Energy Consumption (EUEC) model is proposed. ► Technological innovation mitigates energy consumption impacts on environmental quality. ► Technological innovation decreases demand of energy consumption more than fixed technology scenario

  3. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    Science.gov (United States)

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  4. The big experimental manual of Free Energy. Cold Fusion - Tesla-Waves - Space-Quantum-Energy - a.o.; Das grosse Freie Energie Experimentier-Handbuch. Kalte Fusion - Tesla-Wellen - Raum-Quanten-Energie - u.v.m.

    Energy Technology Data Exchange (ETDEWEB)

    Lay, P.; Chmela, H.; Wiedergut, W.

    2004-07-01

    The main topics of the lectures are: Experiments on cold fusion; Information on space-quantum energy; phenomena of rotating magnets; advanced electrostatic motors; generation of scalar waves; complex rotating fields and levitation from an advanced view; free energy converters. (GL)

  5. Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Kikuchi, Yoshinobu; Ishikawa, Kyosuke; Kawai, Masahito; Yoshiaki, Kashiwaya

    2015-01-01

    In this study, an independent energy system for houses in cold regions was developed using a small-scale natural gas CGS (cogeneration), air-source heat pump, heat storage tank, and GHB (gas hydrate battery). Heat sources for the GHB were the ambient air and geothermal resources of the cold region. The heat cycle of CO 2 hydrate as a source of energy was also experimentally investigated. To increase the formation speed of CO 2 hydrates, a ferrous oxide–graphite system catalyst was used. The ambient air of cold regions was used as a heat source for the formation process (electric charge) of the GHB, and the heat supplied by a geothermal heat exchanger was used for the dissociation process (electric discharge). Using a geothermal heat source, fuel consumption was halved because of an increased capacity for hydrate formation in the GHB, a shortening of the charging and discharging cycle, and a decrease in the freeze rate of hydrate formation space. Furthermore, when the GHB was introduced into a cold region house, the application rate of renewable energy was 47–71% in winter. The spread of the GHB can greatly reduce fossil fuel consumption and the associated greenhouse gases released from houses in cold regions. - Highlights: • Compound energy system for cold region houses by a gas hydrate battery was proposed. • Heat sources of a gas hydrate battery are exhaust heat of the CGS and geothermal. • Drastic reduction of the fossil fuel consumption in a cold region is realized

  6. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  7. High brilliant thermal and cold moderator for the HBS neutron source project Jülich

    International Nuclear Information System (INIS)

    Cronert, T; Zakalek, P; Rücker, U; Brückel, T; Dabruck, J P; Doege, P E; Nabbi, R; Bessler, Y; Hofmann, M; Butzek, M; Klaus, M; Lange, C; Hansen, W

    2016-01-01

    The proposed High Brilliance Neutron Source (HBS), recognized within the Helmholtz Association of German Research Centres, will optimize the entire chain from particle source through particle accelerator, target, moderator, reflector, shielding, beam extraction, beam transport all the way to the detector, utilizing the nuclear Be(p,n) or Be(d,n) reaction in the lower MeV energy range. A D 2 O moderating reflector prototype (MRP) and a cold source were constructed and build according to MCNP parameter studies. The MRP was tested in a feasibility study at the TREFF instrument at MLZ (Garching). Cold beam extraction from the flux maximum within the moderator based on liquid para H 2 and other cold moderators will be tested by energy spectroscopy via TOF-method. Different ratios of liquid ortho/para H 2 will be fed to the cold moderator. The ratio will be controlled by feeding from reservoires of natural liquid H 2 and a storage loop with an ortho/para converter and determined via online heat capacity measurement. (paper)

  8. Comparative Studies of Traditional (Non-Energy Integration and Energy Integration of Catalytic Reforming Unit using Pinch Analysis

    Directory of Open Access Journals (Sweden)

    M. Alta

    2012-12-01

    Full Text Available Energy Integration of Catalytic Reforming Unit (CRU of Kaduna Refinery and petrochemicals Company Kaduna Nigeria was carried out using Pinch Technology. The pinch analysis was carried out using Maple. Optimum minimum approach temperature of 20 °C was used to determine the energy target. The pinch point temperature was found to be 278 °C. The utilities targets for the minimum approach temperature were found to be 72711839.47 kJ/hr and 87105834.43 kJ/hr for hot and cold utilities respectively. Pinch analysis as an energy integration technique was found to save more energy and utilities cost than the traditional energy technique. Key words: Pinch point, CRU, Energy Target, Maple

  9. Impact of alternative energy forms on public utilities

    Science.gov (United States)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  10. Assessment of the Turkish utility sector through energy and exergy analyses

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2007-01-01

    The present study deals with evaluating the utility sector in terms of energetic and exergetic aspects. In this regard, energy and exergy utilization efficiencies in the Turkish utility sector over a wide range of period from 1990 to 2004 are assessed in this study. Energy and exergy analyses are performed for eight power plant modes, while they are based on the actual data over the period studied. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each power plants throughout the years, and overall energy and exergy efficiencies are compared for these power plants. The energy utilization efficiencies for the overall Turkish utility sector range from 32.64% to 45.69%, while the exergy utilization efficiencies vary from 32.20% to 46.81% in the analyzed years. Exergetic improvement potential for this sector are also determined to be 332 PJ in 2004. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies

  11. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2014-01-01

    This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory ini...... legal design and the problems that it causes for the water utilities that want to be resource–efficient and have a low–carbon footprint.......This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory...... initiatives are shortly described. One of the solutions needed is a reduction of energy use in the water utilities by their utilisation of renewable sources – acting as energy–smart water utilities. Such utilities are described in section 3. The policy and law regulating the water utilities are important...

  12. A Study on promotion of utilizing waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Ho [Korea Energy Economics Institute, Euiwang (Korea)

    1999-01-01

    The utilization of waste energy occupying over 80% of alternative energy has been an important issue with the trend of large-sized waste incinerator. The object of this study is to seek the methods for the active application of waste energy, which is produced at the process of waste generation and disposal. It is expected to help energy saving, foreign currency saving and prevent environmental pollution by utilizing alternative energy actively. It should have basic information, related information for examining technical feasibility, and feasibility examination of the surroundings for developing the demand place. Moreover, it should enhance the energy saving by recommending use of waste energy with introducing recommendation system of installing waste energy collection system. It should also consider the support of the introduction of waste energy system as well as the aspect of regional energy policy. In addition, the development and distribution of applied technology for waste energy are needed. (author). 36 refs., 4 figs., 77 tabs.

  13. U.S. utilities' experiences with the implementation of energy efficiency programs

    Science.gov (United States)

    Goss, Courtney

    In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities' experiences with DSM programs and compares the programs' annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.

  14. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized

    International Nuclear Information System (INIS)

    Gao Ting; Lin Wensheng; Gu Anzhong

    2011-01-01

    Research highlights: → We propose two new light hydrocarbon separation processes utilizing LNG cold energy. → Both processes produce liquefied ethane and LPG with high ethane recovery rate. → CH 4 -riched gas from the high pressure process is compressed to final pressure. → Re-liquefied CH 4 -riched gas from the low pressure one is pumped to final pressure. → Both processes have good performance; the low pressure one is economically better. -- Abstract: Liquefied natural gas (LNG) often consists of some kinds of light hydrocarbons other than methane, such as ethane, propane and butane, which are of high additional value. By efficiently utilization of LNG cryogenic energy, these light hydrocarbons (C 2 + ) can be separated from LNG with low power consumption and LNG is gasified meanwhile. Two novel light hydrocarbon separation processes are proposed in this paper. The first process uses a demethanizer working at higher pressure (about 4.5 MPa). The methane-riched natural gas from the demethanizer can be compressed to pipeline pressure with low power consumption. The other one uses a demethanizer working at lower pressure (about 2.4 MPa). By cascade utilization of LNG cryogenic energy, the methane-riched natural gas from the demethanizer is entirely re-liquefied. Then the liquid product is pressurized to pipeline pressure by pumps instead of compressors, reducing the power consumption greatly. By both of the two processes, liquefied ethane and LPG (liquefied petroleum gas, i.e. C 3 + ) at atmosphere pressure can be obtained directly, and high ethane recovery rate can be gained. On the basis of one typical feed gas composition, the effects of the ethane content and the ethane price to the economics of the light hydrocarbon separation plants are studied, and the economics are compared for these two processes. The results show that recovering light hydrocarbons from LNG can gain great profits by both of the two processes, and from the view of economics, the

  15. Cold exposure lowers energy expenditure at the cellular level.

    Science.gov (United States)

    Park, Seyeon; Chun, Sohyun; Kim, Danuh

    2013-06-01

    Mitochondrial function is intimately involved in various metabolic processes and is therefore essential to maintain cell viability. Of particular importance is the fact that mitochondrial membrane potential (ΔΨm ) is coupled with oxidative phosphorylation to drive adenosine triphosphate (ATP) synthesis. We have examined the effects of cold temperature stress on ΔΨm and the role of cold temperature receptor expression on ΔΨm . Human bronchial endothelial cell line, BEAS-2B, and human embryonic kidney, HEK293, cell line were transfected with the gene for cold temperature responsive receptor protein TRPM8 or TRPA1, and exposed to cold temperature. ΔΨm was monitored using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazoyl carbocyanine iodide derivative (JC-10), a ΔΨm probe. While cold temperatures significantly increased ΔΨm and mitochondrial ATP levels in cells transfected with temperature responsive receptor TRPM8 or TRPA1, no change was noted in wild-type cells. Moreover, the change in ΔΨm and ATP level was a dynamic process. ΔΨm was raised to peak levels within 10 min of cold exposure, followed by a return to baseline levels at 30 min. Our findings suggest that cold temperature exposure increased mitochondrial ΔΨm via a mechanism involving cold temperature receptors. © 2013 International Federation for Cell Biology.

  16. A multivariate-utility approach for selection of energy sources

    International Nuclear Information System (INIS)

    Ahmed, S; Husseiny, A.A.

    1978-01-01

    A deterministic approach is devised to compare the safety features of various energy sources. The approach is based on multiattribute utility theory. The method is used in evaluating the safety aspects of alternative energy sources used for the production of electrical energy. Four alternative energy sources are chosen which could be considered for the production of electricity to meet the national energy demand. These are nuclear, coal, solar, and geothermal energy. For simplicity, a total electrical system is considered in each case. A computer code is developed to evaluate the overall utility function for each alternative from the utility patterns corresponding to 23 energy attributes, mostly related to safety. The model can accommodate other attributes assuming that these are independent. The technique is kept flexible so that virtually any decision problem with various attributes can be attacked and optimal decisions can be reached. The selected data resulted in preference of geothermal and nuclear energy over other sources, and the method is found viable in making decisions on energy uses based on quantified and subjective attributes. (author)

  17. Geothermal Energy Utilization for the Homeowner

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1978-12-01

    The purpose of this article is to describe how geothermal energy can be utilized for residential space heating. Background information on the resource introduce this natural source of energy, followed by an explanation of the development of the resource (mainly by drilling wells) and the extraction of the energy. Various types of heat convectors and heat exchangers are described, along with how to estimate energy requirements and the associated costs. Finally, regulations and tax advantages are covered together with additional sources of information and a list of agencies who can provide assistance.

  18. Community energy systems and the law of public utilities

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nebraska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitiled ''Community Energy Systems and the Law of Public Utilities--Volume One: An Overview.'' This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Dealing with the paradox of energy efficiency promotion by electric utilities

    International Nuclear Information System (INIS)

    Sousa, José Luís; Martins, António Gomes; Jorge, Humberto

    2013-01-01

    Utility-based Demand-Side Management (DSM) programmes started after the oil crises of the 70's and were adopted by utilities as a standard practice. However, deregulation of the electricity industry threatened DSM. More recent concerns regarding energy dependence and environmental impact of energy use caused renewed attention on the utilities role in energy efficiency fostering. EE is presently a cross-cutting issue, influencing energy policy definition and regulatory activity worldwide. Some instruments for influencing the behaviour of electric utilities in the market are used by regulators, corresponding to both impositions and stimuli, such as defining savings targets or decoupling profits from energy sales. The paper addresses categories of regulatory instruments and refers to examples of countries and regions using these identified categories of instruments. Although some cases show voluntary involvement of utilities in EE promotion on the grounds of customer retention strategies, there is a clear prevalence of regulatory constrained markets where utilities rationally engage in energy efficiency promotion

  20. Thermodynamic basis for effective energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. T.

    1977-10-15

    A major difficulty in a quantitative assessment of effective energy utilization is that energy is always conserved (the First Law of Thermodynamics). However, the Second Law of Thermodynamics shows that, although energy cannot be destroyed, it can be degraded to a state in which it is of no further use for performing tasks. Thus, in considering the present world energy crisis, we are not really concerned with the conservation of energy but with the conservation of its ability to perform useful tasks. A measure of this ability is thermodynamic availability or, a less familiar term, exergy. In a real sense, we are concerned with an entropy-crisis, rather than an energy crisis. Analysis of energy processes on an exergy basis provides significantly different insights into the processes than those obtained from a conventional energy analysis. For example, process steam generation in an industrial boiler may appear quite efficient on the basis of a conventional analysis, but is shown to have very low effective use of energy when analyzed on an exergy basis. Applications of exergy analysis to other systems, such as large fossil and nuclear power stations, are discussed, and the benefits of extraction combined-purpose plants are demonstrated. Other examples of the application of the exergy concept in the industrial and residential energy sectors are also given. The concept is readily adaptable to economic optimization. Examples are given of economic optimization on an availability basis of an industrial heat exchanger and of a combined-purpose nuclear power and heavy-water production plant. Finally, the utility of the concept of exergy in assessing the energy requirements of an industrial society is discussed.

  1. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  2. Analysis of China's energy utilization for 2007

    International Nuclear Information System (INIS)

    Zhang Ming; Wang Wenwen

    2011-01-01

    China is the world's second-largest energy producer and consumer, so that it is very necessary to analyze China's energy situation for saving energy consumption and reducing GHG emission. Energy flow chart is taken as a useful tool for sorting out and displaying energy statistics data. Energy statistics data is the premise and foundation for analyzing energy situation. However, there exit many differences between China and foreign energy balance. Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. And the purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. We find that: (1) coal is the main energy in China, which accounted for 73.2% of total energy supply in 2007; (2) thermal power accounted for 83.2% of the total electricity supply, and 78.43% thermal power was based on coal; (3) in 2007, the secondary industrial sector consumed about 69.93% of energy; (4) China's energy utilization efficiency was about 33.23% in 2007. - Research highlights: → Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. → The purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. → We find that China's energy utilization efficiency was about 33.23% in 2007.

  3. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  4. Wind energy systems. Application to regional utilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This study developed a generic planning process that utilities can use to determine the feasibility of utilizing WECS (Wind Energy Conversion Systems) as part of their future mix of equipment. While this is primarily an economic process, other questions dealing with WECS availability, capacity credit, operating reserve, performance of WECS arrays, etc., had to be addressed. The approach was to establish the worth, or breakeven value, of WECS to the utility and to determine the impact that WECS additions would have on the utilities mix of conventional source.

  5. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  6. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  7. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  8. The energy-efficiency business - Energy utility strategies; Geschaeftsfeld Energieeffizienz. Strategien von Energieversorgern

    Energy Technology Data Exchange (ETDEWEB)

    Loebbe, S.

    2009-07-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed.

  9. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna [ed.

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland has been

  10. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  11. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  12. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

    2011-02-01

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  13. Surge recovery techniques for the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success

  14. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  15. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  16. Energy Performance of a Light Wood-Timber Structured House in the Severely Cold Region of China

    Directory of Open Access Journals (Sweden)

    Meng Zhen

    2018-05-01

    Full Text Available The purpose of the study was to determine the energy performance of a timber structured house built in Harbin, a severely cold region of China. The research team conducted a field test on the house that lasted three months (15 January–15 April 2008. The test included the winter heating energy consumption, average indoor temperature and relative humidity, building heat storage capacity, heat transfer coefficient of the wall, total air volume of air-conditioning system, etc. The test results showed that the total heating was calculated to be 73,240.59 MJ in winter. Thermal imaging tests were carried out on the house and found no obvious thermal defects such as thermal bridges. In conclusion, the timber structured house has a good level of building energy conservation and would provide a good exemplary for green building design and construction in similar severely cold regions in the world.

  17. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  18. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  19. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Science.gov (United States)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  20. Heat and cold accumulators in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kauranen, P.; Wikstroem, L. (VTT Technical Research Centre of Finland, Advanced Materials, Tampere (Finland)); Heikkinen, J. (VTT Technical Research Centre of Finland, Building Services and Indoor Environment, Espoo (Finland)); Laurikko, J.; Elonen, T. (VTT Technical Research Centre of Finland, Emission Control, Espoo (Finland)); Seppaelae, A. (Helsinki Univ. of Technology, Applied Thermodynamics, Espoo (Finland)). Email: ari.seppala@tkk.fi

    2009-07-01

    Phase Change Material (PCM) based heat and cold accumulators have been tailored for transport applications including a mail delivery van as well as the cold chains of foodstuff and blood products. The PCMs can store relative large amount of thermal energy in a narrow temperature interval as latent heat of fusion of their melting and crystallization processes. Compact heat and cold accumulators can be designed using PCMs. The aim of the project has been to reduce the exhaust gas and noise emissions and improve the fuel economy of the transport systems and to improve the reliability of the cold chains studied by storing thermal energy in PCM accumulators. (orig.)

  1. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  2. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  3. Multi-purpose utilization of hydrothermal resources within the City of El Centro. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, P.B.; Province, S.G.; Yamasaki, R.N.; Newman, K.L.

    1979-04-01

    The engineering and economic feasibility of utilizing geothermal heat from the Heber KGRA for space heating/cooling and water heating for domestic and industrial process applications within the City of El Centro was investigated. The analysis proceeds through an engineering survey of present conventional energy utilization within the City to identify and evaluate those end uses which could potentially utilize geothermal heat as a substitute for fossil fuel or electrically produced heating and cooling. A general engineering and economic evaluation of heat and cold delivery alternatives followed including evaluations of geothermal fluid transmission options, alternative refrigeration techniques, heat and cold transmission media options, probable systems interfaces, materials evaluations, projected conventional energy costs, life cycle costs for existing conventional systems, projected pricing requirements for privately and municipally developed geothermal resources, the relative distribution costs of heat delivery options, and estimated residential and commercial retrofit costs. A cost-effective plan for large-scale utilization of geothermal energy in El Centro for district heating/cooling and industrial applications was developed from this evaluation and preliminary conclusions drawn. Institutional barriers and environmental impacts associated with geothermal development in the City were also evaluated. Potentially adverse impacts were identified along with mitigating measures that should either completely eliminate or reduce these adverse effects to levels of insignificance.

  4. Utilization of secondary energy - major uses in the fermentation and beverage industries

    Energy Technology Data Exchange (ETDEWEB)

    Koch, H J

    1986-01-01

    With 18,5% the fermentation and beverage industry (not including liquors, wine and champagne) has the highest share of energy consumption within the food industry. At the same time, these two branches dispose of high secondary energy potentials which remain to be exploited yet. Secondary energy utilization primarily consists in the economic cooling of wort providing for the utilization of process water (80-82/sup 0/C), utilization of air-containing or air-void water vapors from wort boiling processes for technological heating processes, utilization of refrigerator super-heat enthalpies, the use of energy, conserving high-short heaters for larger units, in particular, and utilization of flue gas enthalpies with gaseous energy sources as the most efficient ones.

  5. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  6. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  7. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  8. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  9. Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket

    International Nuclear Information System (INIS)

    La Rocca, Vincenzo

    2011-01-01

    The paper deals with the cold energy available during LNG regasification, which can be recovered and utilized both inside the LNG regasification area and at a distance, such as in deep freezing agro food industry facilities and for space conditioning in the commercial and residential sector (e.g. Supermarkets and Hypermarkets). The feasibility study of this kind of application has been carried out at DREAM, Palermo University, within the framework of a research program. The results of a feasibility study of the kind of venture proposed, starting from its conceptual design and with a thorough thermodynamic and economic analysis, demonstrated the suitability and the profitability of the applications proposed. They seem very attractive due to expected wide future exploitation of LNG regasification in the World. -- Highlights: → Proposal pertaining cold recovery during LNG regasification. → Cold utilization far from the regasification site. → Transfer of liquid/gaseous carbon dioxide pipeline. → Exergetic and economic analysis of venture pertaining applications proposed. → Results of venture economic analysis.

  10. Utilization of Geothermal Energy in Slovakia

    OpenAIRE

    Gabriel Wittenberger; Ján Pinka

    2005-01-01

    Owing to favourable geological conditions, Slovakia is a country abundant in occurrence of low-enthalpy sources. The Slovakian government sponsors new renewable ecological energy sources, among which belongs the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supp...

  11. Wind energy in Denmark and within the Elsam utility area

    International Nuclear Information System (INIS)

    Friis, P.; Grauballe, J.

    1995-01-01

    At the turn of 1994, 3,700 wind turbines, with a total installed capacity of 540 MW were connected to the Danish utility grid. In 1994 these turbines fed 1,118 GWh wind energy into the grid, corresponding to approximately 3.3% of the total electricity consumption. The ELSAM utility area supplies the electric energy consumed by half the Danish population. The area has a large wind energy potential and approx. 75% of the installed wind energy capacity in Denmark is situated here accounting for 400 MW. In 1994 the ELSAM utilities supplied a total of 18,450 GWh with wind power contributing 850 GWh, i.e. 4.6% of the ELSAM sales to the consumers. (Author)

  12. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  13. Effect of cold deformation on latent energy value and high-temperature mechanical properties of 12Cr18Ni10Ti steel

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Shiganakov, Sh.B.; Gusev, M.N.

    1997-01-01

    Energetic and magnetic characteristics and also the high-temperature mechanical properties depending on the preliminary cold deformation of 12Cr18Ni10Ti steel are presented. It is shown that the value of storage energy in the steel has being grown with increase of the deformation. The rate of its growth has been increased after beginning of martensitic γ→α'- transformation when value of comparative storage energy at first decreased and then has been stay practically constant. Level of mechanical properties of the steel at 1073 K has been determined not only by value of cold deformation but and structural reconstruction corresponding to deformations 35-45% and accompanying with α'-phase martensite formation and change of energy accumulating rate. Preliminary cold deformation (40-60 %) does not improve high- temperature plasticity of steel samples implanted by helium. refs. 7, figs. 2

  14. Retrofitting a 1960s Split-Level, Cold-Climate Home

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-07-01

    National programs such as Home Performance with ENERGY STAR® and numerous other utility air sealing programs have brought awareness to homeowners of the benefits of energy efficiency retrofits. Yet, these programs tend to focus on the low-hanging fruit: air-sealing the thermal envelope and ductwork where accessible, switch to efficient lighting, and low-flow fixtures. At the other end of the spectrum, deep-energy retrofit programs are also being encouraged by various utilities across the country. While deep energy retrofits typically seek 50% energy savings, they are often quite costly and most applicable to gut-rehab projects. A significant potential for lowering energy usage in existing homes lies between the low hanging fruit and deep energy retrofit approaches - retrofits that save approximately 30% in energy over the existing conditions. A key is to be non-intrusive with the efficiency measures so the retrofit projects can be accomplished in occupied homes. This cold climate retrofit project involved the design and optimization of a home in Connecticut that sought to improve energy savings by at least 30% (excluding solar PV) over the existing home's performance. This report documents the successful implementation of a cost-effective solution package that achieved performance greater than 30% over the pre-retrofit - what worked, what did not, and what improvements could be made.

  15. Exergoeconomic analysis of glycol cold thermal energy storage systems for building applications. Paper no. IGEC-1-155

    International Nuclear Information System (INIS)

    Bakan, K.; Dincer, I.; Rosen, M.A.

    2005-01-01

    An exergoeconomic analysis is reported of glycol cold thermal energy storage (CTES) systems. Exergoeconomics combines thermodynamic analysis (using both the first and second laws of thermodynamics) with principles of economics, mostly cost accounting. Exergy analysis provides more meaningful and useful information than energy analysis about the efficiency and performance of glycol CTES. The main reason is that traditional analyses are based on mass and energy balances and only external losses can be detected, while exergy analysis measures the quality of energy and includes irreversibility's that occur during any process. According to simulation results, the exergy efficiency of the glycol CTES is roughly 75% less than the energy efficiency due to irreversibility's, and the system efficiency is less than the tank efficiency. Irreversibility's for the overall system are higher than for the tank. Also, the reference ambient temperature has an effect on exergy destruction and efficiency. A 5 o C change in ambient temperature causes a 25% change in exergy efficiency. This result implies that cold energy is more efficient at higher ambient temperatures. Heat losses from the tank depend on the ambient temperature; a 5 o C increase in ambient temperature causes a heat loss increase of 6%. (author)

  16. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  17. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  18. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  19. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  20. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  1. Public utilities with renewable energy sources. Proceedings; Stadtwerke mit Erneuerbaren Energien. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the Second EUROSOLAR Conference of EUROSOLAR, the European Association for Renewable Energy (Bonn, Federal Republic of Germany) between 15th and 16th May, 2008, at the Waterworks Braunschweig (Federal Republic of Germany), the following lectures were held: (1) The municipal public utility: The paradigm shift from power distribution companies to municipal infrastructure provider (C. Jaenig); (2) Public utilities and their concepts (Z. Meszaros); (3) The BS Energy Group (U.Lehmann-Grube); (4) New ways with energy (T. Westerheide); (5) Public utilities and their concepts (R. Edzards); (6) Public utilities with renewable energy (P. Asmuth); (7) Total concept of the public utility Wolfhagen (M. Ruehl); (8) Municipal energy concepts for the expansion of the combined heat and power generation and renewable energies (J. van Bergen); (9) Storage of renewable energy (T. Blank); (10) Public utility as a confident partner of a renewable regional economy (R. Hemmers); (11) The regenerative combined cycle power plant (M. Meyr); (12) The solar power system of systaic (O. Achilles); (13) The concession contract as an instrument for restructuring (J. Schwarz); (14) EEG 2009, GasNZV and EEWaermeG: The changed legal framework as a chance for a restructured power generation (M. Altrock).

  2. High Power Density, Lightweight Thermoelectric Metamaterials for Energy Harvesting

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric energy harvesting utilizes materials that generate an electrical current when subjected to a temperature gradient, or simply, a hot and cold source of...

  3. New energy vision in Kitakata City area; Kitakatashi chiiki shin energy vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    A new energy vision was established in Kitakata City in Fukushima Prefecture. The population of Kitakata City in 2000 was 37,490, not having experienced extreme increase or decrease. Population employed in the tertiary industry occupies the largest ratio at 36.9%, followed by the secondary industry. The energy demand of the entire city is about 3300 trillion Joule, and carbon dioxide emitted therefrom is estimated about 77,000 t-C annually. Calculation of new energy amount in existence reveals about 4190 trillion Joule annually, which corresponds to about 1.3 times the energy demand quantity of the city. The new energy introducing project includes introduction of photovoltaic power generation into the public hall and schools, utilization of solar heat for greenhouses, introduction of solar heat and wind power hybrid power generation into the Green Tourism experiencing facilities, parks, street lights, and evacuation places, introduction of small to medium hydropower generation plants into Kitanogo, Kuranoyu and Happo-Ike, utilization of cold heat of snow, introduction of clean energy fueled automobiles into the public organizations, utilization of bio-mass energy, wastes burning power generation and heat utilization. (NEDO)

  4. Aquaculture and energy-generation benefit from pipeline deep under the sea

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-09-01

    The Natural Energy Laboratory of Hawaii chose about 10,000 feet of HDPE pipe in 55-inch and 63-inch diameters for an application to pump ashore 38 degree F seawater from deep below the ocean surface for use in aquaculture and energy generation. The pipe was supplied by KWH Pipe of Mississauga, Ontario. It is well known that the world's tropical oceans are huge collectors of heat energy which can be utilized for various scientific and practical endeavours, Ocean Thermal Energy Conversion (OTEC) as the process is called, utilizes the difference between warm surface seawater and cold deep seawater to produce energy. The cold seawater can also be used to air condition buildings, desalinate water, grow lobsters and fish, produce algae and shellfish, grow cold-climate fruit and vegetables and much more. In the typical application the pipe is filled with air, which supports it and its anchors during towing to the site where the pipe is flooded for sinking. In the application described here, a separate warm water structure was also installed near the 80-foot deep end of one shore-crossing tunnel; spool pieces connect that structure and the offshore HDPE pipe to the two tunnels constructed earlier. The tunnels extend onshore to the pump station which provides the power to bring the cold water to shore. Other than the Hawaii installation, the only existing example is at Cornell University where the university campus buildings are being cooled by pumping cold water from 250 feet deep in Cayuga Lake through a two-mile long, 63-inch HDPE pipeline.

  5. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress

    International Nuclear Information System (INIS)

    Putri, Mirasari; Syamsunarno, Mas Rizky A.A.; Iso, Tatsuya; Yamaguchi, Aiko; Hanaoka, Hirofumi; Sunaga, Hiroaki; Koitabashi, Norimichi; Matsui, Hiroki; Yamazaki, Chiho; Kameo, Satomi; Tsushima, Yoshito

    2015-01-01

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36 −/− mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36 −/− mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue 125 I-BMIPP and the glucose analogue 18 F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36 −/− mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36 −/− mice after cold exposure. These findings strongly suggest that CD36 −/− mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36 −/− mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is reduced in thermogenic tissues during

  6. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  7. Energy Optimized Envelope for Cold Climate Indoor Agricultural Growing Center

    Directory of Open Access Journals (Sweden)

    Caroline Hachem-Vermette

    2017-07-01

    Full Text Available This paper presents a study of the development of building envelope design for improved energy performance of a controlled indoor agricultural growing center in a cold climate zone (Canada, 54° N. A parametric study is applied to analyze the effects of envelope parameters on the building energy loads for heating, cooling and lighting, required for maintaining growing requirement as obtained in the literature. A base case building of rectangular layout, incorporating conventionally applied insulation and glazing components, is initially analyzed, employing the EnergyPlus simulation program. Insulation and glazing parameters are then modified to minimize energy loads under assumed minimal lighting requirement. This enhanced design forms a base case for analyzing effects of additional design parameters—solar radiation control, air infiltration rate, sky-lighting and the addition of phase change materials—to obtain an enhanced design that minimizes energy loads. A second stage of the investigation applies a high lighting level to the enhanced design and modifies the design parameters to improve performance. A final part of the study is an investigation of the mechanical systems and renewable energy generation. Through the enhancement of building envelope components and day-lighting design, combined heating and cooling load of the low level lighting configuration is reduced by 65% and lighting load by 10%, relative to the base case design. Employing building integrated PV (BIPV system, this optimized model can achieve energy positive status. Solid Oxide Fuel Cells (SOFC, are discussed, as potential means to offset increased energy consumption associated with the high-level lighting model.

  8. Report of the workshop Energy Utility and Solar Water Heater 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The title workshop was organized to increase the interest of energy utilities for the Solar Water Heater campaign by providing representatives of the utilities with information about the technical and marketing aspects of solar boilers, and to stimulate knowledge transfer between the energy utilities about the method, the possibilities and bottlenecks of solar water heater projects

  9. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage

    International Nuclear Information System (INIS)

    Chen, Jiajie; Ling, Ziye; Fang, Xiaoming; Zhang, Zhengguo

    2015-01-01

    Highlights: • Form-stable dodecane/fumed silica composite for cold storage is prepared. • A suggesting hypothesis that explains infiltration mechanism is proposed. • The performance of the composite phase change material is investigated. • Numerical simulation of system is carried out and results fit well. - Abstract: A kind of form-stable composite phase change materials used for cold thermal energy storage is prepared by absorbing dodecane into the hydrophobic fumed silica. With relatively suitable pore diameter and hydrophobic groups, hydrophobic fumed silica is beneficial to the penetration and infiltration of dodecane and the leakage problem solving. Scanned by electron micrographs and Fourier transformation infrared, the composite phase change material is characterized to be just physical penetration. Besides, the differential scanning calorimeter and thermo gravimetric analysis reveals the high enthalpy, good thermal stability and cycling performance of this composite phase change material. What’s more, Hot-Disk thermal constants analyzer demonstrates that the composite phase change material has low thermal conductivity which is desired in cold storage application. In the experiment, a cold energy storage system is set up and the results from the experiment show that the system has excellent performance of cold storage by incorporating composite phase change material. Apart from that, the experimental data is found to have a great agreement with the numerical simulation which is carried out by using the commercial computational fluid dynamics software FLUENT.

  10. Utilization of geothermal energy in the USSR

    International Nuclear Information System (INIS)

    Kononov, V.I.; Dvorov, I.M.

    1990-01-01

    This paper reports that at present geothermal energy is utilized in the USSR mostly for district heating, and for industrial and agricultural purposes. The populations of 7 towns have district heating that is supplied by thermal waters. The population supplied totals about 125,000 people. The total area of greenhouses is 850,000 m 2 . Electric energy generated at geothermal power stations still remains negligible with the installed capacity of the single Pauzhetka station (Kamchatka) being 11 MW. another station at Mutnovka is currently under construction and is expected to be producing 50 MW by 1992 and 200 MW by 1998. The proven geothermal resources in the USSR provide hope for a significant increase in the utilization of the earth's deep heat in the near future

  11. Energy-filtered cold electron transport at room temperature.

    Science.gov (United States)

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  12. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  13. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  14. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2003-01-01

    Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....

  15. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  16. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Neal Tai-Shung

    2016-01-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  17. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian

    2016-06-23

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  18. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  19. Deep influence of passive low energy consumption multi-storey residential building in cold region

    Science.gov (United States)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  20. Economic evaluations of fusion-based energy storage systems in an electric utility

    International Nuclear Information System (INIS)

    Hwang, W.G.

    1977-01-01

    The feasibility of introducing a fusion energy storage system, which consists of a fusion-fission reactor and a water-splitting process, in an electric utility was investigated. The fusion energy storage system was assumed to be run during off-peak periods in order to make use of unused, low fuel cost capacity of an electric utility. The fusion energy storage system produces both fissile fuel and hydrogen. The produced hydrogen was assumed to be transmitted through and stored in existing natural gas trunklines for later use during peak-load hours. The peaking units in the utility were assumed to burn the hydrogen. Reserve power is usually cheap on systems with heavy nuclear fission reactor installation. The system studied utilizes this cheap energy for producing expensive fuel. The thermochemical water-splitting process was employed to recover thermal energy from the fusion-fission reactor system. The cost of fusion energy storage systems as well as the value of produced fuel were calculated. In order to simulate the operations of the fusion energy storage system for a multi-year planning period, a computer program, FESUT (Fusion Energy Simulation at the University of Texas), was developed for the present study. Two year utility simulations with the fusion energy storage system were performed

  1. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  2. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  3. Mild cold effects on hunger, food intake, satiety and skin temperature in humans

    Directory of Open Access Journals (Sweden)

    M Langeveld

    2016-04-01

    Full Text Available Background Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. Methods We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold or 24°C (thermoneutrality for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. Results We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. Conclusions It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure.

  4. View of atomic energy utilization in 21st century

    International Nuclear Information System (INIS)

    Kondo, Shunsuke

    1998-01-01

    In five years from 1991 to 1996, the energy consumption in the world increased by the yearly rate of 1.5%, and in 1996, it reached about 8.4 billion t in terms of petroleum. The proportion that nuclear energy takes in it was 7.4%, following 39% of petroleum, 27% of coal and 24% of natural gas. In electric power generation field, nuclear power took 17% in the whole world, and 30% in Japan in 1995. As of the end of 1996, the nuclear power generation facilities in the world were 434 plants of 365 GWe output, and 51 plants of 43 GWe output were in operation in Japan. As the technologies of utilizing nuclear energy, there are the utilization of nuclear fission reaction, nuclear fusion reaction and radio-isotopes. In this report, the utilization of nuclear fission reaction is taken up. Pressurized water reactor, boiling water reactor, heavy water (CANDU) reactor and gas-cooled reactor, and nuclear fuel cycle are briefly explained. As for the performance of nuclear power generation, safety, reliability and economical efficiency are reported. The factors which exert effects to the development of nuclear energy utilization are the acceptance by public, economical efficiency and environmental problems. The range of possible installation capacity and the subjects for hereafter are described. (K.I.)

  5. The FRISBEE tool, a software for optimising the trade-off between food quality, energy use, and global warming impact of cold chains

    NARCIS (Netherlands)

    Gwanpua, S.G.; Verboven, P.; Leducq, D.; Brown, T.; Verlinden, B.E.; Bekele, E.; Aregawi, W. Evans, J.; Foster, A.; Duret, S.; Hoang, H.M.; Sluis, S. van der; Wissink, E.; Hendriksen, L.J.A.M.; Taoukis, P.; Gogou, E.; Stahl, V.; El Jabri, M.; Le Page, J.F.; Claussen, I.; Indergård, E.; Nicolai, B.M.; Alvarez, G.; Geeraerd, A.H.

    2015-01-01

    Food quality (including safety) along the cold chain, energy use and global warming impact of refrigeration systems are three key aspects in assessing cold chain sustainability. In this paper, we present the framework of a dedicated software, the FRISBEE tool, for optimising quality of refrigerated

  6. Integrating net-zero energy and high-performance green building technologies into contemporary housing in a cold climate

    Science.gov (United States)

    Martin Yoklic; Mark Knaebe; Karen Martinson

    2010-01-01

    The objectives of this research project are (1) to show how the sustainable resources of forest biomass, solar energy, harvested rainwater, and small-diameter logs can be integrated to a system that provides most or all of the energy and water needs of a typical cold climate residential household, and (2) to effectively interpret the results and convey the sustainable...

  7. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K. [IBACOS, Inc., Pittsburgh, PA (United States); Badger, L. [Vermont Energy Investment Corporation, Burlington, VT (United States)

    2013-04-01

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

  8. Seasonal shifting of surplus renewable energy in a power system located in a cold region

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-10-01

    Full Text Available The Fukushima nuclear disaster in 2011 changed Japan's strategy for reducing CO2 emissions. The government is now placing more emphasis on the development of nonCO2-emitting distributed generation systems such as wind, solar, and tidal power to reduce greenhouse gas emissions and guarantee electricity supply in the case of a natural disaster. This paper proposes a strategy for the exploitation of wind, solar, and tidal resources in a cold region in Japan by utilizing surplus energy from the summer and spring during winter. It also aims to determine the most favorable energy mix of these renewable sources and storage system types. The study is performed by calculating hourly demand and renewable energy supply for the city in one year, which is based on actual data of demand, solar irradiation, wind speeds, and tidal current speeds. The costs of the components of the renewable power plants and storage systems are considered, and different proportions of generation outputs are evaluated with different types of storage systems. According to results, the configuration containing the hydrogen storage system using organic chemical hydride methylcyclohexane (OCHM is the most economical but is still more expensive than one using a conventional generation system. Moreover, we confirm that the cost of CO2 emissions is the key element for leveling the playing field between conventional and renewable generation from an economic perspective. The cost of CO2 emissions to public health as well as those costs related to the interruption of services during a catastrophe must be carefully calculated with other issues from conventional power projects to perform a precise comparative evaluation between both types of generation systems.

  9. Spectral distortion due to scattered cold neutrons in beryllium filter

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Inoue, Kazuhiko

    1980-01-01

    Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)

  10. Profiles in Renewable Energy: Case Studies of Successful Utility-Sector

    Science.gov (United States)

    increasingly interested in acquiring hands-on experience with renewable energy technologies in order to plan establish contracts to purchase QFs' power output at "avoided cost," or the cost that the utility state utility regulations. Utility power purchase contracts, which many projects received under the

  11. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  12. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  13. Development and utilization of new energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Qu Shiyuan (Academia Sinica, Beijing (CN). Energy Research Inst.)

    1990-01-01

    Since the foundation of the People's Republic of China, the Chinese Government has paid great attention to the development and utilization of new energy resources. Besides the development of biomass gas to provide energy for daily life in rural areas, China has also done much research and development in solar, wind, geothermal and marine energy to substitute alternative energy supplies, especially in the remote regions. Although China has abundant conventional energy resources the average energy resource per capita is low due to the large population. In recent years, the gap between energy consumption and supply has become larger and China will have to develop actively new energy industries at the same time as developing conventional energy. (author).

  14. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  15. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5-64.0% and 34.1-55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1-6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment

  16. Optimal shape of a cold-neutron triple-axis spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K., E-mail: lefmann@fys.ku.d [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden); Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Treue, F. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Kirkensgard, J.J.K. [Institute of Nature and Models, Roskilde University (Denmark); Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen (Denmark); Plesner, B. [Institute of Nature and Models, Roskilde University (Denmark); Hansen, K.S. [Institute of Nature and Models, Roskilde University (Denmark); Mid-Greenland High School, Nuuk, Greenland (Denmark); Kleno, K.H. [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); European Spallation Source, University of Lund, St. Algatan 4, Lund (Sweden)

    2011-04-01

    We have performed a McStas optimization of the primary spectrometer for a generic 40 m long, cold-neutron triple-axis spectrometer with a doubly focusing monochromator. The optimal design contains an elliptically focusing guide, a virtual source point before a low-grade PG monochromator, and non-equidistant focusing at the monochromator. The flux at 5 meV shows a gain factor 12 over the 'classical' design with a straight 12x3cm{sup 2}, m=2 guide and a vertically focusing PG monochromator. In addition, the energy resolution was found to be improved. This unexpectedly large design improvement agrees with the Liouville theorem and can be understood as the product of many smaller gain factors, combined with a more optimal utilization of the beam divergence within the guide. Our results may be relevant for a possible upgrade of a number of cold-neutron triple-axis spectrometers-and for a possible triple-axis spectrometer at the European Spallation Source.

  17. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  18. Energy and exergy analysis at the utility and commercial sectors of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Abdessalam, H.; Shahruan, B.S.

    2007-01-01

    In this paper, sectoral energy and exergy analysis model is applied to the utility and commercial sectors of Malaysia by considering the energy and exergy flows from 1990 to 2003. The energy and exergy efficiencies are determined for the sub-sectors and devices used in these two sectors. It has been found the hydroelectric power plant sub-sector is more energy and exergy efficient compared to the thermal power plant sub-sector. The energy and exergy efficiencies of utility and commercial sectors of Malaysia are compared with a few other countries around the world as well. The utility and commercial sectors of Malaysia are found to be more efficient than that of Thailand, Brunei, China, and Vietnam in 1999

  19. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    International Nuclear Information System (INIS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies

  20. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Energy Technology Data Exchange (ETDEWEB)

    Fromer, Neil A., E-mail: nafromer@caltech.edu [California Institute of Technology, Resnick Sustainability Institute (United States); Diallo, Mamadou S., E-mail: diallo@wag.caltech.edu [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2013-11-15

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  1. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Science.gov (United States)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  2. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  3. Impact Analysis of Window-Wall Ratio on Heating and Cooling Energy Consumption of Residential Buildings in Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Qiaoxia Yang

    2015-01-01

    Full Text Available In order to assess the optimal window-wall ratio and the proper glazing type in different air conditioning system operation modes of residential buildings for each orientation in three typical cities in hot summer and cold winter zone: Chongqing, Shanghai, and Wuhan simulation models were built and analyzed using Designer’s Simulation Toolkit (DeST. The study analyzed the variation of annual heating energy demand, annual cooling energy demand, and the annual total energy consumption in different conditions, including different orientations, patterns of utilization of air conditioning system, window-wall ratio, and types of windows. The results show that the total energy consumption increased when the window-wall ratio is also increased. It appears more obvious when the window orientation is east or west. Furthermore, in terms of energy efficiency, low-emissivity (Low-E glass performs better than hollow glass. From this study, it can be concluded that the influence and sensitivity of window-wall ratio on the total energy consumption are related to the operation mode of air conditioning system, the orientation of outside window, and the glazing types of window. The influence of the factors can be regarded as reference mode for the window-wall ratio when designing residential buildings.

  4. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Mirasari [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Syamsunarno, Mas Rizky A.A. [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Department of Biochemistry, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java 45363 (Indonesia); Iso, Tatsuya, E-mail: isot@gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamaguchi, Aiko; Hanaoka, Hirofumi [Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Sunaga, Hiroaki [Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Koitabashi, Norimichi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Matsui, Hiroki [Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamazaki, Chiho; Kameo, Satomi [Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Tsushima, Yoshito [Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); and others

    2015-02-20

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36{sup −/−} mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36{sup −/−} mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue {sup 125}I-BMIPP and the glucose analogue {sup 18}F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36{sup −/−} mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36{sup −/−} mice after cold exposure. These findings strongly suggest that CD36{sup −/−} mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36{sup −/−} mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is

  5. Impact of gas on utilities - competitive energy options

    International Nuclear Information System (INIS)

    Coolican, M.

    1997-01-01

    The initiatives taken by Nova Scotia Power to have natural gas as a generating fuel was discussed. Nova Scotia Power customers have indicated to the Utility that along with reduced energy costs, they want choices, better services and innovative products. It was noted that coal is currently Nova Scotia Power's principal fuel, but the utility is working with the Cape Breton Development Corporation, their supplier, to bring the cost of coal down. The utility is also exploring the potential of coal bed methane in Pictou and Cumberland counties of Nova Scotia. However, the most promising competitive energy option for their customers is Sable Offshore natural gas. To bring natural gas as the generating fuel for electricity, the Utility is taking steps to convert its Tufts Cove Thermal Generating Station to natural gas and to pipe natural gas to the Trenton Generating Station by November 1999. Bringing natural gas to these two stations would establish a critical base level of demand for natural gas in the Halifax and New Glasgow-Trenton area. One of the important ingredients of this plan is the cost of piping the gas to market. It was suggested that the 'postage stamp' tolling system (i.e. one price for the gas delivered anywhere along the pipeline) favored by some, would not give Nova Scotians the economic advantages that they deserve. For this reason, Nova Scotia Power favours the 'point to point' tolling system, a system that is considered fair and efficient, and the one that has a better chance of producing competitive energy prices

  6. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Science.gov (United States)

    2010-04-01

    ... (of the type affected by the energy conservation measure) after implementation of the energy...) Utility benchmarking. HUD will pursue benchmarking utility consumption at the project level as part of the... convene a meeting with representation of appropriate stakeholders to review utility benchmarking options...

  9. Solar thermal energy utilization: A bibliography with abstracts

    Science.gov (United States)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  10. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conventional technology for gas transport

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel energy and cost effective transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier and an integrated receiving terminal. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. In the onshore process, the cryogenic exergy in the LNG is utilized to cool and liquefy the cold carriers, LCO 2 and LIN. The transport pressures for LNG, LIN and LCO 2 will influence the thermodynamic efficiency as well as the ship utilization; hence sensitivity analyses are performed, showing that the ship utilization for the payload will vary between 58% and 80%, and the transport chain exergy efficiency between 48% and 52%. A thermodynamically optimized process requires 319 kWh/tonne LNG. The NG lost due to power generation needed to operate the LEC processes is roughly one third of the requirement in a conventional transport chain for stranded NG gas with CO 2 capture and sequestration (CCS)

  11. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  12. Optimal assignment of multiple utilities in heat exchange networks

    International Nuclear Information System (INIS)

    Salama, A.I.A.

    2009-01-01

    Existing numerical geometry-based techniques, developed by [A.I.A. Salama, Numerical techniques for determining heat energy targets in pinch analysis, Computers and Chemical Engineering 29 (2005) 1861-1866; A.I.A. Salama, Determination of the optimal heat energy targets in heat pinch analysis using a geometry-based approach, Computers and Chemical Engineering 30 (2006) 758-764], have been extended to optimally assign multiple utilities in heat exchange network (HEN). These techniques utilize the horizontal shift between the cold composite curve (CC) and the stationary hot CC to determine the HEN optimal energy targets, grand composite curve (GCC), and the complement grand composite curve (CGCC). The proposed numerical technique developed in this paper is direct and simultaneously determines the optimal heat-energy targets and optimally assigns multiple utilities as compared with an existing technique based on sequential assignment of multiple utilities. The technique starts by arranging in an ascending order the HEN stream and target temperatures, and the resulting set is labelled T. Furthermore, the temperature sets where multiple utilities are introduced are arranged in an ascending order and are labelled T ic and T ih for the cold and hot sides, respectively. The graphical presentation of the results is facilitated by the insertion at each multiple-utility temperature a perturbed temperature equals the insertion temperature minus a small perturbation. Furthermore, using the heat exchanger network (HEN) minimum temperature-differential approach (ΔT min ) and stream heat-capacity flow rates, the presentation is facilitated by using the conventional temperature shift of the HEN CCs. The set of temperature-shifted stream and target temperatures and perturbed temperatures in the overlap range between the CCs is labelled T ol . Using T ol , a simple formula employing enthalpy-flow differences between the hot composite curve CC h and the cold composite curve CC c is

  13. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  14. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  15. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  16. Diagnosis of electric energy using for a cold storage room of chicken emphasizing energy efficiency measures; Diagnostico do uso de energia eletrica de um frigorifico de frangos de corte enfatizando medidas de eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Leda Gobbo de Freitas [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Tecnologia; Rossi, Luis Antonio; Mederos, Barbara Teruel; Moura, Daniella Jorge de [Universidade Estadual de Campinas (FEA/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    In the slaughterhouses the operations that if unchain in the one before slaughter until the storage of the end item are intensely dependents of the electric energy and answer for the final product quality. This work had as objective to diagnosis, to analyze and to consider solutions that lead to the rational use of the electric energy without intervening or keeping the product quality in the lines of production of one cold storage room of broiler including the storage process that uses chambers of cooling and freezing. This work was carried through in one cold storage room of slaughter of chicken situated in the state of Sao Paulo in the period of 2004 the 2008. Through the analyses it was verified that the compressors of the room of machines, responsible for the maintenance of the cold of cooled environments, had presented the biggest consumption of electric energy in the cold storage room, about 97%. It was observed that in none of the evaluated electric engines, the potency factor, reaches the value recommended for the ANEEL, and that possibly with the implantation of measures of conservation of electric energy pointers of energy efficiency as the load factor and the specific consumption they can be optimized. It was concluded to have imperfections in the use of the electric energy demonstrating necessity of the implementation of an action plan that aims at the conservation and the rational use of the energy and consequence reduction in the costs generated for production of broiler. (author)

  17. Simulation of a Novel Single-column Cryogenic Air Separation Process Using LNG Cold Energy

    Science.gov (United States)

    Jieyu, Zheng; Yanzhong, Li; Guangpeng, Li; Biao, Si

    In this paper, a novel single-column air separation process is proposed with the implementation of heat pump technique and introduction of LNG coldenergy. The proposed process is verifiedand optimized through simulation on the Aspen Hysys® platform. Simulation results reveal that thepower consumption per unit mass of liquid productis around 0.218 kWh/kg, and the total exergy efficiency of the systemis 0.575. According to the latest literatures, an energy saving of 39.1% is achieved compared with those using conventional double-column air separation units.The introduction of LNG cold energy is an effective way to increase the system efficiency.

  18. SNS 2.1K Cold Box Turn-down Studies

    International Nuclear Information System (INIS)

    F. Casagrande; P.A. Gurd; D.R. Hatfield; M.P. Howell; W.H. Strong; D. Arenius; J. Creel; V. Ganni; P. Knudsen

    2006-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is nearing completion. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The 2.1K cold box consists of four stages of centrifugal compressors with LN2-cooled variable speed electric motors and magnetic bearings. The cryogenic system successfully supported the Linac beam commissioning at both 4.2K and 2.1K and has been fully operational since June 2005. This paper describes the control principles utilized and the experimental results obtained for the SNS cold compressors turn-down capability to about 30% of the design flow, and possible limitation of the frequency dependent power factor of the cold compressor electric motors, which was measured for the first time during commissioning. These results helped to support the operation of the Linac over a very broad and stable cold compressor operating flow range (refrigeration capacity) and pressure. This in turn helped to optimize the cryogenic system operating parameters, minimizing the utilities and improving the system reliability and availability

  19. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA

  20. Basic plan of the development and utilization of atomic energy in 1980

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission reported to the prime minister on March 28, 1980, on the basic plan of the development and utilization of atomic energy in 1980 that it was decided as the original draft of the plan. This draft of the basic plan in 1980 was referred to the Nuclear Safety Commission on March 27, 1980. Japan relies the most of primary energy upon imported petroleum, therefore it is important to save oil consumption and to promote the development and utilization of substitute energy to petroleum. The development and utilization of atomic energy must be promoted as the most important subject in energy policy, because it is the most promising substitute energy. The scale of the total nuclear power generation in Japan is 35 plants with about 28 million kW capacity, including those under construction and in preparation. But owing to the difficulty in the location of new plants, the attainment of 1985 target is behind schedule. The development and utilization of atomic energy are in progress in Japan, but more efforts to promote them are necessary. Japan contributes positively to the formation of the new order based on the results of INFCE. As for the basic policy in 1980, the strengthening of the measures to secure safety, the establishment of nuclear fuel cycle, the development of new power reactors, the research and development of nuclear fusion, the promotion of the utilization of radiation and others are discussed. (Kako, I.)

  1. Proceedings of the cold climate construction conference and expo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This conference provided a forum to present innovative technologies in engineering, construction, energy efficiency, workforce productivity and several other aspects affecting cold regions. The session on winter construction featured tools techniques and technologies that maximize winter construction, with reference to the latest in cold weather construction techniques and lessons learned from the far north and south. It featured lessons on building on ice, frozen ground and permafrost. The session on sustainability addressed issues regarding sustainable design; solar, wind and geothermal systems; building envelopes that work in cold climates; and energy efficient products and techniques. The session on workforce productivity presented methods to keep the workforce warm and healthy in cold conditions; attracting and preparing foreign workers for the far north; worker productivity in a cold environment; tools, techniques and clothing to minimize the effects of cold weather; and cold weather equipment operations. Three presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  2. A comparative study of energy utilization efficiency between Taiwan and China

    International Nuclear Information System (INIS)

    Yeh Tsailien; Chen Tseryieth; Lai Peiying

    2010-01-01

    This paper employs data envelopment analysis to evaluate energy utilization efficiency between China and Taiwan from 2002 to 2007. The most important contributions of this paper are the clear description of the systematic process of energy utilization efficiency, the efficiency comparison between China and Taiwan, the remarkable demonstration of their outputs through two non-desirable outputs (CO 2 emissions and SO 2 emissions) in the data envelopment analysis framework, and the valuable results and insights gained from the application of economic development and environmental protection. Empirical results show that the Eastern region of China enjoy higher energy utilization efficiency than the Western region. Energy utilization efficiency in Taiwan is higher than that in the Eastern region of China. In China, CO 2 emissions were 11.28% greater than they should be (from 2002 to 2007). By contrast, CO 2 emissions in Taiwan were only 1.50% in excess of what they should be since Taiwan began conducting an uninterrupted energy-saving policy and a CO 2 emission regulation policy. Finally, this study employs the business strategy matrix constructed by the Boston Consulting Group (BCG Matrix) to illustrate individual evidence of the relationship between economic development efficiency and greenhouse gas efficiency.

  3. TRIGENERATION - A highly energy efficient source for heating, domestic hot water preparation, electricity and air cooling systems for tertiary sector

    International Nuclear Information System (INIS)

    Barbuta, Mariana; Ghitulescu, Mircea; Nicolau, Irina; Athanasovici, Cristian; Constantin, Cristinel; Ivan, Robert

    2004-01-01

    The general concerns relating to sustainable energy development have led to the implementation of certain solutions at the international level that have increased both energy generation and energy consuming processes efficiency. In our country the first steps in this direction have been carried out by the private companies that, after having analyzed the income increase and costs diminishing, have come to the conclusion that a reliable way to save money would be the rational use of the energy resources for utilities. A favorable consequence was the synergetic effect of the measures meant to increase energy efficiency for the energy generation and consumption processes that are also accompanied by benefit effects on the environmental impact by reduction CO 2 emissions. One of the solutions making the utmost of primary energy is the combined heat and power production (co-generation) that has significantly developed in our country within the energy sector as a whole. Co-generation may be considered environmentally friendly because it saves fuel on the one hand and, technologically, generates less emissions as compared to the separate generation of heat and power, on the other hand. The most favorable applications of co-generation at a medium and small scale are in the tertiary sector (hotels, hospitals, and office buildings) where heat consumption is usually high enough and is accompanied by relatively constant electricity consumption. By corroborating the above mentioned facts relating to local cogeneration installation utilization with those relating to the increased need for cooling in the tertiary buildings, a concept named 'TRI-GENERATION' in specialized literature has occurred, representing, in fact, utilization of cogeneration installations for supplying energy to the electricity, heat and cold consumer. Thus, the cogeneration installation utilization time will be practically prolonged over the entire duration of a year a fact that has extremely favorable

  4. Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing

    International Nuclear Information System (INIS)

    Yu, Cun; Aoun, Bachir; Cui, Lishan; Liu, Yinong; Yang, Hong; Jiang, Xiaohua; Cai, Song; Jiang, Daqiang; Liu, Zunping; Brown, Dennis E.; Ren, Yang

    2016-01-01

    Microstructure evolution of a cold-drawn NiTi shape memory alloy wire was investigated by means of in-situ synchrotron high-energy X-ray diffraction during continuous heating. The cold-drawn wire contained amorphous regions and nano-crystalline domains in its microstructure. Pair distribution function analysis revealed that the amorphous regions underwent structural relaxation via atomic rearrangement when heated above 100 °C. The nano-crystalline domains were found to exhibit a strong cold work induced lattice strain anisotropy along 〈111〉, which coincides with the crystallographic fiber orientation of the domains along the wire axial direction. The lattice strain anisotropy systematically decreased upon heating above 200 °C, implying a structural recovery. Crystallization of the amorphous phase led to a broadening of the angular distribution of 〈111〉 preferential orientations of grains along the axial direction as relative to the original 〈111〉 axial fiber texture of the nanocrystalline domains produced by the severe cold wire drawing deformation.

  5. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Song, Dan

    2012-06-01

    In the context of global energy shortages and climate change, developing biogas plants with links to agricultural system has become an important strategy for cleaner rural energy and renewable agriculture. In this study, a life-cycle energy and environmental assessment was performed for a biogas-digestate utilization system in China. The results suggest that biogas utilization (heating, illumination, and fuel) and comprehensive digestate reuse are of equal importance in the total energy production of the system, and they also play an important role in systemic greenhouse gas mitigation. Improvement can be achieved in both energy production and emissions mitigation when the ratio of the current three biogas utilization pathways is adjusted. Regarding digestate reuse, a tradeoff between energy and environmental performance can be obtained by focusing on the substitution for top-dressing, base fertilizers, and the application to seed soaking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  7. Sizing Post-Cold War Nuclear Forces

    National Research Council Canada - National Science Library

    Oelrich, I

    2001-01-01

    This study addresses the utility of, and need for, nuclear weapons a decade after the end of the Cold War with special focus on the numbers and types of nuclear weapons appropriate for particular requirements...

  8. Community Energy Systems and the Law of Public Utilities. Volume Eighteen. Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Eleven. Florida

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Florida governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Eight. Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Colorado governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Seventeen. Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Iowa governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Six. Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arkansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Five. Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arizona governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Sixteen. Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Indiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Thirty. Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nevada governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Thirteen. Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Hawaii governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Seven. California

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of California governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Ten. Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Delaware governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Fifteen. Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Illinois governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  3. Heat storage. Role in the energy system of the future

    International Nuclear Information System (INIS)

    Hauer, Andreas; Woerner, Antje; Kranz, Stefan; Schumacher, Patrick; Gschwander, Stefan; Appen, Jan von; Hidalgo, Diego; Gross, Bodo; Grashof, Katherina

    2015-01-01

    For the implementation of the energy transition in Germany can contribute in a variety of applications thermal energy storage. Both at the integration of renewable energy sources, as well as in increasing the energy efficiency in the building sector and industry can utilize heat and cold storage great potential. For this diverse storage technologies are available. In Germany numerous research and development projects are running currently, covering the broad possibilities of thermal energy storage. [de

  4. Cold neutron radiography using low power accelerator

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatu

    1993-01-01

    A cold neutron source which can be adopted at a low power accelerator was studied. Time-of-flight radiography using the cold neutron source was performed. It is suggested that time-of-flight cold neutron radiography has possibility to distinguish the materials more clearly than the traditional film method since large contrast differences can be obtained by using digital data of the neutron intensity at different energies from thermal to cold region. Material will be identified at the same time by this method. (author)

  5. Effects of the regulating energy levy and energy tariffs on the cost effectiveness of energy efficient production of heat and cold

    International Nuclear Information System (INIS)

    2000-01-01

    With respect to the title subject collective and stand-alone systems for house and office buildings were analyzed. For houses a high-efficiency boiler as reference system, and individual micro-cogeneration unit, an individual electric heat pump with a collective aquifer as heat source, an individual gas heat pump with outside air as a heat source, a collective cogeneration system, and a collective energy plant with cogeneration and an electric heat pump. For office buildings a high-efficiency boiler and a cooling machine as a reference system, an individual electric heat pump with an individual aquifer as a heat source, cold storage, collective cogeneration, and a collective energy plant with cogeneration and an electric heat pump. Also an overview is given of the changes that are taking place in the tariffs for natural gas, e.g. the use of so-called Commodity Services. Finally, the impact on prices of natural gas and electricity of the fact that the tax-free threshold of the regulating energy levy (REB, abbreviated in Dutch) will disappear is investigated. 5 refs

  6. Research report for fiscal 1998 on development of environmentally friendly high-efficiency energy utilization system. Research of optimum system designing technology (Research of effect of eco-energy city system technology introduction to Osaka); Kankyo chowagata kokoritsu energy riyo system kaihatsu Saiteki system sekkei gijutsu no kenkyu 1998 nendo chosa hokokusho (Osakafu). Ekoene toshi system gijutsu donyu koka no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Concerning the district in Osaka Prefecture selected for study in fiscal 1997, it is investigated whether energy efficiency is enhanced, and environmental impact reduced, by the introduction of element technologies, and the findings are compared with the results expected to be produced without their introduction. Problems about their introduction are also discussed. Taken up for study are the collection and utilization of heat from a water granulated slag manufacturing plant of an iron mill, exhaust heat reform and recovery system at a chemical plant, heat supply system driven by a high-performance heat pump capable of dealing with various kinds of fuels, compression/suction hybrid heat utilization system, and a cold heat supply system using microspheres. Annual energy consumption, CO2 and NOx emissions, and costs are calculated for each of them. Concerning these element technologies, various tasks are discussed, related to the technology of their systematization, economy, dissemination of district heat supply, and wide-area heat supply businesses utilizing exhaust heat. As the result, it is concluded that the primary energy consumption as a whole is reduced upon their introduction and that energy saving effect and environmental impact reducing effect are in presence. (NEDO)

  7. Hydrogen and energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Renewable electricity generation plays one major role with the biggest share being wind energy. At the end of the year 2009 a wind power plant capacity of around 26 GW was installed in Germany. Several outlooks come to the conclusion that this capacity can be doubled in ten years (compare Figure 1). Additionally the German government has set a target of 26 GW installed off-shore capacity in North and Baltic Sea until 2030. At Vattenfall only a minor percentage of the electricity production comes from wind power today. This share will be increased up to 12% until 2030 following Vattenfall's strategy 'Making Electricity Clean'. This rapid development of wind power offers several opportunities but also means some challenges to Utilities. (orig.)

  8. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  9. Fiscal 1993 achievement report. International Clean Energy Network Using Hydrogen Conversion (WE-NET) technology (Subtask 8 - Development of hydrogen combustion turbine - Development of main accessories); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) (Subtask 8. Suiso nensho tabin no kaihatsu - Shuyo hokirui no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    In the first fiscal year 1993 of the project, surveys were conducted about current technologies relative to cold energy-utilizing oxygen production equipment and high-temperature heat exchangers for the development of main accessories for a hydrogen combustion turbine plant. Kobe Steel, Ltd., conducted surveys about very low temperature heat exchangers and cold energy utilization technology used in facilities for gasifying liquid hydrogen or liquefied gas. Daido Hoxan, Inc., in its research on the possibility of air separator performance enhancement through liquid hydrogen cold energy application, studied reduction in power unit requirement, stable power supply responding to changes in load, safety measures, and so forth. Toshiba Corporation conducted surveys and studies about heat conduction improvement techniques and about the type, structure, and materials for heat exchangers for the embodiment of a high-temperature heat exchanger excellent in performance and high in structural soundness. Mitsubishi Heavy Industries, Ltd., aiming to establish basic technologies for heat exchangers, studied efficiency enhancement with low pressure loss, improved hygroscopic moisture removing function, and new materials utilization for achieving high-temperature capability. (NEDO)

  10. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  11. Building America Best Practices Series: Volume 3; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Cold and Very Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-08-01

    The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the cold and very cold climates.

  12. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  13. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  14. Regional new energy vision for Tadami Town; 2001 nendo Tadami machi chiiki shin energy vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    For promoting the introduction of new energy and for enhancing people's consciousness of such at Tadami Town, Fukushima Prefecture, surveys and studies were conducted involving the energy demand characteristics of the town, the amount of new energy resources in existence, and new energy introduction projects, and a vision was formulated. Though there is not a great change through the year in town's demand for power, more power is necessary in winter for heating and lighting. As for demand for gas and oil, demand for heating oil reaches its peak in winter. New energy introduction projects were discussed, which would utilize snow for the dynamization of industries, and studies were conducted about the selection of items to be stored in snow rooms, selection of proper cold heat utilization systems, care to be taken in the designing of facilities, installation of snow rooms, development of specialty goods proper to the town, and so forth. Eco-school development was also studied as an environmental education project harmonizing with the local circumstances. Discussed for the fostering of welfare were an energy business for a Welfare House, snow handling measures linked to new energy utilization systems, and the like. (NEDO)

  15. Quality of renewable energy utilization in transport in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2015-04-01

    Renewable energy utilization in transportation (RES-T) is a long way behind its utilization in power (RES-E) and heat (RES-H) sectors. International and national environmental policies have recently given a lot of emphasis on this problem. For that reason information is sought on how to implement solutions both politically and technologically. As Sweden is a global leader in this area, it can provide valuable examples. In 2012 Sweden became the first country to reach the binding requirement of the European Union for at least 10 % share for renewable energy in transport energy consumption. But qualitative development has been even stronger than quantitative. Among the success stories behind qualitative progress, most noteworthy are those created by innovative municipal policies. By 2030 Sweden aims to achieve fossil fuel independent road transport system and by 2050 completely carbon neutral transport system in all modes of transport.

  16. Utility and performance relative to consumer product energy efficiency standards. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Coggins, J.L.

    1979-12-14

    An investigation of the relative utility and performance of nine major household consumer products covered by the Energy Policy and Conservation Act is summarized. The objective was to define the terms utility and performance, to recommend methods for quantifying these two concepts, and to recommend an approach for dealing with utility and performance issues in the energy efficiency standards program. The definitions developed are: performance of a consumer product is the objective measure of how well, with the expected level of consumer input (following the manufacturer's instructions for installation and operation), the product does its intended job; and utility of a consumer product is a subjective measure, based on the consumer's perception, of the capability of the product to satisfy human needs. Quantification is based on test procedures and consumer survey methods which are largely already in use by industry. Utility and performance issues are important in product classification for prescribing energy efficiency standards. The recommended approach to utility and performance issues and classification is: prior to setting standards, evaluate utility and performance issues in the most quantitative way allowed by resources and schedules in order to develop classification guidelines. This approach requires no changes in existing Department of Energy test procedures.

  17. Analyzing variables for district heating collaborations between energy utilities and industries

    International Nuclear Information System (INIS)

    Thollander, P.; Svensson, I.L.; Trygg, L.

    2010-01-01

    One vital means of raising energy efficiency is to introduce district heating in industry. The aim of this paper is to study factors which promote and inhibit district heating collaborations between industries and utilities. The human factors involved showed to affect district heating collaborations more than anything else does. Particularly risk, imperfect and asymmetric information, credibility and trust, inertia and values are adequate variables when explaining the establishment or failure of industry-energy utility collaborations, while heterogeneity, access to capital and hidden costs appear to be of lower importance. A key conclusion from this study is that in an industry-energy utility collaboration, it is essential to nurture the business relationship. In summary, successful collaboration depends more on the individuals and organizations involved in the relationship between the two parties than on the technology used in the collaboration.

  18. Ultracold and very cold neutron facility in KUR

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko

    1992-01-01

    The present status of the ultracold and very cold neutron facility installed in the Kyoto University Reactor (KUR) is described in this presentation. It consists of a VCN (very cold neutrons) guide tube, a VCN bender and a supermirror neutron turbine. The guide tube extracts VCN from a liquid deuterium cold neutron source in a graphite thermal column and the neutron turbine converts VCN to UCN (ultracold neutrons). As for the utilization of the present facility, VCN radiography and an UCN gravity spectrometer are shown for the practical examples of the research with VCN and UCN. (author)

  19. Plasticity margin recovery during annealing after cold deformation

    International Nuclear Information System (INIS)

    Bogatov, A.A.; Smirnov, S.V.; Kolmogorov, V.L.

    1978-01-01

    Restoration of the plasticity margin in steel 20 after cold deformation and annealing at 550 - 750 C and soaking for 5 - 300 min was investigated. The conditions of cold deformation under which the metal acquires microdefects unhealed by subsequent annealing were determined. It was established that if the degree of utilization of the plasticity margin is psi < 0.5, the plasticity margin in steel 20 can be completely restored by annealing. A mathematical model of restoration of the plasticity margin by annealing after cold deformation was constructed. A statistical analysis showed good agreement between model and experiment

  20. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  1. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  2. The Innovative Concept of Cold District Heating Networks: A Literature Review

    Directory of Open Access Journals (Sweden)

    Marco Pellegrini

    2018-01-01

    Full Text Available The development of sustainable and innovative solutions for the production and supply of energy at district level is nowadays one of the main technical challenges. In the past, district heating and cooling networks aimed to achieve greater energy efficiency through the centralization of the energy production process but with relevant losses related to heat transport. Moving towards a higher share of renewables and lower demand of primary energy requires redesign of the energy district networks. The novel concept of cold district heating networks aims to combine the advantages of a centralized energy distribution system with low heat losses in energy supply. This combined effect is achieved through the centralized supply of water at relatively low temperatures (in the range 10–25 °C, which is then heated up by decentralized heat pumps. Moreover, cold district heating networks are also very suitable for cooling delivery, since cold water supplying can be directly used for cooling purposes (i.e., free cooling or to feed decentralized chillers with very high energy efficiency ratio. This paper provides a preliminary literature review of existing cold district heating networks and then qualitatively analyses benefits and drawbacks in comparison with the alternatives currently used to produce heat and cold at district level, including the evaluation of major barriers to its further development.

  3. Community energy systems and the law of public utilities. Volume 20. Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  4. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  5. Development of cold and drought tolerant short-season maize germplasm for fuel and feed utilization

    Directory of Open Access Journals (Sweden)

    Marcelo J Carena

    2013-04-01

    Full Text Available Maize has become a profitable alternative for North Dakota (ND farmers and ranchers. However, U.S. northern industry hybrids still lack cold and drought stress tolerance as well as adequate grain quality for ethanol and feedstock products. Moreover, there is a need to increase the value of feedstock operations before and after ethanol utilization. The ND maize breeding program initiated the development of hybrids with high quality protein content through the Early Quality Protein Maize for Feedstock (EarlyQPMF project. The North Dakota State University (NDSU maize breeding program acts as a genetic provider to foundation seed companies, retailer seed companies, processing industry, and breeders nationally and internationally. In the past 10 years, NDSU was awarded 9 PVP maize certificates and released 38 maize products. Within those, 13 inbred lines were exclusively released to a foundation seed company for commercial purposes. In addition, 2 hybrids were identified for commercial production in central and western ND.

  6. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  7. Legal-institutional arrangements facilitating offshore wind energy conversion systems (WECS) utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, L.H.

    1977-09-01

    Concern for the continuing sufficiency of energy supplies in the U.S. has tended to direct increasing attention to unconventional sources of supply, including wind energy. Some of the more striking proposals for the utilization of wind energy relate to offshore configurations. The legal-institutional arrangements for facilitating the utilization of offshore wind energy conversion systems (WECS) are examined by positioning three program alternatives and analyzing the institutional support required for the implementation of each.

  8. Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners?

    Science.gov (United States)

    Bal, Naresh C; Maurya, Santosh K; Pani, Sunil; Sethy, Chinmayee; Banerjee, Ananya; Das, Sarita; Patnaik, Srinivas; Kundu, Chanakya N

    2017-10-31

    There are two well-described thermogenic sites; brown adipose tissue (BAT) and skeletal muscle, which utilize distinct mechanisms of heat production. In BAT, mitochondrial metabolism is the molecular basis of heat generation, while it serves only a secondary role in supplying energy for thermogenesis in muscle. Here, we wanted to document changes in mitochondrial ultrastructure in these two tissue types based upon adaptation to mild (16°C) and severe (4°C) cold in mice. When reared at thermoneutrality (29°C), mitochondria in both tissues were loosely packed with irregular cristae. Interestingly, adaptation to even mild cold initiated ultrastructural remodeling of mitochondria including acquisition of more elaborate cristae structure in both thermogenic sites. The shape of mitochondria in the BAT remained mostly circular, whereas the intermyofibrilar mitochondria in the skeletal muscle became more elongated and tubular. The most dramatic remodeling of mitochondrial architecture was observed upon adaptation to severe cold. In addition, we report cold-induced alteration in levels of humoral factors: fibroblast growth factor 21 (FGF21), IL1α, peptide YY (PYY), tumor necrosis factor α (TNFα), and interleukin 6 (IL6) were all induced whereas both insulin and leptin were down-regulated. In summary, adaptation to cold leads to enhanced cristae formation in mitochondria in skeletal muscle as well as the BAT. Further, the present study indicates that circulating cytokines might play an important role in the synergistic recruitment of the thermogenic program including cross-talk between muscle and BAT. © 2017 The Author(s).

  9. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  10. Nuclear energy development and utilization in the republic of Korea and desirable policy directions

    International Nuclear Information System (INIS)

    Yoon, Youngku; Chang, Soon Heung

    1994-01-01

    There have been important worldwide changes in recent years that will have great influence on out future. The collapse of the former Soviet Union and East Europe and the final agreements of the Uruguay Round (UR) indicate that the world's future focus lies on economics and technology rather than ideology. Each nation is trying to strengthen its international competitiveness, and thereby maximize their national interests in this age of limitless competition. The worldwide energy consumption, especially in developing countries, is expected to increase continuously in the next century. Considering the limited resources of fossil fuels, securing a stable energy supply will be a factor of paramount importance from the viewpoint of national security. Another important problem of mankind in the 21th century is to preserve the environment of the earth, while maintaining economic growth. Recognition of the importance of the earth environment is spreading very rapidly, especially in advanced countries. Concrete approaches to preserve the earth environment are expected to be formulated in the upcoming Green Round (GR) negotiations which follow the UR. Probably the GR will demand an overall reorganization of the industrial structure. With respect to nuclear energy, the threat of nuclear weapons of the former Soviet union has significantly lessened owing to the termination of the Cold War. However, international regulations for nuclear non-proliferation are being strengthened as the countermeasure for the deterioration of management and surveillance capability of the former Soviet Union for nuclear weapons and for the increase in the possibility of nuclear weapons development in Iraq, North Korea, etc. Domestically, the Declaration of Denuclearization of the Korean Peninsula, the possibility of North Korea's disregard of the NPT, and the opposition of local people to construction of nuclear facilities have caused significant difficulties in efficient development and utilization

  11. Nuclear energy development and utilization in the republic of Korea and desirable policy directions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Youngku; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1994-04-15

    There have been important worldwide changes in recent years that will have great influence on out future. The collapse of the former Soviet Union and East Europe and the final agreements of the Uruguay Round (UR) indicate that the world's future focus lies on economics and technology rather than ideology. Each nation is trying to strengthen its international competitiveness, and thereby maximize their national interests in this age of limitless competition. The worldwide energy consumption, especially in developing countries, is expected to increase continuously in the next century. Considering the limited resources of fossil fuels, securing a stable energy supply will be a factor of paramount importance from the viewpoint of national security. Another important problem of mankind in the 21th century is to preserve the environment of the earth, while maintaining economic growth. Recognition of the importance of the earth environment is spreading very rapidly, especially in advanced countries. Concrete approaches to preserve the earth environment are expected to be formulated in the upcoming Green Round (GR) negotiations which follow the UR. Probably the GR will demand an overall reorganization of the industrial structure. With respect to nuclear energy, the threat of nuclear weapons of the former Soviet union has significantly lessened owing to the termination of the Cold War. However, international regulations for nuclear non-proliferation are being strengthened as the countermeasure for the deterioration of management and surveillance capability of the former Soviet Union for nuclear weapons and for the increase in the possibility of nuclear weapons development in Iraq, North Korea, etc. Domestically, the Declaration of Denuclearization of the Korean Peninsula, the possibility of North Korea's disregard of the NPT, and the opposition of local people to construction of nuclear facilities have caused significant difficulties in efficient development and utilization

  12. Present status of nuclear energy development and utilization in Japan 1994

    International Nuclear Information System (INIS)

    1994-03-01

    Today, world energy demands continue to increase, and over the middle and long-term, access to petroleum supplies may become difficult. At the same time, such serious environmental problems as global warming and acid rain, which are caused by the burning of fossil fuels, have drawn great public attention, and the international community has urged that solutions to them should be found. Because nuclear power offers an economically efficient, stable supply of energy whose production has little adverse effect on the environment, the world has recognized the necessity of continuing to develop and use it. The changing international political situation, however, has complicated nuclear energy matters. In Japan, particularly the collapse of the former Soviet Union and North Korea's announcement of its intention to withdraw from the Nuclear Weapons Non-Proliferation Treaty have been cause for concern. Under these circumstances, it has become increasingly important for Japan to secure stable sources of energy, since Japan is dependent on imports for its energy supply. To that end, Japan has steadily promoted the development and utilization of nuclear energy. In fiscal 1992, nuclear power accounted for 28.2 % of the total power generated by Japanese electric utilities. Japan has also worked steadily to develop a nuclear fuel cycle, which is important to the long-term stability of the energy supply. This publication describes the present status of nuclear energy development and utilization in Japan. (J.P.N.)

  13. Targeting utility customers to improve energy savings from conservation and efficiency programs

    International Nuclear Information System (INIS)

    Taylor, Nicholas W.; Jones, Pierce H.; Kipp, M. Jennison

    2014-01-01

    Highlights: • Improving DSM program impacts by targeting high energy users. • DSM energy savings potential hinges on pre-participation performance. • Targeting can benefit different utilities and energy efficiency programs. • Overall performance can be improved by up to 250% via targeting strategies. - Abstract: Electric utilities, government agencies, and private interests in the US have committed and continue to invest substantial resources – including billions of dollars of financial capital – in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. While most of these programs are deemed to be cost effective, and therefore in the public interest, opportunities exist to improve cost effectiveness by targeting programs to those customers with the greatest potential for energy savings. This article details an analysis of three DSM programs offered by three Florida municipal electric utilities to explore such opportunities. First, we estimate programs’ energy savings impacts; second, we measure and compare energy savings across subgroups of program participants as determined by their pre-intervention energy performance, and third, we explore potential changes in program impacts that might be realized by targeting specific customers for participation in the DSM programs. All three programs resulted in statistically significant average (per-participant) energy savings, yet average savings varied widely, with the customers who performed best (i.e., most efficient) before the intervention saving the least energy and those who performed worst (i.e., least efficient) before the intervention saving the most. Assessment of alternative program participation scenarios with varying levels of customer targeting suggests that program impacts could be increased by as much as 80% for a professional energy audit program, just over 100% for a high-efficiency heat pump upgrade program, and nearly 250% for an attic insulation

  14. Performance Analysis of Cold Energy Recovery from CO2 Injection in Ship-Based Carbon Capture and Storage (CCS

    Directory of Open Access Journals (Sweden)

    Hwalong You

    2014-11-01

    Full Text Available Carbon capture and storage (CCS technology is one of the practical solutions for mitigating the effects of global warming. When captured CO2 is injected into storage sites, the CO2 is subjected to a heating process. In a conventional CO2 injection system, CO2 cold energy is wasted during this heating process. This study proposes a new CO2 injection system that takes advantage of the cold energy using the Rankine cycle. The study compared the conventional system with the new CO2 injection system in terms of specific net power consumption, exergy efficiency, and life-cycle cost (LCC to estimate the economic effects. The results showed that the new system reduced specific net power consumption and yielded higher exergy efficiency. The LCC of the new system was more economical. Several cases were examined corresponding to different conditions, specifically, discharge pressure and seawater temperature. This information may affect decision-making when CCS projects are implemented.

  15. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of

  16. 305 Building Cold Test Facility Management Plan

    International Nuclear Information System (INIS)

    Whitehurst, R.

    1994-01-01

    This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin

  17. Impacts of energy utilization in a tropical environment

    International Nuclear Information System (INIS)

    Kleemann, M.; Penner, K.; Seele, U.

    1992-01-01

    The purpose of this paper is to present the approach and the interim results of the Indonesian-German scientific co-operation on environmental impacts of future energy utilization in Indonesia. The aim of the planning study is to provide decision support for Indonesian authorities in order to develop environmentally compatible energy supply strategies. The environmental problems will focus on the island of Java with a population density of more than 800 inhabitants/km 2 which might reach 1200 within the next 25 years. Due to the further economic growth and the population increase the energy consumption of the industry, the traffic, and the household sector will increase significantly. In particular the polluting coal utilization will grow overproportionally because of declining oil reserves. Additionally, the industrial development is concentrated on the island of Java which covers only 8% of the land area of the country. A serious pollution of the sensitive tropical ecosystems in the future would be the consequence of this unbalanced developments if no efforts are made to reduce the pollutant emissions. Even today the air quality has already reached critical levels in many parts of Java. 3 figs., 3 tabs

  18. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  19. RNA-Seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Although cold shock responses and the roles of cold shock proteins in microorganisms containing multiple cold shock protein genes have been well characterized, related studies on bacteria possessing a single cold shock protein gene have not been reported. Thermoanaerobacter tengcongensis MB4, a thermophile harboring only one known cold shock protein gene (TtescpC, can survive from 50° to 80 °C, but has poor natural competence under cold shock at 50 °C. We therefore examined cold shock responses and their effect on natural competence in this bacterium. RESULTS: The transcriptomes of T. tengcongensis before and after cold shock were analyzed by RNA-seq and over 1200 differentially expressed genes were successfully identified. These genes were involved in a wide range of biological processes, including modulation of DNA replication, recombination, and repair; energy metabolism; production of cold shock protein; synthesis of branched amino acids and branched-chain fatty acids; and sporulation. RNA-seq analysis also suggested that T. tengcongensis initiates cell wall and membrane remodeling processes, flagellar assembly, and sporulation in response to low temperature. Expression profiles of TtecspC and failed attempts to produce a TtecspC knockout strain confirmed the essential role of TteCspC in the cold shock response, and also suggested a role of this protein in survival at optimum growth temperature. Repression of genes encoding ComEA and ComEC and low energy metabolism levels in cold-shocked cells are the likely basis of poor natural competence at low temperature. CONCLUSION: Our study demonstrated changes in global gene expression under cold shock and identified several candidate genes related to cold shock in T. tengcongensis. At the same time, the relationship between cold shock response and poor natural competence at low temperature was preliminarily elucidated. These findings provide a foundation for future studies on genetic

  20. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  1. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  2. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  3. Community Energy Systems and the Law of Public Utilities. Volume Twenty-one. Maine

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maine governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Forty-eight. Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Twenty-three. Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Massachusetts governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Fifty. West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of West Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Forty-four. Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Tennessee governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Thirty-seven. Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Ohio governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Thirty-nine. Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Oregon governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Twenty-eight. Montana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Montana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Twenty-five. Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Minnesota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Forty-five. Texas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Texas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Fifty-two. Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wyoming governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Forty-nine. Washington

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Washington governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Fifty-one. Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Wisconsin governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Twenty-two. Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maryland governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Twenty-seven. Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Missouri governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2005-09-01

    Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article

  19. Energy and Environment Guide to Action - Chapter 7: Electric Utility Policies

    Science.gov (United States)

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  20. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    Science.gov (United States)

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  1. Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-08-10

    Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

  2. Cost-optimal energy performance renovation measures of educational buildings in cold climate

    International Nuclear Information System (INIS)

    Niemelä, Tuomo; Kosonen, Risto; Jokisalo, Juha

    2016-01-01

    Highlights: • The proposed national nZEB target can be cost-effectively achieved in renovations. • Energy saving potential of HVAC systems is significant compared to the building envelope. • Modern renewable energy production technologies are cost-efficient and recommendable. • Improving the indoor climate conditions in deep renovations is recommendable. • Simulation-based optimization method is efficient in building performance analyzes. - Abstract: The paper discusses cost-efficient energy performance renovation measures for typical educational buildings built in the 1960s and 1970s in cold climate regions. The study analyzes the impact of different energy renovation measures on the energy efficiency and economic viability in a Finnish case study educational building located in Lappeenranta University of Technology (LUT) campus area. The main objective of the study was to determine the cost-optimal energy performance renovation measures to meet the proposed national nearly zero-energy building (nZEB) requirements, which are defined according to the primary energy consumption of buildings. The main research method of the study was simulation-based optimization (SBO) analysis, which was used to determine the cost-optimal renovation solutions. The results of the study indicate that the minimum national energy performance requirement of new educational buildings (E_p_r_i_m_a_r_y ⩽ 170 kWh/(m"2,a)) can be cost-effectively achieved in deep renovations of educational buildings. In addition, the proposed national nZEB-targets are also well achievable, while improving the indoor climate (thermal comfort and indoor air quality) conditions significantly at the same time. Cost-effective solutions included renovation of the original ventilation system, a ground source heat pump system with relatively small dimensioning power output, new energy efficient windows and a relatively large area of PV-panels for solar-based electricity production. The results and

  3. Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cory, Karlynn S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Swezey, Blair G. [Applied Materials, Santa Clara, CA (United States)

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  4. Effect of cold exposure on energy budget and thermogenesis during lactation in Swiss mice raising large litters

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Zhao

    2012-02-01

    In Swiss mice sustained energy intake (SusEI during peak lactation has been previously suggested to be constrained by the capacity of the mammary glands to produce milk, supporting the “peripheral limitation” hypothesis. Here we experimentally examined if SusEI in these mice was not only limited peripherally but also constrained by the ability to dissipate heat. Female Swiss mice were provided with additional offspring above their natural litter sizes and were maintained during lactation either in warm (23°C or cold (5°C conditions. Food intake, thermogenesis, litter size and mass, and the weight of the mammary glands were measured. No differences were observed in asymptotic food intake at peak lactation, litter mass and thermogenesis between females raising litters of different size. Cold-exposed females increased food intake and thermogenic capacity, but weaned significantly smaller and lighter litters with smaller pup sizes compared with females in warm conditions. The weight of the mammary glands did not differ between warm and cold-exposed females, but within temperatures was positively related to litter mass. These data suggested that cold exposure increased food intake, but had no effect on the capacity of the mammary glands to secret milk because they were already working maximally in the females raising larger litters. The factors causing this limit in the mammary capacity remain elusive.

  5. Energy and water quality management systems for water utility's operations: a review.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G

    2015-04-15

    Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Indirect Measurement of Energy Density of Soft PZT Ceramic Utilizing Mechanical Stress

    Science.gov (United States)

    Unruan, Muangjai; Unruan, Sujitra; Inkong, Yutthapong; Yimnirun, Rattikorn

    2017-11-01

    This paper reports on an indirect measurement of energy density of soft PZT ceramic utilizing mechanical stress. The method works analogous to the Olsen cycle and allows for a large amount of electro-mechanical energy conversion. A maximum energy density of 350 kJ/m3/cycle was found under 0-312 MPa and 1-20 kV/cm of applied mechanical stress and electric field, respectively. The obtained result is substantially higher than the results reported in previous studies of PZT materials utilizing a direct piezoelectric effect.

  7. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  8. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  9. Energy and exergy utilization in transportation sector of Saudi Arabia

    International Nuclear Information System (INIS)

    Dincer, I.; Hussain, M.M.; Al-Zaharnah, I.

    2004-01-01

    In this paper we present an analysis of energy and exergy utilization in the transportation sector of Saudi Arabia by considering the sectoral energy and exergy flows for the years of 1990-2001. Energy and exergy analyses are conducted for its three subsectors, namely road, air and marine, and hence the energy and exergy efficiencies are obtained for comparison. Road subsector appears to be the most efficient one compared to air and marine subsectors. It is found that the energy efficiencies in air and marine subsectors are found to be equal to the corresponding exergy efficiencies due to the values of exergy grade function. A comparison of the overall energy and exergy efficiencies of Saudi Arabian transportation sector with the Turkish transportation sector is also presented for the year 1993 based on the data available. Although the sectoral coverage is not same for both countries, it is still useful to illustrate the situation on how subsectoral energy and exergy efficiencies vary over the years. Turkish transportation sector appears to be a bit more efficient for that particular year. It is believed that the present technique is practical and useful for analyzing sectoral energy and exergy utilization to determine how efficient energy and exergy are used in transportation sector. It is also be helpful to establish standards, based on exergy, to facilitate applications in industry and in other planning processes such as energy planning

  10. On Hybrid Energy Utilization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Tala’t

    2017-11-01

    Full Text Available In a wireless sensor network (WSN, many applications have limited energy resources for data transmission. In order to accomplish a better green communication for WSN, a hybrid energy scheme can supply a more reliable energy source. In this article, hybrid energy utilization—which consists of constant energy source and solar harvested energy—is considered for WSN. To minimize constant energy usage from the hybrid source, a Markov decision process (MDP is designed to find the optimal transmission policy. With a finite packet buffer and a finite battery size, an MDP model is presented to define the states, actions, state transition probabilities, and the cost function including the cost values for all actions. A weighted sum of constant energy source consumption and a packet dropping probability (PDP are adopted as the cost value, enabling us to find the optimal solution for balancing the minimization of the constant energy source utilization and the PDP using a value iteration algorithm. As shown in the simulation results, the performance of optimal solution using MDP achieves a significant improvement compared to solution without its use.

  11. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning

    International Nuclear Information System (INIS)

    Lu, Y.Z.; Wang, R.Z.; Zhang, M.; Jiangzhou, S.

    2003-01-01

    Adsorption cold storage has lately attracted attention for its large storage capacity and zero cold energy loss during the storing process. Thermodynamic and experimental studies on the cold storage capacity and the cold discharging process, in which the adsorber is either air cooled or adiabatic, have been presented. An adsorption cold storage system with zeolite-water working pair has been developed, and some operating results are summarized. This system is used for providing air conditioning for the driver's cab of an internal combustion locomotive. Unlike a normal adsorption air conditioner, the system starts running with the adsorption process, during which the cold energy stored is discharged, and ends running with the generation process. The adsorbent temperature decreases during the cold storing period between two runs. The refrigeration power output for the whole running cycle is about 4.1 kW. It appears that such a system is quite energetically efficient and is comparatively suitable for providing discontinuous refrigeration capacity when powered by low grade thermal energy, such as industrial exhausted heat or solar energy

  12. Estimating the energy and exergy utilization efficiencies for the residential-commercial sector: an application

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2006-01-01

    The main objectives in carrying out the present study are twofold, namely to estimate the energy and exergy utilization efficiencies for the residential-commercial sector and to compare those of various countries with each other. In this regard, Turkey is given as an illustrative example with its latest figures in 2002 since the data related to the following years are still being processed. Total energy and exergy inputs in this year are calculated to be 3257.20 and 3212.42 PJ, respectively. Annual fuel consumptions in space heating, water heating and cooking activities as well as electrical energy uses by appliances are also determined. The energy and exergy utilization efficiency values for the Turkish residential-commercial sector are obtained to be 55.58% and 9.33%, respectively. Besides this, Turkey's overall energy and exergy utilization efficiencies are found to be 46.02% and 24.99%, respectively. The present study clearly indicates the necessity of the planned studies toward increasing exergy utilization efficiencies in the sector studied

  13. Study of cold and hot sources in a research reactor. (Physics, specifications, operation, utilization)

    International Nuclear Information System (INIS)

    Safieh, J.

    1982-10-01

    A brief description of the reactor, sources and experimental channels (ORPHEE being taken as example) is first given. The first part deals with the hot neutron source, mainly made of a graphite block to be carried at a temperature of 1500 0 K by nuclear heating. The present study focused on the determination, with the code MERCURE IV, of heat sources generated in the graphite block. From these results the spatial distribution of temperatures have been calculated with two different methods. Mechanical and thermal stresses have been calculated for the hot points. Then, the outlet neutron spectra is determined by means of the code APOLLO. Finally, the operation of the device is presented and the risks and the safety measures are given. The second part deals with cold neutron sources comprising mainly a cold moderator (liquid hydrogen 20.4 0 K). The helium coolant circuit liquefies the hydrogen by means of heat exchange in a condenser. Cold neutron yields calculations are developed by means of the code THERMOS in the plane and cyclindrical geometries. Heat sources generated by nuclear radiations are calculated. A detailed description of the device and its coolant circuit is given, and a risk analysis is finally presented. The third part deals with the part of thermal cold and hot neutrons in the study of matter and its dynamics. Technical means needed to obtain a monochromatic beam, for diffraction experiments, are recalled emphasizing on the interest of these neutrons with regard to X radiation. Then, one deals with cold neutron guides. Finally, the efficiency of two neutron guides is calculated. 78 refs [fr

  14. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  15. Mild cold effects on hunger, food intake, satiety and skin temperature in humans

    NARCIS (Netherlands)

    Langeveld, M.; Tan, C. Y.; Soeters, M. R.; Virtue, S.; Ambler, G. K.; Watson, L. P. E.; Murgatroyd, P. R.; Chatterjee, V. K.; Vidal-Puig, A.

    2016-01-01

    Background: Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective: To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared

  16. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  17. Energy utilization associated with regular activity breaks and continuous physical activity: A randomized crossover trial.

    Science.gov (United States)

    Fenemor, S P; Homer, A R; Perry, T L; Skeaff, C M; Peddie, M C; Rehrer, N J

    2018-06-01

    To quantify and compare energy utilization associated with prolonged sitting alone, or interrupted with regular activity breaks and/or an additional bout of continuous physical activity. Thirty six adults (11 males, BMI 24.1 ± 4.6) completed four interventions: (1) prolonged sitting (SIT), (2) sitting with 2-min of walking every 30 min (RAB), (3) prolonged sitting with 30-min of continuous walking at the end of the day (SIT + PA), (4) a combination of the activities in (2) and (3) above (RAB + PA). All walking was at a speed and incline corresponding to 60% V̇O 2max . Energy utilization over 7 h for each intervention was estimated using indirect calorimetry. Compared to SIT, SIT + PA increased total energy utilization by 709 kJ (95% CI 485-933 kJ), RAB by 863 kJ (95% CI 638-1088 kJ), and RAB + PA by 1752 kJ (95% CI 1527-1927 kJ) (all p energy utilization between SIT + PA and RAB, however, post-physical activity energy utilization in RAB was 632 kJ greater than SIT + PA (95% CI 561-704 kJ; p energy utilization compared to a single bout of continuous activity; however the total energy utilization is similar. Combining activity breaks with a longer continuous bout of activity will further enhance energy utilization, and in the longer term, may positively affect weight management of a greater magnitude than either activity pattern performed alone. ANZCTR12614000624684. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  18. Peaceful utilization of nuclear energy in the FRG

    International Nuclear Information System (INIS)

    1980-01-01

    The present paper gives a summary of the initiatives taken by the Deutscher Bundestag (Federal Assembly) for peaceful utilization of nuclear energy consideration of relevant secondary aspects like area planning, assessment of technology consequences, the introduction of the Verbandsklage (write of associations to enter in public proceedings) etc. It is an extended table of contents of the 7th and 8th election period. Fixed days was the 1rst of Jan, 1980. Apart from this temporary limitation, only the Enquete-Commission's report Future Nuclear Energy Policy was taken into consideration because in this report the discussion about energy policy of the last two election periods is brought to an end. (orig.) [de

  19. DES/CCHP: The best utilization mode of natural gas for China’s low carbon economy

    International Nuclear Information System (INIS)

    Li, Yajun; Xia, Yan

    2013-01-01

    In this paper, through the analysis of the great challenges faced by China’s energy industry in the development of low carbon economy, it is advisable that China increase the proportion of natural gas (NG) in primary energy as the main strategy of energy conservation and CO 2 reduction in the advancement of industrialization and urbanization. In the near future, NG will become one of the major energy suppliers for new towns and industrial parks, and work for electric peak shaving when used in distributed energy system/combined cold, heat and power (DES/CCHP). However, as an efficient approach to improve the energy utilization efficiency, DES/CCHP cannot only increase the current energy efficiency from 33% to 50.3% (the world’s average), but also reduce the cost of terminal supplies of power, cold, steam and hot water. It will become one of the most important means to control CO 2 emissions in the next 20 years, and is essential to China’s low carbon industrialization and urbanization. - Highlights: ► China’s high economic growth has lead to a huge amount of carbon emissions. ► Climate change calls for a low carbon economy in China. ► The pressure of carbon emission reduction requires China reduce the excessive dependency on coal and oil. ► Natural gas used in distributed energy system/combined cold, heat and power (NG DES/CCHP) is low in carbon emission. ► NG DES/CCHP is the optimal energy supplier for a low carbon economy in China.

  20. The utility of environmental exergy analysis for decision making in energy

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Edwards, Chris F.

    2013-01-01

    The analysis framework discussed and employed in this paper utilizes the recent recognition that exergy is a form of environmental free energy to provide a fundamental basis for valuing environmental interactions independent from their secondary impacts. The framework is comprised of two separate components: (1) environmental exergy analysis and (2) anthropocentric sensitivity analysis. Environmental exergy analysis is based on fundamental thermodynamic principles and analysis techniques. It extends the principles of technical exergy analysis to the environment in order to quantify the location, magnitudes, and types of environmental impact—state change, alteration of natural transfers, and destruction change. Anthropocentric sensitivity analysis is based on the concepts of anthropocentric value and anthropocentric sensitivity. It enables the results of environmental exergy analysis to be interpreted for decision making, but at the expense of introducing some subjectivity into the framework. A key attribute of the framework is its ability to evaluate the environmental performance of energy systems on a level playing field, regardless of the specifics of the systems—i.e., resources consumed, products and by-products produced, or system size and time scale. The utility of the analysis framework for decision making is demonstrated in this paper through application to three example energy systems. - Highlights: ► Utilizes the recognition that exergy is a form of environmental free energy. ► Combines environmental exergy analysis and anthropocentric sensitivity analysis. ► Evaluates/compares environmental performance of systems on a level playing field. ► Independence from the system specifics—resources, by-products, sizes, time scales. ► Utility for decision making is demonstrated using real and notional energy systems

  1. A Comparative Case Study of Electric Utility Companies’ Use of Energy Democracy in Strategic Communication

    Directory of Open Access Journals (Sweden)

    Meaghan McKasy

    2018-02-01

    Full Text Available A substantial increase in distributed renewable energy resources is changing the face of the energy environment, leading to strategic communication efforts by key stakeholders. The energy democracy movement supports this transformation from fossil fuels to distributed renewable energy and aims for equitable involvement of publics in energy decision making. These tenets challenge utility company earnings as they are directly related to energy sales and infrastructure returns on investment. Proposals by electric utility companies to restructure net-metering policies as a solution to financial issues have been criticized as prohibitive to the success of renewable energy advancement. To address these disagreements, the Edison Electric Institute and a communication firm, Maslansky & Partners, created The Future of Energy: A Working Communication Guide for Discussion. This handbook provides utility companies with strategic communication guidelines to portray themselves as supportive of renewables within a dynamic energy industry. We posit that aspects of the energy democracy movement have been employed by electric utility companies, as shown through the use of the handbook, as a strategy for communicating with customers in discussions around net metering. We examine two case studies in states with recent controversial net-metering policy changes by analyzing utility company websites and press releases for the use of the communication handbook terminology. We found that, in both cases, the suggested language was used to position their companies as pro-renewable energy and their utility-scale projects as more equitable for their customers. In addition, we found differences between each company’s use of key terms from the handbook. We posit that this is due to the temporal context of each net-metering debate at the time of the handbook release. Conclusions and future directions for research in the growing area of energy democracy are discussed.

  2. Energy efficiency ground-source energy system, Environmental Protection Law, article 'Heat and cold storage, value for money'; Energierendement bodemenergiesysteem, Wet milieubeheer, artikel 'WKO, waar voor je geld'

    Energy Technology Data Exchange (ETDEWEB)

    Lambregts, E.G.M.; Teunissen, P.O.M.; Beukenhorst, E.

    2013-01-15

    Upscaling of ground-source energy systems can contribute to heat and cold storage systems and thus reduce CO2 emission for the Amsterdam municipality. Based on the results of the project 'Heat and cold storage; Value for money' a proposal was made to the Dutch Ministry of Infrastructure and Environment to include a regulation 'energy efficiency heat and cold storage' in the Environmental Protection Law [Dutch] In het kader van de CO2 doelstelling van Amsterdam om 40% CO2 te reduceren in 2025 t.o.v. van 1990 wordt de verdere opschaling van de techniek bodemenergiesysteem gezien als een techniek die in belangrijke mate kan bijdragen aan de pijler 'transitie duurzame warmte en koude'. Op landelijk en gemeentelijk niveau werd gesignaleerd dat (open) bodemenergiesystemen in de exploitatiefase veelal onvoldoende functioneerden. In dit rapport wordt op basis van de resultaten van het project 'WKO, waar voor je geld' een voorstel aan het Ministerie van I en M gedaan om een voorschrift 'energierendement wko' op te nemen in het Activiteitenbesluit Wet milieubeheer.

  3. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  4. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  5. Energy security in the post-Cold War era: Identifying future courses for crises

    Energy Technology Data Exchange (ETDEWEB)

    Freund, M.T.; Wise, J.A.; Ulibarri, C.A.; Shaw, B.R.; Seely, H.E.; Roop, J.M.

    1994-11-01

    This paper addresses US energy security in the post-Cold War era for a conference on energy security jointly sponsored by the Department of Energy and the National Defense University. It examines the evolving nature of energy security based on analysis of past crisis-inducing events and-discusses potentially important geopolitical, environmental, regulatory, and economic developments during the next twenty-five years. The paper steps beyond the traditional economic focus of energy security issues to examine the interplay between fundamental economic and technical drivers on the one hand, and political, environmental, and perceptual phenomena, on the other hand, that can combine to create crises where none were expected. The paper expands on the premise that the recent demise of the Soviet Union and other changing world conditions have created a new set of energy dynamics, and that it is imperative that the United States revise its energy security perspective accordingly. It proceeds by reviewing key factors that comprise the concepts of ``energy security`` and ``energy crisis`` and how they may fit into the new world energy security equation. The study also presents a series of crisis scenarios that could develop during the next twenty-five years, paying particular attention to mechanisms and linked crisis causes and responses. It concludes with a discussion of factors that may serve to warn analysts and decision makers of impending future crises conditions. The crisis scenarios contained in this report should be viewed only as a representative sample of the types of situations that could occur. They serve to illustrate the variety of factors that can coalesce to produce a ``crisis.``

  6. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  7. Fundamental plan of atomic energy development and utilization in fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The Prime Minister made the fundamental plan of atomic energy development and utilization in fiscal year 1986 based on the decision of Nuclear Safety Commission on March 13, 1986, and the decision of Atomic Energy Commission on March 18, 1986, in conformity with the law concerning Japan Atomic Energy Research Institute, and asked the opinion of Nuclear Safety Commission. After the deliberation, the Nuclear Safety Commission made the report same as the original draft on March 27, 1986. The outline of the measures taken in fiscal year 1986 is as follows. The strengthening of the measures for ensuring safety, the promotion of nuclear power generation, the establishment of nuclear fuel cycle, the development of the reactors of new types, the research on nuclear fusion, the research and development of nuclear-powered ships, the promotion of the utilization of radiation, the strengthening of the base for atomic energy development and utilization, the promotion of international cooperation, and the strengthening of safeguard measures and the countermeasures for the protection of nuclear substances. The total budget related to atomic energy for fiscal year 1986 is 357.3 billion yen. (Kako, I.)

  8. Impact of exposure to cold on layer production

    Directory of Open Access Journals (Sweden)

    FMS Alves

    2012-09-01

    Full Text Available Infrared thermographic images were used to evaluate the effect of the exposure of layers to cold. In this trial, 540 Isa Brown® layers with an average age of 69 weeks were housed in a conventional layer house typically used in Brazil during a period of cold environmental temperatures. Environmental and heat-transference data were recorded between July 13-16, 2010. It was verified that layers under cold stress conditions lost four times more energy that the recommendations trying to maintain their body temperature. Due to their reduced feed intake capacity, hens are not capable of increasing the availability of the metabolic energy required to maintain their body temperature and egg production, consequently resulting in economic losses.

  9. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  10. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  11. Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion

    International Nuclear Information System (INIS)

    Qin, Jiang; Cheng, Kunlin; Zhang, Silong; Zhang, Duo; Bao, Wen; Han, Jiecai

    2016-01-01

    The working process of scramjet with regenerative cooling, which was actually the chemical recuperation process, was analyzed in view of energy cascade utilization. The indirect combustion was realized through pyrolysis reaction of fuel. The relative yields of thermal exergy obtained by indirect combustion have been predicted both assuming an ideal pyrolysis reaction and using the experimental results of thermal pyrolysis of n-decane. The results showed that the influence mechanism of regenerative cooling improved the scramjet engine performance by the energy cascade utilization, and the combustion process was supposed to be designed with the cooling process together to utilize the chemical energy of fuel in a more effective way. A maximum value of 11% of the relative yield was obtained with the ideal pyrolysis reaction while a value less than 3% existed in the thermal pyrolysis experiments because of the domination of chemical kinetics rather than chemical thermodynamics in the real experiments. In spite of the difference between the ideal and the present experimental results, the indirect combustion was prospective to achieve a better energy cascade utilization in a chemically recuperated scramjet if the pyrolysis reaction was further optimized. The results in this paper were beneficial for the performance optimization of a regenerative cooling scramjet. - Highlights: • A new method of energy cascade utilization in a chemically recuperated scramjet. • 11% exergy loss is reduced by ideal pyrolysis reaction with indirect combustion. • Regenerative cooling with chemical recuperation can improve engine performance.

  12. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Science.gov (United States)

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  13. Enzyme activity, hormone concentration in tree shrew (Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-08-01

    Full Text Available Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. The tree shrew (Tupaia belangeri, is a unique species of small mammals which is origin of island in the Oriental realm. The present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake, metabolism, uncoupling protein 1 (UCP1 in brown adipose tissue (BAT, and other biochemical characters of T. belangeri during cold exposure about 21 days. Our data demonstrate that cold acclimation induced a remarkable increase in body mass, a significant increase in energy intake and metabolic rate, and high expression of UCP1 in BAT of T. belangeri. Cold acclimation induced an increase in cytochrome c oxidase (COX and Thyroidhormones (T3/T4. These data supported that T. belangeri increased the body mass and increased energy intake and expenditure under cold acclimation. Increased expression of UCP1 was potentially involved in the regulation of energy metabolism and thermogenic capacity following cold acclimation. And it through changes in enzyme activity and hormone concentration under cold acclimation, and suggested temperature changes play an important role in the regulation of thermogenic capacity in tree shrew.

  14. The development and utilization of biomass energy resources in China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  15. Potensi Energi Listrik Pada Gas Buang Sepeda Motor

    Directory of Open Access Journals (Sweden)

    Melda Latif

    2015-02-01

    Full Text Available The fossil energy sources dwindling due to the many needs, especially in industrial and automotive sectors which are the largest energy users and the highest waste heat-producing. This causes many alternative energy sources are developing, included thermal energy utilization. The research utilized waste heat energy from motorcycle exhaust pipe into electrical energy with using Thermo Electric Generator (TEG. By using the thermocouple principle, difference of temperature between hot and cold side of TEG resulted voltage. Testing was conducted with three points are on head, body and mouth of the exhaust pipe. The maximum output voltage is generated in the head is greater than the other positions. At the head of exhaust, the maximum output voltage which is generated by 1 modul, 2 modules and 3 modules of TEG on each other is 1.26 V, 2.27 V and 3.43 V respectively.

  16. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes

    International Nuclear Information System (INIS)

    Karakaya, Ahmet; Ozilgen, Mustafa

    2011-01-01

    Energy utilization and carbon dioxide emission during the production of fresh, peeled, diced, and juiced tomatoes are calculated. The energy utilization for production of raw and packaging materials, transportation, and waste management are also considered. The energy utilization to produce one-ton retail packaged fresh tomatoes is calculated to be 2412.8 MJ, whereas when the tomatoes are converted into paste, the energy utilization increases almost twofold; processing the same amount into the peeled or diced-tomatoes increases the energy utilization seven times. In case of juice production, the increase is five times. The carbon dioxide emission is determined by the source of energy used and is 189.4 kg/t of fresh tomatoes in the case of retail packaging, and did not change considerably when made into paste. The carbon dioxide emission increased twofold with peeled or diced-tomatoes, and increased threefold when juiced. Chemical fertilizers and transportation made the highest contribution to energy utilization and CO 2 emission. The difference in energy utilization is determined mainly by water to dry solids ratio of the food and increases with the water content of the final product. Environmentally conscious consumers may prefer eating fresh tomatoes or alternatively tomato paste, to minimize carbon dioxide emission. -- Highlights: → Energy utilization for producing one-ton retail packaged fresh tomatoes was 2412.8 MJ → Energy utilization was 2 folds with paste, 7 times with peeled or diced-tomatoes, 5 times with juice. → Energy utilization increases with water content of the final product. → Transportation, packaging, evaporation and chemicals are the major energy consumers. → Carbon dioxide emission is determined by the source of energy.

  17. A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1

    International Nuclear Information System (INIS)

    Aspelund, Audun; Gundersen, Truls

    2009-01-01

    A novel transport chain for stranded natural gas utilized for power production with CO 2 capture and storage is developed. It includes an offshore section, a combined gas carrier, and an onshore integrated receiving terminal. Due to utilization of the cold exergy both in the offshore and onshore processes, and combined use of the gas carrier, the transport chain is both energy and cost effective. In this paper, the liquefied energy chain (LEC) is explained, including novel processes for both the offshore field site and onshore market site. In the offshore section, natural gas (NG) is liquefied to LNG by liquid carbon dioxide (LCO 2 ) and liquid inert nitrogen (LIN), which are used as cold carriers. The LNG is transported in a combined gas carrier to the receiving terminal where it is used as a cooling agent to liquefy CO 2 and nitrogen. The LCO 2 and LIN are transported offshore using the same combined carrier. Pinch and Exergy Analyses are used to determine the optimal offshore and onshore processes and the best transport conditions. The exergy efficiency for a thermodynamically optimized process is 87% and 71% for the offshore and onshore processes, respectively, yielding a total efficiency of 52%. The offshore process is self-supported with power and can operate with few units of rotating equipment and without flammable refrigerants. The loss of natural gas due to power generation for the energy requirements in the LEC processes is roughly one third of the loss in a conventional transport chain for stranded natural gas with CO 2 sequestration. The LEC has several configurations and can be used for small scale ( 5 MTPA LNG) transport. In the example in this paper, the total costs for the simple LEC including transport of natural gas to a 400 MW net power plant and return of 85% of the corresponding carbon as CO 2 for a total sailing distance of 24 h are 58.1 EUR/tonne LNG excluding or including the cost of power. The total power requirements are 319 k

  18. Supercooling and cold energy storage characteristics of nano-media in ball-packed porous structures

    Directory of Open Access Journals (Sweden)

    Zhao Qunzhi

    2015-04-01

    Full Text Available The presented experiments aimed to study the supercooling and cold-energy storage characteristics of nanofluids and water-based nano-media in ball-packed porous structures (BPS. Titanium dioxide nanoparticles (TiO2 NPs measuring 20nm and 80nm were used as additives and sodium dodecyl benzene sulphonate (SDBS was used as anionic surfactant. The experiments used different concentrations of nanofluid, distilled with BPS of different spherical diameter and different concentrations of nano-media, and were conducted 20 times. Experimental results of supercooling were analysed by statistical methods. Results show that the average and peak supercooling degrees of nanofluids and nano-media in BPS are lower than those of distilled water. For the distilled water in BPS, the supercooling degree decreases on the whole with the decrease of the ball diameter. With the same spherical diameter (8mm of BPS, the supercooling degree of TiO2 NPs measuring 20nm is lower than the supercooling degree of distilled water in BPS. Step-cooling experiments of different concentrations of nanofluids and nano-media in BPS were also conducted. Results showed that phase transition time is reduced because of the presence of TiO2 NPs. The BPS substrate and the NPs enhance the heat transfer. Distilled water with a porous solid base and nanoparticles means the amount of cold-energy storage increases and the supercooling degree and the total time are greatly reduced. The phase transition time of distilled water is about 3.5 times that of nano-media in BPS.

  19. Community Energy Systems and the Law of Public Utilities. Volume Thirty-two. New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Jersey governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Forty-two. South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of South Carolina governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Forty-three. South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of South Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Forty-one. Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Rhode Island governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Thirty-one. New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Hampshire governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One. An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Thirty-six. North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of North Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community energy systems and the law of public utilities. Volume thirty-four. New York

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New York governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Progress and results in Zero-Point Energy research

    International Nuclear Information System (INIS)

    King, M.B.

    1992-01-01

    This paper reports that the vacuum polarization of atomic nuclei may trigger a coherence in the zero-point energy (ZPE) whenever a large number of nuclei undergo abrupt, synchronous motion. Experimental evidence arises from the energy anomalies observed in heavy-ion collisions, ion-acoustic plasma oscillations, sonoluminescence, fractoemission, large charge density plasmoids, abrupt electric discharges, and light water cold fusion experiments. Further evidence arises from inventions that utilize coherent ion-acoustic activity to output anomalously excessive power

  7. Energy intake and growth of weanling horses in a cold loose housing system

    Directory of Open Access Journals (Sweden)

    E. AUTIO

    2008-12-01

    Full Text Available The demand for information relating to the nutrition of horses in a cold environment is increasing with the popularity of loose housing of horses. This study examined the energy intake and growth of 10 weanling horses from November to March (22 weeks in a loose housing system (paddock and insulated sleeping hall with deep-litter bed. The horses were measured weekly for body condition and body weight, and the feeding was adjusted according to a horse’s body condition. Metabolizable energy (ME intake was compared to Finnish (MTT 2006 and Swedish (SLU 2004 nutrient requirements for 6–12-month-old horses. ME intake (75.5 ± 11.8 MJ d-1, mean ± SD was on average 24.6% above the requirements. The intake varied in a non-linear fashion in the course of the winter: y = 0.086x2 – 0.902x + 71.5, where x is weeks from November to March (p

  8. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    Science.gov (United States)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  9. Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974

    Science.gov (United States)

    1975-01-01

    Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.

  10. Public utilities with renewable energy sources. Proceedings; Stadtwerke mit Erneuerbaren Energien. Konferenzband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-25

    Within the 3rd EUROSOLAR Conference at 25th to 26th May, 2009, in Ludwigshafen (Federal Republic of Germany) the following lectures were held: (a) Municipal power supply - Renewable energies (Hermann Scheer); (b) The significance of municipal regulations for the development of renewable energies by the example of Rheinland-Pfalz (Gerhard Weissmueller); (c) The solar regulation of the city Marburg (Franz Kahle); (d) Large-area solar-potential register SUN-AREA, the example Osnabrueck (Martina Klaerle); (e) Energy autonomy by means of methods at municipal and state level (Stephan Grueger); (f) Concession process according to paragraph 46 EnWG as a start for a locally regenerative strategic reorientation (Christian Theobald); (g) Municipal utilities and regenerative power generation (Johannes van Bergen); (h) The hybrid power plant Enertrag (Michael Wenske); (i) Eco-power with ecological added value (Uwe Leprich); (j) Increase of added value at biogas by means of grid connection (Leonhard Thien); (k) Biogas products for private customers (Oliver Hummel); (l) Marketing of biogas as a fuel - WEGAS Wendlaender BioGas (Hans-Volker Marklewitz); (m) Geothermal heat in the Upper Rhine Graben by the example of the geothermal power plant Landau (Peter Hauffe); (n) The Act on Heating with Renewable Energy Sources - A chance for new fields of business for municipal utilities (Klara Siraki); (o) Direct marketing of electricity from renewable energies as a chance for municipal utilities (Martin Altrock, Matthias Stark); (p) The significance of EEG and EEWaermeG 2009 in the further enlargement of renewable energies (Fabio Longo); (q) Taking over of the gas grid by the municipal utility Waldkirch GmbH (Dieter Nagel); (r) Municipal added value - municipal economical effects of decentral power generation (Michael Wuebbels).

  11. Implication of collider experiments for detecting cold dark matter

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    Investigation of Minimal Supersymmetry Standard Model shows, that any discovery with high-energy colliders at least one supersymmetric particle would strongly enhance importance of very accurate experiments. which search for lightest supersymmetric neutralinos as cold dark matter particles. Form other side, non-observations of any signal of cold dark matter in such experiments would force us to change strategy of searching for, for instance, light charged Higgs bosons at high energies [ru

  12. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  13. The role of nuclear energy in reducing the environmental impact of China's energy utilization

    International Nuclear Information System (INIS)

    Wu, Zongxin; Sun, Yuliang

    1998-01-01

    It is presented in this paper the current status of China's energy market and the projections of its future development. China's energy market, currently and in the next decades, is mainly characterized by rapidly increasing demand and dominant role of coal which is directly related to serious environmental pollution. The role of nuclear energy utilization in improving the primary energy infrastructure is addressed. Status and development of nuclear power generation are described. Potential of introducing nuclear energy into heat market is discussed. An overview of the research and development work of water cooled low temperature heating reactors and gas-cooled high temperature gas cooled reactors in China is given and the technical and safety features of these two reactor types are briefly described. (author)

  14. Fusion - still out in the cold

    International Nuclear Information System (INIS)

    Townsley, Mike.

    1989-01-01

    Scepticism over the claims made by Professors Martin Fleischman and Stanley Pons about cold fusion is expressed. The background to their experiment and announcement of their results is given. Other research teams have failed to repeat the experiment which claims that deuterium nuclei fused in a special electrochemical cell. If tritium is also produced, as is claimed, this would have important military implications as tritium is used in hydrogen bombs. Failing cold fusion, there is always the JET project but after 10 years and an expenditure of Pound 600 million that has failed to produce a net energy gain it would be better to spend the money developing renewable energy sources. (U.K.)

  15. Annual Energy Review, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document presents statistics on energy useage for 1995. A reviving domestic economy, generally low energy prices, a heat wave in July and August, and unusually cold weather in November and December all contributed to the fourth consecutive year of growth in U.S. total energy consumption, which rose to an all-time high of almost 91 quadrillion Btu in 1995 (1.3). The increase came as a result of increases in the consumption of natural gas, coal, nuclear electric power, and renewable energy. Petroleum was the primary exception, and its use declined by only 0.3 percent. (Integrating the amount of renewable energy consumed outside the electric utility sector into U.S. total energy consumption boosted the total by about 3.4 quadrillion Btu, but even without that integration, U.S. total energy consumption would have reached a record level in 1995.)

  16. Renewable energy utilization in 3 european cities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Energy production based on fossil fuels produces CO2, SO2 and NOx, which are harmful to the environment. It is agreed, both nationally and internationally, that it is necessary to considerably reduce the energy consumption. The difference between different European countries politically, financially, culturally, and socially needs to be acknowledged when energy initiatives are considered for implementation on a local as well as an international scale. This was the basis for the initiation of the project `Renewable Energy Utilization in 3 European Cities`. Three very different cities with different problems and thus different interests got together and joined efforts to develop action plans to increase renewable energy use to reduce the burden on the environment from energy consumption in the urban and regional areas. The work has been undertaken by the working group presented in appendix 3. (EG) ALTENER. 25 refs.

  17. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  18. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system

    International Nuclear Information System (INIS)

    Al-Madhhachi, Hayder; Min, Gao

    2017-01-01

    Highlights: • New distillation process using thermoelectric to assist evaporation/condensation. • Novel thermoelectric distillation system with reduced specific energy consumption. • Freshwater production by thermoelectrically assisted evaporation and condensation. - Abstract: An efficient thermoelectric distillation system has been designed and constructed for production of drinkable water. The unique design of this system is to use the heat from hot side of the thermoelectric module for water evaporation and the cold side for vapour condensation simultaneously. This novel design significantly reduces energy consumption and improves the system performance. The results of experiments show that the average water production is 28.5 mL/h with a specific energy consumption of 0.00114 kW h/mL in an evaporation chamber filled with 10 × 10 × 30 mm"3 of water. This is significantly lower than the energy consumption required by other existing thermoelectric distillation systems. The results also show that a maximum temperature difference between the hot and cold side of the thermoelectric module is 42.3 °C, which led to temperature increases of 26.4 °C and 8.4 °C in water and vapour, respectively.

  19. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  20. Energy and Environment Guide to Action - Chapter 7.0: Electric Utility Policies

    Science.gov (United States)

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  1. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Thiering, R.; Lu, W.; Ullah, R.

    2006-01-01

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies ( 1 0 m eV). A cold neutron flux of 1.4 1 0 E 1 4 n /cm 2/ s is expected, with a peak in the energy spectrum at 4.2m eV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24 K. The moderator chamber, which contains the deuterium, has been constructed from AlMg 5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 3 00 K ), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  2. Multi utility - a successful conception for energy supply companies?; Multi-Utility - Erfolgskonzept fuer Energieversorger? Zusammenwachsen der Maerkte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C. [LBD-Beratungsgesellschaft mbH, Berlin (Germany)

    2003-06-02

    Multi-utility is seen as the most promising marketing strategy for energy companies. In the future, experts say, only the combined supply of electricity, natural gas, water, waste management and services will allow companies to grow. But are today's multi-utility-products answering the needs of the customers? The author goes further into this question and finds the answer: Multi-utility needs to be further developed. Only products from growth and competition markets can generate additional margins. (orig.) [German] Multi-Utility gilt als die Marketingstrategie fuer Energieversorger. Nur wer zukuenftig Strom, Gas, Wasser, Entsorgung und Service aus einer Hand anbietet, heisst es in der Branche, kann im Markt wachsen. Doch inwieweit entspricht das heutige Multi-Utility-Angebot wirklich dem Kundenbeduerfnis? Die Verfasserin geht dieser Frage nach und kommt zu dem Schluss: Die Multi-Utility-Palette muss weiterentwickelt werden. Nur mit Produkten aus Wachstums- und Wettbewerbsmaerkten kann zusaetzliche Marge generiert werden. (orig.)

  3. Electric utility load management: rational use of energy program pilot study

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    In recognition of the role that load management can play in ensuring that the growing demand for electricity is met in a cost- and energy-efficient manner, in mid-1974, the NATO Committee on the Challenges of Modern Society sponsored all three meetings to provide a forum for representatives of U.S. and European utilities to exchange views and experiences on the various aspects of load management. It was the consensus of representatives at the meetings that three overall approaches offer significant opportunities for achieving improved load management: development of marginal-cost rate structures; power pooling and energy storage by utilities; and efforts by consumers. Industrial consumers can assist electric utilities in their efforts to level system loads through three important methods: interruptible power and deferred load control; peak self-generation; and shifts in operating schedules. Residential/commercial consumers also have an important role to play by managing both their electric heating load (through the interruption of direct-resistance heating and the storage of heat) and their air conditioning load. In response to the interest expressed by the participants in the CCMS conferences, the U.S. and several European governments, national electric utility industry organizations, state public utility commissions, and many individual utilities have undertaken R and D projects to investigate and test various aspects of these three approaches to load management. This report describes the projects that were presented by the utility representatives.

  4. Cold start-up condition model for heat recovery steam generators

    International Nuclear Information System (INIS)

    Sindareh-Esfahani, Peyman; Habibi-Siyahposh, Ehsan; Saffar-Avval, Majid; Ghaffari, Ali; Bakhtiari-Nejad, Firooz

    2014-01-01

    A dynamic modeling of Heat Recovery Steam Generator (HRSG) during cold start-up operation in Combined Cycle Power Plant (CCPP) is introduced. In order to characterize the essential dynamic behavior of the HRSG during cold start-up; Dynamic equations of all HRSG's components are developed based on energy and mass balances. To describe precisely the operation of HRSG; a method based on nonlinear estimated functions for thermodynamic properties is applied to estimate the model parameters. Model parameters are evaluated by a designed algorithm based on Genetic Algorithm (GA). A wide set of experimental data is used to validate HRSG model during cold start-up operation. The simulation results show the reliability and validity of the developed model for cold start-up operation. - Highlights: •Presenting a mathematical model for HRSGs cold start-up based on energy and mass balances. •A designed parameter identification algorithm based on GA is presented. •Application of experimental data in order to model and validate simulation results

  5. Evolution of velocity dispersion along cold collisionless flows

    International Nuclear Information System (INIS)

    Banik, Nilanjan; Sikivie, Pierre

    2016-01-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components

  6. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan

    International Nuclear Information System (INIS)

    Tabata, Tomohiro; Okuda, Takaaki

    2012-01-01

    This paper discusses the effectiveness of a woody biomass utilization system that would result in increased net energy production through wood pellet production, along with energy recovery processes as they relate to household energy demand. The direct environmental load of the system, including wood pellet production and utilization processes, was evaluated. Furthermore, the indirect load, including the economic impact of converting the existing fossil-fuel-based energy system into a woody biomass-based system, on the entire society was also evaluated. Gifu Prefecture in Japan was selected for a case study, which included a comparative evaluation of the environmental load and costs both with and without coordination with the wood pellet production process and the waste-to-energy of municipal solid waste process, using the life cycle assessment methodology. If the release of greenhouse gases from the combustion of wood pellets is included in calculations, then burning wood pellets results in unfavorable environmental consequences. However, when the reduced indirect environmental load due to the utilization of wood pellets versus petroleum is included in calculations, then favorable environmental consequences result, with a net reduction of greenhouse gases emissions by 14,060 ton-CO 2eq . -- Highlights: ► We evaluate economic and environmental impact of woody biomass utilization in household. ► Wood pellet utilization for house heating is advantageous to reduce greenhouse gas emissions. ► Reduction effect of greenhouse gas will be canceled out if carbon neutrality were considered. ► Net greenhouse gas emissions considering conversion of an ordinal energy system will be minus. ► Wood pellet utilization is advantageous not only in global warming but also for resource conservation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Forty-six. Utah

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Utah governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilites, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  9. Utility opinions on energy supply. Praise and reprimand

    International Nuclear Information System (INIS)

    2008-01-01

    This article discusses the opinions expressed by several electricity utilities on the cost-covering remuneration of electricity produced using renewable resources. Positive and negative aspects of the system - in the opinion of the utilities - are listed. Positive issues discussed include the improved economic viability of installations using renewable energy sources, preservation of know-how, increased use of renewables and the minimisation of economic risk for the builders of such installations. Negative issues noted include the general financial burden placed on all electricity consumers, the limits placed by parliament on the remuneration scheme, various hindrances still active in the implementation of such installations and possible competition with other schemes that further the use of electricity from renewable resources.

  10. Leading research report for fiscal 1998 on the next-generation cold emission technology; 1998 nendo jisedai cold emission gijutsu no chosa kenkyu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The report covers the fruits of researches into technologies of cold emission control and cold emission application conducted in fiscal 1998. In the study relative to the current status of cold emission control technology, emitter materials that govern electron emitting characteristics are discussed, such as metallic materials, silicon, carbon systems, semiconductors, liquid metal, etc. In relation with the application of semiconductor process technology, the tunnel emitter is taken up that utilizes the semiconductor tunnel cathode. In relation with the cold emission process, an emitter high in aspect ratio is described, obtained by the inductive emitter deposition method in which organic metallic gas is decomposed by an electron beam. In the study of the cold emission control system and instrumentation, the merits and demerits of control by MOSFET (MOS field effect transistor) are discussed. In relation with the technology of cold emission application, FED (field effect display) development and problems, current status of sensor technology and problems, RF application technology, application to power systems, etc., are mentioned. (NEDO)

  11. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  12. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  13. Basic plans of nuclear energy development and utilization for fiscal 1982 (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Prime Minister, concerning the basic plans of nuclear energy development and utilization for fiscal 1982, was presented; the NSC has decided on the plans drawn up by the Prime Minister. Nuclear power generation as the nucleus of petroleum substitutes must be developed steadily. For the purpose, nuclear fuel cycle should be established, including the securing of uranium resources, uranium enrichment, fuel reprocessing, and waste management. The contents are as follows: the strengthening of nuclear safety measures, the promotion of nuclear power generation, the establishment of nuclear fuel cycle, the development of advanced types of reactors, the research on nuclear fusion, the research and development of nuclear powered ships, the promotion of radiation utilization, the strengthening of basis for nuclear energy development and utilization, the promotion of international cooperation, the strengthening of safeguard and nuclear material protection measures, fiscal 1982 budgets related to nuclear energy. (Mori, K.)

  14. Rational energy use and the gas utility. An economic analysis of energy efficiency strategies on the space heating market

    International Nuclear Information System (INIS)

    Helle, C.

    1994-01-01

    Apart from the political authorities, also the supply utilities may contribute to a more widespread rational energy use. This investigtion focuses on the gas utilities, which have a wide range of options for higher energy efficiency, especially on the space heating market. These options are analyzed in the framework of the process of company straategy planning. Particular interest is taken in the product-political strategy of forward integration. (orig.) [de

  15. Sudbury District Energy - a public/private partnership model

    International Nuclear Information System (INIS)

    Prudhomme, H.

    1999-01-01

    The issue of public/private partnership as it relates to the Sudbury District Energy Project was discussed. When completed, it will be the first cogeneration-based district heating and cooling project involving private sector/public sector partnership in Canada. The equal partners include Toromont Energy and Sudbury Hydro. Sudbury Hydro is a community owned energy and communications utility. It was the first electric utility in Ontario to retail natural gas in the new competitive market place. The Sudbury District Energy Project began in 1996, when the utility began the development of a community district energy system in partnership with the City of Sudbury. At the time, the downtown district heating/cooling system supplied cold and hot water to Sudbury's Wellness Centre. In 1998, Toromont Energy accepted a 50/50 partnership arrangement between themselves and the public sector partners to form the Sudbury District Energy Corporation. Sudbury Hydro will benefit from the project because it will reduce their peak loads and it will also be an alternate source of revenue. It is expected that the project will displace 39,600 tons of carbon dioxide, a greenhouse gas which contributes to global warming

  16. Biomass energy and the environmental impacts associated with its production and utilization

    International Nuclear Information System (INIS)

    Abbasi, Tasneem; Abbasi, S.A.

    2010-01-01

    Biomass is the first-ever fuel used by humankind and is also the fuel which was the mainstay of the global fuel economy till the middle of the 18th century. Then fossil fuels took over because fossil fuels were not only more abundant and denser in their energy content, but also generated less pollution when burnt, in comparison to biomass. In recent years there is a resurgence of interest in biomass energy because biomass is perceived as a carbon-neutral source of energy unlike net carbon-emitting fossil fuels of which copious use has led to global warming and ocean acidification. The paper takes stock of the various sources of biomass and the possible ways in which it can be utilized for generating energy. It then examines the environmental impacts, including impact vis a vis greenhouse gas emissions, of different biomass energy generation-utilization options. (author)

  17. Utilization of stored elastic energy in leg extensor muscles by men and women.

    Science.gov (United States)

    Komi, P V; Bosco, C

    1978-01-01

    An alternating cycle of eccentric-concentric contractions in locomotion represents a sequence when storage and utilization of elastic energy takes place. It is possible that this storage capacity and its utilization depends on the imposed stretch loads in activated muscles, and that sex differences may be present in these phenomena. To investigate these assumed differences, subjects from both sexes and of good physical condition performed vertical jumps on the force-platform from the following experimental conditions: squatting jump (SJ) from a static starting position; counter-movement jump (CMJ) from a free standing position and with a preparatory counter-movement; drop jumps (DJ) from the various heights (20 to 100 cm) on to the platform followed immediately by a vertical jump. In all subjects the SJ, in which condition no appreciable storage of elastic energy takes place, produced the lowest height of rise of the whole body center of gravity (C.G.). The stretch load (drop height) influenced the performance so that height of rise of C. of G. increased when the drop height increased from 26 up to 62 cm (males) and from 20 to 50 cm (females). In all jumping conditions the men jumped higher than the women. However, examination of the utilization of elastic energy indicated that in CMJ the female subjects were able to utilize most (congruent to 90%) of the energy produced in the prestretching phase. Similarly, in DJ the overall change in positive energy over SJ condition was higher in women as compared to men. Thus the results suggest that although the leg extensor muscles of the men subjects could sustain much higher stretch loads, the females may be able to utilize a greater portion of the stored elastic energy in jumping activities.

  18. A composite efficiency metrics for evaluation of resource and energy utilization

    International Nuclear Information System (INIS)

    Yang, Siyu; Yang, Qingchun; Qian, Yu

    2013-01-01

    Polygeneration systems are commonly found in chemical and energy industry. These systems often involve chemical conversions and energy conversions. Studies of these systems are interdisciplinary, mainly involving fields of chemical engineering, energy engineering, environmental science, and economics. Each of these fields has developed an isolated index system different from the others. Analyses of polygeneration systems are therefore very likely to provide bias results with only the indexes from one field. This paper is motivated from this problem to develop a new composite efficiency metrics for polygeneration systems. This new metrics is based on the second law of thermodynamics, exergy theory. We introduce exergy cost for waste treatment as the energy penalty into conventional exergy efficiency. Using this new metrics could avoid the situation of spending too much energy for increasing production or paying production capacity for saving energy consumption. The composite metrics is studied on a simplified co-production process, syngas to methanol and electricity. The advantage of the new efficiency metrics is manifested by comparison with carbon element efficiency, energy efficiency, and exergy efficiency. Results show that the new metrics could give more rational analysis than the other indexes. - Highlights: • The composite efficiency metric gives the balanced evaluation of resource utilization and energy utilization. • This efficiency uses the exergy for waste treatment as the energy penalty. • This efficiency is applied on a simplified co-production process. • Results show that the composite metrics is better than energy efficiencies and resource efficiencies

  19. Coal and energy: a southern perspective. Regional characterization report for the National Coal Utilization Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, F. D.; Davis, R. M.; Goff, F. G.; Olson, J. S.; Parzyck, D. C.

    1977-08-01

    This publication is the first of several reports to be produced for the National Coal Utilization Assessment, a program sponsored by the Assistant Administrator for Environment and Safety through the Division of Technology Overview of ERDA. The purpose of the report is to present the state and regional perspective on energy-related issues, especially those concerning coal production and utilization for 12 southern states. This report compiles information on the present status of: (1) state government infrastructure that deals with energy problems; (2) the balance between energy consumption and energy production; (3) the distribution of proved reserves of various mineral energy resources; (4) the major characteristics of the population; (5) the important features of the environment; and (6) the major constraints to increased coal production and utilization as perceived by the states and regional agencies. Many energy-related characteristics described vary significantly from state to state within the region. Regional and national generalizations obscure these important local variations. The report provides the state and regional perspective on energy issues so that these issues may be considered objectively and incorporated into the National Coal Utilization Assessment. This Assessment is designed to provide useful outputs for national, regional, and local energy planners.

  20. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    by a more thorough description of three ongoing projects. These are Wave Dragon, Wave Star and Seawave Slot-cone Generator. Common for these projects are that they are being, or will soon be, tested in real sea and have benefited from the Danish Wave Energy Program. The work by the department......This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed...... on these projects involves substantial laboratory testing, numerical simulations and real sea prototype testing....

  1. Measures to remove impediments to better utilization. Renewable energy sources

    International Nuclear Information System (INIS)

    Diekmann, J.; Eichelbroenner, M.; Langniss, O.

    1997-01-01

    The utilization of renewable energy sources meets with a number of obstacles created in particular by economic framework conditions, regulatory provisions, lengthy administrative procedures, insufficient information, and to some part also to the reluctance of bankers and utilities. This is why an action programme was put underway by the Forum fuer Zukunftsenergien, together with the Berlin-based DIW (German economic research institute) and the Stuttgart-based DLR (German aerospace research institute), financed from public funds of the Federal Ministry of Economics. Under this programme, almost 900 operators of systems for electricity generation from wind power, hydropower, biomass, ambient heat, solar thermal energy and by photovoltaic conversion have been interviewed. Based on the information obtained, the article reveals the existing impediments and proposed action for overcoming the obstacles. (orig.) [de

  2. Solar shading control strategy for office buildings in cold climate

    DEFF Research Database (Denmark)

    Røseth Karlsen, Line; Heiselberg, Per Kvols; Bryn, Ida

    2016-01-01

    Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated.......Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated....

  3. A potential of utilizing renewable energy sources and the state support in Slovakia

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2007-04-01

    Full Text Available The renewable energy sources are domestic sources of energy that help to enhance the safety of energy supplies and the diversification of energy sources. The utilization of such sources complies with the environmental acceptability requirement and leads to a reduction in greenhouse gas emissions. The renewable energy is proved to be commercially viable for a growing list of consumers and uses. The renewable energy technologies provide many benefits that go well beyond the energy alone. More and more, the renewable energies contribute to the three pillars of the sustainable development in the economy, environment and the society.Several renewable energy technologies are established in world markets, building global industries and infrastructures. Other renewables become competitive in growing markets, and some are widely recognised as the lowest cost option for stand-alone and offgrid applications. An increased utilization of renewable energy sources in the heat and electricity generation is one of priority tasks of the Slovak Republic to boost the use of domestic energy potential and thus to decrease the Slovakia’s dependence on imported fossil fuels.

  4. Optimal utilization of waste-to-energy in an LCA perspective.

    Science.gov (United States)

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  6. Profit maximization algorithms for utility companies in an oligopolistic energy market with dynamic prices and intelligent users

    Directory of Open Access Journals (Sweden)

    Tiansong Cui

    2016-01-01

    Full Text Available Dynamic energy pricing provides a promising solution for the utility companies to incentivize energy users to perform demand side management in order to minimize their electric bills. Moreover, the emerging decentralized smart grid, which is a likely infrastructure scenario for future electrical power networks, allows energy consumers to select their energy provider from among multiple utility companies in any billing period. This paper thus starts by considering an oligopolistic energy market with multiple non-cooperative (competitive utility companies, and addresses the problem of determining dynamic energy prices for every utility company in this market based on a modified Bertrand Competition Model of user behaviors. Two methods of dynamic energy pricing are proposed for a utility company to maximize its total profit. The first method finds the greatest lower bound on the total profit that can be achieved by the utility company, whereas the second method finds the best response of a utility company to dynamic pricing policies that the other companies have adopted in previous billing periods. To exploit the advantages of each method while compensating their shortcomings, an adaptive dynamic pricing policy is proposed based on a machine learning technique, which finds a good balance between invocations of the two aforesaid methods. Experimental results show that the adaptive policy results in consistently high profit for the utility company no matter what policies are employed by the other companies.

  7. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  8. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2016-01-01

    Full Text Available This article describes the usage of thermal energy storage in the form of heat and cold with an adaptation of the special device which is composed of the thermal panels. These panels are based on the phase change materials (PCM for normal inner environment temperature in buildings. The energy for the thermal energy storage is possible to get from built-in electric heating foil or from the tube heat exchanger, which is build in the thermal panels. This technology is able to use renewable energy sources, for example, solar thermal collectors and air-to-water heat pump as a source of heat for heating of the hot water tank. In the cooling mode, there is able to use the heat pump or photovoltaics panels in combination with thermoelectric coolers for cooling.

  9. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials

    International Nuclear Information System (INIS)

    Fang, Yutang; Yu, Huimin; Wan, Weijun; Gao, Xuenong; Zhang, Zhengguo

    2013-01-01

    Highlights: • Average particle size of Tet/PS nanocapsules is smaller than the same type composite. • Latent heat of Tet/PS nanocapsules is as high as the same type composite. • Freeze–thaw cycle test and centrifugal sedimentation method are employed. • Tet/PS nanocapsules can be a candidate for cold thermal energy storage. - Abstract: In this paper, a novel polystyrene/n-tetradecane composite nanoencapsulated phase change material as latent functionally thermal fluid (LFTF) for cold thermal energy storage was synthesized by ultrasonic-assistant miniemulsion in situ polymerization. The morphology, chemical structure and thermal performances of the nanoencapsulated phase change material (NEPCM) were measured by particle size analyzer, transmission electron microscope (TEM), Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), respectively. The thermo-physical properties of the cool storage media were tested as well. The results showed that, a uniform spherical NEPCM with average diameter of 132 nm was prepared. The melting and freezing points and the latent heats of the NEPCMs was measured as 4.04 °C and −3.43 °C, 98.71 J g −1 and 91.27 J g −1 , respectively. The specific heat of its latex were determined as the maximum value of 4.822 J g −1 K −1 . The freeze–thaw cycle test indicated that the NEPCMs have good mechanical stability, and most capsules were still complete except some broken individuals from TEM images. Due to its good thermal properties and mechanical stability, the polystyrene/n-tetradecane NEPCM displays a good potential for cool energy storage

  10. Optimal control, investment and utilization schemes for energy storage under uncertainty

    Science.gov (United States)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency

  11. Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?

    OpenAIRE

    KOUGIAS IOANNIS; SZABO SANDOR

    2017-01-01

    Pumped hydroelectric storage (PHS) is the main utility-scale storage technology. Although PHS systems generally constitute a fraction of generation, they receive increasing attention due to their potential balancing role towards higher penetration of variable renewable energy sources (RES). In the European context it is widely believed that PHS are key elements of the ongoing energy transition. The present analysis examines if this assumption is valid and PHS utilization grows parallel to RES...

  12. Optimizing virtual machine placement for energy and SLA in clouds using utility functions

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Mosa

    2016-10-01

    Full Text Available Abstract Cloud computing provides on-demand access to a shared pool of computing resources, which enables organizations to outsource their IT infrastructure. Cloud providers are building data centers to handle the continuous increase in cloud users’ demands. Consequently, these cloud data centers consume, and have the potential to waste, substantial amounts of energy. This energy consumption increases the operational cost and the CO2 emissions. The goal of this paper is to develop an optimized energy and SLA-aware virtual machine (VM placement strategy that dynamically assigns VMs to Physical Machines (PMs in cloud data centers. This placement strategy co-optimizes energy consumption and service level agreement (SLA violations. The proposed solution adopts utility functions to formulate the VM placement problem. A genetic algorithm searches the possible VMs-to-PMs assignments with a view to finding an assignment that maximizes utility. Simulation results using CloudSim show that the proposed utility-based approach reduced the average energy consumption by approximately 6 % and the overall SLA violations by more than 38 %, using fewer VM migrations and PM shutdowns, compared to a well-known heuristics-based approach.

  13. Local sharing of cogeneration energy through individually prioritized controls for increased on-site energy utilization

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Hasan, Ala; Sirén, Kai

    2014-01-01

    Highlights: • Sharing of surplus heat and electricity produced by CHP plants in different types of buildings. • Individually prioritized control of CHP plants with direct local sharing and minimal storage capacity. • Energy sharing reduced primary energy consumption by 1–9% with biogas. • Excess energy minimized by thermal tracking. - Abstract: All over the world, including Japan, there are targets to decrease building energy consumption and increase renewable energy utilization. Combined heat and power (CHP) plants increase energy efficiency and are becoming popular in Japan. CHP plants produce both heat and power simultaneously, but there is not always a need for both. A cluster of several different buildings can increase total efficiency and reduce primary energy (PE) consumption by sharing excess heat and electricity between neighboring buildings. If the generated energy comes from renewable sources, energy sharing makes it easier to reach the net zero energy balance. By adjusting CHP sizes and operation patterns, the wasted heat and primary energy consumption can be minimized. Energy sharing has been explored in situations with identical buildings and centrally administered energy systems before, but not with different building types with separate systems. In this study, a cluster of Japanese office and residential buildings were combined to allow heat and electricity sharing based on cogeneration, using individually prioritized control (IPC) systems. TRNSYS simulation was used to match energy generation with pregenerated demand profiles. Absorption cooling was utilized to increase the benefits of local heat generation. Different CHP operation modes and plant sizes were tested. The benefit of surplus energy sharing depends on the CHP capacities and the fuel type. When using biogas, larger CHP plants provided lower total primary energy consumption, in the most extreme case lowering it by 71%, compared to the conventional case. Using natural gas

  14. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  15. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  16. Can energy utilities play a role in local political energy savings programs?

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    2012-01-01

    Danish municipalities are putting climate change high on the agenda with action plans and targets to cut greenhouse gas (GHG) emissions. To reach these targets the municipalities need to engage citizens and the local business sector. In order to find new routes on how to engage and motivate local...... businesses to achieve GHG reductions, seven Danish municipalities (Copenhagen, Albertslund, Allerød, Ballerup, Herning, Kolding and Næstved) have joined forces in an EU LIFE project “Carbon 20”. A key element in the Carbon 20 project is to offer an energy screening free of charge for the participating...... the screening to small companies since the savings are rather limited in absolute terms. This article will focus on the appropriateness of using energy utilities (or consultants working on their behalf) in a local political context of engaging the local business sector in achieving energy savings and GHG...

  17. Observations and simulations of snowpack cold content and its relationship to snowmelt timing and rate

    Science.gov (United States)

    Jennings, K. S.; Molotch, N. P.

    2017-12-01

    Mountain snowpacks serve as a vital water resource for more than 1 billion people across the globe. Two key properties of snowmelt—rate and timing—are controlled by the snowpack energy budget where incoming positive fluxes are balanced by a decrease in the energy deficit of the snowpack and a change in the phase of water from solid to liquid. In this context, the energy deficit, or cold content, regulates snowmelt as runoff does not commence until the deficit approaches zero. There is significant uncertainty surrounding cold content despite its relevance to snowmelt processes, likely due to the inherent difficulties in its observation. Our work has clarified the previously unresolved meteorological and energy balance controls on cold content development in seasonal snowpacks by leveraging two unique datasets from the Niwot Ridge LTER in the Rocky Mountains of Colorado. The first is a long-term snow pit record of snowpack properties from an alpine and subalpine site within the LTER. These data were augmented with a 23-year simulation of the snowpack at both sites using a quality controlled, serially complete, hourly forcing dataset. The observations and simulations both indicated that cold content primarily developed through new snowfall, while a negative energy budget provided a secondary pathway for cold content development, mainly through longwave emission and sublimation. Cold content gains from snowfall outnumbered energy balance gains by 438% in the alpine and 166% in the subalpine. Increased spring precipitation and later peak cold content significantly delayed snowmelt onset and daily melt rates were reduced by 32.2% in the alpine and 36.1% in the subalpine when an energy deficit needed to be satisfied. Furthermore, preliminary climate change simulations indicated warmer air temperatures reduced cold content accumulation, which increased the amount of snow lost to melt throughout the winter as incoming positive fluxes had to overcome smaller energy

  18. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  19. Basis for an innovative partnership. City utilities and Swisscom sign an agreement on energy services

    International Nuclear Information System (INIS)

    Aeberli, O.

    1999-01-01

    The seven big Swiss city utilities (IGSS) prepare themselves jointly to the liberalised energy market. Recently, they signed with a delegation of 'Swisscom Immobilien AG' (the building management subsidiary of the largest telecommunication company in Switzerland) an agreement on energy services. This is a win-win opportunity in the long term. Swisscom interest is to find one single competent and efficient partner for the seven cities. Today the company has to make business with 600 different electric utilities for the power supply to its 2000 buildings in Switzerland. The city utilities are interested in offering new energy services [de

  20. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  1. Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

    Directory of Open Access Journals (Sweden)

    Yongfeng Xu

    2016-01-01

    Full Text Available In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS driven by distributed photovoltaic energy system (DPES was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

  2. Energy policy and European utilities' strategy: Lessons from the liberalisation and privatisation of the energy sector in Romania

    International Nuclear Information System (INIS)

    Haar, Laura N.; Marinescu, Nicolae

    2011-01-01

    In the context of energy sector reforms pursued by Romanian government since 1990s, we compare and contrast the market outcomes of European utilities' investment with the host government policy objectives. We begin with energy market reform in Romania and review governments' efforts to attract foreign direct investment (FDI) and to gradually withdraw from the distribution and supply segments of electricity market. Subsequently, we illustrate the scope European utilities have had, market policy and design notwithstanding, for consolidating market power through regional dominance. We examine the extent to which these utilities have sought to enhance their positions through horizontal and vertical integration, counter to the EU plans for a competitive market structure. We find that the investments of European incumbents have not been resoundingly successful: although market entrance may have been justified on long-term strategic grounds, in the immediate term, segments acquired through competitive auctions have yielded modest regulated returns. Finally, we discuss the extent to which policy makers have achieved their goals. Although the short-term benefits of a competitive market structure have reached some consumers, a renewed interest in promoting 'national champions' reflect frustration with market mechanisms as a means of ensuring long-term strategic investments in the sector. - Research highlights: → We analyze the European Utilities activities in Romania after market liberalization. → We find government efforts to reform energy sector attracted foreign direct investment. → We find utilities consolidated market power horizontally in Central European region. → The short-term benefits of competitive forces contrast the weak returns by utilities. → To encourage further investment, government should not promote national champions.

  3. Methods of determining incremental energy costs for economic dispatch and inter-utility interchange in Canadian utilities

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; El-Hawary, F.; Mbamalu, G.A.N.

    1991-01-01

    A questionnaire was mailed to ten Canadian utilities to determine the methods the utilities use in determining the incremental cost of delivering energy at any time. The questionnaire was divided into three parts: generation, transmission and general. The generation section dealt with heat rates, fuel, operation and maintenance, startup and shutdown, and method of prioritizing and economic evaluation of interchange transactions. Transmission dealt with inclusion of transmission system incremental maintenance costs, and transmission losses determination. The general section dealt with incremental costs aspects, and various other economic considerations. A summary is presented of responses to the questionnaire

  4. COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization

    International Nuclear Information System (INIS)

    Zhang, Na; Lior, Noam; Liu, Meng; Han, Wei

    2010-01-01

    A novel liquefied natural gas (LNG) fueled power plant is proposed, which has virtually zero CO 2 and other emissions and a high efficiency. The plant operates as a subcritical CO 2 Rankine-like cycle. Beside the power generation, the system provides refrigeration in the CO 2 subcritical evaporation process, thus it is a cogeneration system with two valued products. By coupling with the LNG evaporation system as the cycle cold sink, the cycle condensation process can be achieved at a temperature much lower than ambient, and high-pressure liquid CO 2 can be withdrawn from the cycle without consuming additional power. Two system variants are analyzed and compared, COOLCEP-S and COOLCEP-C. In the COOLCEP-S cycle configuration, the working fluid in the main turbine expands only to the CO 2 condensation pressure; in the COOLCEP-C cycle configuration, the turbine working fluid expands to a much lower pressure (near-ambient) to produce more power. The effects of some key parameters, the turbine inlet temperature and the backpressure, on the systems' performance are investigated. It was found that at the turbine inlet temperature of 900 o C, the energy efficiency of the COOLCEP-S system reaches 59%, which is higher than the 52% of the COOLCEP-C one. The capital investment cost of the economically optimized plant is estimated to be about 750 EUR/kWe and the payback period is about 8-9 years including the construction period, and the cost of electricity is estimated to be 0.031-0.034 EUR/kWh.

  5. Small turbogenerators for post power generation of non-utilized thermal energy; Kleine Turbogeneratoren zur Nachverstromung nicht genutzter Waermen

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Kristian; Redemann, Christian [LEViTEC GmbH, Lahnau (Germany); Priebe, Klaus-Peter [LTi ADATURB GmbH, Unna (Germany)

    2009-07-01

    Nowadays in Germany a huge offer of waste heat is available, which is not used adequately for the generation of effective energy like electricity and coldness. This kind of heat is available through cogeneration units, combined heat and power stations, heat plants and process heat generation, operated by fossil or renewable energies. This unused waste heat achieves several 10.000 MW of thermal output, which accumulate in small installations with an output up to 1,0 MW primary energy insert. (orig.)

  6. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  7. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  8. National strategic planing for the utilization and development of nuclear energy

    International Nuclear Information System (INIS)

    Won, B. C.; Lee, Y. J.; Lee, T. H.; Oh, K. B.; Kim, S. H.; Lee, J. W.

    2011-12-01

    It is followed that results and contents of National strategic planning for the utilization and development of nuclear energy. Our team makes an effort to carry out pre-research on establishment of the fourth Comprehensive Nuclear Energy Promotion Plan(CNEPP). To establish CNEPP, we analyzed domestic and global environment and trends of nuclear energy including the result of patent analysis, and find ways to link and coordinate other national plans concerned with nuclear energy. Upon the analysis we produce the final draft absorbing comments from the above-mentioned public discussions

  9. Cold stress induces lower urinary tract symptoms.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Nishizawa, Osamu

    2013-07-01

    Cold stress as a result of whole-body cooling at low environmental temperatures exacerbates lower urinary tract symptoms, such as urinary urgency, nocturia and residual urine. We established a model system using healthy conscious rats to explore the mechanisms of cold stress-induced detrusor overactivity. In this review, we summarize the basic findings shown by this model. Rats that were quickly transferred from room temperature (27 ± 2°C) to low temperature (4 ± 2°C) showed detrusor overactivity including increased basal pressure and decreased voiding interval, micturition volume, and bladder capacity. The cold stress-induced detrusor overactivity is mediated through a resiniferatoxin-sensitve C-fiber sensory nerve pathway involving α1-adrenergic receptors. Transient receptor potential melastatin 8 channels, which are sensitive to thermal changes below 25-28°C, also play an important role in mediating the cold stress responses. Additionally, the sympathetic nervous system is associated with transient hypertension and decreases of skin surface temperature that are closely correlated with the detrusor overactivity. With this cold stress model, we showed that α1-adrenergic receptor antagonists have the potential to treat cold stress-exacerbated lower urinary tract symptoms. In addition, we showed that traditional Japanese herbal mixtures composed of Hachimijiogan act, in part, by increasing skin temperature and reducing the number of cold sensitive transient receptor potential melastatin channels in the skin. The effects of herbal mixtures have the potential to treat and/or prevent the exacerbation of lower urinary tract symptoms by providing resistance to the cold stress responses. Our model provides new opportunities for utilizing animal disease models with altered lower urinary tract functions to explore the effects of novel therapeutic drugs. © 2013 The Japanese Urological Association.

  10. Numerical analysis of the efficiency of earth to air heat exchange systems in cold and hot-arid climates

    International Nuclear Information System (INIS)

    Fazlikhani, Faezeh; Goudarzi, Hossein; Solgi, Ebrahim

    2017-01-01

    Highlights: • A numerical model is developed to evaluate performance of earth to air heat exchanger. • The cooling/heating potential of earth to air heat exchanger is investigated in hot-dry and cold climates. • The more performance of earth to air heat exchanger in hot-dry climates compared to cold climates. • The high efficiency of earth to air heat exchanger for pre-heating in both hot-dry and cold climates. - Abstract: In order to examine and compare the efficiency of earth to air heat exchanger (EAHE) systems in hot-arid (Yazd) and cold (Hamadan) climates in Iran a steady state model was developed to evaluate the impact of various parameters including inlet air temperatures, pipe lengths and ground temperatures on the cooling and heating potential of EAHEs in both climates. The results demonstrated the ability of the system to not only improve the average temperature and decrease the temperature fluctuation of the outlet air temperature of EAHE, but also to trigger considerable energy saving. It was found that in both climates, the system is highly utilized for pre-heating, and its usage is unfeasible in certain periods throughout the year. In winter, EAHEs have the potential of increasing the air temperature in the range of 0.2–11.2 °C and 0.1–17.2 °C for Yazd and Hamadan, respectively. However, in summer, the system decreases the air temperature for the aforementioned cities in the range of 1.3–11.4 °C and 5.7–11.1 °C, respectively. The system ascertains to be more efficient in the hot-arid climate of Yazd, where it can be used on 294 days of the year, leading to 50.1–63.6% energy saving, when compared to the cold climate of Hamadan, where it can be used on 225 days of the year resulting in a reduction of energy consumption by 24.5–47.9%.

  11. Analysis of energy and materials utilization for packaging liquid basic and luxury foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    Ebersbach, K F

    1981-01-01

    By the help of the product 'packaging' the quantities of the energy and materials used are demonstrated analytically within the single stages of the production and utilization of these goods. Alternatives for a better utilization of energy and materials are to be demonstrated. - A methodology for setting up analyses and alternatives is to be introduced which a) is generally accepted in investigations of this kind and b) permits controlled measures for improving the energy and materials balances. Several considerations made the authors select the packagings for beer and soft drinks as the subjects of the project. The usual packagings for these beverages are dealt with.

  12. Recent estimates of energy utilization by young dairy calves ...

    African Journals Online (AJOL)

    Recent estimates of energy utilization by young dairy calves. P.T.C. Johnson. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  13. Modeling and simulation of the energy use in an occupied residential building in cold climate

    International Nuclear Information System (INIS)

    Olofsson, Thomas; Mahlia, T.M.I.

    2012-01-01

    Highlights: ► An overview of the energy-characteristics based on illustrations in graphical figures. ► Figures to support identification and validation energy refurbishment measures. ► Emphasizing energy efficiency measures in early stage of building design. -- Abstract: In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance.

  14. Cold or hot wash: Technological choices, cultural change, and their impact on clothes-washing energy use in China

    International Nuclear Information System (INIS)

    Lin, Jiang; Iyer, Maithili

    2007-01-01

    Usage pattern of clothes washing (and clothes washers) are strongly related to local cultural practices. Such practices have led to the development of distinctive clothes-washing technologies in the US, Europe, and Japan. In emerging markets such as China, several types of technologies often co-exist. Some use less energy but more water (the impeller type), and some use more energy but less water (the horizontal axis type). The competition between different technologies is thought to lead to better consumer choices. However, it could also lead to changes in clothes-washing habits-from cold to hot wash, and therefore to much higher energy use. This paper examines the standard development process in China to illustrate that adoption of foreign technologies and technical standards, if not carefully calibrated to the local cultural practices, could have unintended consequences for energy use and environment

  15. Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies

    Science.gov (United States)

    2011-01-01

    the Army should be considered. Reduced Adverse Impacts on the Environment Reduce harmful emissions and discharges from energy and fuel use. Conduct...NOTE: “Facilities” consist of cogenerators , other industrial generators, and qualifying facilities that are selling energy to industrial or...acceptable mission and environmental impacts ,6 favorable utility rates, and favor- able renewable energy credits and incentives. Fort Carson partnered

  16. Coping with low incomes and cold homes

    International Nuclear Information System (INIS)

    Anderson, Will; White, Vicki; Finney, Andrea

    2012-01-01

    This paper presents findings from a study of low-income households in Great Britain which explored households’ strategies for coping both with limited financial resources in the winter months, when demand for domestic energy increases, and, in some cases, with cold homes. The study combined a national survey of 699 households with an income below 60 per cent of national median income with in-depth interviews with a subsample of 50 households. The primary strategy adopted by low-income households to cope with financial constraint was to reduce spending, including spending on essentials such as food and fuel, and thereby keep up with core financial commitments. While spending on food was usually reduced by cutting the range and quality of food purchased, spending on energy was usually reduced by cutting consumption. Sixty-three per cent of low-income households had cut their energy consumption in the previous winter and 47 per cent had experienced cold homes. Improvements to the thermal performance of homes reduced but did not eliminate the risk of going cold as any heating cost could be a burden to households on the lowest incomes. Householders’ attitudes were central to their coping strategies, with most expressing a determination to ‘get by’ come what may.

  17. Cultivation of energy crops. Environmental impacts, competitive utilization and potentials; Anbau von Energiepflanzen. Umweltauswirkungen, Nutzungskonkurrenzen und Potenziale

    Energy Technology Data Exchange (ETDEWEB)

    Muehlenhoff, Joerg

    2013-04-15

    This background paper under consideration reports on the utilization of energy crops with regard to energy supply and climate change. Energy crops are renewable plants which are grown only for energy utilization. The harvested biomass is prepared for the power supply, heat supply and fuel supply by means of different usage paths.

  18. Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage

    International Nuclear Information System (INIS)

    Dufour, Thomas; Hoang, Hong Minh; Oignet, Jérémy; Osswald, Véronique; Clain, Pascal; Fournaison, Laurence; Delahaye, Anthony

    2017-01-01

    Highlights: •CO 2 hydrate storage was studied in a stirred tank reactor under pressure. •CO 2 hydrates can store three times more energy than water during the same time. •Increasing CO 2 hydrate pressure decreases charge time for the same stored energy. •CO 2 hydrate storage allow average power exchange to be maintained along the process. -- Abstract: Phase change material (PCM) slurries are considered as high-performance fluids for secondary refrigeration and cold thermal energy storage (CTES) systems thanks to their high energy density. Nevertheless, the efficiency of such system is limited by storage dynamic. In fact, PCM charging or discharging rate is governed by system design (storage tank, heat exchanger), heat transfer fluid temperature and flow rate (cold or hot source), and PCM temperature. However, with classical PCM (ice, paraffin…), phase change temperature depends only on material/fluid nature and composition. In the case of gas hydrates, phase change temperature is also controlled by pressure. In the current work, the influence of pressure on cold storage with gas hydrates was studied experimentally using a stirred tank reactor equipped with a cooling jacket. A tank reactor model was also developed to assess the efficiency of this storage process. The results showed that pressure can be used to adjust phase change temperature of CO 2 hydrates, and consequently charging/discharging time. For the same operating conditions and during the same charging time, the amount of stored energy using CO 2 hydrates can be three times higher than that using water. By increasing the initial pressure from 2.45 to 3.2 MPa (at 282.15 K), it is also possible to decrease the charging time by a factor of 3. Finally, it appears that the capacity of pressure to increase CO 2 -hydrate phase-change temperature can also improve system efficiency by decreasing thermal losses.

  19. Basic plans of atomic energy development and utilization for fiscal 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The Government has promoted the development and utilization of atomic energy as one of the most important measures for energy supplies. In Japan, due to the unrest concerning safety of nuclear power, siting of nuclear power plants is difficult, thereby the nuclear power generation program is delayed. Then, in major research and development projects such as those of uranium enrichment, fast breeder reactors, an advanced thermal reactor and nuclear fusion, while the remarkable results are being accumulated, the practical aspects are in need of positive governmental measures. Under this situation, the long range program of atomic energy development and utilization is being revised. For the fiscal year 1978 (from April, 1978 to March, 1979), based on the revision, the basic plans are presented, first, the basic policy, and second, the practical measures: strengthening of the safety measures; establishment of the nuclear fuel cycle; development of the new types of power reactors; promotion of the basic researches; securing of the people's understanding and cooperation. (Mori, K

  20. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  1. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  2. An approach for evaluating utility-financed energy conservation programs. The economic welfare model

    Energy Technology Data Exchange (ETDEWEB)

    Costello, K W; Galen, P S

    1985-09-01

    The main objective of this paper is to illustrate how the economic welfare model may be used to measure the economic efficiency effects of utility-financed energy conservation programs. The economic welfare model is the theoretical structure that was used in this paper to develop a cost/benefit test. This test defines the net benefit of a conservation program as the change in the sum of consumer and producer surplus. The authors advocate the operation of the proposed cost/benefit model as a screening tool to eliminate from more detailed review those programs where the expected net benefits are less than zero. The paper presents estimates of the net benefit derived from different specified cost/benefit models for four illustrative pilot programs. These models are representative of those which have been applied or are under review by utilities and public utility commissions. From the numerical results, it is shown that net benefit is greatly affected by the assumptions made about the nature of welfare gains to program participants. The main conclusion that emerges from the numerical results is that the selection of a cost/benefit model is a crucial element in evaluating utility-financed energy conservation programs. The paper also briefly addresses some of the major unresolved issues in utility-financed energy conservation programs. 2 figs., 3 tabs., 10 refs. (A.V.)

  3. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  4. Basic research of neutron radiography using cold neutron beam

    International Nuclear Information System (INIS)

    Oda, Masahiro; Tamaki, Masayoshi; Tasaka, Kanji

    1995-01-01

    As the result of demanding high quality images, now the nuclear reactors which can supply stably intense neutron beam have become the most general neutron source for radiography. For the purpose, mostly thermal neutrons have been used, but it is indispensable to use other neutrons than thermal neutrons for advancing neutron radiography technology and expanding the application fields. The radiography using cold neutrons is most behind in the development because the suitable neutron source was not available in Japan. The neutron sources for exclusively obtaining intense cold neutron beam were installed in the Kyoto University reactor in 1986 and in the JRR-3M of Japan Atomic Energy Research Institute in 1991. Basically as neutron energy lowers, the cross section of substances increases. In certain crystalline substances, the Bragg cutoff arises. The removal of scattered neutrons, the measurement of parallelism of beam and the relation of the thickness of objects with the transmissivity of cold neutrons are described. The imaging by TV method and the cold neutron CT in the CNRF and the simplified neutron CT by film method are reported. (K.I.)

  5. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  6. Aerobic methanotrophic bacteria of cold ecosystems.

    Science.gov (United States)

    Trotsenko, Yuri A; Khmelenina, Valentina N

    2005-06-01

    This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods.

  7. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  8. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    Science.gov (United States)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  9. Coil protection for a utility scale superconducting magnetic energy storage plant

    International Nuclear Information System (INIS)

    Loyd, R.J.; Schoenung, S.M.; Rogers, J.D.; Hassenzahl, W.V.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (≥ 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy

  10. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  11. Study of Cold Fusion Reactions Using Collective Clusterization Approach

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-10-01

    Within the framework of the dynamical cluster decay model (DCM), the 1n evaporation cross-sections ({σ }1n) of cold fusion reactions (Pb and Bi targets) are calculated for {Z}{CN}=104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy {E}{CN}* =15+/- 1 {MeV}, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (B f ) and neutron separation energies ({S}1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β 2i-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the 1n cross-sections are addressed for {Z}{CN}=104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto {Z}{CN}=109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia ({I}{NS}) is also investigated at these energies. Supported by the Council of Scientific and Industrial Research (CSIR), in the Form of Research Project Grant No. 03(1341)/15/EMR-II, and to DST, New Delhi, for INSPIRE-Fellowship Grant No. DST/INSPIRE/03/2015/000199

  12. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    Energy Technology Data Exchange (ETDEWEB)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

    1994-07-01

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

  13. A scoping study on energy-efficiency market transformation by California Utility DSM Programs

    Energy Technology Data Exchange (ETDEWEB)

    Eto, J.; Prahl, R.; Schlegel, J.

    1996-07-01

    Market transformation has emerged as a central policy objective for future publicly-funded energy-efficiency programs in California. California Public Utilities Commission (CPUC) Decision 95-12-063 calls for public funding to shift to activities designed to transform the energy-efficiency market. The CPUC envisions that funding {open_quotes}would only be needed for specific and limited periods of time to cause the market to be transformed{close_quotes}. At the same time, the CPUC also acknowledges that {open_quotes}there are many definitions of market transformation{close_quotes} ... and does {open_quotes}not attempt to refine those definitions today{close_quotes}. We argue that a definition of market transformation is essential. The literature is now replete with definitions, and an operational definition is needed for the CPUC to decide on which programs should be supported with public funds. The CPUC decision initially indicated a preference for programs that do not provide financial assistance 4-efficiency programs that rely on financial assistance to customers. However, energy customers have traditionally accounted for a substantial portion of California utility`s DSM programs, so the CPUC`s direction to use ratepayer funds to support programs that will transform the market raises critical questions about how to analyze what has happened in order to plan effectively for the future: Which utility energy-efficiency programs, including those that provide financial assistance to customers, have had market transforming effects? To what extent do current regulatory rules and practices encourage or discourage utilities from running programs that are designed to transform the market? Should the rules and programs be modified, and, if so, how, to promote market transformation?

  14. Shapley Value-Based Payment Calculation for Energy Exchange between Micro- and Utility Grids

    Directory of Open Access Journals (Sweden)

    Robin Pilling

    2017-10-01

    Full Text Available In recent years, microgrids have developed as important parts of power systems and have provided affordable, reliable, and sustainable supplies of electricity. Each microgrid is managed as a single controllable entity with respect to the existing power system but demands for joint operation and sharing the benefits between a microgrid and its hosting utility. This paper is focused on the joint operation of a microgrid and its hosting utility, which cooperatively minimize daily generation costs through energy exchange, and presents a payment calculation scheme for power transactions based on a fair allocation of reduced generation costs. To fairly compensate for energy exchange between the micro- and utility grids, we adopt the cooperative game theoretic solution concept of Shapley value. We design a case study for a fictitious interconnection model between the Mueller microgrid in Austin, Texas and the utility grid in Taiwan. Our case study shows that when compared to standalone generations, both the micro- and utility grids are better off when they collaborate in power exchange regardless of their individual contributions to the power exchange coalition.

  15. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  16. Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine

    International Nuclear Information System (INIS)

    He, Sinian; Chang, Huawei; Zhang, Xiaoqing; Shu, Shuiming; Duan, Chen

    2015-01-01

    This study proposed a combined Organic Rankine Cycle (ORC) system utilizing exhaust waste as its heat source and liquid natural gas (LNG) as its heat sink to provide alternative power for an LNG-fired vehicle. This system, consisting of a regenerator and a dual heat source composite heat exchanger, was designed to efficiently recover the engine waste heat (EWH) and to guarantee vaporizing LNG steadily. Five potential applicable organic working fluids are analyzed: C4F10, CF3I, R236EA, R236FA and RC318. Each fluid was analyzed at various evaporation temperatures and condensation temperatures using a thermodynamic model, and a self-made MATLAB program based on the physical properties on REFPROP data was applied to run the simulation. Analytical results showed that fluid R236FA has the highest thermal efficiency η_t_h of 21.6%, and that of the others are also around 21%. Based on a twelve-cylinder four stroke stationary natural gas engine, the simulated calculations show that the selected five working fluids can improve the fuel economy by more than 14.7% compared to that without ORC. - Highlights: • We design an ORC utilizing LNG cold energy and engine waste heat. • Five working fluids are examined at various working conditions. • The maximum thermal efficient of our proposed cycle can reach 20.3%–21.6%. • This system can decrease the brake specific fuel consumption by more than 14.7%.

  17. Development for environmentally friendly and highly efficient energy utilization system in fiscal 1998. Pt. 3. Research on highly efficient and effective energy utilization technology (Research on design technology for optimal system); 1998 nendo kankyo chowagata kokoritsu energy riyo system kaihatsu. 3. Kokoritsu energy yuko riyo gijutsu no kenkyu (saiteki system sekkei gijutsu no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This paper summarizes achievements during fiscal 1998 on researching part of the energy transportation and storage technologies, energy supply and utilization technologies, environmental load reducing technologies, and optimal system design in the 'research on highly efficient and effective energy utilization technology'. With regard to energy transportation and storage technologies, researches and developments were performed on a vacuum adiabatic transportation piping system, surfactants used for high-density heat transportation and high-density latent heat transportation technologies. In the field of energy supply and utilization technologies, researches and developments were carried out on a heat supply system using high-performance heat pumps capable of using multiple kinds of fuels, and a compression and absorption type hybrid heat utilization system. For the environmental load reducing technologies, research and development were performed on a power saving heat pump system utilizing natural coolant. In researching the optimal system design technologies, overall adjustment was made on the element technologies, whereas technological discussions and site surveys were executed by the committees at the same time. The latest achievements accomplished to date was published in a book. (NEDO)

  18. Intermittent cold exposure enhances fat accumulation in mice.

    Directory of Open Access Journals (Sweden)

    Hyung Sun Yoo

    Full Text Available Due to its high energy consuming characteristics, brown adipose tissue (BAT has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE, unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.

  19. Analysis of economic and energy utilization aspects for waste heat aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.; Wilson, J. V.

    1978-01-01

    A waste heat aquaculture system using extensive culture techniques to produce fin and shellfish is currently under investigation at the Oak Ridge National Laboratory. The system uses nutrients in waste water streams to grow algae and zooplankton which are fed to fish and clams. A tilapia polyculture association and the freshwater clam Corbicula are the animals cultured in the system. The investigations were performed to determine the economic feasibility of the system and examine energy utilization in the system. A net energy analysis was performed to identify the energy saving potential for the system. This analysis includes all energy costs (both direct and indirect) associated with building and operating the system. The results of the economic study indicated that fish production costs of $0.55/kg ($0.25/lb) were possible. This cost, however, depends upon the fish production rate and food conversion efficiency and could rise to as much as $1.65/kg ($0.75/lb). Clam production costs were found to be in the neighborhood of $0.37/kg of clam meat ($1.24/bushel). The energy utilization study results indicated that, when all energy costs are included, fish from the aquaculture system may require only 35% of the net energy now required for fish products from the ocean. However, the energy requirements also depend on system parameters and could be as large as the energy required for ocean caught products. Clams can be produced in the aquaculture system using only about 25% of the net energy required by traditional means. The results of the analysis indicate that the system appears to be economically feasible. They also indicate that significant energy savings are possible if waste heat aquaculture products replace ocean caught products.

  20. Efficient energy utilization and environmental issues applied to power planning

    International Nuclear Information System (INIS)

    Campbell, Hector; Montero, Gisela; Perez, Carlos; Lambert, Alejandro

    2011-01-01

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO 2 to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO 2 . The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO 2 . - Highlights: → We contrast power planning methods for supply electricity for economy development. → Importance of policies for electricity savings and efficient use in power planning. → Systemic planning facilitates decision-making process for electricity optimization. → Supply-side planning will cause climb in prices and loss of energy self-sufficiency. → Power planning should be immersed in an environment of appropriate energy policies.

  1. Cold chemistry with ionic partners: quantum features of HeH+(1Σ) with H(1S) at ultralow energies.

    Science.gov (United States)

    Bovino, S; Tacconi, M; Gianturco, F A

    2011-07-28

    Quantum reactive calculations are presented for an ion-atom reaction involving the HeH(+)cation and its destruction via a barrierless interaction with H atoms. The range of collision energies considered is that of a cold trap regime (around and below millikelvin) where the ionic partner could be spatially confined. Specific resonant features caused by the interplay of the strong ionic interaction with the very slow partners' dynamics are found and analyzed. Indications are also given on the consequences of the abstraction mechanism that acts for this reaction at low energies. © 2011 American Chemical Society

  2. Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles.

    Science.gov (United States)

    Suzuki, Shunsuke; Awai, Koichiro; Ishihara, Akinori; Yamauchi, Kiyoshi

    2016-01-01

    Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.

  3. Achievement and development of neutron beam utilization in research reactors

    International Nuclear Information System (INIS)

    Isshiki, Masahiko

    1996-01-01

    Especially regarding the neutron beam experiment in Japan, the basic research has been developed by utilizing the JRR-2 of Japan Atomic Energy Research Institute and the KUR of Kyoto University over long years. Now, the JRR-3M of JAERI was revived as a high performance, general purpose reactor, and bears important roles as the neutron beam experiment center in Japan. Thanks to one of the most powerful reactor neutron sources in the world and the cold neutron source, the environment of research was greatly improved, and the excellent results of researches began to be reported. The discovery of neutrons by Chadwick and the history of the related researches are described. As neutron sources, radioisotopes, accelerators and nuclear reactors are properly used corresponding to purposes. As the utilization of research reactors for neutron sources, the utilization for irradiation and neutron beam experiment are carried out. The outline of the research reactor JRR-3M is explained. The state of utilization in neutron scattering experiment, neutron radiography, prompt γ-ray analysis and the medical irradiation of neutrons is reported. (K.I.)

  4. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates

    International Nuclear Information System (INIS)

    Laamanen, Corey A.; Shang, Helen; Ross, Gregory M.; Scott, John A.

    2014-01-01

    Highlights: • Development of a model to assess process-coupled algae production in cold climates. • Algae growth temperatures in open tanks can be maintained with industrial off-gas. • Indirect and direct heat application from industrial off-gasses are assessed. • CO 2 -rich off-gas can be bubbled into algae tanks to provide a carbon source. • A nickel smelter’s off-gas is used to demonstrate how waste heat can be repurposed. - Abstract: Lipids produced by microalgae are a promising biofuel feedstock. However, as most commercial mass production of microalgae is in open raceway ponds it is generally considered only a practical option in regions where year-round ambient temperatures remain above 15 °C. To address this issue it has been proposed to couple microalgae production with industries that produce large amounts of waste heat and carbon dioxide (CO 2 ). The CO 2 would provide a carbon source for the microalgae and the waste heat would allow year-round cultivation to be extended to regions that experience seasonal ambient temperatures well below 15 °C. To demonstrate this concept, a dynamic model has been constructed that predicts the impact on algal pond temperature from both bubbled-in off-gas and heat indirectly recovered from off-gas. Simulations were carried out for a variety of global locations using the quantity off-gas and waste energy from a smelter’s operations to determine the volume of microalgae that could be maintained above 15 °C. The results demonstrate the feasibility of year-round microalgae production in climates with relatively cold winter seasons

  5. Energy policy and European utilities' strategy: Lessons from the liberalisation and privatisation of the energy sector in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Laura N., E-mail: laura.n.haar@mbs.ac.u [University of Manchester, Manchester Business School, Booth Street West, Manchester M15 6PB (United Kingdom); Marinescu, Nicolae, E-mail: marinescu@unitbv.r [Transylvania University of Brasov, Faculty of Economic Sciences, 29 Eroilor Bd, Brasov 500 036 (Romania)

    2011-05-15

    In the context of energy sector reforms pursued by Romanian government since 1990s, we compare and contrast the market outcomes of European utilities' investment with the host government policy objectives. We begin with energy market reform in Romania and review governments' efforts to attract foreign direct investment (FDI) and to gradually withdraw from the distribution and supply segments of electricity market. Subsequently, we illustrate the scope European utilities have had, market policy and design notwithstanding, for consolidating market power through regional dominance. We examine the extent to which these utilities have sought to enhance their positions through horizontal and vertical integration, counter to the EU plans for a competitive market structure. We find that the investments of European incumbents have not been resoundingly successful: although market entrance may have been justified on long-term strategic grounds, in the immediate term, segments acquired through competitive auctions have yielded modest regulated returns. Finally, we discuss the extent to which policy makers have achieved their goals. Although the short-term benefits of a competitive market structure have reached some consumers, a renewed interest in promoting 'national champions' reflect frustration with market mechanisms as a means of ensuring long-term strategic investments in the sector. - Research highlights: {yields} We analyze the European Utilities activities in Romania after market liberalization. {yields} We find government efforts to reform energy sector attracted foreign direct investment. {yields} We find utilities consolidated market power horizontally in Central European region. {yields} The short-term benefits of competitive forces contrast the weak returns by utilities. {yields} To encourage further investment, government should not promote national champions.

  6. Resistivity recovery of neutron-irradiated and cold-worked thorium

    International Nuclear Information System (INIS)

    Tang, J.T.

    1976-01-01

    Recovery of neutron-irradiated and cold-worked thorium was studied using electrical resistivity measurements. Thorium wires containing 30 and 300 wt ppM carbon were irradiated to fast neutron fluence of 1.3 x 10 18 n/cm 2 (E greater than 0.1 MeV). Another group of thorium wires containing 45, 300 and 600 wt ppM carbon were laterally compressed 5 to 40 percent. Both irradiation and cold-working were performed at liquid nitrogen temperature. The induced resistivity was found to increase with carbon content for both treatments. Isochronal recovery studies were performed in the 120--420 0 K temperature range. Two recovery stages (II and III) were found for both cold-worked and irradiated samples. In all cases the activation energies were determined by use of the ratio-of-slope method. Consistent results were observed for both irradiated and cold-worked specimens within the experimental error in the two stages. Other methods were also used in determining the activation energy of stage III for irradiated samples. All analysis methods indicated that the activation energies decreased with increasing carbon content for differently treated specimens. Possible reasons for such behavior are discussed. The annealing data obtained do not fit a simple chemical rate equation but follow the empirical exponential equation proposed by Avrami. A model of detrapping of interstitials from impurities is suggested for stage II recovery. On the basis of the observed low activation energy and high retention of defects above stage III, a divacancy migration model is proposed for stage III recovery

  7. Utility survey on nuclear power plant siting and nuclear energy centers

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development

  8. Conditions for energy generation as an alternative approach to compost utilization.

    Science.gov (United States)

    Raclavska, H; Juchelkova, D; Skrobankova, H; Wiltowski, T; Campen, A

    2011-01-01

    Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.

  9. Cold fusion valleys for the synthesis of Z=118 isotopes

    International Nuclear Information System (INIS)

    Gherghescu, R.

    2005-01-01

    Cold fusion reactions are investigated with the goal to synthesize Z=118 isotopes with neutron numbers N=162, 168, 172, 176. Potential energy surfaces are calculated as the result of dynamic minimization with independent deformations of the target and projectile, small semi-axis of the projectile and distance between centers as degrees of freedom. An advanced binary macroscopic-microscopic method is used to obtain the deformation energy and the Werner-Wheeler approximation yield the mass tensor. Charge asymmetry is varied for the same mass asymmetry channel which belongs to a given energy valley. The highest penetrability values are obtained for cold fusion channels with Sn, Te and Xe isotopes as projectiles

  10. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  11. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  12. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  13. Current status for TRR-II Cold Neutron Source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Wang, C.H.; Chan, Y.K.; Shieh, D.J.

    2001-01-01

    The Taiwan Research Reactor (TRR) project (TRR-II) is carrying out at Institute of Nuclear Energy Research (INER) from October 1998 to December 2006. The purpose of Cold Neutron Source (CNS) project is to build entire CNS facility to generate cold neutrons within TRR-II reactor. The objective of CNS design is to install CNS facility with a competitive brightness of cold neutron beam to other facilities in the world. Based on the TRR-II CNS project schedule, the conceptual design for TRR-II CNS facility has been completed and the mock-up test facility for full-scale hydrogen loop has been designed. (author)

  14. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James [Consortium of Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium of Advanced Residential Buildings, Norwalk, CT (United States)

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heating performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.

  15. Active pipe-embedded structures in buildings for utilizing low-grade energy sources: A review

    International Nuclear Information System (INIS)

    Xu, Xinhua; Wang, Jinbo; Wang, Shengwei; Xiao, Fu

    2010-01-01

    Low-grade energy sources such as geothermal energy, favorable ambient air and industrial waste heat etc. exist widely. Sufficient utilization of these low-grade energy sources may reduce our daily dependence on high-grade energy sources such as electricity resulting in reduced emission of green house gas for environmental conservation. Active pipe-embedded structure as floor/ceiling usually with water as the medium to carry heat or coolth may utilize these low-grade energy sources for providing space air-conditioning. Compact arrangement of pipes in the structure may significantly enlarge heat transfer surface between the slab mass and water in the pipe allowing substantial heat flows even for relatively small temperature differences. Application of the heat or coolth storage capacity of this structure for preheating or pre-cooling is also one among the advantages of this structure for shifting load and exploiting the nighttime cheap electricity tariff in some regions. This paper presents the technology of the active pipe-embedded structure for utilizing widely existing low-grade energy sources following by a comprehensive review on the heat transfer calculation models of this structure and its practical applications in real building systems for space air-conditioning. This review shows that more works on the active structure, especially simple and transient models for dynamic and accurate performance prediction and easy integration with existing building energy simulation packages, are worthwhile for further promoting the practical application wherever the low-grade energy sources are favorable. (author)

  16. Application of cold thermal energy storage (CTES) for building demand management in hot climates

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Nagarajan, Balamurugan; Romagnoli, Alessandro

    2016-01-01

    Highlights: • A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. • CTES systems were used to perform demand management strategies, removing partial load operations and shaving peak loads. • CTES was used to perform price arbitrage, exploiting the difference between peak and off peak electricity rates in Singapore. • Results showed that it is possible to enhance the efficiency of the whole system, achieving both energy and economic savings. • Depending on the sizing scenario, the pay back periods ranged from a minimum of 8.9 years to a maximum of 16 years. - Abstract: This paper investigates the feasibility of Cold Thermal Energy Storage (CTES) for building demand management applications in hot climate characterized by a cooling season lasting all year long. An existing office building, located in Singapore, serves as case study. The CTES is coupled to the existing cooling systems in order to address the opportunity of improving overall energy efficiency and to perform price arbitrage, exploiting the spread between peak and off-peak energy tariffs. Six different sizes for the CTES are analyzed, addressing different percentage of the daily cooling energy demand. A new index, Savings per energy unit, is defined to assess the effectiveness of CTES. Results indicate that it is possible to enhance the efficiency of the whole cooling system, achieving both energy and economic savings. The payback periods of the different solutions range from a minimum of 8.9 years to a maximum of 16 years. All these aspects make CTES applications a viable option. However, a large amount of space in direct proximity to the building is necessary and, especially in largely urban environment, this is not always available.

  17. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  18. Alberta Energy and Utilities Board, regulatory highlights for 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This new publication informs readers about what the Alberta Energy and Utilities Board (EUB) did in the past year, including important regulatory issues, trends and initiatives. The EUB is an agency of the provincial government, established to regulate Alberta's energy resource and utility sectors. It is part of the Alberta Ministry of Energy. The four main functions of the Board are regulatory initiatives, license applications, enforcement and information. This publication summarized the EUB's position regarding flaring (both solution gas flaring and well test flaring), and Board activities in the areas of animal health concerns, the gas over bitumen controversy, the deregulation of the electric industry and what it means to the EUB, improvements in data quality as a result of improved industry compliance in reporting, and a variety of issues related to the oil sands and the negotiated settlement process. Also, the Board has been proactive in the area of oilfield waste management guidelines, proliferation policies for gas processing facilities, sulphur recovery guidelines, and the expansion of the orphan well program to include facilities and pipelines. As a measure of the success of the EUB, a recent survey of 19 randomly selected focus groups praised EUB for its impartiality, fair and equitable enforcement and independence. It was also praised for its technically competent and experienced staff, its access to quality information and the clarity of its mandate, regulatory requirements and processes. The Board's efforts in the area of timely stakeholder consultation was highlighted. tabs., figs

  19. Making It Count: Understanding the Value of Energy Efficiency Financing Programs Funded by Utility Customers

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-12-01

    Utility customer-supported financing programs are receiving increased attention as a strategy for achieving energy saving goals. Rationales for using utility customer funds to support financing initiatives

  20. Case-study application of venture analysis: the integrated energy utility. Volume 3. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Fein, E; Gordon, T J; King, R; Kropp, F G; Shuchman, H L; Stover, J; Hausz, W; Meyer, C

    1978-11-01

    The appendices for a case-study application of venture analysis for an integrated energy utility for commercialization are presented. The following are included and discussed: utility interviews; net social benefits - quantitative calculations; the financial analysis model; market penetration decision model; international district heating systems; political and regulatory environment; institutional impacts.

  1. Increase energy efficiency in the cold production; Steigerung der Energieeffizienz in der Kaelteerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Paatzsch, Rene [Institut fuer Luft- und Kaeltetechnik gGmbH, Dresden (Germany). Hauptbereich Kaelte- und Waermepumpentechnik; Berg, Hans-Peter [Boehringer Ingelheim Pharma GmbH und Co. KG, Ingelheim (Germany)

    2011-12-15

    According to a study by ILK Dresden the cold production in the field of pharmaceutical manufacturing at Boehringer has been adjusted. By installing a turbo chiller and the sliding control of the cooling water temperature depending on the wet bulb temperature the COP of the cold production was improved of 3.1 to 4.5 currently. (orig.)

  2. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  3. COOLCEP (cool clean efficient power): A novel CO{sub 2}-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Han, Wei [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Lior, Noam [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315 (United States); Liu, Meng [Division of Research and Environment Standardization, China National Institute of Standardization, Beijing 100080 (China)

    2010-02-15

    A novel liquefied natural gas (LNG) fueled power plant is proposed, which has virtually zero CO{sub 2} and other emissions and a high efficiency. The plant operates as a subcritical CO{sub 2} Rankine-like cycle. Beside the power generation, the system provides refrigeration in the CO{sub 2} subcritical evaporation process, thus it is a cogeneration system with two valued products. By coupling with the LNG evaporation system as the cycle cold sink, the cycle condensation process can be achieved at a temperature much lower than ambient, and high-pressure liquid CO{sub 2} can be withdrawn from the cycle without consuming additional power. Two system variants are analyzed and compared, COOLCEP-S and COOLCEP-C. In the COOLCEP-S cycle configuration, the working fluid in the main turbine expands only to the CO{sub 2} condensation pressure; in the COOLCEP-C cycle configuration, the turbine working fluid expands to a much lower pressure (near-ambient) to produce more power. The effects of some key parameters, the turbine inlet temperature and the backpressure, on the systems' performance are investigated. It was found that at the turbine inlet temperature of 900 C, the energy efficiency of the COOLCEP-S system reaches 59%, which is higher than the 52% of the COOLCEP-C one. The capital investment cost of the economically optimized plant is estimated to be about 750 EUR/kWe and the payback period is about 8-9 years including the construction period, and the cost of electricity is estimated to be 0.031-0.034 EUR/kWh. (author)

  4. Diffusion theory model for optimization calculations of cold neutron sources

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations

  5. Technico-economic analysis of the utilization of inexhaustible energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Salieva, R B

    1975-01-01

    An economic analysis is conducted concerning the design, construction and utilization of solar power plants and wind power plants. Methods are presented for determining operational costs, for reducing them, and for calculating the real cost of producing solar and wind energy. Criteria are presented for selecting cost-optimal output power.

  6. Cold Fusion Has Now Come Out of the Cold

    Science.gov (United States)

    Storms, Edmund

    2003-10-01

    The phenomenon called cold fusion or LENR (Low-Energy-Nuclear-Reaction) has now achieved a level of reproducibility and understanding that warrants re-examination of the claims. A summary of what is known and want is being done worldwide to obtain more knowledge will be given. Rather than disappearing as better data are obtained, the effects are becoming more reproducible and of greater magnitude. Justification for this claim can be obtained at www.LENR-CANR.org. The phenomenon is too important to ignore any longer even though it conflicts with conventional theory.

  7. Planning for Micro-grid with Static Voltage Stability and Maximizing Renewable Energy Utilization

    Science.gov (United States)

    Zhou, Youfu; Zhang, Yuhong; Lv, Xuehai; Zhang, Wentai; Wei, Jun; Zhang, Changhua; Chen, Xin

    2017-05-01

    The access position and capacity of distribution generation (DG) affect the static voltage stability of micro-grid, thus affecting the renewable energy utilization. In the current reform of the energy supply side, a multi-objective optimization model is established, aiming at the abandoning wind and abandoning light problem. This model has three advantages, which are the largest renewable energy utilization, static voltage stability of micro-grid and the minimum cost of DG investment considering environmental benefits. It can effectively promote the use of wind power, photovoltaic power generation and other renewable energy sources. In this paper, the multi-objective optimization problem is transformed into a single objective programming problem by using the deviation method; the optimal solution of multi-objective function is solved by using particle swarm optimization algorithm, so as to establish the planning scheme of micro-grid. Simulation results prove the correctness and feasibility of the optimization method.

  8. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  9. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  10. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China

    Energy Technology Data Exchange (ETDEWEB)

    Yanli, Yang; Peidong, Zhang; Yonghong, Zheng; Lisheng, Wang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Wenlong, Zhang; Yongsheng, Tian [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-12-15

    As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 x 10{sup 8} tce in 2007 of which the crops straw is 1.42 x 10{sup 8} tce, the forest biomass is 2.85 x 10{sup 8} tce, the poultry and livestock manure is 4.40 x 10{sup 7} tce, the municipal solid waste is 1.35 x 10{sup 6} tce, and the organic waste water is 6.46 x 10{sup 6} tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 x 10{sup 12} t of biomass briquettes fuel, 1.98 x 10{sup 12} m{sup 3} of low calorific value gas and 3.84 x 10{sup 11} m{sup 3} of biogas could be produced, 3.65 x 10{sup 8} t to 4.90 x 10{sup 8} t of coal consumption could be substituted, and 6.12 x 10{sup 8} t to 7.53 x 10{sup 8} t of CO{sub 2} emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure

  11. Potential of district cooling in hot and humid climates

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Rashid, K. A. Bin Abdul; Romagnoli, A.

    2017-01-01

    Efficiently utilizing energy that is currently being wasted can significantly increase energy efficiency of the system, as well as reduce the carbon footprint. In hot climates with large cooling demands, excess waste heat can be utilized via absorption chillers to generate cold. Moreover, cold from...... liquefied natural gas gasification process can further provide energy source for meeting the cold demand. In order to connect the large sources of waste heat and cold energy with customers demanding the cold, a significant investment in district cooling grid is a necessity. In order to deal...

  12. Solar thermal energy utilization. German studies on technology and application. Vol. 1. General investigations on energy availability

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M. (Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V. (DFVLR), Koeln (Germany, F.R.). Hauptabteilung Energietechnik) (ed.)

    1987-01-01

    The first volume of a three-volume series titled 'Solar thermal energy utilization' comprises three papers dealing with general investigations into energy availability. Their titles are: Yearly yield of solar CRS-process heat and temperature of reaction; - literature survey in the field of primary and secondary concentrating solar energy systems concerning the choice and manufacturing process of suitable materials; - considerations and proposals for future research and development of high temperature solar processes. Each of the three chapters was abstracted for entry into the database. (HWJ).

  13. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  14. Current status and future prospects of nuclear energy utilization in Japan

    International Nuclear Information System (INIS)

    Kondo, S.

    2006-01-01

    Nuclear power is recognized as a safe, reliable and competitive energy source in Japan as Japan's 55 nuclear power plants supply about a third of the country's electricity and contribute to the rise in her degree of self-sufficiency in primary energy supply from 4% to 17%. It is also a practical and effective mean to observe the promise of the Kyoto Protocol to reduce CO2 emissions into atmosphere. The development of nuclear science and engineering, on the other hand, contributes not only to the advancement of science and technology in various fields but also to the improvement of health and living standards of the people as well as to the industrial prosperity through the application of radiation to medical diagnosis, cancer treatment, insect pest control, production of semi-conductors, radial tiers, etc. Major goal of current nuclear energy policy in Japan is to enrich the basic measures that compose the basis for the utilization of nuclear energy technologies in civil society and encourage academia and industries to innovate themselves to grapple the challenge, while sustaining the share of nuclear power in electricity generation after the year 2030 at the level equal to or greater than the current level of 30-40% based on the strategy to recycle uranium and plutonium from nuclear spent fuels, in addition to the expansion of the use of radiation technologies. Major policy areas are the improvement of institutional and financial arrangements to promote safe and effective utilization of nuclear energy technology including radiation technologies, the promotion of effective and efficient research and development activities, and the promotion of bilateral and multilateral cooperative activities necessary and or useful for facilitating these activities, in addition to nurturing the international political and institutional environment suitable for the sound promotion of nuclear energy utilization in the world. To pursue these goals, Japanese government and industries

  15. Energy bill of the municipal utilities at Heerlen: part of the customers' information system

    Energy Technology Data Exchange (ETDEWEB)

    Poell, W A.G.

    1980-11-01

    A new invoice form now being sent to customers of the combined municipal utilities in Heerlen, Netherlands, provides customers with information that will encourage them to conserve energy. Changes in the invoice involve the utilities' internal operating procedure as well as the annual energy bill and the monthly installment invoice. To make the customer energy-conscious and aware of the effect of conservation measures, the bill states for purposes of comparison the annual consumption of the preceding period. The gas-consumption-related figures appearing on the bill have been modified to account for the calorific value and the ambient temperature in the corresponding period.

  16. The role of exergy in increasing utilization of green energy and technologies. Paper no. IGEC-1-Keynote-Rosen

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2005-01-01

    The use of exergy is described as a measure for identifying and explaining the benefits of green energy and technologies, so the benefits can be clearly understood and appreciated by experts and non-experts alike, and the utilization of green energy and technologies can be increased. Exergy can be used to assess and improve energy systems, and can help better understand the benefits of utilizing green energy by providing more useful and meaningful information than energy provides. Exergy clearly identifies efficiency improvements and reductions in thermodynamic losses attributable to green technologies. Exergy can also identify better than energy the environmental benefits and economics of energy technologies. Exergy should be utilized to engineers and scientists, as well as decision and policy makers, involved in green energy and technologies. (author)

  17. Warfighter Physiological Status Monitoring (WPSM): Energy Balance and Thermal Status During a 10-Day Cold Weather U.S. Marine Corps Infantry Officer Course Field Exercise

    National Research Council Canada - National Science Library

    Hoyt, Reed

    2001-01-01

    ...) during a 10-day field exercise (FEX) at Quantico, VA. Question: Does intense physical activity, limited sleep, and restricted rations, combined with cold/damp weather, result in excessively negative energy balance and hypothermia? Methods...

  18. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gleason, T.C.J.

    1993-01-01

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  19. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin.

    Directory of Open Access Journals (Sweden)

    Maarten J Vosselman

    Full Text Available INTRODUCTION: Mild cold acclimation is known to increase brown adipose tissue (BAT activity and cold-induced thermogenesis (CIT in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured. METHODS: The Iceman (subject A and his brother (subject B were studied during mild cold (13°C and thermoneutral conditions (31°C. Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. RESULTS: Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal, within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G. CIT was relatively high (A: 40.1% and B: 41.9%, but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. CONCLUSION: No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the

  20. Energy management of a university campus utilizing short-term load forecasting with an artificial neural network

    Science.gov (United States)

    Palchak, David

    Electrical load forecasting is a tool that has been utilized by distribution designers and operators as a means for resource planning and generation dispatch. The techniques employed in these predictions are proving useful in the growing market of consumer, or end-user, participation in electrical energy consumption. These predictions are based on exogenous variables, such as weather, and time variables, such as day of week and time of day as well as prior energy consumption patterns. The participation of the end-user is a cornerstone of the Smart Grid initiative presented in the Energy Independence and Security Act of 2007, and is being made possible by the emergence of enabling technologies such as advanced metering infrastructure. The optimal application of the data provided by an advanced metering infrastructure is the primary motivation for the work done in this thesis. The methodology for using this data in an energy management scheme that utilizes a short-term load forecast is presented. The objective of this research is to quantify opportunities for a range of energy management and operation cost savings of a university campus through the use of a forecasted daily electrical load profile. The proposed algorithm for short-term load forecasting is optimized for Colorado State University's main campus, and utilizes an artificial neural network that accepts weather and time variables as inputs. The performance of the predicted daily electrical load is evaluated using a number of error measurements that seek to quantify the best application of the forecast. The energy management presented utilizes historical electrical load data from the local service provider to optimize the time of day that electrical loads are being managed. Finally, the utilization of forecasts in the presented energy management scenario is evaluated based on cost and energy savings.