WorldWideScience

Sample records for cold charged biomolecules

  1. Ionic strength independence of charge distributions in solvation of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, J. J. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Sosnick, T. R. [Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Freed, K. F. [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); James Franck Institute, University of Chicago, Chicago, Illinois 60637 (United States); Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States)

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  2. Ionic strength independence of charge distributions in solvation of biomolecules

    International Nuclear Information System (INIS)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-01-01

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other

  3. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    Science.gov (United States)

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  4. Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET

    Science.gov (United States)

    Wadhwa, Girish; Raj, Balwinder

    2018-05-01

    Nanoscale devices are emerging as a platform for detecting biomolecules. Various issues were observed during the fabrication process such as random dopant fluctuation and thermal budget. To reduce these issues charge-plasma-based concept is introduced. This paper proposes the implementation of charge-plasma-based gate underlap dielectric modulated junctionless tunnel field effect transistor (DM-JLTFET) for the revelation of biomolecule immobilized in the open cavity gate channel region. In this p+ source and n+ drain regions are introduced by employing different work function over the intrinsic silicon. Also dual material gate architecture is implemented to reduce short channel effect without abandoning any other device characteristic. The sensitivity of biosensor is studied for both the neutral and charge-neutral biomolecules. The effect of device parameters such as channel thickness, cavity length and cavity thickness on drain current have been analyzed through simulations. This paper investigates the performance of charge-plasma-based gate underlap DM-JLTFET for biomolecule sensing applications while varying dielectric constant, charge density at different biasing conditions.

  5. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  6. Fragmentation study of isolated and nano-solvated biomolecules induced by collision with multiply charged ions and neutral particles

    International Nuclear Information System (INIS)

    Bernigaud, V.

    2009-01-01

    This thesis concerns a gas phase study of the fragmentation of bio-molecular systems induced by slow collisions with multiply charged ions (in the keV-region), alkali atoms and rare gases. The main objective was to study the physical processes involved in the dissociation of highly electronically excited systems. In order to elucidate the intrinsic properties of certain biomolecules (porphyrins and amino acids) we have performed experiments in the gas phase with isolated systems. The obtained results demonstrate the high stability of porphyrins after electron removal and attachment. Furthermore, a dependence of the fragmentation pattern produced by multiply charged ions on the isomeric structure of the alanine molecule has been shown. In a second part of the thesis, a strong influence of the environment of the biomolecule on the fragmentation channels, their modification and their new opening, has been clearly proven. This phenomenon occurs in the presence of other surrounding biomolecules (clusters of nucleobases) as well as for molecules of a solvent (molecules of water, methanol and acetonitrile) in which the biomolecule is embedded. In order to extend these studies to larger systems, a new experimental set-up, based on an electro-spray ion source combined with a quadrupole mass filter has been developed. Due to the successful tests and proposed improvements of the device future experiments will become available concerning the fragmentation of large charged and solvated bio-molecular systems induced by collision processes. (author) [fr

  7. A molecular dynamics study on the transport of a charged biomolecule in a polymeric adsorbent medium and its adsorption onto a charged ligand.

    Science.gov (United States)

    Riccardi, E; Wang, J-C; Liapis, A I

    2010-08-28

    The transport of a charged adsorbate biomolecule in a porous polymeric adsorbent medium and its adsorption onto the covalently immobilized ligands have been modeled and investigated using molecular dynamics modeling and simulations as the third part of a novel fundamental methodology developed for studying ion-exchange chromatography based bioseparations. To overcome computational challenges, a novel simulation approach is devised where appropriate atomistic and coarse grain models are employed simultaneously and the transport of the adsorbate is characterized through a number of locations representative of the progress of the transport process. The adsorbate biomolecule for the system studied in this work changes shape, orientation, and lateral position in order to proceed toward the site where adsorption occurs and exhibits decreased mass transport coefficients as it approaches closer to the immobilized ligand. Furthermore, because the ligands are surrounded by counterions carrying the same type of charge as the adsorbate biomolecule, it takes the biomolecule repeated attempts to approach toward a ligand in order to displace the counterions in the proximity of the ligand and to finally become adsorbed. The formed adsorbate-ligand complex interacts with the counterions and polymeric molecules and is found to evolve slowly and continuously from one-site (monovalent) interaction to multisite (multivalent) interactions. Such a transition of the nature of adsorption reduces the overall adsorption capacity of the ligands in the adsorbent medium and results in a type of surface exclusion effect. Also, the adsorption of the biomolecule also presents certain volume exclusion effects by not only directly reducing the pore volume and the availability of the ligands in the adjacent regions, but also causing the polymeric molecules to change to more compact structures that could further shield certain ligands from being accessible to subsequent adsorbate molecules. These

  8. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    Science.gov (United States)

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  9. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M.C.; Arun Kumar, A.; Padmanabhan, P.V.A.; Deshmukh, R.R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A.S.

    2016-01-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  10. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Ram Kumar, M.C.; Arun Kumar, A. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Padmanabhan, P.V.A. [PSN College of Engineering and Technology, Tirunelveli 627 152 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Bah, M.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, M.; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-05-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  11. O--H charge exchange in cold, dense, hydrogen plasmas

    International Nuclear Information System (INIS)

    Cohen, S.A.; Dylla, H.F.

    1977-05-01

    It is pointed out that the accidentally resonant charge exchange reaction, O + + H 0 reverse arrows O 0 + H + , is an important mechanism for causing the loss of singly charged oxygen ions from oxygen contaminated hydrogen plasmas. Results of a Monte Carlo simulation are presented which show that the fraction of oxygen lost because of charge exchange exceeds 1 / 3 when the parameters n/sub e/ approx. 10 13 cm -3 , n/sub H//sup o/ approx. 10 11 cm -3 and T/sub e/ approx. 3 eV are attained

  12. Spin-charge separation in ultra-cold quantum gases

    OpenAIRE

    Recati, A.; Fedichev, P. O.; Zwerger, W.; Zoller, P.

    2002-01-01

    We investigate the physical properties of quasi-1D quantum gases of fermion atoms confined in harmonic traps. Using the fact that for a homogeneous gas, the low energy properties are exactly described by a Luttinger model, we analyze the nature and manifestations of the spin-charge separation. Finally we discuss the necessary physical conditions and experimental limitations confronting possible experimental implementations.

  13. Spin Drag and Spin-Charge Separation in Cold Fermi Gases

    International Nuclear Information System (INIS)

    Polini, Marco; Vignale, Giovanni

    2007-01-01

    Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet

  14. Cold highly charged ions in a cryogenic Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, O. O., E-mail: oscar.versolato@mpi-hd.mpg.de; Schwarz, M.; Windberger, A.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik (Germany); Schmidt, P. O. [Physikalisch-Technische Bundesanstalt (Germany); Drewsen, M. [University of Aarhus, Department of Physics and Astronomy (Denmark); Crespo Lopez-Urrutia, J. R. [Max-Planck-Institut fuer Kernphysik (Germany)

    2013-03-15

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir{sup 17 + }. However, laser spectroscopy of HCIs is hindered by the large ({approx} 10{sup 6} K) temperatures at which they are produced and trapped. An unprecedented improvement in such laser spectroscopy can be obtained when HCIs are cooled down to the mK range in a linear Paul trap. We have developed a cryogenic linear Paul trap in which HCIs will be sympathetically cooled by {sup 9}Be{sup + } ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will also provide the first experimental input needed for the determination of the transition energies in Ir{sup 17 + }, enabling further laser-spectroscopic investigations of this promising HCI.

  15. Promising Biomolecules.

    Science.gov (United States)

    Oliveira, Isabel; Carvalho, Ana L; Radhouani, Hajer; Gonçalves, Cristiana; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.

  16. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter...

  17. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    Science.gov (United States)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  18. Ionisation of atoms, molecules and biomolecules by impact of multiply charged ions of high energy: classical and quantal comparison

    International Nuclear Information System (INIS)

    Abbas, I.

    2008-05-01

    We have developed a relatively simple model to calculate total cross-sections of various ionizing processes involving ion-atom or ion-molecule collisions. This model is based on the Zarour and Saalmann model and has benefited from 2 other models: the classical over-barrier (COB) model and the classical trajectory Monte-Carlo (CTMC) model. The COB model is used to describe the initial conditions of the target's electrons and their process us of creation while the CTMC model is used to build the statistical aspects necessary to calculate the cross sections of the ionizing processes. 3 major improvements have been brought to the Zarour and Saalmann model. First, the particle-particle interactions have been described by a Coulombian potential which is more realistic. Secondly, the initial conditions in the target are better represented by taking into account in an aleatory manner the position and speed distributions of the electrons. Thirdly, the use of energy criteria instead of purely geometrical ones to describe the final situation of the electrons has led to a better determination of the possible ionizing events. We have validated our model by applying it first, in collisional systems involving multi-charged projectiles like H + , He 2+ , Li 3+ , C 6+ , O 8+ and Ne 10+ and simple targets like H, He and H 2 , for which a lot of experimental data is available. Then, we have studied collisions involving the water molecule for which experimental and experimental data exist. Satisfactorily results for H 2 O target has led us to study other biological targets like adenine or cytosine. We have shown that our results are valid for impact energies over 100 keV/uma and most satisfactorily results concern simple ionizing processes like simple capture and simple ionization. For more complex processes such as transfer-ionization, double capture or double ionization, our results are valid for helium and hydrogen targets. In the case of water, the cross-sections of double

  19. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  20. Sheath formation of a plasma containing multiply charged ions, cold and hot electrons, and emitted electrons

    International Nuclear Information System (INIS)

    You, H.J.

    2012-01-01

    It is quite well known that ion confinement is an important factor in an electron cyclotron resonance ion source (ECRIS) as it is closely related to the plasma potential. A model of sheath formation was extended to a plasma containing multiply charged ions (MCIs), cold and hot electrons, and secondary electrons emitted either by MCIs or hot electrons. In the model, a modification of the 'Bohm criterion' was given, the sheath potential drop and the critical emission condition were also analyzed. It appears that the presence of hot electrons and emitted electrons strongly affects the sheath formation so that smaller hot electrons and larger emission current result in reduced sheath potential (or floating potential). However the sheath potential was found to become independent of the emission current J when J > J c , (where J c is the critical emission current. The paper is followed by the associated poster

  1. Nonlinear excitations in biomolecules

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)

  2. Control of pouring molten charge out of a levitation type cold crucible; Fuyogata cold crucible kara no hiyukaibutsu no chuto seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K.; Iwai, K.; Asai, S. [Nagoya University, Nagoya (Japan). Faculty of Engineering

    1994-10-25

    The cold crucible is a high-frequency induced heating melting process consisting of the cold copper crucible, coil, and charge. The levitation type crucible is of the cup type device, with the magnetic field concentrated to the vicinity of the hole in its bottom, so that the whole charge is melted and non-contact retention is achieved by the Lorentz`s force. However, when the vacuum suction method or the tilting method is used to take out or pour a charge from the crucible, defects such as contamination due to contact with the wall and heat transfer are unavoidable. This report proposes a new pouring method using the electromagnetic force, providing the logical and experimental examinations. As a result of analysis of the electromagnetic force applied on the side of the charge levitating in the crucible, it was confirmed that changing the current value through the coil varies the pouring phenomenon, depending on the followability of the levitating position, and changing the relative position of the coil to the crucible enables pouring. Thus, the pouring form measuring method was established. 9 refs., 10 figs., 1 tab.

  3. Two possible improvements for mass spectrometry analysis of intact biomolecules.

    Science.gov (United States)

    Raznikov, Valeriy V; Zelenov, Vladislav V; Aparina, Elena V; Pikhtelev, Alexander R; Sulimenkov, Ilia V; Raznikova, Marina O

    2017-08-01

    The goals of our study were to investigate abilities of two approaches to eliminate possible errors in electrospray mass spectrometry measurements of biomolecules. Passing of a relatively dense supersonic gas jet through ionization region followed by its hitting the spray of the analyzed solution in low vacuum may be effective to keep an initial biomolecule structure in solution. Provided that retention of charge carriers for some sites in the biomolecule cannot be changed noticeably in electrospray ion source, decomposition and separation of charge-state distributions of electrosprayed ions may give additional information about native structure of biomolecules in solution.

  4. Preparation of cold Mg+ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    International Nuclear Information System (INIS)

    Cazan, Radu Mircea

    2012-02-01

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a 24 Mg + ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little maintenance

  5. CrossRef Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

    CERN Document Server

    McConnell, R; Kolthammer, WS; Richerme, P; Müllers, A; Walz, J; Grzonka, D; Zielinski, M; Fitzakerley, D; George, MC; Hessels, EA; Storry, CH; Weel, M

    2016-01-01

    Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is expected to be increased by a similar factor.

  6. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey

    2010-01-29

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  7. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    International Nuclear Information System (INIS)

    Sokolov, Alexey

    2010-01-01

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  8. Biomolecules in Astrobiology

    OpenAIRE

    Meringer, Markus

    2013-01-01

    Astrobiology is the study of the origin, distribution and future of life in the universe, biomolecules are molecules produced by living organisms. This talk reviews known facts and open questions about biomolecules in the context of Astrobiology and introduces a research project on "Creating a Reference Set of Amino Acids Structures for Use in Multiple Astrobiology Investigations" that tries to find answers using computational methods.

  9. Study of the cold charge transfer state separation at the TQ1/PC71 BM interface.

    Science.gov (United States)

    Volpi, Riccardo; Linares, Mathieu

    2017-05-30

    Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC 71 BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Tuneable graphene nanopores for single biomolecule detection.

    Science.gov (United States)

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  11. Frustration in biomolecules.

    Science.gov (United States)

    Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G

    2014-11-01

    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature

  12. Biomolecule-functionalized polymer brushes.

    Science.gov (United States)

    Jiang, Hui; Xu, Fu-Jian

    2013-04-21

    Functional polymer brushes have been utilized extensively for the immobilization of biomolecules, which is of crucial importance for the development of biosensors and biotechnology. Recent progress in polymerization methods, in particular surface-initiated atom transfer radical polymerization (ATRP), has provided a unique means for the design and synthesis of new biomolecule-functionalized polymer brushes. This current review summarizes such recent research activities. The different preparation strategies for biomolecule immobilization through polymer brush spacers are described in detail. The functional groups of the polymer brushes used for biomolecule immobilization include epoxide, carboxylic acid, hydroxyl, aldehyde, and amine groups. The recent research activities indicate that functional polymer brushes become versatile and powerful spacers for immobilization of various biomolecules to maximize their functionalities. This review also demonstrates that surface-initiated ATRP is used more frequently than other polymerization methods in the designs of new biomolecule-functionalized polymer brushes.

  13. Dynamics of biomolecules

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1975-01-01

    The dynamics of the biomolecules is shown by the example of myoglobin (Mb). The photodissociation of MbCO with a laser flash and the recapture process of CO were followed optically in the temperature region of 2 to 350 K. The binding procedure exhibits four components which stretch out over many orders of magnitude of time. Above 250 K, the time dependence of the components is exponential, below 180 K, only one component is present which follows an exponential equation. A potential barrier model is shown to explain the observed courses of binding. See also 'Biochemistry', in printing. (BJ/LH) [de

  14. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    International Nuclear Information System (INIS)

    Mohanty, M K; Mishra, S; Sarkar, S; Samal, S K; Mishra, B

    2016-01-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results. (paper)

  15. Charge Sensitive Amplifier (CSA) in cold gas of Liquid Argon (LAr) Time Projection Chamber (TPC)

    International Nuclear Information System (INIS)

    Bechetoille, E; Mathez, H; Zoccarato, Y

    2011-01-01

    This paper presents our work on a 8-channel low noise Front-End electronic coupled to a Liquid Argon (LAr) TPC (Time Projection Chamber). Each channel consists of a Charge Sensitive Amplifier (CSA), a band pass filter and a 50 Ohms buffer as line driver. A serial link based on a 'i2c-like' protocol, provides multiple configuration features to the circuit by accessing slow control registers. In this paper, we describe the CSA, the shaper and the slow control part. The feedback network of the CSA is made of a capacitance and a resistor. Their values are respectively 250 fF and 4 MΩ. An input referred noise of, at most, 1500 e- rms must be achieved at -100 deg. C with an input detector capacitance of 250 pF to ensure a correct measurement of the minimal signal of 18000e- (2.88 fC). The power consumption in this cryogenic setup must be less than 40 mW from a 3.3 V power supply.

  16. Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2006-03-01

    Full Text Available It is shown that there exists an exact paraxial cold-fluid equilibrium of a high-intensity, space-charge-dominated charged-particle beam with a periodically twisted elliptic cross section in a nonaxisymmetric periodic magnetic field. Generalized envelope equations, which determine the beam envelopes, ellipse orientation, density, and internal flow velocity profiles, are derived. Nonrelativistic and relativistic examples of such beam equilibria are presented. The equilibrium and stability of such beams are demonstrated by self-consistent particle-in-cell (PIC simulations.

  17. Preparation of cold Mg{sup +}ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Cazan, Radu Mircea

    2012-02-15

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a {sup 24}Mg{sup +} ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little

  18. A source for microhydrated biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Förstel, M.; Hergenhahn, U., E-mail: uwe.hergenhahn@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); Neustetter, M.; Denifl, S. [Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck (Austria); Lelievre, F. [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); University Paris-Sud 11, Faculté des Science d’Orsay, 91405 Orsay (France)

    2015-07-15

    We describe the construction of an apparatus for the production of a molecular jet of microhydrated biomolecules. Our design uses a water reservoir producing water vapour, which then passes through a separate reservoir containing a vapour of a sublimated biomolecule. The mixture coexpands into a molecular beam apparatus through a conical nozzle. Mass spectra showing water-adenin and water-uracil complexes are shown as typical examples. Suitable expansion conditions are reached without the use of an inert carrier gas.

  19. Biomolecule labelling by 186 Re

    International Nuclear Information System (INIS)

    Lungu, Valeria Viorica; Mihailescu, Gabriela; Dumitrescu, Gabriela

    1998-01-01

    The aim of this study is to develop and improve the existing radiolabelling techniques of peptides and monoclonal antibodies with 186 Re and 188 Re as potential agents for cancer targeted radiotherapy. We selected the following methods and techniques for direct labelling of peptides and monoclonal antibody: 1. Prereduction of -S-S- bridges of biomolecule to sulfhydryls using reducing agents: ascorbic acid, cysteine, active hydrogen, 2,3 dimercaptopropanol. The prereduction reactions are controlled by massic ratios of reduction agents/biomolecule, pH, temperature and time of incubation; 2. Reduction of 186 Re O 4 - stannous chloride in acid and alkaline pH; 3. Coupling reaction of 186 Re (red) with the biomolecule controlled by the time and temperature of incubation, the influence of pH regarding the binding of 186 Re to the biomolecules. The quality control was effected by chromatography techniques (paper and elution gel chromatography) on labeled biomolecule before and after purification. The elution gel chromatography was spectrophotometricaly monitored at 280 nm. In the same time the radioactivity of samples was measured using a gamma counter. All the results confirm in vitro stability of labeled biomolecule. The biological evaluation studies regarding accumulation and biological affinity will be controlled by scintigraphy method. Biodistribution studies will be effected to Walker tumor bearing animals at 4 and 24 hours after injections. (authors)

  20. Efficient optimization of electrostatic interactions between biomolecules.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Altman, M. D.; White, J. K.; Tidor, B.; Mathematics and Computer Science; MIT

    2007-01-01

    We present a PDE-constrained approach to optimizing the electrostatic interactions between two biomolecules. These interactions play important roles in the determination of binding affinity and specificity, and are therefore of significant interest when designing a ligand molecule to bind tightly to a receptor. Using a popular continuum model and physically reasonable assumptions, the electrostatic component of the binding free energy is a convex, quadratic function of the ligand charge distribution. Traditional optimization methods require exhaustive pre-computation, and the expense has precluded a full exploration of the promise of electrostatic optimization in biomolecule analysis and design. In this paper we describe an approach in which the electrostatic simulations and optimization problem are solved simultaneously; unlike many PDE- constrained optimization frameworks, the proposed method does not incorporate the PDE as a set of equality constraints. This co-optimization approach can be used by itself to solve unconstrained problems or those with linear equality constraints, or in conjunction with primal-dual interior point methods to solve problems with inequality constraints. Model problems demonstrate that the co-optimization method is computationally efficient and can be used to solve realistic problems.

  1. Ancient Biomolecules and Evolutionary Inference

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando

    2018-01-01

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleo...

  2. Photochemical Microscale Electrophoresis Allows Fast Quantification of Biomolecule Binding.

    Science.gov (United States)

    Möller, Friederike M; Kieß, Michael; Braun, Dieter

    2016-04-27

    Intricate spatiotemporal patterns emerge when chemical reactions couple to physical transport. We induce electrophoretic transport by a confined photochemical reaction and use it to infer the binding strength of a second, biomolecular binding reaction under physiological conditions. To this end, we use the photoactive compound 2-nitrobenzaldehyde, which releases a proton upon 375 nm irradiation. The charged photoproducts locally perturb electroneutrality due to differential diffusion, giving rise to an electric potential Φ in the 100 μV range on the micrometer scale. Electrophoresis of biomolecules in this field is counterbalanced by back-diffusion within seconds. The biomolecule concentration is measured by fluorescence and settles proportionally to exp(-μ/D Φ). Typically, binding alters either the diffusion coefficient D or the electrophoretic mobility μ. Hence, the local biomolecule fluorescence directly reflects the binding state. A fit to the law of mass action reveals the dissociation constant of the binding reaction. We apply this approach to quantify the binding of the aptamer TBA15 to its protein target human-α-thrombin and to probe the hybridization of DNA. Dissociation constants in the nanomolar regime were determined and match both results in literature and in control experiments using microscale thermophoresis. As our approach is all-optical, isothermal and requires only nanoliter volumes at nanomolar concentrations, it will allow for the fast screening of biomolecule binding in low volume multiwell formats.

  3. Ancient Biomolecules and Evolutionary Inference.

    Science.gov (United States)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando; Welker, Frido; Pedersen, Mikkel Winther; Allentoft, Morten E; de Barros Damgaard, Peter; Gutenbrunner, Petra; Dunne, Julie; Hammann, Simon; Roffet-Salque, Mélanie; Ilardo, Melissa; Moreno-Mayar, J Víctor; Wang, Yucheng; Sikora, Martin; Vinner, Lasse; Cox, Jürgen; Evershed, Richard P; Willerslev, Eske

    2018-04-25

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  4. Cold-Fluid Equilibrium of a Large-Aspect-Ratio Ellipse-Shaped Charged-Particle Beam in a Non-Axisymmetric Periodic Permanent Magnet Focusing Field

    CERN Document Server

    Zhou, Jing; Chen Chi Ping

    2005-01-01

    A new class of equilibrium is discovered for a large-aspect-ratio ellipse-shaped charged-particle beam in a non-axisymmetric periodic permanent magnet focusing field. A paraxial cold-fluid model is employed to derive the equilibrium flow properties and generalized envelope equations with negligibly small emittance. A periodic beam equilibrium solution is obtained numerically from the generalized envelope equations. It is shown that the beam edges are well confined in both transverse directions, and that the equilibrium beam exhibits a small-angle periodic wobble as it propagates. A two-dimensional particle-in-cell (PIC) code, PFB2D, is used to verify the theoretical predictions in the paraxial limit, and to establish validity under non-paraxial situations and the influence of the conductor walls of the beam tunnel.

  5. Use of a Spreadsheet to Calculate the Net Charge of Peptides and Proteins as a Function of pH: An Alternative to Using "Canned" Programs to Estimate the Isoelectric Point of These Important Biomolecules

    Science.gov (United States)

    Sims, Paul A.

    2010-01-01

    An approach is presented that utilizes a spreadsheet to allow students to explore different means of calculating and visualizing how the charge on peptides and proteins varies as a function of pH. In particular, the concept of isoelectric point is developed to allow students to compare the results of their spreadsheet calculations with those of…

  6. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  7. Radiation from autoionising levels correlated with single excited states of highly charged ions in dense cold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Flora, F.; Bollanti, S.; Lazzaro, P.D.; Letardi, T.; Vigli-Papadaki, K.; Notolla, N. [ENEA, Dipt. Innovazione, Settore Fisica Applicata, Frascati, Rome (Italy); Grilli, A. [INFN Frascati, Frascati, Rome (Italy); Palladino, L.; Reale, A. [Dipt. di Fisica e INFN g.s. INGS, Univ. de L. Aquila, L' Aquila (Italy); Scafati, A.; Reale, L. [Inst. Sup. Di Sanita, Roma e INFN sez Sanita, Rome (Italy); Auguste, T.; D' Olivera, P.; Hulin, S.; Monot, P. [Commissariat A L' Energie Atomique - Centre D' Etudes de Saclay, Gif-Sur-Yvette (France); Zigler, A.; Fraenkel, M. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics

    1999-07-01

    The interaction of heavy ion beams and laser light with matter is of central importance for the inertial fusion and X-ray laser research. Recently developed techniques in X-ray spectroscopy have provided extremely unusual emission spectra near the target even in traditional experiments. It will be shown that reasonable interpretation and diagnostic can be achieved only incorporating new concepts in the dielectronic satellite line formation. Theoretical models are developed which provide good agreement with experimental results. Charge exchange processes are proposed for the formation of hollow atoms. (orig.)

  8. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  9. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    an edge over the X-ray method as it can be used to study biomolecules ... currently as an Associate. Professor. ... Such a wealth of data is made available to the NMR ... important step towards structural characterization of a biomolecule. Box 1.

  10. Biomolecule-based nanomaterials and nanostructures.

    Science.gov (United States)

    Willner, Itamar; Willner, Bilha

    2010-10-13

    Biomolecule-nanoparticle (or carbon nanotube) hybrid systems provide new materials that combine the unique optical, electronic, or catalytic properties of the nanoelements with the recognition or biocatalytic functions of biomolecules. This article summarizes recent applications of biomolecule-nanoparticle (or carbon nanotubes) hybrid systems for sensing, synthesis of nanostructures, and for the fabrication of nanoscale devices. The use of metallic nanoparticles for the electrical contacting of redox enzymes with electrodes, and as catalytic labels for the development of electrochemical biosensors is discussed. Similarly, biomolecule-quantum dot hybrid systems are implemented for optical biosensing, and for monitoring intracellular metabolic processes. Also, the self-assembly of biomolecule-metal nanoparticle hybrids into nanostructures and functional nanodevices is presented. The future perspectives of the field are addressed by discussing future challenges and highlighting different potential applications.

  11. In situ hybridization of superparamagnetic iron-biomolecule nanoparticles.

    Science.gov (United States)

    Moghimi, Nafiseh; Donkor, Apraku David; Mohapatra, Mamata; Thomas, Joseph Palathinkal; Su, Zhengding; Tang, Xiaowu Shirley; Leung, Kam Tong

    2014-07-23

    The increase in interest in the integration of organic-inorganic nanostructures in recent years has promoted the use of hybrid nanoparticles (HNPs) in medicine, energy conversion, and other applications. Conventional hybridization methods are, however, often long, complicated, and multistepped, and they involve biomolecules and discrete nanostructures as separate entities, all of which hinder the practical use of the resulting HNPs. Here, we present a novel, in situ approach to synthesizing size-specific HNPs using Fe-biomolecule complexes as the building blocks. We choose an anticancer peptide (p53p, MW 1.8 kDa) and an enzyme (GOx, MW 160 kDa) as model molecules to demonstrate the versatility of the method toward different types of molecules over a large size range. We show that electrostatic interaction for complex formation of metal hydroxide ion with the partially charged side of biomolecule in the solution is the key to hybridization of metal-biomolecule materials. Electrochemical deposition is then used to produce hybrid NPs from these complexes. These HNPs with controllable sizes ranging from 30 nm to 3.5 μm are found to exhibit superparamagnetic behavior, which is a big challenge for particles in this size regime. As an example of greatly improved properties and functionality of the new hybrid material, in vitro toxicity assessment of Fe-GOx HNPs shows no adverse effect, and the Fe-p53p HNPs are found to selectively bind to cancer cells. The superparamagnetic nature of these HNPs (superparamagnetic even above the size regime of 15-20 nm!), their biocompatibility, and the direct integration approach are fundamentally important to biomineralization and general synthesis strategy for bioinspired functional materials.

  12. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  13. Analysis of nanoparticle biomolecule complexes.

    Science.gov (United States)

    Gunnarsson, Stefán B; Bernfur, Katja; Mikkelsen, Anders; Cedervall, Tommy

    2018-03-01

    Nanoparticles exposed to biological fluids adsorb biomolecules on their surface forming a biomolecular corona. This corona determines, on a molecular level, the interactions and impact the newly formed complex has on cells and organisms. The corona formation as well as the physiological and toxicological relevance are commonly investigated. However, an acknowledged but rarely addressed problem in many fields of nanobiotechnology is aggregation and broadened size distribution of nanoparticles following their interactions with the molecules of biological fluids. In blood serum, TiO 2 nanoparticles form complexes with a size distribution from 30 nm to more than 500 nm. In this study we have separated these complexes, with good resolution, using preparative centrifugation in a sucrose gradient. Two main apparent size populations were obtained, a fast sedimenting population of complexes that formed a pellet in the preparative centrifugation tube, and a slow sedimenting complex population still suspended in the gradient after centrifugation. Concentration and surface area dependent differences are found in the biomolecular corona between the slow and fast sedimenting fractions. There are more immunoglobulins, lipid binding proteins, and lipid-rich complexes at higher serum concentrations. Sedimentation rate and the biomolecular corona are important factors for evaluating any experiment including nanoparticle exposure. Our results show that traditional description of nanoparticles in biological fluids is an oversimplification and that more thorough characterisations are needed.

  14. Magnetic GMI sensor for detection of biomolecules

    International Nuclear Information System (INIS)

    Chiriac, Horia; Tibu, Mihai; Moga, Anca-Eugenia; Herea, Dumitru D.

    2005-01-01

    A magnetic sensor based on the giant magnetoimpedance (GMI) effect for the detection of biomolecules was made with a CoFeSiB amorphous magnetic microwire as sensing element. Using soft ferromagnetic cobalt microparticles and field sensitivities of the impedance of about 2.5%/A m -1 in the very low field region (less than 200 A m -1 ) at frequencies close to 10 MHz, a highly sensitive response was measured, appropriate for the detection of low biomolecule concentrations

  15. Novel in Vitro Efficiency of Chitosan Biomolecule Against Trichomonas Gallinae

    Directory of Open Access Journals (Sweden)

    SH Pourseyed

    2012-02-01

    Full Text Available Background: Development of new natural agents for parasitic diseases treatment has unexpectedly increased to overcome effectively against emergence and re-emergence of parasitic diseases, the appearance of drug resistant organisms and toxic side effects of current agents. The aim of the study was to evaluate antiprotozoal activities of chitosan biomolecule on trophozoites of Trichomonas gallinae.Methods: The antitrichomonal activity of various low molecular weight chitosan concentrations including 125, 250, 500 and 1250 μg ml-1 against T. gallinae trophozoites cultured in trypticase-yeast extract-maltose medium supplemented with heat-inactivated cold horse serum was evaluated in vitro. Samples containing medium without chitosan were also assayed as controls.Results: The mortality rates at 0, 3 and 6 h post treatment with all concentrations were significantly different from control group (P<0.05. Treated trophozoites showed more susceptibility to the highest concentration reaching mortality rate of 100% at 3h post inoculation. However, at this time, results for 125, 250 and 500 μg ml-1 were 93%, 95% and 96.7%, respectively.Conclusion: The results demonstrate that the application of chitosan biomolecule is a promising option for treatment of trichomoniasis in pigeons.

  16. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2003-01-01

    Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....

  17. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    International Nuclear Information System (INIS)

    Gubala, Vladimir; Siegrist, Jonathan; Monaghan, Ruairi; O’Reilly, Brian; Gandhiraman, Ram Prasad; Daniels, Stephen; Williams, David E.; Ducrée, Jens

    2013-01-01

    Highlights: ► A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. ► Development for dilution by surface-adsorption based depletion of protein samples. ► It can easily be done using a readily available apparatus like a spin-coater. ► The assessment tool is facile and quantitative. ► Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor ® ) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor ® substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor ® , and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and neutral, hydrogel-like film with polyethylene glycol (PEG) characteristics. This simple analytical approach adds to the fundamental understanding of the interaction forces in real

  18. Simple approach to study biomolecule adsorption in polymeric microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gubala, Vladimir, E-mail: V.Gubala@kent.ac.uk [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Medway School of Pharmacy, University of Kent, Central Avenue, Anson 120, Chatham Maritime, Kent ME4 4TB (United Kingdom); Siegrist, Jonathan; Monaghan, Ruairi; O' Reilly, Brian; Gandhiraman, Ram Prasad [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); Daniels, Stephen [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology (NCPST), Dublin City University, Dublin 9 (Ireland); Williams, David E. [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland); MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, University of Auckland, Auckland 1142 (New Zealand); Ducree, Jens [Biomedical Diagnostics Institute (BDI), National Centre for Sensor Research (NCSR), Dublin City University, Dublin 9 (Ireland)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer A simple tool to assess biomolecule adsorption onto the surfaces of microchannels. Black-Right-Pointing-Pointer Development for dilution by surface-adsorption based depletion of protein samples. Black-Right-Pointing-Pointer It can easily be done using a readily available apparatus like a spin-coater. Black-Right-Pointing-Pointer The assessment tool is facile and quantitative. Black-Right-Pointing-Pointer Straightforward comparison of different surface chemistries. - Abstract: Herein a simple analytical method is presented for the characterization of biomolecule adsorption on cyclo olefin polymer (COP, trade name: Zeonor{sup Registered-Sign }) substrates which are widely used in microfluidic lab-on-a-chip devices. These Zeonor{sup Registered-Sign} substrates do not possess native functional groups for specific reactions with biomolecules. Therefore, depending on the application, such substrates must be functionalized by surface chemistry methods to either enhance or suppress biomolecular adsorption. This work demonstrates a microfluidic method for evaluating the adsorption of antibodies and oligonucleotides surfaces. The method uses centrifugal microfluidic flow-through chips and can easily be implemented using common equipment such as a spin coater. The working principle is very simple. The user adds 40 L of the solution containing the sample to the starting side of a microfluidic channel, where it is moved through by centrifugal force. Some molecules are adsorbed in the channel. The sample is then collected at the other end in a small reservoir and the biomolecule concentration is measured. As a pilot application, we characterized the adsorption of goat anti-human IgG and a 20-mer DNA on Zeonor{sup Registered-Sign }, and on three types of functionalized Zeonor: 3-aminopropyltriethoxysilane (APTES) modified surface with mainly positive charge, negatively charged surface with immobilized bovine serum albumin (BSA), and

  19. Biomolecule-coated metal nanoparticles on titanium.

    Science.gov (United States)

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  20. Thermodynamic stability of biomolecules and evolution.

    Science.gov (United States)

    Chakravarty, Ashim K

    2017-08-01

    The thermodynamic stability of biomolecules in the perspective of evolution is a complex issue and needs discussion. Intra molecular bonds maintain the structure and the state of internal energy (E) of a biomolecule at "local minima". In this communication, possibility of loss in internal energy level of a biomolecule through the changes in the bonds has been discussed, that might earn more thermodynamic stability for the molecule. In the process variations in structure and functions of the molecule could occur. Thus, E of a biomolecule is likely to have energy stature for minimization. Such change in energy status is an intrinsic factor for evolving biomolecules buying more stability and generating variations in the structure and function of DNA molecules undergoing natural selection. Thus, the variations might very well contribute towards the process of evolution. A brief discussion on conserved sequence in the light of proposition in this communication has been made at the end. Extension of the idea may resolve certain standing problems in evolution, such as maintenance of conserved sequences in genome of diverse species, pre- versus post adaptive mutations, 'orthogenesis', etc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. On the thermodynamics of biomolecule surface transformations.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Maiolo, Daniele; Depero, Laura E; Colombo, Italo; Bergese, Paolo

    2012-06-01

    Biological surface science is receiving great and renewed attention owing the rising interest in applications of nanoscience and nanotechnology to biological systems, with horizons that range from nanomedicine and biomimetic photosynthesis to the unexpected effects of nanomaterials on health and environment. Biomolecule surface transformations are among the fundamental aspects of the field that remain elusive so far and urgently need to be understood to further the field. Our recent findings indicate that surface thermodynamics can give a substantial contribution toward this challenging goal. In the first part of the article, we show that biomolecule surface transformations can be framed by a general and simple thermodynamic model. Then, we explore its effectiveness by addressing some typical cases, including ligand-receptor surface binding, protein thin film machines, nanomechanical aspects of the biomolecule-nanoparticle interface and nanomechanical biosensors. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Polyvalent Display of Biomolecules on Live Cells.

    Science.gov (United States)

    Shi, Peng; Zhao, Nan; Lai, Jinping; Coyne, James; Gaddes, Erin R; Wang, Yong

    2018-06-04

    Surface display of biomolecules on live cells offers new opportunities to treat human diseases and perform basic studies. Existing methods are primarily focused on monovalent functionalization, that is, the display of single biomolecules across the cell surface. Here we show that the surface of live cells can be functionalized to display polyvalent biomolecular structures through two-step reactions under physiological conditions. This polyvalent functionalization enables the cell surface to recognize the microenvironment one order of magnitude more effectively than with monovalent functionalization. Thus, polyvalent display of biomolecules on live cells holds great potential for various biological and biomedical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  5. Microorganisms and biomolecules in space hard environment

    Science.gov (United States)

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  6. Nanofluidic technology for biomolecule applications: a critical review

    NARCIS (Netherlands)

    Napoli, M.; Eijkel, Jan C.T.; Pennathur, S.

    2010-01-01

    In this review, we present nanofluidic phenomena, particularly as they relate to applications involving analysis of biomolecules within nanofabricated devices. The relevant length scales and physical phenomena that govern biomolecule transport and manipulation within nanofabricated nanofluidic

  7. A Multidisciplinary, Open Access Platform for Research on Biomolecules

    Directory of Open Access Journals (Sweden)

    Jürg Bähler

    2011-08-01

    Full Text Available I am pleased to introduce Biomolecules, a new journal to report on all aspects of science that focuses on biologically derived substances, from small molecules to complex polymers. Some examples are lipids, carbohydrates, vitamins, hormones, amino acids, nucleotides, peptides, RNA and polysaccharides, but this list is far from exhaustive. Research on biomolecules encompasses multiple fascinating questions. How are biomolecules synthesized and modified? What are their structures and interactions with other biomolecules? How do biomolecules function in biological processes, at the level of organelles, cells, organs, organisms, or even ecosystems? How do biomolecules affect either the organism that produces them or other organisms of the same or different species? How are biomolecules shaped by evolution, and how in turn do they affect cellular phenotypes? What is the systems-level contribution of biomolecules to biological function?

  8. A Multidisciplinary, Open Access Platform for Research on Biomolecules.

    Science.gov (United States)

    Bähler, Jürg

    2011-08-22

    I am pleased to introduce Biomolecules, a new journal to report on all aspects of science that focuses on biologically derived substances, from small molecules to complex polymers. Some examples are lipids, carbohydrates, vitamins, hormones, amino acids, nucleotides, peptides, RNA and polysaccharides, but this list is far from exhaustive. Research on biomolecules encompasses multiple fascinating questions. How are biomolecules synthesized and modified? What are their structures and interactions with other biomolecules? How do biomolecules function in biological processes, at the level of organelles, cells, organs, organisms, or even ecosystems? How do biomolecules affect either the organism that produces them or other organisms of the same or different species? How are biomolecules shaped by evolution, and how in turn do they affect cellular phenotypes? What is the systems-level contribution of biomolecules to biological function? [...].

  9. Immobilizing Biomolecules Near the Diffraction Limit

    DEFF Research Database (Denmark)

    Skovsen, Esben; Petersen, Maria Teresa Neves; Gennaro, Ane Kold Di

    2009-01-01

    Our group has previously shown that biomolecules containing disulfide bridges in close proximity to aromatic residues can be immobilized, through covalent bonds, onto thiol derivatized surfaces upon UV excitation of the aromatic residue(s). We have also previously shown that our new technology ca...

  10. Biomolecule-Responsive Hydrogels in Medicine.

    Science.gov (United States)

    Sharifzadeh, Ghorbanali; Hosseinkhani, Hossein

    2017-12-01

    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  12. Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Zinkicheva, Tamara T.

    2018-01-01

    Electrochemistry at ultra-small scales, where even the single molecule or biomolecule can be characterized and manipulated, is on the way to a consolidated status. At the same time molecular electrochemistry is expanding into other areas of sophisticated nano- and molecular scale systems includin...... molecular scale metal and semiconductor nanoparticles (NPs) and other nanostructures, e.g. nanotubes, “nanoflowers” etc.. The new structures offer both new electronic properties and highly confined novel charge transfer environments....

  13. Self-organized pattern formation of biomolecules at silicon surfaces: Intended application of a dislocation network

    International Nuclear Information System (INIS)

    Kittler, M.; Yu, X.; Vyvenko, O.F.; Birkholz, M.; Seifert, W.; Reiche, M.; Wilhelm, T.; Arguirov, T.; Wolff, A.; Fritzsche, W.; Seibt, M.

    2006-01-01

    Defined placement of biomolecules at Si surfaces is a precondition for a successful combination of Si electronics with biological applications. We aim to realize this by Coulomb interaction of biomolecules with dislocations in Si. The dislocations form charged lines and they will be surrounded with a space charge region being connected with an electric field. The electric stray field in a solution of biomolecules, caused by dislocations located close to the Si surface, was estimated to yield values up to few kVcm -1 . A regular dislocation network can be formed by wafer direct bonding at the interface between the bonded wafers in case of misorientation. The adjustment of misorientation allows the variation of the distance between dislocations in a range from 10 nm to a few μm. This is appropriate for nanobiotechnology dealing with protein or DNA molecules with sizes in the nm and lower μm range. Actually, we achieved a distance between the dislocations of 10-20 nm. Also the existence of a distinct electric field formed by the dislocation network was demonstrated by the technique of the electron-beam-induced current (EBIC). Because of the relatively short range of the field, the dislocations have to be placed close to the surface. We positioned the dislocation network in an interface being 200 nm parallel to the Si surface by layer transfer techniques using hydrogen implantation and bonding. Based on EBIC and luminescence data we postulate a barrier of the dislocations at the as bonded interface < 100 meV. We plan to dope the dislocations with metal atoms to increase the electric field. We demonstrated that regular periodic dislocation networks close to the Si surface formed by bonding are realistic candidates for self-organized placing of biomolecules. Experiments are underway to test whether biomolecules decorate the pattern of the dislocation lines

  14. Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine.

    Science.gov (United States)

    Bishop, Corey J; Kim, Jayoung; Green, Jordan J

    2014-07-01

    To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.

  15. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces

    KAUST Repository

    Bulyha, Alena; Heitzinger, Clemens

    2011-01-01

    In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding

  16. Monitoring the synthesis of biomolecules using mass spectrometry.

    Science.gov (United States)

    Miyagi, Masaru; Kasumov, Takhar

    2016-10-28

    The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or metabolites). It is, however, important to recognize that biological systems are highly dynamic in which biomolecules are continuously renewed and different classes of biomolecules interact and affect each other's production/clearance. Therefore, it is necessary to measure the turnover of diverse classes of biomolecules to understand the dynamic nature of biological systems. Herein, we explain why the kinetic analysis of a diverse range of biomolecules is important and how such an analysis can be done. We argue that heavy water ((2)H2O) could be a universal tracer for monitoring the synthesis of biomolecules on a global scale.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  17. Natural Antioxidants: Fascinating or Mythical Biomolecules?

    Directory of Open Access Journals (Sweden)

    Johannes Van Staden

    2010-10-01

    Full Text Available Research on the use, properties, characteristics and sources of antioxidants especially phenolic compounds, flavonoids, vitamins, synthetic chemicals and some micronutrients began in the late 18th century. Since then antioxidant research has received considerable attention and over a hundred thousand papers have been published on the subject. This has led to a rampant use of antioxidants in order to try to obtain and preserve optimal health. A number of nutraceuticals and food supplements are frequently fortified with synthetic or natural antioxidants. However, some research outcomes have led to the belief that antioxidants exist as mythical biomolecules. This review provides a critical evaluation of some common in vitro antioxidant capacity methods, and a discussion on the role and controversies surrounding non-enzymatic biomolecules, in particular phenolic compounds and non-phenolic compounds, in oxidative processes in an attempt of stemming the tidal wave that is threatening to swamp the concept of natural antioxidants.

  18. Platinum(II) complexes as spectroscopic probes for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  19. Microfluidic radiolabeling of biomolecules with PET radiometals

    International Nuclear Information System (INIS)

    Zeng Dexing; Desai, Amit V.; Ranganathan, David; Wheeler, Tobias D.; Kenis, Paul J.A.; Reichert, David E.

    2013-01-01

    Introduction: A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. Methods: The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64 Cu and 68 Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Results: Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64 Cu/ 68 Ga using the microreactor, which demonstrates the ability to label both small and large molecules. Conclusions: A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions.

  20. Microfluidic radiolabeling of biomolecules with PET radiometals.

    Science.gov (United States)

    Zeng, Dexing; Desai, Amit V; Ranganathan, David; Wheeler, Tobias D; Kenis, Paul J A; Reichert, David E

    2013-01-01

    A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A review on recent developments for biomolecule separation at analytical scale using microfluidic devices.

    Science.gov (United States)

    Tetala, Kishore K R; Vijayalakshmi, M A

    2016-02-04

    Microfluidic devices with their inherent advantages like the ability to handle 10(-9) to 10(-18) L volume, multiplexing of microchannels, rapid analysis and on-chip detection are proving to be efficient systems in various fields of life sciences. This review highlights articles published since 2010 that reports the use of microfluidic devices to separate biomolecules (DNA, RNA and proteins) using chromatography principles (size, charge, hydrophobicity and affinity) along with microchip capillary electrophoresis, isotachophoresis etc. A detailed overview of stationary phase materials and the approaches to incorporate them within the microchannels of microchips is provided as well as a brief overview of chemical methods to immobilize ligand(s). Furthermore, we review research articles that deal with microfluidic devices as analytical tools for biomolecule (DNA, RNA and protein) separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Site-Specific Biomolecule Labeling with Gold Clusters

    Science.gov (United States)

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  3. Site-Specific Biomolecule Labeling with Gold Clusters

    OpenAIRE

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (...

  4. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, H.; Davies, M.J.; Andersen, Henrik Jørgen

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  5. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  6. Thermally modulated biomolecule transport through nanoconfined channels.

    Science.gov (United States)

    Liu, Lei; Zhu, Lizhong

    2015-01-01

    In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded and analyzed. The results suggest that the modulation effect decreases with the electrolyte concentration increasing, while the effects generated by IgG translocation are more significant than that generated by BSA translocation. More importantly, there is a maximum decreasing value in each modulated current curve with biomolecule concentration increasing for thermally induced intermolecular collision. Furthermore, the turning point for the maximum shifts to lower biomolecule concentrations with the system temperature rising (from 4°C to 45°C), and it is mainly determined by the temperature in the feed cell if the temperature difference exists in the two separated cells. These findings are expected to be valuable for the future design of novel sensing device based on nanopore and/or nanopore arrays.

  7. Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.

    Science.gov (United States)

    Dathe, André; Ziegler, Mario; Hübner, Uwe; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-09-14

    Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.

  8. SPM for functional identification of individual biomolecules

    Science.gov (United States)

    Ros, Robert; Schwesinger, Falk; Padeste, Celestino; Plueckthun, Andreas; Anselmetti, Dario; Guentherodt, Hans-Joachim; Tiefenauer, Louis

    1999-06-01

    The identification of specific binding molecules is of increasing interest in the context of drug development based on combinatorial libraries. Scanning Probe Microscopy (SPM) is the method of choice to image and probe individual biomolecules on a surface. Functional identification of biomolecules is a first step towards screening on a single molecule level. As a model system we use recombinant single- chain Fv fragment (scFv) antibody molecules directed against the antigen fluorescein. The scFv's are covalently immobilized on a flat gold surface via the C-terminal cysteine, resulting in a high accessibility of the binding site. The antigen is immobilized covalently via a long hydrophilic spacer to the silicon nitride SPM-tip. This arrangement allows a direct measurement of binding forces. Thus, closely related antibody molecules differing in only one amino acid at their binding site could be distinguished. A novel SPM-software has been developed which combines imaging, force spectroscopic modes, and online analysis. This is a major prerequisite for future screening methods.

  9. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  10. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Directory of Open Access Journals (Sweden)

    Letian Lyu

    2018-03-01

    Full Text Available Graphene field-effect transistors (GFET hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR and graphene sheets (GS show comparable sensing signals to each other when gated at 1011 – 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  11. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Science.gov (United States)

    Lyu, Letian; Jaswal, Perveshwer; Xu, Guangyu

    2018-03-01

    Graphene field-effect transistors (GFET) hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR) and graphene sheets (GS) show comparable sensing signals to each other when gated at 1011 - 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  12. Synthesizing biomolecule-based Boolean logic gates.

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  13. Synthesizing Biomolecule-based Boolean Logic Gates

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  14. Relationship between cross section measurements and understanding radiation induced damage to biomolecules

    International Nuclear Information System (INIS)

    DuBois, R.D.; Braby, L.A.

    1993-10-01

    Experimental research performed at the Pacific Northwest Laboratory relating to energy deposition by energetic charged particles is described. How cross section data obtained from gaseous- and condensed-phase studies are related to understanding damage to biomolecules is discussed. Studies to date stress the need for information about energy deposition in individual interactions and show that multiple ionization may play a very significant role in biological damage. Current efforts to relate this gas-phase information to condensed-phase processes and biologically relevant targets are outlined

  15. Cold Sore

    Science.gov (United States)

    ... may reduce how often they return. Symptoms A cold sore usually passes through several stages: Tingling and itching. Many people feel an itching, burning or tingling sensation around their lips for a day or so ...

  16. Interactions of heavy ions with biomolecules: a dynamical microscopic approach

    International Nuclear Information System (INIS)

    Zhang Fengshou; Beijing Radiation Center, Beijing; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    The status of studying biology system therapy with X-rays, γ-rays, neutron, proton, and heavy ions is reviewed. The depth dose profile, called Bragg profile, makes heavy ion an ideal tool for radiotherapy. The physical process of therapy with heavy ions is analyzed and a 3-step interaction processes of heavy ions with biomolecules is proposed, that is, nuclear fragmentation in nuclear interaction, electron excitation in Coulomb interaction, and the biomolecules relaxation in surroundings, finally leads to a new structure of biomolecule. Since this physical process is the base of the following chemical process and biological process, a dynamical microscopic approach is strongly demanded to be built. (authors)

  17. Noncovalent Labeling of Biomolecules with Red and Near- Infrared Dyes

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2004-02-01

    Full Text Available Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  18. Computational simulation of biomolecules transport with multi-physics near microchannel surface for development of biomolecules-detection devices.

    Science.gov (United States)

    Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming

    2017-01-01

    The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.

  19. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    Some selective cold plasma processing modify specific surface properties of ... obtain information on the chemical and physical processing involved in ... charges of suitable gases. such plasma species can give rise to several concurrent.

  20. Cell and biomolecule delivery for regenerative medicine

    Science.gov (United States)

    Smith, Ian O; Ma, Peter X

    2010-01-01

    Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix) delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell–material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine. PMID:27877317

  1. Role of Carbamylated Biomolecules in Human Diseases.

    Science.gov (United States)

    Badar, Asim; Arif, Zarina; Alam, Khursheed

    2018-04-01

    Carbamylation (or carbamoylation) is a non-enzymatic modification of biomolecules mediated by cyanate, a dissociation product of urea. Proteins are more sensitive to carbamylation. Two major sites of carbamylation reaction are: N α -amino moiety of a protein N-terminus and the N ɛ -amino moiety of proteins' lysine residues. In kidney diseases, urea accumulates and the burden of carbamylation increases. This may lead to alteration in the structure and function of many important proteins relevant in maintenance of homeostasis. Carbamylated proteins namely, carbamylated-haemoglobin and carbamylated-low density lipoprotein (LDL) have been implicated in hypoxia and atherosclerosis, respectively. Furthermore, carbamylation of insulin, oxytocin, and erythropoietin have caused changes in the action of these hormones vis-à-vis the metabolic pathways they control. In this short review, authors have compiled the data on role of carbamylated proteins, enzymes, hormones, LDL, and so on, in human diseases. © 2018 IUBMB Life, 70(4):267-275, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  2. Cellular content of biomolecules in sub-seafloor microbial communities

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.

    2016-01-01

    the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density...... content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates......Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than...

  3. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  4. Diffusion phenomena of cells and biomolecules in microfluidic devices.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-09-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

  5. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    Science.gov (United States)

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.

    Science.gov (United States)

    Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-10-01

    Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.

  7. On the mobility of biomolecules : a fluorescence microscopy approach

    NARCIS (Netherlands)

    Bogaart, Geert van den

    2008-01-01

    This thesis describes the development and application of a number of fluorescence spectroscopy related techniques (FCS, FRAP, DCFBA) to measure diffusion of biomolecules in cells, in membranes and through membrane pores.

  8. Synthesis of selenium nanorods with assistance of biomolecule

    Indian Academy of Sciences (India)

    that the optical band gap energy is increased with aging time up to 1 day, whereas it decreases in 4 days aging ... researchers have used biomolecule substances such as oleic ..... ther investigation is needed to determine the changes of Se.

  9. Biomolecule detection using a silicon nanoribbon: accumulation mode versus inversion mode

    International Nuclear Information System (INIS)

    Elfstroem, Niklas; Linnros, Jan

    2008-01-01

    Silicon nanoribbons were fabricated using standard optical lithography from silicon on insulator material with top silicon layer thicknesses of 100, 60 and 45 nm. Electrically these work as Schottky-barrier field-effect transistors and, depending on the substrate voltage, electron or hole injection is possible. The current through the nanoribbon is extremely sensitive to charge changes at the oxidized top surface and can be used for biomolecule detection in a liquid. We show that for detection of streptavidin molecules the response is larger in the accumulation mode than in the inversion mode, although not leading to higher detection sensitivity due to increased noise. The effect is attributed to the location in depth of the conducting channel, which for holes is closer to the screened surface charges of the biomolecules. Furthermore, the response increases for decreasing silicon thickness in both the accumulation mode and the inversion mode. The results are verified qualitatively and quantitatively through a two-dimensional simulation model on a cross section along the nanoribbon device

  10. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules.

    Science.gov (United States)

    Jimah, John R; Schlesinger, Paul H; Tolia, Niraj H

    2017-08-05

    Proteins may have three dimensional structural or amino acid features that suggest a role in targeting and disrupting lipids within cell membranes. It is often necessary to experimentally investigate if these proteins and biomolecules are able to disrupt membranes in order to conclusively characterize the function of these biomolecules. Here, we describe an in vitro assay to evaluate the membrane lytic properties of proteins and biomolecules. Large unilamellar vesicles (liposomes) containing carboxyfluorescein at fluorescence-quenching concentrations are treated with the biomolecule of interest. A resulting increase in fluorescence due to leakage of the dye from liposomes and subsequent dilution in the buffer demonstrates that the biomolecule is sufficient for disrupting liposomes and membranes. Additionally, since liposome disruption may occur via pore-formation or via general solubilization of lipids similar to detergents, we provide a method to distinguish between these two mechanisms. Pore-formation can be identified and evaluated by examining the blockade of carboxyfluorescein release with dextran molecules that fit the pore. The methods described here were used to determine that the malaria vaccine candidate CelTOS and proapoptotic Bax disrupt liposomes by pore formation (Saito et al. , 2000; Jimah et al. , 2016). Since membrane lipid binding by a biomolecule precedes membrane disruption, we recommend the companion protocol: Jimah et al. , 2017.

  11. Cold fusion

    International Nuclear Information System (INIS)

    Koster, J.

    1989-01-01

    In this contribution the author the phenomenom of so-called cold fusion, inspired by the memorable lecture of Moshe Gai on his own search for this effect. Thus much of what follows was presented by Dr. Gai; the rest is from independent reading. What is referred to as cold fusion is of course the observation of possible products of deuteron-deuteron (d-d) fusion within deuterium-loaded (dentended) electrodes. The debate over the two vanguard cold fusion experiments has raged under far more public attention than usually accorded new scientific phenomena. The clamor commenced with the press conference of M. Fleishmann and S. Pons on March 23, 1989 and the nearly simultaneous wide circulation of a preprint of S. Jones and collaborators. The majority of work attempting to confirm these observations has at the time of this writing yet to appear in published form, but contributions to conferences and electronic mail over computer networks were certainly filled with preliminary results. To keep what follows to a reasonable length the author limit this discussion to the searches for neutron (suggested by ref. 2) or for excessive heat production (suggested by ref. 1), following a synopsis of the hypotheses of cold fusion

  12. Project COLD.

    Science.gov (United States)

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  13. Cold fusion

    International Nuclear Information System (INIS)

    Seo, Suk Yong; You, Jae Jun

    1996-01-01

    Nearly every technical information is chased in the world. All of them are reviewed and analyzed. Some of them are chosen to study further more to review every related documents. And a probable suggestion about the excitonic process in deuteron absorbed condensed matter is proposed a way to cold fusion. 8 refs. (Author)

  14. An integrated platform for biomolecule interaction analysis

    Science.gov (United States)

    Jan, Chia-Ming; Tsai, Pei-I.; Chou, Shin-Ting; Lee, Shu-Sheng; Lee, Chih-Kung

    2013-02-01

    We developed a new metrology platform which can detect real-time changes in both a phase-interrogation mode and intensity mode of a SPR (surface plasmon resonance). We integrated a SPR and ellipsometer to a biosensor chip platform to create a new biomolecular interaction measurement mechanism. We adopted a conductive ITO (indium-tinoxide) film to the bio-sensor platform chip to expand the dynamic range and improve measurement accuracy. The thickness of the conductive film and the suitable voltage constants were found to enhance performance. A circularly polarized ellipsometry configuration was incorporated into the newly developed platform to measure the label-free interactions of recombinant human C-reactive protein (CRP) with immobilized biomolecule target monoclonal human CRP antibody at various concentrations. CRP was chosen as it is a cardiovascular risk biomarker and is an acute phase reactant as well as a specific prognostic indicator for inflammation. We found that the sensitivity of a phaseinterrogation SPR is predominantly dependent on the optimization of the sample incidence angle. The effect of the ITO layer effective index under DC and AC effects as well as an optimal modulation were experimentally performed and discussed. Our experimental results showed that the modulated dynamic range for phase detection was 10E-2 RIU based on a current effect and 10E-4 RIU based on a potential effect of which a 0.55 (°/RIU) measurement was found by angular-interrogation. The performance of our newly developed metrology platform was characterized to have a higher sensitivity and less dynamic range when compared to a traditional full-field measurement system.

  15. Multi-state modeling of biomolecules.

    Directory of Open Access Journals (Sweden)

    Melanie I Stefan

    2014-09-01

    Full Text Available Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behavior of biological molecules or complexes that can adopt a large number of possible functional states. Biological signaling systems often rely on complexes of biological macromolecules that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states. Modeling such multi-state systems poses two problems: the problem of how to describe and specify a multi-state system (the "specification problem" and the problem of how to use a computer to simulate the progress of the system over time (the "computation problem". To address the specification problem, modelers have in recent years moved away from explicit specification of all possible states and towards rule-based formalisms that allow for implicit model specification, including the κ-calculus, BioNetGen, the Allosteric Network Compiler, and others. To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on ordinary differential equations, partial differential equations, or the Gillespie stochastic simulation algorithm. Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators fall into two further categories: nonspatial simulators, such as StochSim, DYNSTOC, RuleMonkey, and the Network-Free Stochastic Simulator (NFSim, and spatial simulators, including Meredys, SRSim, and MCell. Modelers can thus choose from a variety of tools, the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future.

  16. Miniature Laboratory for Detecting Sparse Biomolecules

    Science.gov (United States)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  17. Impact of low-temperature plasmas on Deinococcus radiodurans and biomolecules

    Science.gov (United States)

    Mogul, Rakesh; Bol'shakov, Alexander A.; Chan, Suzanne L.; Stevens, Ramsey M.; Khare, Bishun N.; Meyyappan, M.; Trent, Jonathan D.

    2003-01-01

    The effects of cold plasma on Deinococcus radiodurans, plasmid DNA, and model proteins were assessed using microbiological, spectrometric, and biochemical techniques. In low power O(2) plasma (approximately 25 W, approximately 45 mTorr, 90 min), D. radiodurans, a radiation-resistant bacterium, showed a 99.999% reduction in bioburden. In higher power O(2) plasma (100 W and 500 mTorr), the reduction rate increased about 10-fold and observation by atomic force microscopy showed significant damage to the cell. Damage to cellular lipids, proteins, and chromosome was indicated by losses of infrared spectroscopic peaks at 2930, 1651, 1538, and 1245 cm(-1), respectively. In vitro experiments show that O(2) plasmas induce DNA strand scissions and cross-linking as well as reduction of enzyme activity. The observed degradation and removal of biomolecules was power-dependent. Exposures to 200 W at 500 mTorr removed biomolecules to below detection limits in 60 s. Emission spectroscopy indicated that D. radiodurans cells were volatilized into CO(2), CO, N(2), and H(2)O, confirming that these plasmas were removing complex biological matter from surfaces. A CO(2) plasma was not as effective as the O(2) plasma, indicating the importance of plasma composition and the dominant role of chemical degradation. Together, these findings have implications for NASA planetary protection schemes and for the contamination of Mars.

  18. Active immobilization of biomolecules on a hybrid three-dimensional nanoelectrode by dielectrophoresis for single-biomolecule study

    International Nuclear Information System (INIS)

    Yamamoto, Takatoki; Fujii, Teruo

    2007-01-01

    We propose and experimentally demonstrate a method of active immobilization for biomolecules on a three-dimensional nanometre-scale electrode (3D nanoelectrode) using dielectrophoresis to immobilize the biomolecules at predetermined locations for single-biomolecule study. We have developed a novel two-step fabrication process for obtaining a 3D nanoelectrode having a sharp top, which is necessary for immobilizing a single biomolecule at a single point. The first step is to fabricate the backbone structure, which is rigid and defines the shape of the 3D nanoelectrode. It was fabricated with diamond-like carbon (DLC) obtained using focused ion beam assisted chemical vapour deposition followed by post-plasma etching, which reshapes the DLC structure. The second step coats the DLC structure with a thin layer of aluminium, which supplies electrical conductivity to the DLC structure. By applying a high frequency (of the order of megahertz) and high intensity (greater than or equal to a few megavolts per metre) electric field using the 3D nanoelectrodes, the generated dielectrophoresis attracted and then immobilized target biomolecules onto the tops of 3D nanoelectrodes, as a demonstration of active immobilization of biomolecules

  19. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  20. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.

    Science.gov (United States)

    Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut

    2016-03-08

    In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.

  1. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  2. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  3. Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules

    International Nuclear Information System (INIS)

    Bender, Florian; Tsortos, Achilleas; Papadakis, George; Gizeli, Electra; Roach, Paul; Newton, Michael I; McHale, Glen

    2009-01-01

    It is known that acoustic sensor devices, if operated in liquid phase, are sensitive not just to the mass of the analyte but also to various other parameters, such as size, shape, charge and elastic constants of the analyte as well as bound and viscously entrained water. This can be used to extract valuable information about a biomolecule, particularly if the acoustic device is combined with another sensor element which is sensitive to the mass or amount of analyte only. The latter is true in good approximation for various optical sensor techniques. This work reports on the development of a combined surface plasmon resonance/surface acoustic wave sensor system which is designed for the investigation of biomolecules such as proteins or DNA. Results for the deposition of neutravidin and DNA are reported

  4. Spectroscopy with cold and ultra-cold neutrons

    Directory of Open Access Journals (Sweden)

    Abele Hartmut

    2015-01-01

    Full Text Available We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10−4 level. The second method that we refer to as gravity resonance spectroscopy (GRS allows to test Newton’s gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  5. Temperature-responsive chromatography for the separation of biomolecules.

    Science.gov (United States)

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Improved radioiodination of biomolecules using exhaustive Chloramine-T oxidation

    International Nuclear Information System (INIS)

    Robles, Ana M.; Balter, Henia S.; Oliver, Patricia; Welling, Mick M.; Pauwels, Ernest K.J.

    2001-01-01

    To improve standardization in analytical reagents we investigated Chloramine-T radioiodination ( 125 I) of several biomolecules based on the use of a single amount of the oxidizing agent Chloramine-T as the limiting reagent being exhausted during the course of the reaction. Whenever the labeling yield resulted in less than one atom 125 I/molecule, a second amount of the oxidizing agent was added. Thereafter, the integrity of the various biomolecules was assessed using radioimmunoassays, radioreceptor binding assays, or radioimmunometric assays. Purification yields were done by gel permeation (56%±19%, n=230) or by precipitation with trichloroacetic acid (59%±19%, n=230). Specific activity (117±61 MBq/nmol) and the degree of iodine incorporation (1.4±0.8 atoms of 125 I/molecule) were achieved after 300 sec of incubation. A second addition of Chloramine-T resulted in an increased labeling yield of all biomolecules tested by a mean factor of 1.8±0.9. After the second addition of Chloramine-T, we observed for some biomolecules a significant (p<0.001) decreased effect in biological performance. In conclusion, the use of Chloramine-T as a limiting reagent resulted in molecules with appropriate immunological and biological performance. In general, tracers were minimally damaged and assessment of the shelf life as well as storing conditions showed the usefulness of the standardization of biomolecule labeling

  7. Tools and procedures for visualization of proteins and other biomolecules.

    Science.gov (United States)

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  8. Printing technologies for biomolecule and cell-based applications.

    Science.gov (United States)

    Ihalainen, Petri; Määttänen, Anni; Sandler, Niklas

    2015-10-30

    Biomolecules, such as enzymes, proteins and other biomacromolecules (polynucleotides, polypeptides, polysaccharides and DNA) that are immobilized on solid surfaces are relevant to many areas of science and technology. These functionalized surfaces have applications in biosensors, chromatography, diagnostic immunoassays, cell culturing, DNA microarrays and other analytical techniques. Printing technologies offer opportunities in this context. The main interests in printing biomolecules are in immobilizing them on surfaces for sensors and catalysts or for controlled delivery of protein-based drugs. Recently, there have been significant developments in the use of inkjet printing for dispensing of proteins, biomacromolecules and cells. This review discusses the use of roll-to-roll and inkjet printing technologies in manufacturing of biomolecule and cell-based applications. Copyright © 2015. Published by Elsevier B.V.

  9. Constraint methods that accelerate free-energy simulations of biomolecules.

    Science.gov (United States)

    Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A

    2015-12-28

    Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.

  10. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  11. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  12. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  13. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  14. A relationship between solvent viscosity and biomolecule picosecond thermal fluctuations

    International Nuclear Information System (INIS)

    Cornicchi, E.; De Francesco, A.; Marconi, M.; Onori, G.; Paciaroni, A.

    2008-01-01

    Through elastic neutron scattering measurements, we investigated the picosecond dynamics of DNA in the hydrated powder state or embedded in glycerol glassy matrix from 20 K to 300 K. We calculated the relaxational contribution of the mean square displacements (MSD) of DNA hydrogen atoms. We found the existence of a linear relationship between the inverse of the biomolecule relaxational MSD and the logarithm of the bulk viscosity of the surrounding environment. From the comparison with the case of lysozyme in the same environments, for which the validity of the relationship was already verified, possible differences and analogies concerning the biomolecule-to-solvent dynamical coupling can be stressed

  15. Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules

    International Nuclear Information System (INIS)

    Hafeman, Dean G.; Harkins, James B.; Witkowski, Charles E. II; Lewis, Nathan S.; Brown, Gilbert M.; Warmack, Robert J. Bruce; Thundat, Thomas George

    2006-01-01

    We demonstrate the formation of charged molecular packets and their transport within optically created electrical force-field traps in a pH-buffered electrolyte. We call this process photoelectrophoretic localization and transport (PELT). The electrolyte is in contact with a photoconductive semiconductor electrode and a counterelectrode that are connected through an external circuit. A light beam directed to coordinates on the photoconductive electrode surface produces a photocurrent within the circuit and electrolyte. Within the electrolyte, the photocurrent creates localized force-field traps centered at the illuminated coordinates. Charged molecules, including polypeptides and proteins, electrophoretically accumulate into the traps and subsequently can be transported in the electrolyte by moving the traps over the photoconductive electrode in response to movement of the light beam. The molecules in a single trap can be divided into aliquots, and the aliquots can be directed along multiple routes simultaneously by using multiple light beams. This photoelectrophoretic transport of charged molecules by PELT resembles the electrostatic transport of electrons within force-field wells of solid-state charge-coupled devices. The molecules, however, travel in a liquid electrolyte rather than a solid. Furthermore, we have used PELT to position amphoteric biomolecules in three dimensions. A 3D pH gradient was created in an electrolyte medium by controlling the illumination position on a photoconductive anode where protons were generated electrolytically. Photoelectrophoretic transport of amphoteric molecules through the pH gradient resulted in accumulation of the molecules at their apparent 3D isoelectric coordinates in the medium.

  16. One-step mild biorefinery of functional biomolecules from microalgae extracts

    NARCIS (Netherlands)

    Desai, R.K.; Monteillet, H.J.M.; Li, Xiaohua; Schuur, Boelo; Wijffels, R.H.; Eppink, M.H.M.

    2018-01-01

    Fractionation of complex matrices such as biomass into diverse functional biomolecules without disrupting the biomolecule functionalities is a real challenge. Known separation processes are designed for the recovery
    of single products such as hydrophilic proteins or hydrophobic pigments,

  17. One-step mild biorefinery of functional biomolecules from microalgae extracts

    NARCIS (Netherlands)

    Desai, Rupali K.; Monteillet, Hélène; Li, Xiaohua; Schuur, Boelo; Kleijn, J. Mieke; Leermakers, Frans A.M.; Wijffels, Rene H.; Eppink, Michel H.M.

    2018-01-01

    Fractionation of complex matrices such as biomass into diverse functional biomolecules without disrupting the biomolecule functionalities is a real challenge. Known separation processes are designed for the recovery of single products such as hydrophilic proteins or hydrophobic pigments, discarding

  18. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  19. Artificial tongue based on metal-biomolecule coordination polymer nanoparticles.

    Science.gov (United States)

    Pu, Fang; Ran, Xiang; Ren, Jinsong; Qu, Xiaogang

    2016-02-25

    We construct an array-based recognition system (the so-called artificial tongue) through the self-assembly of nucleotides, dyes and lanthanide ions. Metal ions are selected as model analytes for verifying its discrimination ability. The work provides valuable insights into the application and development of biomolecule-based materials.

  20. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optical aptasensors for quantitative detection of small biomolecules: a review.

    Science.gov (United States)

    Feng, Chunjing; Dai, Shuang; Wang, Lei

    2014-09-15

    Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Recovery of biomolecules from food wastes--a review.

    Science.gov (United States)

    Baiano, Antonietta

    2014-09-17

    Food wastes are produced by a variety of sources, ranging from agricultural operations to household consumption. About 38% occurs during food processing. At present, the European Union legislation encourages the exploitation of co-products. This valorisation can be achieved through the extraction of high-value components such as proteins, polysaccharides, fibres, flavour compounds, and phytochemicals, which can be re-used as nutritionally and pharmacologically functional ingredients. Extraction can proceed according to solid-liquid extraction, Soxhlet extraction, pressurized fluid extraction, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pulsed electric field extraction, and enzyme-assisted extraction. Nevertheless, these techniques cannot be used indiscriminately and their choice depends on the type of biomolecules and matrix, the scale processing (laboratory or industrial), the ratio between production costs and economic values of the compounds to be extracted. The vegetable wastes include trimmings, peelings, stems, seeds, shells, bran, residues remaining after extraction of oil, starch, sugar, and juice. The animal-derived wastes include wastes from bred animals, wastes from seafood, wastes from dairy processing. The recovered biomolecules and by-products can be used to produce functional foods or as adjuvants in food processing or in medicinal and pharmaceutical preparations. This work is an overview of the type and amounts of food wastes; food waste legislation; conventional and novel techniques suitable for extracting biomolecules; food, medicinal and pharmaceutical uses of the recovered biomolecules and by-products, and future trends in these areas.

  3. Fullerene–biomolecule conjugates and their biomedicinal applications

    Directory of Open Access Journals (Sweden)

    Yang X

    2013-12-01

    Full Text Available Xinlin Yang,1 Ali Ebrahimi,1 Jie Li,1,2 Quanjun Cui11Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA; 2School of Materials Science, Beijing Institute of Technology, Beijing, People's Republic of ChinaAbstract: Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene–biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene–biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene–biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.Keywords: fullerene, amino acid, peptide, oligonucleotide, sugar, ester

  4. Recovery of Biomolecules from Food Wastes — A Review

    Directory of Open Access Journals (Sweden)

    Antonietta Baiano

    2014-09-01

    Full Text Available Food wastes are produced by a variety of sources, ranging from agricultural operations to household consumption. About 38% occurs during food processing. At present, the European Union legislation encourages the exploitation of co-products. This valorisation can be achieved through the extraction of high-value components such as proteins, polysaccharides, fibres, flavour compounds, and phytochemicals, which can be re-used as nutritionally and pharmacologically functional ingredients. Extraction can proceed according to solid-liquid extraction, Soxhlet extraction, pressurized fluid extraction, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pulsed electric field extraction, and enzyme-assisted extraction. Nevertheless, these techniques cannot be used indiscriminately and their choice depends on the type of biomolecules and matrix, the scale processing (laboratory or industrial, the ratio between production costs and economic values of the compounds to be extracted. The vegetable wastes include trimmings, peelings, stems, seeds, shells, bran, residues remaining after extraction of oil, starch, sugar, and juice. The animal-derived wastes include wastes from bred animals, wastes from seafood, wastes from dairy processing. The recovered biomolecules and by-products can be used to produce functional foods or as adjuvants in food processing or in medicinal and pharmaceutical preparations. This work is an overview of the type and amounts of food wastes; food waste legislation; conventional and novel techniques suitable for extracting biomolecules; food, medicinal and pharmaceutical uses of the recovered biomolecules and by-products, and future trends in these areas.

  5. Ion - biomolecule interactions and radiation damage

    International Nuclear Information System (INIS)

    Schlathoelter, T.

    2004-01-01

    Full text: The biological effects of ionizing radiation in living cells are not a mere result of the direct impact of high energy quanta of radiation. Secondary particles such as low energy electrons, radicals and (multiply charged) ions are formed within the track. The interaction of these secondary particles with biologically relevant molecules is responsible for a large fraction of biological radiation damage to a cell, as well. Singly and multiply charged ions can be of importance as both, primary and secondary particles, and are known to cause severe biological damage. For instance, in heavy ion therapy and proton therapy the pronounced Bragg peak of fast (typically a few 100 MeV/u) ions in biological tissue is utilized. The Bragg peak is located at a depth, where the ions (mostly C q+ or protons) are slowed down to about 100 keV/u and have their maximum linear energy transfer (LET) to the medium. This depth is reasonably well defined and depends on the initial ion kinetic energy. Since the ions are rapidly stopped in this energy range, penetration beyond the Bragg peak is weak and it is thus possible to 'scan' the Bragg peak through a malignant tumour without excessive damage of the surrounding tissue by mere variation of the ion kinetic energy (i.e. the penetration depth). Severe biological damage is almost only possible, when the track of a primary quantum of ionizing radiation crosses the nucleus of a cell. Particularly the induction of double strand breaks of DNA or clustered DNA lesions is potentially lethal or mutagenic. A primary particle interacting with individual molecules within this environment leads to molecular excitation, ionization and fragmentation. In the process, the primary particle looses energy and slow secondary electrons and ions are formed, which might induce further damage. For a deep understanding of biological radiation damage on the level of individual molecules it is thus important to quantify excitation, ionization and

  6. Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study

    Science.gov (United States)

    Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2012-01-01

    Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220

  7. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  8. An alternative origin for extraterrestrial biomolecules from the hot and ionized photosphere of the protosolar nebula.

    Science.gov (United States)

    Bekaert, D. V.; Derenne, S.; Tissandier, L.; Marrocchi, Y.; Anquetil, C.; Marty, B.

    2017-12-01

    Organic matter (OM) synthesized from plasma experiments (so-called Nebulotron) can provide an insight into the processes of organosynthesis within the ionized gas phase of the protosolar nebula (PSN). Organic materials recovered from Nebulotron experiments have a record of success in reproducing key features of chondritic insoluble organic matter (IOM), including the aromatic/aliphatic and soluble/insoluble ratios [1], the occurrence of D/H hot and cold spots [2], spectral features as well as elementary and isotopic patterns observed in trapped noble gases [3]. However, up until now little attention has been paid to the soluble fraction of the recovered OM (SOM). In this study, a high-vacuum plasma setting was designed to produce organic condensates from a CO-N2-H2 gas mixture reminiscent of the PSN. The chemical diversity of the synthetized SOM has been investigated by gas chromatography - mass spectrometry. Our results show that a large range of biomolecules detected in meteorites and comets could have been directly synthetized from the gas phase of the PSN under high ionization rates and temperatures > 800 K. Among other molecules, urea, formamide, glycerol, hydantoin, carboxylic acids, as well as amino acid and nucleobase derivatives are reported. While photochemical processing of interstellar icy grains or asteroidal aqueous alteration are often advocated for the origin of biomolecules in extraterrestrial samples, our results suggest that biomolecule production was also effective in the hot and ionized photosphere of the PSN. Interestingly, solid-state 13C Nuclear Magnetic Resonance spectra of the Nebulotron IOM, indicates that they are very low in aromatics relative to extraterrestrial samples. Given that aromatic units in meteoritic IOM likely result from the cyclization/aromatization of aliphatic chains in the gas [1], Nebulotron-like aliphatic materials could represent the initial precursors of meteoritic OM [4]. These materials would be widespread in the

  9. Cold fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1991-01-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of ∼1 kW/cm 3 Pd, as compared to 50 W/cm 3 of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given

  10. Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing.

    Science.gov (United States)

    Foncy, Julie; Estève, Aurore; Degache, Amélie; Colin, Camille; Cau, Jean Christophe; Malaquin, Laurent; Vieu, Christophe; Trévisiol, Emmanuelle

    2018-01-01

    Biomolecule microarrays are generally produced by conventional microarrayer, i.e., by contact or inkjet printing. Microcontact printing represents an alternative way of deposition of biomolecules on solid supports but even if various biomolecules have been successfully microcontact printed, the production of biomolecule microarrays in routine by microcontact printing remains a challenging task and needs an effective, fast, robust, and low-cost automation process. Here, we describe the production of biomolecule microarrays composed of extracellular matrix protein for the fabrication of cell microarrays by using an automated microcontact printing device. Large scale cell microarrays can be reproducibly obtained by this method.

  11. The Effect of Cold Rolling on the Hydrogen Susceptibility of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    E.P. Georgiou

    2017-10-01

    Full Text Available This work focuses in investigating the effect of cold deformation on the cathodic hydrogen charging of 5083 aluminum alloy. The aluminium alloy was submitted to a cold rolling process, until the average thickness of the specimens was reduced by 7% and 15%, respectively. A study of the structure, microhardness, and tensile properties of the hydrogen charged aluminium specimens, with and without cold rolling, indicated that the cold deformation process led to an increase of hydrogen susceptibility of this aluminum alloy.

  12. Cold fusion method

    International Nuclear Information System (INIS)

    Takahashi, Akihito.

    1994-01-01

    A Pt wire electrode is supported from the periphery relative to a Pd electrode by way of a polyethylene or teflon plate in heavy water, and electrolysis is applied while varying conditions successively in a sawteeth fashion at an initial stage, and after elapse of about one week, a pulse current is supplied to promote nuclear reaction and to generate excess heat greater than a charged electric power. That is, small amount of neutron emission is increased and electrolytic cell temperature is elevated by varying the electrolysis conditions successively in the sawteeth fashion at the initial stage. In addition, when the pulse electric current is supplied after elapse of about one week, the electrolytic cell temperature is abnormally elevated, so that the promotion of nuclear reaction phenomenon and the generation of excess heat greater than the charged electric power are recognized. Then, a way to control power level and time fluctuation of cold fusion is attained, thereby contributing to development of a further method for generating excess heat as desired. In addition, it contributes to a development for a method of obtaining such an excess heat that can be taken as a new energy. (N.H.)

  13. Improved Interaction Potentials for Charged Residues in Proteins

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self-consistent, exper......Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self......, TIP4P or TIP3P; i.e., each water model requires specific water-charged molecule interaction potentials. New models (models 1 and 3) are thus described for both water models. Uncertainties in relative free energies of charged residues are ~2 kcal/mol with the new parameters, due to variations in system...

  14. Dielectric Spectroscopy of Biomolecules up to 110 GHz

    Science.gov (United States)

    Laux, Eva-Maria; Ermilova, Elena; Pannwitz, Daniel; Gibbons, Jessica; Hölzel, Ralph; Bier, Frank F.

    2018-03-01

    Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function.

  15. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Directory of Open Access Journals (Sweden)

    Willy Zorzi

    2012-08-01

    Full Text Available This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions.

  16. Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules

    Science.gov (United States)

    Poncin-Epaillard, Fabienne; Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Coudreuse, Arnaud; Legeay, Gilbert; El Moualij, Benaïssa; Zorzi, Willy

    2012-01-01

    This review describes different strategies of surface elaboration for a better control of biomolecule adsorption. After a brief description of the fundamental interactions between surfaces and biomolecules, various routes of surface elaboration are presented dealing with the attachment of functional groups mostly thanks to plasma techniques, with the grafting to and from methods, and with the adsorption of surfactants. The grafting of stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the protein adsorption phenomena showing how their interactions with solid surfaces are complex. The adsorption mechanism is proved to be dependent on the solid surface physicochemical properties as well as on the surface and conformation properties of the proteins. Different behaviors are also reported for complex multiple protein solutions. PMID:24955631

  17. Electronic sputtering of biomolecules and its application in mass spectrometry

    International Nuclear Information System (INIS)

    Haakansson, P.; Sundqvist, B.U.R.

    1989-01-01

    In 1974 Macfarlane discovered that fast heavy ions from a 252-Cf source can desorb and ionize molecules from a solid surface. The mass of the molecules was determined by time-of-flight technique. It has been shown that the desorption mechanism is associated with the electron part of the stopping power of the primary ion and the name 'electron sputtering' has been adopted for the phenomenon to distinguish it from the well-known sputtering process with ions of KeV energy. A review of electronic sputtering of biomolecules will be given as well as recent measurements on Langmuir-Blodgett films. One important application of electronic sputtering is in the field of mass spectrometry. With this technique large and nonvolatile molecules can be studied. Particularly adsorption of biomolecules to a nitrocellulose backing has proven to be very useful. Examples will be given of mass spectra from peptides with a molecular weight above 20,000 u. (author)

  18. Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules

    Science.gov (United States)

    2015-01-01

    The development and study of a benchtop, high-throughput, and inexpensive fabrication strategy to obtain hierarchical patterns of biomolecules with sub-50 nm resolution is presented. A diblock copolymer of polystyrene-b-poly(ethylene oxide), PS-b-PEO, is synthesized with biotin capping the PEO block and 4-bromostyrene copolymerized within the polystyrene block at 5 wt %. These two handles allow thin films of the block copolymer to be postfunctionalized with biotinylated biomolecules of interest and to obtain micropatterns of nanoscale-ordered films via photolithography. The design of this single polymer further allows access to two distinct superficial nanopatterns (lines and dots), where the PEO cylinders are oriented parallel or perpendicular to the substrate. Moreover, we present a strategy to obtain hierarchical mixed morphologies: a thin-film coating of cylinders both parallel and perpendicular to the substrate can be obtained by tuning the solvent annealing and irradiation conditions. PMID:25363506

  19. Universal scaling for biomolecule desorption induced by swift heavy ions

    International Nuclear Information System (INIS)

    Szenes, G.

    2005-01-01

    A thermal activation mechanism is proposed for the desorption of biomolecules. Good agreement is found with the experiments in a broad range of the electronic stopping power. The activation energies of desorption U are 0.33, 1.57 and 5.35 eV for positive, negative and neutral leucine molecules, respectively, and 2.05 eV for positive ergosterol molecules. The desorption of valine clusters is analyzed. The magnitude of the specific heat shows that the internal degrees of freedom are not excited up to the moment of desorption. The effect of irradiation temperature and of ion velocity on the desorption yield is discussed on the basis of the author's model. The scaling function derived in the model for the desorption of biomolecules is applied also to the sputtering of SiO 2 and U = 0.42 eV is obtained

  20. From clusters to biomolecules: electric dipole, structure and dynamics

    International Nuclear Information System (INIS)

    Broyer, M; Antoine, R; Compagnon, I; Rayane, D; Dugourd, P

    2007-01-01

    In this paper, it is demonstrated that the electric dipole of complex molecules or clusters can be measured by beam deviation in an inhomogeneous electric field. This measurement, associated to appropriate theoretical calculations and simulations, allows us to determine the geometry of these systems and their dynamical behaviour as a function of temperature. Selected examples for mixed clusters (metal-fullerene, metal-benzene, salt) and biomolecules (hydrogen bound amino acids and glycine based polypeptides) are discussed

  1. Thermo-responsive hydrogels for intravitreal injection and biomolecule release

    Science.gov (United States)

    Drapala, Pawel

    In this dissertation, we develop an injectable polymer system to enable localized and prolonged release of therapeutic biomolecules for improved treatment of Age-Related Macular Degeneration (AMD). Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and cross-linked with poly(ethylene glycol) (PEG) poly(L-Lactic acid) (PLLA) copolymer were synthesized via free-radical polymerization. These materials were investigated for (a) phase change behavior, (b) in-vitro degradation, (c) capacity for controlled drug delivery, and (d) biocompatibility. The volume-phase transition temperature (VPTT) of the PNIPAAm- co-PEG-b-PLLA hydrogels was adjusted using hydrophilic and hydrophobic moieties so that it is ca. 33°C. These hydrogels did not initially show evidence of degradation at 37°C due to physical cross-links of collapsed PNIPAAm. Only after addition of glutathione chain transfer agents (CTA)s to the precursor did the collapsed hydrogels become fully soluble at 37°C. CTAs significantly affected the release kinetics of biomolecules; addition of 1.0 mg/mL glutathione to 3 mM cross-linker accelerated hydrogel degradation, resulting in 100% release in less than 2 days. This work also explored the effect of PEGylation in order to tether biomolecules to the polymer matrix. It was demonstrated that non-site-specific PEGylation can postpone the burst release of solutes (up to 10 days in hydrogels with 0.5 mg/mL glutathione). Cell viability assays showed that at least two 20-minute buffer extraction steps were needed to remove cytotoxic elements from the hydrogels. Clinically-used therapeutic biomolecules LucentisRTM and AvastinRTM were demonstrated to be both stable and bioactive after release form PNIPAAm-co-PEG-b-PLLA hydrogels. The thermo-responsive hydrogels presented here offer a promising platform for the localized delivery of proteins such as recombinant antibodies.

  2. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  3. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Renewable-Biomolecule-Based Full Lithium-Ion Batteries.

    Science.gov (United States)

    Hu, Pengfei; Wang, Hua; Yang, Yun; Yang, Jie; Lin, Jie; Guo, Lin

    2016-05-01

    A renewable-biomolecule-based full lithium-ion battery is successfully fabricated for the first time. Naturally derivable emodin and humic acid based electrodes are used as cathode and anode, respectively. The as-assembled batteries exhibit superb specific capacity and substantial operating voltage capable of powering a wearable electronic watch, suggesting the great potential for practical applications with the significant merits of sustainability and biocompatibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Development of radioactively labelled cancer seeking biomolecules for targeted radiotherapy

    International Nuclear Information System (INIS)

    Balter, H.; Verdera, S.

    2000-01-01

    The main objective of this project is the labelling and quality control of biomolecules with radionuclides beta emitters with high purity and stability. Techniques and methodology for labelling with 188 Re, 153 Sm, and 125 I as well as quality controls were done according the recommendations of the first research coordination meeting of this CRP. Also some useful chelators reported in the literature were synthesized in our laboratory

  6. Low energy electron-driven damage in biomolecules

    International Nuclear Information System (INIS)

    Sanche, L.

    2005-01-01

    The damage induced by the impact of low energy electrons (LEE) on biomolecules is reviewed from a radiobiological perspective with emphasis on transient anion formation. The major type of experiments, which measure the yields of fragments produced as a function of incident electron energy (0.1 - 30 eV), are briefly described. Theoretical advances are also summarized. Several examples are presented from the results of recent experiments performed in the gas-phase and on bio-molecular films bombarded with LEE under ultra-high vacuum conditions. These include the results obtained from DNA films and those obtained from the fragmentation of elementary components of the DNA molecule (i.e., the bases, sugar and phosphate group analogs and oligonucleotides) and of proteins (e.g. amino acids). By comparing the results from different experiments and theory, it is possible to determine fundamental mechanisms that are involved in the dissociation of the biomolecules and the production of single- and double-strand breaks in DNA. Below 15 eV, electron resonances (i.e., the formation of transient anions) play a dominant role in the fragmentation of all biomolecules investigated. These transient anions fragment molecules by decaying into dissociative electronically excited states or by dissociating into a stable anion and a neutral radical. These fragments can initiate further reactions within large biomolecules or with nearby molecules and thus cause more complex chemical damage. Dissociation of a transient anion within DNA may occur by direct electron attachment at the location of dissociation or by electron transfer from another subunit. Damage to DNA is dependent on the molecular environment, topology, type of counter ion, sequence context and chemical modifications. (author)

  7. Models and algorithms for biomolecules and molecular networks

    CERN Document Server

    DasGupta, Bhaskar

    2016-01-01

    By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises

  8. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  9. Immobilization of biomolecules to plasma polymerized pentafluorophenyl methacrylate.

    Science.gov (United States)

    Duque, Luis; Menges, Bernhard; Borros, Salvador; Förch, Renate

    2010-10-11

    Thin films of plasma polymerized pentafluorophenyl methacrylate (pp-PFM) offer highly reactive ester groups throughout the structure of the film that allow for subsequent reactions with different aminated reagents and biological molecules. The present paper follows on from previous work on the plasma deposition of pentafluorophenyl methacrylate (PFM) for optimum functional group retention (Francesch, L.; Borros, S.; Knoll, W.; Foerch, R. Langmuir 2007, 23, 3927) and reactivity in aqueous solution (Duque, L.; Queralto, N.; Francesch, L.; Bumbu, G. G.; Borros, S.; Berger, R.; Förch, R. Plasma Process. Polym. 2010, accepted for publication) to investigate the binding of a biologically active peptide known to induce cellular adhesion (IKVAV) and of biochemically active proteins such as BSA and fibrinogen. Analyses of the films and of the immobilization of the biomolecules were carried out using infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The attachment of the biomolecules on pulsed plasma polymerized pentafluorophenyl methacrylate was monitored using surface plasmon resonance spectroscopy (SPR). SPR analysis confirmed the presence of immobilized biomolecules on the plasma polymer and was used to determine the mass coverage of the peptide and proteins adsorbed onto the films. The combined analysis of the surfaces suggests the covalent binding of the peptide and proteins to the surface of the pp-PFM.

  10. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption.

    Science.gov (United States)

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-11-29

    Titanium dioxide (TiO₂) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO₂ NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO₂ NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO₂ (f-TiO₂) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO₂ (g-TiO₂) NPs. The effect of the interactions between the TiO₂ NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO₂ NPs compared to g-TiO₂ NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO₂ NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry.

  11. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Ruslinda, A. Rahim, E-mail: ruslindarahim@gmail.com [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jln Kgr-Alor Setar, Seriab, 01000 Kangar, Perlis (Malaysia); Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Ishiyama, Y. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Penmatsa, V. [Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Ibori, S.; Kawarada, H. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan)

    2015-02-15

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  12. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    International Nuclear Information System (INIS)

    Ruslinda, A. Rahim; Ishiyama, Y.; Penmatsa, V.; Ibori, S.; Kawarada, H.

    2015-01-01

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m

  13. Applications of polymers for biomolecule immobilization in electrochemical biosensors

    International Nuclear Information System (INIS)

    Teles, F.R.R.; Fonseca, L.P.

    2008-01-01

    Polymers are becoming inseparable from biomolecule immobilization strategies and biosensor platforms. Their original role as electrical insulators has been progressively substituted by their electrical conductive abilities, which opens a new and broad scope of applications. In addition, recent advances in diagnostic chips and microfluidic systems, together with the requirements of mass-production technologies, have raised the need to replace glass by polymeric materials, which are more suitable for production through simple manufacturing processes. Conducting polymers (CPs), in particular, are especially amenable for electrochemical biosensor development for providing biomolecule immobilization and for rapid electron transfer. It is expected that the combination of known polymer substrates, but also new transducing and biocompatible interfaces, with nanobiotechnological structures, like nanoparticles, carbon nanotubes (CNTs) and nanoengineered 'smart' polymers, may generate composites with new and interesting properties, providing higher sensitivity and stability of the immobilized molecules, thus constituting the basis for new and improved analytical devices for biomedical and other applications. This review covers the state-of-the-art and main novelties about the use of polymers for immobilization of biomolecules in electrochemical biosensor platforms

  14. Effect of water and ionic liquids on biomolecules.

    Science.gov (United States)

    Saha, Debasis; Mukherjee, Arnab

    2018-02-08

    The remarkable progress in the field of ionic liquids (ILs) in the last two decades has involved investigations on different aspects of ILs in various conditions. The nontoxic and biocompatible nature of ILs makes them a suitable substance for the storage and application of biomolecules. In this regard, the aqueous IL solutions have attracted a large number of studies to comprehend the role of water in modulating various properties of biomolecules. Here, we review some of the recent studies on aqueous ILs that concern the role of water in altering the behavior of ILs in general and in case of biomolecules solvated in ILs. The different structural and dynamic effects caused by water have been highlighted. We discuss the different modes of IL interaction that are responsible for stabilization and destabilization of proteins and enzymes followed by examples of water effect on this. The role of water in the case of nucleic acid storage in ILs, an area which has mostly been underrated, also has been emphasized. Our discussions highlight the fact that the effects of water on IL behavior are not general and are highly dependent on the nature of the IL under consideration. Overall, we aim to draw attention to the significance of water dynamics in the aqueous IL solutions, a better understanding of which can help in developing superior storage materials for application purposes.

  15. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.

    Science.gov (United States)

    Oliveira, Weslley F; Arruda, Isabel R S; Silva, Germana M M; Machado, Giovanna; Coelho, Luana C B B; Correia, Maria T S

    2017-12-01

    Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

    Science.gov (United States)

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2018-02-21

    The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.

  17. Surface plasmon resonance sensing: from purified biomolecules to intact cells.

    Science.gov (United States)

    Su, Yu-Wen; Wang, Wei

    2018-04-12

    Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.

  18. Cytoplasmic electric fields and electroosmosis: possible solution for the paradoxes of the intracellular transport of biomolecules.

    Science.gov (United States)

    Andreev, Victor P

    2013-01-01

    The objective of the paper is to show that electroosmotic flow might play an important role in the intracellular transport of biomolecules. The paper presents two mathematical models describing the role of electroosmosis in the transport of the negatively charged messenger proteins to the negatively charged nucleus and in the recovery of the fluorescence after photobleaching. The parameters of the models were derived from the extensive review of the literature data. Computer simulations were performed within the COMSOL 4.2a software environment. The first model demonstrated that the presence of electroosmosis might intensify the flux of messenger proteins to the nucleus and allow the efficient transport of the negatively charged phosphorylated messenger proteins against the electrostatic repulsion of the negatively charged nucleus. The second model revealed that the presence of the electroosmotic flow made the time of fluorescence recovery dependent on the position of the bleaching spot relative to cellular membrane. The magnitude of the electroosmotic flow effect was shown to be quite substantial, i.e. increasing the flux of the messengers onto the nucleus up to 4-fold relative to pure diffusion and resulting in the up to 3-fold change in the values of fluorescence recovery time, and therefore the apparent diffusion coefficient determined from the fluorescence recovery after photobleaching experiments. Based on the results of the modeling and on the universal nature of the electroosmotic flow, the potential wider implications of electroosmotic flow in the intracellular and extracellular biological processes are discussed. Both models are available for download at ModelDB.

  19. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  20. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  1. The Importance of Phytoplankton Biomolecule Availability for Secondary Production

    Directory of Open Access Journals (Sweden)

    Elina T. Peltomaa

    2017-10-01

    Full Text Available The growth and reproduction of animals is affected by their access to resources. In aquatic ecosystems, the availability of essential biomolecules for filter-feeding zooplankton depends greatly on phytoplankton. Here, we analyzed the biochemical composition, i.e., the fatty acid, sterol and amino acid profiles and concentrations as well as protein, carbon, nitrogen, and phosphorus content of 17 phytoplankton monocultures representing the seven most abundant phytoplankton classes in boreal and sub-arctic lakes. To examine how the differences in the biochemical composition between phytoplankton classes affect their nutritional quality for consumers, we assessed the performance of Daphnia, on these diets. Furthermore, we defined the most important biomolecules regulating the somatic growth and reproduction of Daphnia, expecting that higher concentrations of certain biomolecules are needed for reproduction than for growth. Finally, we combined these results with phytoplankton field data from over 900 boreal and sub-arctic lakes in order to estimate whether the somatic growth of Daphnia is sterol-limited when the natural phytoplankton communities are cyanobacteria-dominated. Our analysis shows that Daphnia grows best with phytoplankton rich in sterols, ω-3 fatty acids, protein, and amino acids. Their reproduction follows food sterol and ω-3 concentration as well as C:P-ratio being two times higher in Daphnia feeding on cryptophytes than any other diet. Interestingly, we found that a high dietary ω-6 fatty acid concentration decreases both somatic growth and reproduction of Daphnia. When combined with phytoplankton community composition field data, our results indicate that zooplankton is constantly limited by sterols in lakes dominated by cyanobacteria (≥40% of total phytoplankton biomass, and that the absence of cryptophytes can severely hinder zooplankton production in nature.

  2. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  3. Development of radioactively labelled cancer seeking biomolecules for targeted radiotherapy

    International Nuclear Information System (INIS)

    Varvarigou, A.D.; Archimandritis, S.C.

    2000-01-01

    Within the framework of the above project we are studying the labelling of biomolecules, peptides and antibodies, with radionuclides emitting β - and γ radiation. More specifically, for the time being, we have investigated the labelling of peptides with Re-188 and of antibodies with Sm-153 and Re-188. The radiolabelled derivatives are further evaluated in vivo for possible application in Oncology. For these radiobiological studies we are trying to apply ectopic and orthotopic tumour animal models and to develop, in collaboration with other national and foreign institutes, proper imaging devices for small animal imaging

  4. Structure analysis of biomolecules using synchrotron radiation circular dichroism spectrophotometer

    International Nuclear Information System (INIS)

    Gekko, Kunihiko; Matsuo, Koichi

    2004-01-01

    We constructed the vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer, which is capable of measuring circular dichroism spectra to 140 nm for aqueous solutions at temperature from -30 to 70degC, using a small-scale SR source at Hiroshima Synchrotron Radiation Center (HiSOR). This spectrophotometer was used for structural analyses of amino acids, saccharides, and proteins in water. The obtained results demonstrate that a synchrotron radiation VUVCD spectroscopy provides more detailed and new information on the structures of biomolecules, based on the high energy transitions of chromophores such as hydroxyl, acetal, and peptide groups. (author)

  5. Linkage of biomolecules to solid phases for immunoassay

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    Topics covered by this lecture include a brief review of the principal methods of linkage of biomolecules to solid phase matrices. Copies of the key self explanatory slides are presented as figures together with reprints of two publications by the author dealing with a preferred chemistry for the covalent linkage of antibodies to hydroxyl and amino functional groups and the effects of changes in solid phase matrix and antibody coupling chemistry on the performance of a typical excess reagent immunoassay for thyroid stimulating hormone

  6. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2018-01-04

    Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.

  7. Low-energy electron scattering from molecules, biomolecules and surfaces

    CERN Document Server

    Carsky, Petr

    2011-01-01

    Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology.Low-Energy Electron Scattering from Molecules, Biomolecule

  8. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  9. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.

  10. Colds and the Flu

    Science.gov (United States)

    ... disease (COPD). What medicines can I give my child? There is no cure for the cold or the flu, and antibiotics do not work against the viruses that cause colds and the flu. Pain relievers such as ...

  11. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  12. Cold medicines and children

    Science.gov (United States)

    ... ingredient. Avoid giving more than one OTC cold medicine to your child. It may cause an overdose with severe side ... the dosage instructions strictly while giving an OTC medicine to your child. When giving OTC cold medicines to your child: ...

  13. Raman spectroscopy detection of biomolecules in biocrusts from differing environmental conditions

    Science.gov (United States)

    Miralles, I.; Jorge-Villar, S. E.; van Wesemael, B.; Lázaro, R.

    2017-01-01

    Lichens and cyanobacteria colonize inhospitable places covering a wide climate range due to their different survival strategies, such as the synthesis of protective biomolecules. The effect of ecological factors on the synthesis of biomolecules has not been widely analysed. This study aimed to assess the effects of four factors (species, microclimate, seasonality and hydration state) and their interactions on the biomolecule frequency detected by Raman Spectroscopy. We included cyanobacterial biocrusts, and the lichens Diploschistes diacapsis, Squamarina lentigera, and Lepraria isidiata; two contrasted microclimates (typical and marginal), two contrasted seasons (hot and dry vs cool and wet) and two hydration states (dry and wet). ;Species; was the most influential factor in the identity and frequency of the main biomolecules. Microclimatic differences in the range of the local specific habitats only influenced the biomolecules in cyanobacteria. There was a quadruple interaction among the factors, the effects being different mainly depending on the species. At D. diacapsis, the production of their main biomolecules depended on microclimate, although it also depended on seasonality. Nevertheless, in L. isidiata and S. lentigera microclimatic differences did not significantly affect the production of biomolecules. In the lichen species, the microhabitats exposed to relatively larger incident radiation did not show significantly larger relative frequency of photoprotective biomolecules. No clear connection between higher production of oxalates and drier microhabitats was found, suggesting that the synthesis of oxalates is not related to water reserve strategy. The pros and cons of monitor biomolecules in biocrust by Raman spectrometry were also discussed.

  14. Nanoscale charge transfer in redox proteins and DNA: Towards biomolecular electronics

    International Nuclear Information System (INIS)

    Artés, Juan Manuel; López-Martínez, Montserrat; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2014-01-01

    Understanding how charges move through and between biomolecules is a fundamental question that constitutes the basis for many biological processes. On the other hand, it has potential applications in the design of sensors based on biomolecules and single molecule devices. In this review we introduce the study of the electron transfer (ET) process in biomolecules, providing an overview of the fundamental theory behind it and the different experimental approaches. The ET in proteins is introduced by reviewing a complete electronic characterization of a redox protein (azurin) using electrochemical scanning tunnelling microscopy (ECSTM). The ET process in DNA is overviewed and results from different experimental approaches are discussed. Finally, future directions in the study of the ET process in biomolecules are introduced as well as examples of possible technological applications

  15. Active and Dynamic Nanomaterials Based on Active Biomolecules

    Science.gov (United States)

    Koch, Steven J.; Rivera, Susan B.; Boal, Andrew K.; Edwards, J. Matthew; Bauer, Joseph M.; Manginell, Ronald P.; Liu, Jun; Bunker, Bruce C.; Bachand, George D.

    2004-03-01

    Living organisms have evolved dynamic and adaptable materials that fundamentally differ from synthetic materials. These biomaterials use chemical energy to drive non-equilibrium assembly processes, and to reconfigure in response to external stimuli or life cycle changes. Two striking examples are the diatom's active assembly of silica into a patterned cytoskeleton, and the chameleon's active transport of pigment particles to rapidly change skin color. Advances in molecular biology and nanoscale materials synthesis now present the opportunity for integrating biomolecules with synthetic components to produce new types of materials with novel assembly and adaptation capabilities. Our group has begun utilizing kinesin motor proteins and microtubules (MTs) to explore the construction of biomimetic materials. Initial work has focused on characterizing and engineering the properties of the biomolecules for robust performance in artificial systems. We have characterized the biochemical and biophysical properties of a kinesin motor protein from a thermostable fungus, and have evaluated strategies for stabilizing and functionalizing the MTs. We also have developed strategies for directed transport of MT shuttles, and for controlling the loading and unloading of nanoscale cargo.

  16. Biosurfactants: Multifunctional Biomolecules of the 21st Century.

    Science.gov (United States)

    Santos, Danyelle Khadydja F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2016-03-18

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

  17. Polymeric Nanomaterials as Nanomembrane Entities for Biomolecule and Drug Delivery.

    Science.gov (United States)

    Albisa, Airama; Espanol, Laura; Prieto, Martin; Sebastian, Victor

    2017-01-01

    Bio-nanomaterials assembled into nanomembrane entities are actively studied to circumvent the uncontrollable list of shortcomings of conventional delivery systems: low water solubility, unfavorable stability, short circulation time in plasma, rapid clearance from the human body, poor bioavailability, non-specific toxicity against normal tissue and cells, low cellular uptake and susceptibility to enzyme degradation. Basically, these nanoentities enable to exploit the therapeutic value of many promising biomolecules and drugs (B&D), controlling the mass transport of B&D at a certain rate or even on demand if a stimulus is applied. The large surface-to-volume ratio of bio-nanomaterials as well as their tunable properties enable to increase the biocompatibility, bioavailability, solubility and permeability of many unique B&D which are otherwise difficult to deliver. This review paper will focus on the last advances of bio-nanomaterials applied as nanomembranes in biomolecule and drug delivery, as well as their more remarkable properties and applications in biomedicine. New advances have been drastically established in the production of smart nanomembranes that alter their own structure and function in response to the environment. These new insights have been used for the production of smart drug delivery nanomembranes. These nanomembranes entities have the potential to revolutionize the biomedicine but there are still some shortcomings to address in order to translate the laboratory production to the clinic. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. The nanoparticle biomolecule corona: lessons learned - challenge accepted?

    Science.gov (United States)

    Docter, D; Westmeier, D; Markiewicz, M; Stolte, S; Knauer, S K; Stauber, R H

    2015-10-07

    Besides the wide use of engineered nanomaterials (NMs) in technical products, their applications are not only increasing in biotechnology and biomedicine, but also in the environmental field. While the physico-chemical properties and behaviour of NMs can be characterized accurately under idealized conditions, this is no longer the case in complex physiological or natural environments. Herein, proteins and other biomolecules rapidly bind to NMs, forming a protein/biomolecule corona that critically affects the NMs' (patho)biological and technical identities. As the corona impacts the in vitro and/or in vivo NM applications in humans and ecosystems, a mechanistic understanding of its relevance and of the biophysical forces regulating corona formation is mandatory. Based on recent insights, we here critically review and present an updated concept of corona formation and evolution. We comment on how corona signatures may be linked to effects at the nano-bio interface in physiological and environmental systems. In order to comprehensively analyse corona profiles and to mechanistically understand the coronas' biological/ecological impact, we present a tiered multidisciplinary approach. To stimulate progress in this field, we introduce the potential impact of the corona for NM-microbiome-(human)host interactions and the novel concept of 'nanologicals', i.e., the nanomaterial-specific targeting of molecular machines. We conclude by discussing the relevant challenges that still need to be resolved in this field.

  19. Autonomous Magnetic Microrobots by Navigating Gates for Multiple Biomolecules Delivery.

    Science.gov (United States)

    Hu, Xinghao; Lim, Byeonghwa; Torati, Sri Ramulu; Ding, Junjia; Novosad, Valentine; Im, Mi-Young; Reddy, Venu; Kim, Kunwoo; Jung, Eunjoo; Shawl, Asif Iqbal; Kim, Eunjoo; Kim, CheolGi

    2018-05-08

    The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on-chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self-navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein-functionalized carriers in high resolution, as well as MCF-7 and THP-1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next-generation biochips. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biosurfactants: Multifunctional Biomolecules of the 21st Century

    Directory of Open Access Journals (Sweden)

    Danyelle Khadydja F. Santos

    2016-03-01

    Full Text Available In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

  1. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.

    Science.gov (United States)

    Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek

    2018-07-15

    A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  3. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    Science.gov (United States)

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  4. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.

    Science.gov (United States)

    Patil, Avinash J; Li, Mei; Mann, Stephen

    2013-08-21

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  5. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    Science.gov (United States)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  6. Electromagnetic study of surface enhanced Raman scattering of plasmonic-biomolecule: An interaction between nanodimer and single biomolecule

    Science.gov (United States)

    Pandey, Gyanendra Krishna; Pathak, Nilesh Kumar; Uma, R.; Sharma, R. P.

    2017-04-01

    In this article we have investigated the electromagnetic surface enhanced Raman scattering (SERS) of single biomolecule adsorbed at the surface of spherical nanodimer. The SERS mechanism has been studied using first principle approach for spherical nanodimer geometry. The coupling of plasmonic concept to biomolecule results the broadband tunable enhancement in Raman gain factor. In this observation the enhancement factor was observed around ≈ 1015. The plasmonic properties of metal nanodimer are analysed in terms of surface plasmon resonances, extinction efficiency and polarisability that have been derived under quasistatic approximation. In this paper, various facets like interdipole separation, molecule distance and size of the plasmonic nanogeometry are taken into account to analyse the Raman gain factor. We also observe that the frequency range expands sufficiently which increases the broad detectability range of the molecule which generates signal even in the outside of Raman range i.e. in between IR to UV region. Lastly, the extinction spectra and electric field profile have been evaluated at resonance wavelength 364 nm. The comparison between electrostatic approach and numerical approach (using DDA) has also been done in terms of extinction spectra.

  7. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  8. Biomolecule-nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry.

    Science.gov (United States)

    Huang, Rixiang; Lau, Boris L T

    2016-05-01

    Nanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction. This review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed. ITC reveals the driving forces behind biomolecule-NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule-NP interactions. The thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule-NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stereoselective assembly of amino acid-based metal-biomolecule nanofibers.

    Science.gov (United States)

    Wu, Hong; Tian, Chunyong; Zhang, Yufei; Yang, Chen; Zhang, Songping; Jiang, Zhongyi

    2015-04-14

    A series of amino acid-based metal-biomolecule nanofibers are fabricated through a coordination-directed assembly process. The chirality and carbon chain length of the amino acids exert a pronounced influence on the assembly process. This study may be extended to design diverse kinds of 1-D metal-biomolecule frameworks (MBioFs).

  10. Soft x-ray circular dichroism of biomolecules

    International Nuclear Information System (INIS)

    Nakagawa, Kazumichi; Tanaka, Makoto; Agui, Akane

    2005-01-01

    We succeeded to observe natural circular dichroism NCD for biomolecules in soft X-ray region for the first time. Evaporated films of amino acids, phenylalanine (phe) and serine (ser) were prepared in vacuum with the thickness of about 300 nm. Measurement was carried out at the soft X-ray undulator beamline BL23SU of the Spring-8, where left- and right-circularly polarized light (LCPL and RCPL) was available from an APPLE-2 undulator. Difference spectra DA(hν) was plotted as a function of photon energy hν of soft X-ray to be the difference between absorption coefficient A L for LCPL and absorption coefficient A R for RCPL, namely, DA(hν) ≡ A L (hν) - A R (hν). Values of A L and A R were determined by means of the photoelectric drain current measurement. In the DA(hν) spectra for L-phe films, negative peak was observed at 407 eV. On the contrary, for D-phe films, positive peak was observed at 407 eV with the same magnitude but opposite sign. Moreover, no signal was observed for racemic phenylalanine (DL-phe). In the wavelength region of visible to ultraviolet, there is well-known general law in which NCD signals for D- and L-enantiomers are the same magnitude but opposite sign and racemic compound does not show NCD spectra. Characteristic features in DA(hν) spectra of the L-phe, D-phe and DL-phe were of good agreement with this well-known general law. Based on this good agreement, we concluded that peaks at 407 eV in the DA(hν) spectra are true NCD peaks. For ser films, we assigned peaks at 540 eV and 548 eV to be NCD peaks in the same manner. We hope that our first observation of NCD for biomolecules at soft X-ray region will open new science and technologies such as basic science including elucidation of fundamental mechanism of NCD and application to manipulate biomolecules using circularly polarized soft X-ray beams. (author)

  11. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  12. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  13. Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration.

    Science.gov (United States)

    Song, Jiankang; Leeuwenburgh, Sander Cg

    2014-08-01

    Local delivery of therapeutic biomolecules to stimulate bone regeneration has matured considerably during the past decades, but control over the release of these biomolecules still remains a major challenge. To this end, suitable carriers that allow for tunable spatial and temporal delivery of biomolecules need to be developed. Gelatin is one of the most widely used natural polymers for the controlled and sustained delivery of biomolecules because of its biodegradability, biocompatibility, biosafety and cost-effectiveness. The current study reviews the applications of gelatin as carriers in form of bulk hydrogels, microspheres, nanospheres, colloidal gels and composites for the programmed delivery of commonly used biomolecules for applications in bone regeneration with a specific focus on the relationship between carrier properties and delivery characteristics.

  14. Determination of the three-dimensional structure for weakly aligned biomolecules by NMR spectroscopy

    International Nuclear Information System (INIS)

    Shahkhatuni, Astghik A; Shahkhatuni, Aleksan G

    2002-01-01

    The key achievements and the potential of NMR spectroscopy for weakly aligned biomolecules are considered. Due to weak alignment, it becomes possible to determine a number of NMR parameters dependent on the orientation of biomolecules, which are averaged to zero in usual isotropic media. The addition of new orientational constraints to standard procedures of 3D structure determination markedly increases the achievable accuracy. The possibility of structure determination for biomolecules using only orientation-dependent parameters without invoking other NMR data is discussed. The methods of orientation, experimental techniques, and calculation methods are systematised. The main results obtained and the prospects of using NMR spectroscopy of weakly aligned systems to study different classes of biomolecules and to solve various problems of molecular biology are analysed. Examples of biomolecules whose structures have been determined using orientation-dependent parameters are given. The bibliography includes 508 references.

  15. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  16. A printed electronic platform for the specific detection of biomolecules

    Science.gov (United States)

    Doumbia, A.; Webb, M.; Turner, M. L.; Behrendt, J. M.; Wilson, R.

    2017-08-01

    The rapid detection of disease specific biomarkers in a clinically relevant range using a low-cost sensor can facilitate the development of individual treatment plans for a given patient, known as precision, personalized or genomic medicine. In the recent decade Electrolyte-Gated Organic Field Effect Transistors (EGOFETs), a subtype of OFETs where the dielectric is replaced by an electrolyte, have attracted a great deal of attention for sensing applications. This is due to their capacity to operate at low voltage (market are not yet achieved. In this contribution, we describe the development of a stable and reproducible EGOFET sensor that is able to detect biomolecules selectively in real-time. Facile and scalable techniques are used to prepare arrays of these devices. The selectivity of individual EGOFETs is investigated by immobilization of specific ligands to the target molecule of interest on the gate electrode within a microfluidic flow cell.

  17. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  18. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  19. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.

    Science.gov (United States)

    Willner, Itamar; Baron, Ronan; Willner, Bilha

    2007-04-15

    The similar dimensions of biomolecules such as enzymes, antibodies or DNA, and metallic or semiconductor nanoparticles (NPs) enable the synthesis of biomolecule-NP hybrid systems where the unique electronic, photonic and catalytic properties of NPs are combined with the specific recognition and biocatalytic properties of biomolecules. The unique functions of biomolecule-NP hybrid systems are discussed with several examples: (i) the electrical contacting of redox enzymes with electrodes is the basis for the development of enzymatic electrodes for amperometric biosensors or biofuel cell elements. The reconstitution of the apo-glucose oxidase or apo-glucose dehydrogenase on flavin adenine dinucleotide (FAD)-functionalized Au NPs (1.4 nm) associated with electrodes, or on pyrroloquinoline quinone (PQQ)-functionalized Au NPs (1.4 nm) associated with electrodes, respectively, yields electrically contacted enzyme electrodes. The aligned, reconstituted enzymes on the electrode surfaces reveal effective electrical contacting, and the glucose oxidase and glucose dehydrogenase reveal turnover rates of 5000 and 11,800 s(-1), respectively. (ii) The photoexcitation of semiconductor nanoparticles yields fluorescence with a wavelength controlled by the size of the NPs. The fluorescence functions of semiconductor NPs are used to develop a fluorescence resonance energy transfer (FRET) assay for nucleic acids, and specifically, for analyzing telomerase activity in cancer cells. CdSe-ZnS NPs are functionalized by a primer recognized by telomerase, and this is elongated by telomerase extracted from HeLa cancer cells in the presence of dNTPs and Texas-red-functionalized dUTP. The dye integrated into the telomers allows the FRET process that is intensified as telomerization proceeds. Also, the photoexcited electron-hole pair generated in semiconductor NPs is used to generate photocurrents in a CdS-DNA hybrid system associated with an electrode. A redox-active intercalator, methylene blue

  20. Electrophoretic transport of biomolecules across liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Thomas; Hardt, Steffen [Center of Smart Interfaces, TU Darmstadt, Petersenstrasse 32, D-64287 Darmstadt (Germany); Muenchow, Goetz, E-mail: hardt@csi.tu-darmstadt.de [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz (Germany)

    2011-05-11

    The mass transfer resistance of a liquid-liquid interface in an aqueous two-phase system composed of poly(ethylene glycol) and dextran is investigated. Different types of proteins and DNA stained with fluorescent dyes serve as probes to study the transport processes close to the interface. A microfluidic device is employed to enable the electrophoretic transport of biomolecules from one phase to another. The results obtained for proteins can be explained solely via the different electrophoretic mobilities and different affinities of the molecules to the two phases, without any indications of a significant mass transfer resistance of the liquid-liquid interface. By contrast, DNA molecules adsorb to the interface and only desorb under an increased electric field strength. The desorption process carries the signature of a thermally activated escape from a metastable state, as reflected in the exponential decay of the fluorescence intensity at the interface as a function of time.

  1. Manipulation of Biomolecule-Modified Liquid-Metal Blobs.

    Science.gov (United States)

    Yu, Yue; Miyako, Eijiro

    2017-10-23

    Soft and deformable liquid metals (LMs) are building components in various systems related to uncertain and dynamic task environments. Herein we describe the development of a biomolecule-triggered external-manipulation method involving LM conjugates for the construction of future innovative soft robotics operating in physiological environments. Functional soft hybrids composed of a liquid-metal droplet, a thiolated ligand, and proteins were synthesized for the expression of diverse macroscopic commands, such as attachment to cells, binary fusion, and self-propelled movement through molecular recognition and enzymatic reactions. Our technology could be used to create new state-of-the-art soft robots for chemical and biomedical engineering applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modification of biomolecules and combined actions by radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, J. W.; Kim, J. H.; Choi, J. I.; Song, B. S.; Kim, J. K.; Park, J. H.; Lee, Y. J.; Ryu, S. H.; Sung, N. Y.; Cha, M. K.; Nam, J. Y.; Park, J. Y.; Cho, E. R.; Ryu, T. H.

    2011-12-01

    Advanced Radiation Technology Institute is a government-supported institute for radiation research and application. It has focused on development of fundamentals for radiation applications based on the existing radiation technology, and on enhancement of biological effectiveness of radiation through theoretical approach to the combined actions of radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through modification of biomolecules resulted in creation of de novo materials of scientific and industrial values. A theoretical model for combined action of radiation with another physico-chemical factor has been established. Conclusively the results of this study can provide scientific bases for maximizing the efficacy of ionizing radiation in relation to industrial applications

  3. Water Dynamics in the Hydration Shells of Biomolecules

    Science.gov (United States)

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  4. Interactions of model biomolecules. Benchmark CC calculations within MOLCAS

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Miroslav [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava, Slovakia and Department of Physical and Theoretical Chemistry, Faculty of Natural Scie (Slovakia); Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Hobza, Pavel [Institute of Organic Chemistry and Biochemistry and Center for Complex Molecular Systems and biomolecules, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2015-01-22

    We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.

  5. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  6. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  7. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  8. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  9. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  10. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  11. Studies of the charge instabilities in the complex nano-objects: clusters and bio-molecular systems

    International Nuclear Information System (INIS)

    Manil, B.

    2007-11-01

    For the last 6 years, my main research works focused on i) the Coulomb instabilities and the fragmentation processes of fullerenes and clusters of fullerenes ii) the stability and the reactivity of complex bio-molecular systems. Concerning the clusters of fullerenes, which are van der Waals type clusters, we have shown that the multiply charged species, obtained in collisions with slow highly charged ions, keep their structural properties but become very good electric conductor. In another hand, with the aim to understand the role of the biologic environment at the molecular scale in the irradiation damage of complex biomolecules, we have studied the charge stabilities of clusters of small biomolecules and the dissociation processes of larger nano-hydrated biomolecules. Theses studies have shown that first, specific molecular recognition mechanisms continue to exist in gas phase and secondly, a small and very simple biochemical environment is enough to change the dynamics of instabilities. (author)

  12. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  13. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Mitsunori, E-mail: honda.mitsunori@jaea.go.jp; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-04-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds.

  14. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    International Nuclear Information System (INIS)

    Honda, Mitsunori; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-01-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds

  15. Biomolecule-recognition gating membrane using biomolecular cross-linking and polymer phase transition.

    Science.gov (United States)

    Kuroki, Hidenori; Ito, Taichi; Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-15

    We present for the first time a biomolecule-recognition gating system that responds to small signals of biomolecules by the cooperation of biorecognition cross-linking and polymer phase transition in nanosized pores. The biomolecule-recognition gating membrane immobilizes the stimuli-responsive polymer, including the biomolecule-recognition receptor, onto the pore surface of a porous membrane. The pore state (open/closed) of this gating membrane depends on the formation of specific biorecognition cross-linking in the pores: a specific biomolecule having multibinding sites can be recognized by several receptors and acts as the cross-linker of the grafted polymer, whereas a nonspecific molecule cannot. The pore state can be distinguished by a volume phase transition of the grafted polymer. In the present study, the principle of the proposed system is demonstrated using poly(N-isopropylacrylamide) as the stimuli-responsive polymer and avidin-biotin as a multibindable biomolecule-specific receptor. As a result of the selective response to the specific biomolecule, a clear permeability change of an order of magnitude was achieved. The principle is versatile and can be applied to many combinations of multibindable analyte-specific receptors, including antibody-antigen and lectin-sugar analogues. The new gating system can find wide application in the bioanalytical field and aid the design of novel biodevices.

  16. When biomolecules meet graphene: from molecular level interactions to material design and applications.

    Science.gov (United States)

    Li, Dapeng; Zhang, Wensi; Yu, Xiaoqing; Wang, Zhenping; Su, Zhiqiang; Wei, Gang

    2016-12-01

    Graphene-based materials have attracted increasing attention due to their atomically-thick two-dimensional structures, high conductivity, excellent mechanical properties, and large specific surface areas. The combination of biomolecules with graphene-based materials offers a promising method to fabricate novel graphene-biomolecule hybrid nanomaterials with unique functions in biology, medicine, nanotechnology, and materials science. In this review, we focus on a summarization of the recent studies in functionalizing graphene-based materials using different biomolecules, such as DNA, peptides, proteins, enzymes, carbohydrates, and viruses. The different interactions between graphene and biomolecules at the molecular level are demonstrated and discussed in detail. In addition, the potential applications of the created graphene-biomolecule nanohybrids in drug delivery, cancer treatment, tissue engineering, biosensors, bioimaging, energy materials, and other nanotechnological applications are presented. This review will be helpful to know the modification of graphene with biomolecules, understand the interactions between graphene and biomolecules at the molecular level, and design functional graphene-based nanomaterials with unique properties for various applications.

  17. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    Science.gov (United States)

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. [Novel Hyphenated Techniques of Atomic Spectrometry for Metal Species Interaction with Biomolecules].

    Science.gov (United States)

    Li, Yan; Yan, Xiu-ping

    2015-09-01

    Trace metals may be adopted by biological systems to assist in the syntheses and metabolic functions of genes (DNA and RNA) and proteins in the environment. These metals may be beneficial or may pose a risk to humans and other life forms. Novel hybrid techniques are required for studies on the interaction between different metal species and biomolecules, which is significant for biology, biochemistry, nutrition, agriculture, medicine, pharmacy, and environmental science. In recent years, our group dwells on new hyphenated techniques based on capillary electrophoresis (CE), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma mass spectroscopy (ICP-MS), and their application for different metal species interaction with biomolecules such as DNA, HSA, and GSH. The CE-ETAAS assay and CE-ICP-MS assay allow sensitively probing the level of biomolecules such as DNA damage by different metal species and extracting the kinetic and thermodynamic information on the interactions of different metal species with biomolecules, provides direct evidences for the formation of different metal species--biomolecule adducts. In addition, the consequent structural information were extracted from circular dichroism (CD) and X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The present works represent the most complete and extensive study to date on the interactions between different metal species with biomolecules, and also provide new evidences for and insights into the interactions of different metal species with biomolecules for further understanding of the toxicological effects of metal species.

  19. Comparative study of anti-angiogenic activities of luteolin, lectin and lupeol biomolecules.

    Science.gov (United States)

    Ambasta, Rashmi K; Jha, Saurabh Kumar; Kumar, Dhiraj; Sharma, Renu; Jha, Niraj Kumar; Kumar, Pravir

    2015-09-18

    Angiogenesis is a hallmark feature in the initiation, progression and growth of tumour. There are various factors for promotion of angiogenesis on one hand and on the other hand, biomolecules have been reported to inhibit cancer through anti-angiogenesis mechanism. Biomolecules, for instance, luteolin, lectin and lupeol are known to suppress cancer. This study aims to compare and evaluate the biomolecule(s) like luteolin, lupeol and lectin on CAM assay and HT-29 cell culture to understand the efficacy of these drugs. The biomolecules have been administered on CAM assay, HT-29 cell culture, cell migration assay. Furthermore, bioinformatics analysis of the identified targets of these biomolecules have been performed. Luteolin has been found to be better in inhibiting angiogenesis on CAM assay in comparison to lupeol and lectin. In line with this study when biomolecules was administered on cell migration assay via scratch assay method. We provided evidence that Luteolin was again found to be better in inhibiting HT-29 cell migration. In order to identify the target sites of luteolin for inhibition, we used software analysis for identifying the best molecular targets of luteolin. Using software analysis best target protein molecule of these biomolecules have been identified. VEGF was found to be one of the target of luteolin. Studies have found several critical point mutation in VEGF A, B and C. Hence docking analysis of all biomolecules with VEGFR have been performed. Multiple allignment result have shown that the receptors are conserved at the docking site. Therefore, it can be concluded that luteolin is not only comparatively better in inhibiting blood vessel in CAM assay, HT-29 cell proliferation and cell migration assay rather the domain of VEGFR is conserved to be targeted by luteolin, lupeol and lectin.

  20. Raman spectroscopy detection of biomolecules in biocrusts from differing environmental conditions.

    Science.gov (United States)

    Miralles, I; Jorge-Villar, S E; van Wesemael, B; Lázaro, R

    2017-01-15

    Lichens and cyanobacteria colonize inhospitable places covering a wide climate range due to their different survival strategies, such as the synthesis of protective biomolecules. The effect of ecological factors on the synthesis of biomolecules has not been widely analysed. This study aimed to assess the effects of four factors (species, microclimate, seasonality and hydration state) and their interactions on the biomolecule frequency detected by Raman Spectroscopy. We included cyanobacterial biocrusts, and the lichens Diploschistes diacapsis, Squamarina lentigera, and Lepraria isidiata; two contrasted microclimates (typical and marginal), two contrasted seasons (hot and dry vs cool and wet) and two hydration states (dry and wet). "Species" was the most influential factor in the identity and frequency of the main biomolecules. Microclimatic differences in the range of the local specific habitats only influenced the biomolecules in cyanobacteria. There was a quadruple interaction among the factors, the effects being different mainly depending on the species. At D. diacapsis, the production of their main biomolecules depended on microclimate, although it also depended on seasonality. Nevertheless, in L. isidiata and S. lentigera microclimatic differences did not significantly affect the production of biomolecules. In the lichen species, the microhabitats exposed to relatively larger incident radiation did not show significantly larger relative frequency of photoprotective biomolecules. No clear connection between higher production of oxalates and drier microhabitats was found, suggesting that the synthesis of oxalates is not related to water reserve strategy. The pros and cons of monitor biomolecules in biocrust by Raman spectrometry were also discussed. Copyright © 2016. Published by Elsevier B.V.

  1. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  2. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  3. Working in the Cold

    Centers for Disease Control (CDC) Podcasts

    2016-02-08

    During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress.  Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 2/8/2016.

  4. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  5. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  6. COLD-WORKED HARDWARE

    Directory of Open Access Journals (Sweden)

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  7. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  8. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling.

    Science.gov (United States)

    Haugland, Marius M; Lovett, Janet E; Anderson, Edward A

    2018-02-05

    EPR spectroscopy is an increasingly useful analytical tool to probe biomolecule structure, dynamic behaviour, and interactions. Nitroxide radicals are the most commonly used radical probe in EPR experiments, and many methods have been developed for their synthesis, as well as incorporation into biomolecules using site-directed spin labelling. In this Tutorial Review, we discuss the most practical methods for the synthesis of nitroxides, focusing on the tunability of their structures, the manipulation of their sidechains into spin labelling handles, and their installation into biomolecules.

  9. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography.

    Science.gov (United States)

    Krishnan, Hema S; Ma, Longle; Vasdev, Neil; Liang, Steven H

    2017-11-07

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Radiation physics and chemistry of biomolecules. Recent developments

    Science.gov (United States)

    Spotheim-Maurizot, Melanie

    2016-11-01

    A chapter of the book ;Radiation chemistry. From basics to application in materials and life sciences (EDP Science, Paris, France, 2008); was devoted to the state-of-the-art in the research on ionizing radiation (IR) effects on biomolecules. An update, eight years later, seemed pertinent enough to the editors of this journal who accepted to dedicate a Special Issue to the latest developments in this area of high interest for cancer radiotherapy, nuclear workers' radioprotection and food radiosterilisation. We sincerely thank them and the authors who accepted to present reviews of their most recent work. Obviously, only a small part of the research in the fascinating domain of molecular radiobiology can be covered here. Some articles are presenting the contribution of biophysical models and computational techniques to the understanding of IR effects on molecules such as DNA and proteins, or on larger systems such as chromatin, chromosomes and even cells (Nikjoo et al., Štěpán & Davídková, Ballarini & Carante, and Nikitaki et al.). In these papers, as well as in many others, several qualities of IR are compared in order to explain the observed differences of effects. The damages induced by the low energy electrons and new techniques involved in their study are discussed in great detail (Sanche and Fromm & Boulanouar). The chemistry behind the IR induced damages (single or clustered), studied in many laboratories around the world is presented in several papers (Cadet & Wagner, Sevilla et al., Chatgilialoglu et al., and Greenberg). One of them addresses a very useful comparison between the effects of IR and UV exposure on DNA (Ravanat & Douki). The majority of the papers in this Special Issue is dealing with DNA and this reflects the real situation: damages of DNA are more studied than those of other biomolecules. This is due to the role of DNA as main support of hereditary information. Nevertheless, more and more studies are outlining the influence of epigenetic

  11. Si Nanopores Development for External Control of Transport of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ileri, N; Tringe, J; Letant, S; Palozoglu, A; Stroeve, P; Faller, R

    2008-06-13

    Nazar Ileri has been involved in an independent, multidisciplinary effort to create a new class of molecular sieves for proteins and viruses. Her experimental work has been performed concurrently at two campuses, LLNL and UC Davis, while theoretical components have been largely accomplished at UC Davis. As will be described, the devices she is creating have great potential to improve very significantly the efficiency and selectivity of molecular transport over what is presently available from state-of-the-art membranes. Our biotechnology training program is based on an integrated study of the transport of biomolecules through conically-shaped, nanoporous silicon membranes. The overall objective of this effort is to demonstrate an efficient, highly selective membrane technology that is manufacturable for macroscopic areas and can be employed in sensing, diagnostic and biomedical applications. Our specific aims are to (1) fabricate and characterize the physical characteristics of the membranes, (2) to demonstrate their utility for molecular transport and separation, and (3) to develop models that will facilitate understanding of these devices as well as improved performance of the next generation of devices. We have proposed that the conical pores have superior performance characteristics compared to other porous filters. To study this hypothesis, complementary approaches from different disciplines, such as membrane synthesis, experiment, and molecular simulation need to be combined. This provides an ideal training environment for a future leader in biotechnology. Hence, for this study, Nazar Ileri has started to carry out a full range of experimental and theoretical investigations under our guidance. First, she has begun fabrication of filters with conical/pyramidal pores. She characterized the pores by AFM and SEM, and analyzed the images using wavelets and other mathematical tools. She has also started to conduct biomolecule transport experiments to compare the

  12. 123I and 13I purification for biomolecules labelling

    International Nuclear Information System (INIS)

    Catanoso, Marcela Forli

    2011-01-01

    The 123 I and 131 I are iodine radioisotopes widely used in Nuclear Medicine. The radioisotope 123 I is used in diagnosis through the SPECT technique and is routinely produced at IPEN in cyclotron through the reaction: '1 24 Xe (p, 2n) '1 23 Cs -> 123 Xe -> 123 I. The radioisotope 131 I is used both in diagnosis and therapy due to its physical characteristics of decay by β - and its γ-ray emissions that are softened with the use of specific collimators for diagnosis. It is routinely produced at IPEN using the nuclear reactor through the indirect reaction: 130 Te (n, γ) -> 131 Te -> 131 I, irradiating compounds containing Te. The radiopharmaceuticals prepared with these radioisotopes go through rigorous quality control tests and the chemical purity of the primary radioisotopes 123 I and 131 I are within the permissible limits currently defined. However, the presence of some chemical contaminants can prejudice the biomolecules labeling (monoclonal antibodies and peptides), that will produce radiopharmaceuticals of first generation to the oncology area. The aim of this work was to obtain a new purification method of these radioisotopes, allowing the labeling of biomolecules and also to established a process control on those radioisotopes. The methodology was separated on 3 steps: Evaluation of '1 23 I e 131 I radionuclidic purity using a hyper pure germanium detector, chemical purity using ICP-OES and the retention and elution study of 131 I in several absorbers to choose the most appropriate for the purification tests analyzing the behavior of the possible contaminants. The radionuclidic analyses showed the presence of Te and Co on 131 I samples and Te, Tc e Co on 123 I samples. The chemical purity analyses showed the presence of Al and Mo in 123 I, coming from the window material of the target holder and the presence of Al and Te in 131 I samples, coming from the target holder and the target, respectively. The retention and elution study selected the most

  13. Si Nanopores Development for External Control of Transport of Biomolecules

    International Nuclear Information System (INIS)

    Ileri, N.; Tringe, J.; Letant, S.; Palozoglu, A.; Stroeve, P.; Faller, R.

    2008-01-01

    Nazar Ileri has been involved in an independent, multidisciplinary effort to create a new class of molecular sieves for proteins and viruses. Her experimental work has been performed concurrently at two campuses, LLNL and UC Davis, while theoretical components have been largely accomplished at UC Davis. As will be described, the devices she is creating have great potential to improve very significantly the efficiency and selectivity of molecular transport over what is presently available from state-of-the-art membranes. Our biotechnology training program is based on an integrated study of the transport of biomolecules through conically-shaped, nanoporous silicon membranes. The overall objective of this effort is to demonstrate an efficient, highly selective membrane technology that is manufacturable for macroscopic areas and can be employed in sensing, diagnostic and biomedical applications. Our specific aims are to (1) fabricate and characterize the physical characteristics of the membranes, (2) to demonstrate their utility for molecular transport and separation, and (3) to develop models that will facilitate understanding of these devices as well as improved performance of the next generation of devices. We have proposed that the conical pores have superior performance characteristics compared to other porous filters. To study this hypothesis, complementary approaches from different disciplines, such as membrane synthesis, experiment, and molecular simulation need to be combined. This provides an ideal training environment for a future leader in biotechnology. Hence, for this study, Nazar Ileri has started to carry out a full range of experimental and theoretical investigations under our guidance. First, she has begun fabrication of filters with conical/pyramidal pores. She characterized the pores by AFM and SEM, and analyzed the images using wavelets and other mathematical tools. She has also started to conduct biomolecule transport experiments to compare the

  14. Watching Conformations of Biomolecules: a Microwave Spectroscopy Approach

    Science.gov (United States)

    Lopez, J. C.

    2011-06-01

    The combination of laser ablation with Fourier transform microwave spectroscopy in supersonic jets (LA-MB-FTMW) has made possible the gas-phase study of solid biomolecules with high melting points. In the experiment, solids are efficiently vaporized by a high-energy laser pulse, supersonically expanded into a evacuated Fabry-Perot cavity and characterised by their rotational spectra. Recent improvements such as the use of picosecond pulse lasers, new ablation nozzles and the extension of the range of the spectrometers to low frequecy have notably increased the sensitivity of our experimental setup. To date different α-, β- and γ-amino acids have been studied using this technique, making possible the characterization of their preferred conformations and gaining insight in the role of intramolecular interactions. Even in conformationally challenging systems the different rotamers of such biomolecules can be identified by rotational spectroscopy as can be illustrated by the assignment of six low-energy conformers in cysteine and aspartic acid, seven in serine and threonine,^a and nine in γ-amino butyric acid (GABA). In all cases the low-energy conformers have been conclusive identified from their experimental rotational and 14N quadrupole coupling constants. The spectra of neurotransmitters and of the nucleic acid bases uracil, thymine, cytosine and guanine have also been studied and their preferred conformers or tautomeric forms determined. The complexes between amino acids and nucleic acid bases with water have also been investigated to obtain information on the possible changes induced in the conformational or tautomeric preferences by the addition of solvent molecules. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11, 617-627 (2009) and references therein M. E. Sanz, J. C. López, J. L. Alonso, Phys. Chem. Chem. Phys., 12, 3573-3578 (2010) S. Blanco, J. C. López, S. Mata and J. L. Alonso, Angew. Chem. Int. Ed. 49, 9187

  15. Higher biomolecules yield in phytoplankton under copper exposure.

    Science.gov (United States)

    Silva, Jaqueline Carmo; Echeveste, Pedro; Lombardi, Ana Teresa

    2018-05-30

    Copper is an important metal for industry, and its toxic threshold in natural ecosystems has increased since the industrial revolution. As an essential nutrient, it is required in minute amounts, being toxic in slightly increased concentrations, causing great biochemical transformation in microalgae. This study aimed at investigating the physiology of Scenedesmus quadricauda, a cosmopolitan species, exposed to copper concentrations including those that trigger intracellular biochemical modifications. The Cu exposure concentrations tested ranged from 0.1 to 25 µM, thus including environmentally important levels. Microalgae cultures were kept under controlled environmental conditions and monitored daily for cell density, in vivo chlorophyll a, and photosynthetic quantum yield (Φ M ). After 24 h growth, free Cu 2+ ions were determined, and after 96 h, cellular Cu concentration, total carbohydrates, proteins, lipids, and cell volume were determined. The results showed that both free Cu 2+ ions and cellular Cu increased with Cu increase in culture medium. Microalgae cell abundance and in vivo chlorophyll a were mostly affected at 2.5 µM Cu exposure (3.8 pg Cu cell -1 ) and above. Approximately 31% decrease of photosynthetic quantum yield was obtained at the highest Cu exposure concentration (25 µM; 25 pg Cu cell -1 ) in comparison with the control. However, at environmentally relevant copper concentrations (0.5 µM Cu; 0.4 pg Cu cell -1 ) cell volume increased in comparison with the control. Considering biomolecules accumulation per unit cell volume, the highest carbohydrates and proteins yield was obtained at 1.0 µM Cu (1.1 pg Cu cell -1 ), while for lipids higher Cu was necessary (2.5 µM Cu; 3.8 pg Cu cell -1 ). This study is a contribution to the understanding of the effects of environmentally significant copper concentrations in the physiology of S. quadricauda, as well as to biotechnological approach to increase biomolecule yield in

  16. Does cold nuclear fusion exist?

    International Nuclear Information System (INIS)

    Brudanin, V.B.; Bystritskij, V.M.; Egorov, V.G.; Shamsutdinov, S.G.; Shyshkin, A.L.; Stolupin, V.A.; Yutlandov, I.A.

    1989-01-01

    The results of investigation of cold nuclear fusion on palladium are given both for electrolysis of heavy water D 2 O and mixture D 2 O + H 2 O) (1:1) and for palladium saturation with gaseous deuterium. The possibility of existance of this phenomenon was examined by detection of neutrons and gamma quanta from reactions: d + d → 3 He + n + 3.27 MeV, p + d → 3 He + γ + 5.5 MeV. Besides these reactions were identified by measuring the characteristic X radiation of palladium due to effect of charged products 3 He, p, t. The upper limits of the intensities of hypothetical sources of neutrons and gamma quanta at the 95% confidence level were obtained to be Q n ≤ 2x10 -2 n/sxcm 3 Pd, Q γ ≤ 2x10 -3 γ/sxcm 3 Pd. 2 refs.; 4 figs.; 2 tabs

  17. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  18. Warming up to cold fusion

    International Nuclear Information System (INIS)

    Storms, E.

    1994-01-01

    The idea that tabletop equipment at room temperature could produce nuclear fusion was widely rejected five years ago by the scientific community. Nevertheless, recent results from numerous labs show that a novel phenomena of some kind may indeed be occurring, though theorist are still groping for an explanation. Many aspects of the cold fusion effect are now reproducible if known procedures are used. Palladium, when reacted with enough deuterium, apparently converts to a special condition of matter in which various nuclear reactions--including deuterium-deuterium fusion--can occur despite the repulsive force of the two positive charged nuclei. These reactions can be made to proceed rapidly enough to produce measurable heat. Scientist have published several dozen models, ranging from highly analytical approaches to pictorial representations, to explain these events. Most theories address only the problem of overcoming the coulombic barrier--how it is possible for nuclei to overcome their natural repulsion for each other without an infusion of massive amounts of energy from the outside. None of the proposed explanations accounts for the full range of experimental observations. Nevertheless a workable theory is crucial if we ever hope to apply cold fusion

  19. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    Science.gov (United States)

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  20. Acoustic cavity transducers for the manipulation of cells and biomolecules

    Science.gov (United States)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  1. Interfacial water thickness at inorganic nanoconstructs and biomolecules: Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Cardellini, Annalisa; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro, E-mail: pietro.asinari@polito.it

    2016-04-29

    Water molecules in the proximity of solid nanostructures influence both the overall properties of liquid and the structure and functionality of solid particles. The study of water dynamics at solid–liquid interfaces has strong implications in energy, environmental and biomedical fields. This article focuses on the hydration layer properties in the proximity of Carbon Nanotubes (CNTs) and biomolecules (proteins, polypeptides and amino acids). Here we show a quantitative relation between the solid surface extension and the characteristic length of water nanolayer (δ), which is confined at solid–liquid interfaces. Specifically, the size dependence is attributed to the limited superposition of nonbonded interactions in case of small molecules. These results may facilitate the design of novel energy or biomedical colloidal nanosuspensions, and a more fundamental understanding of biomolecular processes influenced by nanoscale water dynamics. - Highlights: • Properties of the water hydration layer are investigated. • New relation between extension of solid size and hydration layer established. • Possible impact on rational design of nanosuspensions.

  2. Diagnostic and therapeutic perspectives in nuclear medicine: radiolabelled biomolecules

    International Nuclear Information System (INIS)

    Ferro F, G.; Murphy, C.A. de; Pedraza L, M.; Melendez A, L.

    2003-01-01

    From their beginning, the radiopharmaceuticals chemistry has gone to the study of the molecular chemistry. The radiopharmaceuticals are only in their capacity to detect such specific biochemical places as the receivers and the enzymes. With the recent obtaining of the complete structural sequence of the genome, it doesn't fit doubt of the importance that they have acquired the molecular images for the study from the genetic information to the alterations phenotypic in the chemistry of the human body. So, the future of the diagnostic and therapeutic nuclear medicine, practically is based in the study of protein fragments, peptide structures and chains of DNA radiolabelled for the study of the metabolism In vivo. These investigations represent a substantial change in those paradigms of the pharmaceutical development, when using the own organic capacities as source of medications, instead of considering to the organism like a simple assay tube where molecules act, like they are most of the traditional medications. The investigation of new techniques to design complex stable of Tc-99m, Re-188, Lu-177, Y-90 and Dy-166/Ho-l66 with biomolecules that don't alter the specificity and in general the molecular properties of the same ones. it is a topic of world interest in the environment of the radiopharmaceutical chemistry. In this work some achievements and perspectives are presented on those main diagnostic and therapeutic radiopharmaceuticals of third generation. (Author)

  3. Comparison of biomolecules on the basis of Molecular Interaction Potentials

    Directory of Open Access Journals (Sweden)

    Rodrigo Jordi

    2002-01-01

    Full Text Available Molecular Interaction Potentials (MIP are frequently used for the comparison of series of compounds displaying related biological behaviors. These potentials are interaction energies between the considered compounds and relevant probes. The interaction energies are computed in the nodes of grids defined around the compounds. There is a need of detailed and objective comparative analyses of MIP distributions in the framework of structure-activity studies. On the other hand, MIP-based studies do not have to be restricted to series of small ligands, since such studies present also interesting possibilities for the analysis and comparison of biological macromolecules. Such analyses can benefit from the application of new methods and computational approaches. The new software MIPSim (Molecular Interaction Potentials Similarity analysis has recently been introduced with the purpose of analyzing and comparing MIP distributions of series of biomolecules. This program is transparently integrated with other programs, like GAMESS or GRID, which can be used for the computation of the potentials to be analyzed or compared. MIPSim incorporates several definitions of similarity coefficients, and is capable of combining several similarity measures into a single one. On the other hand, MIPSim can perform automatic explorations of the maximum similarity alignments between pairs of molecules.

  4. Hybrid carbon nanomaterials for electrochemical detection of biomolecules

    International Nuclear Information System (INIS)

    Laurila, Tomi

    2015-01-01

    Electrochemical detection of different biomolecules in vivo is a promising path towards in situ monitoring of human body and its functions. However, there are several major obstacles, such as sensitivity, selectivity and biocompatiblity, which must be tackled in order to achieve reliably and safely operating sensor devices. Here we show that by utilizing hybrid carbon materials as electrodes to detect two types of neurotransmitters, dopamine and glutamate, several advantages over commonly used electrode materials can be achieved. In particular, we will demonstrate here that it is possible to combine the properties of different carbon allotropes to obtain hybrid materials with greatly improved electrochemical performance. Three following examples of the approach are given: (i) diamond-like carbon (DLC) thin film electrodes with different layer thicknesses, (ii) multi-walled carbon nanotubes grown directly on top of DLC and (iii) carbon nanofibres synthesized on top of DLC thin films. Detailed structural and electrochemical characterization is carried out to rationalize the reasons behind the observed behvior. In addition, results from the atomistic simulations are utilized to obtain more information about the properties of the amorphous carbon thin films. (paper)

  5. Natural Biomolecules and Protein Aggregation: Emerging Strategies against Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Antonella Sgarbossa

    2012-12-01

    Full Text Available Biomolecular self-assembly is a fundamental process in all organisms. As primary components of the life molecular machinery, proteins have a vast array of resources available to them for self-assembly in a functional structure. Protein self-assembly, however, can also occur in an aberrant way, giving rise to non-native aggregated structures responsible for severe, progressive human diseases that have a serious social impact. Different neurodegenerative disorders, like Huntington’s, Alzheimer’s, and spongiform encephalopathy diseases, have in common the presence of insoluble protein aggregates, generally termed “amyloid,” that share several physicochemical features: a fibrillar morphology, a predominantly beta-sheet secondary structure, birefringence upon staining with the dye Congo red, insolubility in common solvents and detergents, and protease resistance. Conformational constrains, hydrophobic and stacking interactions can play a key role in the fibrillogenesis process and protein–protein and peptide–peptide interactions—resulting in self-assembly phenomena of peptides yielding fibrils—that can be modulated and influenced by natural biomolecules. Small organic molecules, which possess both hydrophilic and hydrophobic moieties able to bind to peptide/protein molecules through hydrogen bonds and hydrophobic and aromatic interactions, are potential candidates against amyloidogenesis. In this review some significant case examples will be critically discussed.

  6. Quantification of specific bindings of biomolecules by magnetorelaxometry

    Directory of Open Access Journals (Sweden)

    Steinhoff Uwe

    2008-03-01

    Full Text Available Abstract The binding reaction of the biomolecules streptavidin and anti-biotin antibody, both labelled by magnetic nanoparticles (MNP, to biotin coated on agarose beads, was quantified by magnetorelaxometry (MRX. Highly sensitive SQUID-based MRX revealed the immobilization of the MNP caused by the biotin-streptavidin coupling. We found that about 85% of streptavidin-functionalised MNP bound specifically to biotin-agarose beads. On the other hand only 20% of antibiotin-antibody functionalised MNP were specifically bound. Variation of the suspension medium revealed in comparison to phosphate buffer with 0.1% bovine serum albumin a slight change of the binding behaviour in human serum, probably due to the presence of functioning (non heated serum proteins. Furthermore, in human serum an additional non-specific binding occurs, being independent from the serum protein functionality. The presented homogeneous bead based assay is applicable in simple, uncoated vials and it enables the assessment of the binding kinetics in a volume without liquid flow. The estimated association rate constant for the MNP-labelled streptavidin is by about two orders of magnitude smaller than the value reported for free streptavidin. This is probably due to the relatively large size of the magnetic markers which reduces the diffusion of streptavidin. Furthermore, long time non-exponential kinetics were observed and interpreted as agglutination of the agarose beads.

  7. GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules

    Directory of Open Access Journals (Sweden)

    Franziska eBertelshofer

    2015-11-01

    Full Text Available Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and in particular also their interactions with each other. Additionally, knowledge about solution electrostatics may guide also the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson-Boltzmann Equation (PBE. Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss-Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and thus need to be carefully considered e.g. in design studies on membrane proteins.

  8. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing.

    Science.gov (United States)

    Fabié, Laure; Agostini, Pierre; Stopel, Martijn; Blum, Christian; Lassagne, Benjamin; Subramaniam, Vinod; Ondarçuhu, Thierry

    2015-03-14

    We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the size of spots can be adjusted from microns down to sub-50 nm by tuning the channel diameter, independently of the chemical nature of the solute. In the case of nanoparticles, we demonstrated the ultimate limit of the method and showed that large arrays of single (or pairs of) nanoparticles can be reproducibly deposited. We further explored the possibility to deposit different visible fluorescent proteins using NADIS without loss of protein function. The intrinsic fluorescence of these proteins is characteristic of their structural integrity; the retention of fluorescence after NADIS deposition demonstrates that the proteins are intact and functional. This study demonstrates that NADIS can be a viable alternative to other scanning probe lithography techniques since it combines high resolution direct writing of nanoparticles or biomolecules with the versatility of liquid lithography techniques.

  9. Small biomolecule immunosensing with plasmonic optical fiber grating sensor.

    Science.gov (United States)

    Ribaut, Clotilde; Voisin, Valérie; Malachovská, Viera; Dubois, Valentin; Mégret, Patrice; Wattiez, Ruddy; Caucheteur, Christophe

    2016-03-15

    This study reports on the development of a surface plasmon resonance (SPR) optical fiber biosensor based on tilted fiber Bragg grating technology for direct detection of small biomarkers of interest for lung cancer diagnosis. Since SPR principle relies on the refractive index modifications to sensitively detect mass changes at the gold coated surface, we have proposed here a comparative study in relation to the target size. Two cytokeratin 7 (CK7) samples with a molecular weight ranging from 78 kDa to 2.6 kDa, respectively CK7 full protein and CK7 peptide, have been used for label-free monitoring. This work has first consisted in the elaboration and the characterization of a robust and reproducible bioreceptor, based on antibody/antigen cross-linking. Immobilized antibodies were then utilized as binding agents to investigate the sensitivity of the biosensor towards the two CK7 antigens. Results have highlighted a very good sensitivity of the biosensor response for both samples diluted in phosphate buffer with a higher limit of detection for the larger CK7 full protein. The most groundbreaking nature of this study relies on the detection of small biomolecule CK7 peptides in buffer and in the presence of complex media such as serum, achieving a limit of detection of 0.4 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Polyacrylamide medium for the electrophoretic separation of biomolecules

    Science.gov (United States)

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  11. Investigation of damage mechanism by ionising radiation on biomolecules

    International Nuclear Information System (INIS)

    Lau How Mooi

    1996-01-01

    Occupational radiation hazard is a very controversial subject. Effects from high radiation doses are well known from past experiences. However, hazard from low doses is still a subject that is hotly debated upon until now. The occupational dosimetry used now is based on a macroscopic scale. Lately, microdosimetry is fast gaining recognition as a more superior way of measuring hazard. More importantly, scientists are researching the basic damage mechanism that leads to biological effects by ionising radiation. In this report, a simulation study of the basic damage mechanism is discussed . This simulation is based upon Monte Carlo calculations and using polyuridylic acid (Poly-U) as the DNA model This simulation tries to relate the physics and chemistry of interactions of ionising radiation with biomolecules. The computer codes used in this simulation, OREC and RADLYS were created by Hamm et al. (1983) in Oak Ridge National Laboratory. The biological endpoints in this simulation are the strand break and base release of the DNA, which is the precursor of all biological effects. These results are compared with model studies that had been done experimentally to check the validity of this simulation. The G-values of strand break and base release from this simulation were -2.35 and 2.75 and compared well with results from irradiation experiments by von Sonntag (I 98 7) from Max Plank's Institute, Germany

  12. Implication of collider experiments for detecting cold dark matter

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    Investigation of Minimal Supersymmetry Standard Model shows, that any discovery with high-energy colliders at least one supersymmetric particle would strongly enhance importance of very accurate experiments. which search for lightest supersymmetric neutralinos as cold dark matter particles. Form other side, non-observations of any signal of cold dark matter in such experiments would force us to change strategy of searching for, for instance, light charged Higgs bosons at high energies [ru

  13. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters†

    Science.gov (United States)

    Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie

    2014-01-01

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes. PMID:24463467

  14. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    Science.gov (United States)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  15. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  16. Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles.

    Science.gov (United States)

    Jung, Seung-Ryoung; Han, Rui; Sun, Wei; Jiang, Yifei; Fujimoto, Bryant S; Yu, Jiangbo; Kuo, Chun-Ting; Rong, Yu; Zhou, Xing-Hua; Chiu, Daniel T

    2018-05-15

    We describe here a flow platform for quantifying the number of biomolecules on individual fluorescent nanoparticles. The platform combines line-confocal fluorescence detection with near nanoscale channels (1-2 μm in width and height) to achieve high single-molecule detection sensitivity and throughput. The number of biomolecules present on each nanoparticle was determined by deconvolving the fluorescence intensity distribution of single-nanoparticle-biomolecule complexes with the intensity distribution of single biomolecules. We demonstrate this approach by quantifying the number of streptavidins on individual semiconducting polymer dots (Pdots); streptavidin was rendered fluorescent using biotin-Alexa647. This flow platform has high-throughput (hundreds to thousands of nanoparticles detected per second) and requires minute amounts of sample (∼5 μL at a dilute concentration of 10 pM). This measurement method is an additional tool for characterizing synthetic or biological nanoparticles.

  17. Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum

    Science.gov (United States)

    Chen, Long; Xu, Wang-Hua; Zhao, Ying-Guo; Kang, Yan; Liu, Shao-Hua; Zhang, Zai-Yong

    2012-12-01

    In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.

  18. Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles

    OpenAIRE

    Moglianetti, Mauro; Ponomarev, Evgeniy; Szybowski, Maxime; Stellacci, Francesco; Reguera, Javier

    2015-01-01

    Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make them resemble the complexity of proteins and other natural biomolecules, in the presence of oppositely charged nanoparticles. While for nanoparticles with homogeneously charged surfaces an abrupt precipitation has been observed at the neutrali...

  19. Inelastic and quasielastic neutron scattering studies on soft matter and biomolecules

    International Nuclear Information System (INIS)

    Kanaya, Toshiji

    2015-01-01

    Some characteristic features of soft matter and biomolecules in the inelastic and quasielastic neutron scattering (INS and QENS) studies are described. In order to clarify the current situation of the studies the research history on soft matter and biomolecules by INS and QENS are described. As examples of the studies of slow dynamics of soft matter, neutron spin echo studies on breathing mode of polymer micelle and static and dynamics fluctuations in polymer gels. (author)

  20. Enhancing Protease Activity Assay in Droplet-Based Microfluidics Using a Biomolecule Concentrator

    Science.gov (United States)

    Chen, Chia-Hung; Sarkar, Aniruddh; Song, Yong-Ak; Miller, Miles A.; Kim, Sung Jae; Griffith, Linda G.; Lauffenburger, Douglas A.; Han, Jongyoon

    2011-01-01

    We introduce an integrated microfluidic device consisting of a biomolecule concentrator and a microdroplet generator, which enhances the limited sensitivity of low-abundance enzyme assays by concentrating biomolecules before encapsulating them into droplet microreactors. We used this platform to detect ultra low levels of matrix metalloproteinases (MMPs) from diluted cellular supernatant and showed that it significantly (∼10-fold) reduced the time required to complete the assay and the sample volume used. PMID:21671557

  1. LIAD-fs: A novel method for studies of ultrafast processes in gas phase neutral biomolecules

    International Nuclear Information System (INIS)

    Calvert, C R; Kelly, O; Duffy, M J; Belshaw, L; King, R B; Williams, I D; Greenwood, J B

    2012-01-01

    A new experimental technique for femtosecond (fs) pulse studies of gas phase biomolecules is reported. Using Laser-Induced Acoustic Desorption (LIAD) to produce a plume of neutral molecules, a time-delayed fs pulse is employed for ionisation/fragmentation, with subsequent products extracted and mass analysed electrostatically. By varying critical laser pulse parameters, this technique can be used to implement control over molecular fragmentation for a range of small biomolecules, with specific studies of amino acids demonstrated.

  2. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    International Nuclear Information System (INIS)

    Logan, B.G.

    1978-01-01

    A method and apparatus are described for cooling a plasma confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell. The cooling is due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma

  3. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications.

    Science.gov (United States)

    Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro

    2016-08-01

    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system.

    Science.gov (United States)

    Elliott Donaghue, Irja; Tam, Roger; Sefton, Michael V; Shoichet, Molly S

    2014-09-28

    Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules.

    Science.gov (United States)

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-11-21

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  6. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.

    Science.gov (United States)

    Didar, Tohid Fatanat; Tabrizian, Maryam

    2012-11-07

    Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.

  7. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    Science.gov (United States)

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  8. Bio-NCs - the marriage of ultrasmall metal nanoclusters with biomolecules

    Science.gov (United States)

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-10-01

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  9. Chilling Out With Colds

    Science.gov (United States)

    ... and use the time to read, listen to music, or watch a movie. In other words, chill out and you might prevent a cold! Reviewed by: Patricia ... Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...

  10. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  11. Dence Cold Matter

    Directory of Open Access Journals (Sweden)

    Stavinskiy Alexey

    2014-04-01

    Full Text Available Possible way to create dense cold baryonic matter in the laboratory is discussed. The density of this matter is comparable or even larger than the density of neutron star core. The properties of this matter can be controlled by trigger conditions. Experimental program for the study of properties of dense cold matter for light and heavy ion collisions at initial energy range √sNN~2-3GeV is proposed..

  12. An analytical method for computing atomic contact areas in biomolecules.

    Science.gov (United States)

    Mach, Paul; Koehl, Patrice

    2013-01-15

    We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  13. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  14. Cold moderators at ORNL

    International Nuclear Information System (INIS)

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  15. Microcontact printing with aminosilanes: creating biomolecule micro- and nanoarrays for multiplexed microfluidic bioassays.

    Science.gov (United States)

    Sathish, Shivani; Ricoult, Sébastien G; Toda-Peters, Kazumi; Shen, Amy Q

    2017-05-21

    Microfluidic systems integrated with protein and DNA micro- and nanoarrays have been the most sought-after technologies to satisfy the growing demand for high-throughput disease diagnostics. As the sensitivity of these systems relies on the bio-functionalities of the patterned recognition biomolecules, the primary concern has been to develop simple technologies that enable biomolecule immobilization within microfluidic devices whilst preserving bio-functionalities. To address this concern, we introduce a two-step patterning approach to create micro- and nanoarrays of biomolecules within microfluidic devices. First, we introduce a simple aqueous based microcontact printing (μCP) method to pattern arrays of (3-aminopropyl)triethoxysilane (APTES) on glass substrates, with feature sizes ranging from a few hundred microns down to 200 nm (for the first time). Next, these substrates are integrated with microfluidic channels to then covalently couple DNA aptamers and antibodies with the micro- and nanopatterned APTES. As these biomolecules are covalently tethered to the device substrates, the resulting bonds enable them to withstand the high shear stresses originating from the flow in these devices. We further demonstrated the flexibility of this technique, by immobilizing multiple proteins onto these APTES-patterned substrates using liquid-dispensing robots to create multiple microarrays. Next, to validate the functionalities of these microfluidic biomolecule microarrays, we perform (i) aptamer-based sandwich immunoassays to detect human interleukin 6 (IL6); and (ii) antibody-based sandwich immunoassays to detect human c-reactive protein (hCRP) with the limit of detection at 5 nM, a level below the range required for clinical screening. Lastly, the shelf-life potential of these ready-to-use microfluidic microarray devices is validated by effectively functionalizing the patterns with biomolecules up to 3 months post-printing. In summary, with a single printing step, this

  16. Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier.

    Science.gov (United States)

    Hu, Bo; Zhao, Yang; Zhu, Hai-Zhou; Yu, Shu-Hong

    2011-04-26

    Thiol-containing biomolecules show strong affinity with noble metal nanostructures and could not only stably protect them but also control the self-assembly process of these special nanostructures. A highly selective and sensitive chromogenic detection method has been designed for the low and high molecular weight thiol-containing biomolecules, including cysteine, glutathione, dithiothreitol, and bovine serum albumin, using a new type of carbonaceous nanospheres loaded with silver nanoparticles (Ag NPs) as carrier. This strategy relies upon the place-exchange process between the reporter dyes on the surface of Ag NPs and the thiol groups of thiol-containing biomolecules. The concentration of biomolecules can be determined by monitoring with the fluorescence intensity of reporter dyes dispersed in solution. This new chromogenic assay method could selectively detect these biomolecules in the presence of various other amino acids and monosaccharides and even sensitively detect the thiol-containing biomolecules with different molecular weight, even including proteins.

  17. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  18. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    Susanto, H.; Roihatin, A.; Aryanti, N.; Anggoro, D.D.; Ulbricht, M.

    2012-01-01

    We characterized the membranes before and after modification. ► We examined the unmodified and modified membranes for biomolecules filtration. ► All the modifications changed the membrane characteristics and the membrane performance. ► All the modifications resulted in UF membranes having higher resistance towards fouling.

  19. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  20. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    fouling ultrafiltration (UF) membranes. Black-Right-Pointing-Pointer We characterized the membranes before and after modification. Black-Right-Pointing-Pointer We examined the unmodified and modified membranes for biomolecules filtration. Black-Right-Pointing-Pointer All the modifications changed the membrane characteristics and the membrane performance. Black-Right-Pointing-Pointer All the modifications resulted in UF membranes having higher resistance towards fouling.

  1. Room temperature ionic liquids interacting with bio-molecules: an overview of experimental and computational studies

    Science.gov (United States)

    Benedetto, Antonio; Ballone, Pietro

    2016-03-01

    We briefly review experimental and computational studies of room temperature ionic liquids (RTILs) interacting with important classes of biomolecules, including phospholipids, peptides and proteins, nucleic acids and carbohydrates. Most of these studies have been driven by the interest for RTILs applications as solvents. Thus, available experimental data cover primarily thermodynamic properties such as the reciprocal solubility of RTILs and bio-molecules, as well as phase boundaries. Less extensive data are also available on transport properties such as diffusion and viscosity of homogeneous binary (RTILs/biomolecules) and ternary (RTIL/biomolecules/water) solutions. Most of the structural information at the atomistic level, of interest especially for biochemical, pharmaceutical and nanotechnology applications, has been made available by molecular dynamics simulations. Major exceptions to this statement are represented by the results from NMR and circular dichroism spectroscopy, by selected neutron and X-ray scattering data, and by recent neutron reflectometry measurements on lipid bilayers on surfaces, hydrated by water-RTIL solutions. A final section of our paper summarizes new developments in the field of RTILs based on amino acids, that combine in themselves the two main aspects of our discussion, i.e. ionic liquids and bio-molecules.

  2. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)

    2011-06-15

    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Conditions to minimize soft single biomolecule deformation when imaging with atomic force microscopy.

    Science.gov (United States)

    Godon, Christian; Teulon, Jean-Marie; Odorico, Michael; Basset, Christian; Meillan, Matthieu; Vellutini, Luc; Chen, Shu-Wen W; Pellequer, Jean-Luc

    2017-03-01

    A recurrent interrogation when imaging soft biomolecules using atomic force microscopy (AFM) is the putative deformation of molecules leading to a bias in recording true topographical surfaces. Deformation of biomolecules comes from three sources: sample instability, adsorption to the imaging substrate, and crushing under tip pressure. To disentangle these causes, we measured the maximum height of a well-known biomolecule, the tobacco mosaic virus (TMV), under eight different experimental conditions positing that the maximum height value is a specific indicator of sample deformations. Six basic AFM experimental factors were tested: imaging in air (AIR) versus in liquid (LIQ), imaging with flat minerals (MICA) versus flat organic surfaces (self-assembled monolayers, SAM), and imaging forces with oscillating tapping mode (TAP) versus PeakForce tapping (PFT). The results show that the most critical parameter in accurately measuring the height of TMV in air is the substrate. In a liquid environment, regardless of the substrate, the most critical parameter is the imaging mode. Most importantly, the expected TMV height values were obtained with both imaging with the PeakForce tapping mode either in liquid or in air at the condition of using self-assembled monolayers as substrate. This study unambiguously explains previous poor results of imaging biomolecules on mica in air and suggests alternative methodologies for depositing soft biomolecules on well organized self-assembled monolayers. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Role of PAMAM-OH dendrimers against the fibrillation pathway of biomolecules.

    Science.gov (United States)

    Sekar, Gajalakshmi; Florance, Ida; Sivakumar, A; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-12-01

    The binding behavior of nanoparticle with proteins determines its biocompatibility. This study reports the interaction of ten different biomolecules (proteins-BSA, HSA, haemoglobin, gamma globulin, transferrin and enzymes-hog and bacillus amylase, lysozyme from chicken and human and laccases from Tramates versicolor) with a surface group hydroxylated Poly AMido AMide dendrimer (PAMAM) of generation 5. The study has utilized various spectroscopic methods like UV-vis spectroscopy, Fluorescence emission, Synchronous, 3-D spectroscopy and Circular Dichroism to detect the binding induced structural changes in biomolecules that occur upon interaction with mounting concentration of the dendrimers. Aggregation of proteins results in the formation of amyloid fibrils causing several human diseases. In this study, fibrillar samples of all ten biomolecules formed in the absence and the presence of dendrimers were investigated with Congo Red absorbance and ThT Assay to detect fibril formation, Trp Emission and 3-D scan to evaluate the effect of fibrillation on aromatic environment of biomolecules, and CD spectroscopy to measure the conformational changes in a quantitative manner. These assays have generated useful information on the role of dendrimers in amyloid fibril formation of biomolecules. The outcomes of the study remain valuable in evaluating the biological safety of PAMAM-OH dendrimers for their biomedical application in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Constructing Optimal Coarse-Grained Sites of Huge Biomolecules by Fluctuation Maximization.

    Science.gov (United States)

    Li, Min; Zhang, John Zenghui; Xia, Fei

    2016-04-12

    Coarse-grained (CG) models are valuable tools for the study of functions of large biomolecules on large length and time scales. The definition of CG representations for huge biomolecules is always a formidable challenge. In this work, we propose a new method called fluctuation maximization coarse-graining (FM-CG) to construct the CG sites of biomolecules. The defined residual in FM-CG converges to a maximal value as the number of CG sites increases, allowing an optimal CG model to be rigorously defined on the basis of the maximum. More importantly, we developed a robust algorithm called stepwise local iterative optimization (SLIO) to accelerate the process of coarse-graining large biomolecules. By means of the efficient SLIO algorithm, the computational cost of coarse-graining large biomolecules is reduced to within the time scale of seconds, which is far lower than that of conventional simulated annealing. The coarse-graining of two huge systems, chaperonin GroEL and lengsin, indicates that our new methods can coarse-grain huge biomolecular systems with up to 10,000 residues within the time scale of minutes. The further parametrization of CG sites derived from FM-CG allows us to construct the corresponding CG models for studies of the functions of huge biomolecular systems.

  6. Immobilization of biomolecules on cysteamine-modified polyaniline film for highly sensitive biosensing.

    Science.gov (United States)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong; Xue, Jian; Chen, Xianfeng

    2014-03-01

    We present a new cysteamine (CS)-modified polyaniline (PANI) film for highly efficient immobilization of biomolecules in biosensing technology. This electrochemical deposited PANI film treated with CS and glutaraldehyde could be employed as an excellent substrate for biomolecules immobilization. The parameters of PANI growth were optimized to obtain suitable surface morphology of films for biomolecules combination with the help of electron and atomic force microscopy. Cyclic voltammetry (CV) was utilized to illustrate the different electrochemical activities of each modified electrode. Due to the existence of sulfydryl group and amino group in CS, surface modification with CS was proven to reduce oxidized units on PANI film remarkably, as evidenced by both ATR-FTIR and Raman spectroscopy characterizations. Furthermore, bovine serum albumin (BSA) was used as the model protein to investigate the immobilization efficiency of biomolecules on the PANI film, comparative study using quartz crystal microbalance (QCM) showed that BSA immobilized on CS-modified PANI could be increased by at least 20% than that without CS-modified PANI in BSA solution with the concentration of 0.1-1mg/mL. The CS-modified PANI film would be significant for the immobilization and detection of biomolecules and especially promising in the application of immunosensor for ultrasensitive detection. © 2013 Published by Elsevier B.V.

  7. Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.

    Science.gov (United States)

    Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo

    2013-09-01

    In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.

  8. A new algorithm for construction of coarse-grained sites of large biomolecules.

    Science.gov (United States)

    Li, Min; Zhang, John Z H; Xia, Fei

    2016-04-05

    The development of coarse-grained (CG) models for large biomolecules remains a challenge in multiscale simulations, including a rigorous definition of CG representations for them. In this work, we proposed a new stepwise optimization imposed with the boundary-constraint (SOBC) algorithm to construct the CG sites of large biomolecules, based on the s cheme of essential dynamics CG. By means of SOBC, we can rigorously derive the CG representations of biomolecules with less computational cost. The SOBC is particularly efficient for the CG definition of large systems with thousands of residues. The resulted CG sites can be parameterized as a CG model using the normal mode analysis based fluctuation matching method. Through normal mode analysis, the obtained modes of CG model can accurately reflect the functionally related slow motions of biomolecules. The SOBC algorithm can be used for the construction of CG sites of large biomolecules such as F-actin and for the study of mechanical properties of biomaterials. © 2015 Wiley Periodicals, Inc.

  9. Cold regions isotope applications

    International Nuclear Information System (INIS)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids

  10. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions

    Science.gov (United States)

    Kurudirek, Murat; Onaran, Tayfur

    2015-07-01

    Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.

  11. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    Science.gov (United States)

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Role of energy cost in the yield of cold ternary fission of Cf

    Indian Academy of Sciences (India)

    Abstract. The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by including Wong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield ...

  13. Highly charged ion trapping and cooling

    International Nuclear Information System (INIS)

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-01-01

    In the past few years a cryogenic Penning trap (RETRAP) has been operational at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory. The combination of RETRAP and EBIT provides a unique possibility of producing and re-trapping highly charged ions and cooling them to very low temperatures. Due to the high Coulomb potentials in such an ensemble of cold highly charged ions the Coulomb coupling parameter (the ratio of Coulomb potential to the thermal energy) can easily reach values of 172 and more. To study such systems is not only of interest in astrophysics to simulate White Dwarf star interiors but opens up new possibilities in a variety of areas (e.g. laser spectroscopy), cold highly charged ion beams

  14. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  15. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  16. Radical Reactions in the Gas Phase: Recent Development and Application in Biomolecules

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-01-01

    Full Text Available This review summarizes recent literature describing the use of gas phase radical reactions for structural characterization of complex biomolecules other than peptides. Specifically, chemical derivatization, in-source chemical reaction, and gas phase ion/ion reactions have been demonstrated as effective ways to generate radical precursor ions that yield structural informative fragments complementary to those from conventional collision-induced dissociation (CID. Radical driven dissociation has been applied to a variety of biomolecules including peptides, nucleic acids, carbohydrates, and phospholipids. The majority of the molecules discussed in this review see limited fragmentation from conventional CID, and the gas phase radical reactions open up completely new dissociation channels for these molecules and therefore yield high fidelity confirmation of the structures of the target molecules. Due to the extensively studied peptide fragmentation, this review focuses only on nonpeptide biomolecules such as nucleic acids, carbohydrates, and phospholipids.

  17. Control of Target Molecular Recognition in a Small Pore Space with Biomolecule-Recognition Gating Membrane.

    Science.gov (United States)

    Okuyama, Hiroto; Oshiba, Yuhei; Ohashi, Hidenori; Yamaguchi, Takeo

    2018-05-01

    A biomolecule-recognition gating membrane, which introduces thermosensitive graft polymer including molecular recognition receptor into porous membrane substrate, can close its pores by recognizing target biomolecule. The present study reports strategies for improving both versatility and sensitivity of the gating membrane. First, the membrane is fabricated by introducing the receptor via a selectively reactive click reaction improving the versatility. Second, the sensitivity of the membrane is enhanced via an active delivering method of the target molecules into the pores. In the method, the tiny signal of the target biomolecule is amplified as obvious pressure change. Furthermore, this offers 15 times higher sensitivity compared to the previously reported passive delivering method (membrane immersion to sample solution) with significantly shorter recognition time. The improvement will aid in applying the gating membrane to membrane sensors in medical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Science.gov (United States)

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-10-01

    Understanding the chemical evolution of newly formed terrestrial planets involves uncertainties in atmospheric chemical composition and assessing the plausibility of biomolecule synthesis. In this study, an original scenario for the origin of methane on Mars and terrestrial planets is suggested. Carbon dioxide in Martian and other planetary atmospheres can be abiotically converted into a mixture of methane and carbon monoxide by `methanogenesis' on porous mineral photoactive surfaces under soft ultraviolet irradiation. On young planets exposed to heavy bombardment by interplanetary matter, this process can be followed by biomolecule synthesis through the reprocessing of reactive reducing atmospheres by impact-induced shock waves. The proposed mechanism of methanogenesis may help to answer the question concerning the formation of methane and carbon monoxide by photochemical processes, the formation of biomolecules on early Earth and other terrestrial planets, and the source and seasonal variation of methane concentrations on Mars.

  19. Light-triggerable formulations for the intracellular controlled release of biomolecules.

    Science.gov (United States)

    Lino, Miguel M; Ferreira, Lino

    2018-05-01

    New therapies based on the use of biomolecules [e.g., proteins, peptides, and non-coding (nc)RNAs] have emerged during the past few years. Given their instability, adverse effects, and limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. Sophisticated nanoformulations responsive to light offer an excellent opportunity for the controlled release of these biomolecules, enabling the control of timing, duration, location, and dosage. In this review, we discuss the design principles for the delivery of biomolecules, in particular proteins and RNA-based therapeutics, by light-triggerable formulations. We further discuss the opportunities offered by these formulations in terms of endosomal escape, as well as their limitations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Recoil halogen reactions in liquid and frozen aqueous solutions of biomolecules

    International Nuclear Information System (INIS)

    Arsenault, L.J.; Blotcky, A.J.; Firouzbakht, M.L.; Rack, E.P.; Nebraska Univ., Omaha

    1982-01-01

    Reactions of recoil 38 Cl, 80 Br and 128 I have been studied in crystalline systems of 5-halouracil, 5-halo-2'-deoxyuridine and 5-halouridine as well as liquid and frozen aqueous solutions of these halogenated biomolecules. In all systems expect crystalline 5-iuodouracil the major product was the radio-labelled halide ion. There was no evidence for other halogen inorganic species. The major labelled organic product was the parent molecule. A recoil atom tracer technique was developed to acquire site information of the biomolecule solutes in the liquid and frozen aqueous systems. For all liquid and frozen aqueous systems, the halogenated biomolecules tended to aggregate. For liquid systems, the tendency for aggregation diminished as the solute concentration approached zero, where the probable state of the solute approached a monomolecular dispersion. Unlike the liquid state, the frozen ice lattice demonstated a ''caging effect'' for the solute aggregates which resulted in constant product yields over the whole concentration range. (orig.)

  1. Could comets be carriers of intact homochiral biomolecules from interstellar space?

    International Nuclear Information System (INIS)

    Navarro Gonzales, R.; Khanna, R.K.; Ponnamperuma, C.

    1992-01-01

    It has been suggested that the synchrotron circularly polarized ultraviolet light produced off-angle to the orbit of neutron star remnants of supernova explosions interacted with interstellar grains from the presolar nebula producing chiral molecules. Furthermore, it has also been suggested that comets were the carriers of such extraterrestrial sources of homochirality from interstellar space to the primitive Earth. We present here a computer model calculation of the effect of ionizing radiation on cometary material. The external (cosmic rays) and internal (embedded radionuclides) contributions were considered to determine the degree of destruction of possible homochiral biomolecules present such as amino acids and carboxylic acids. Our results suggest that an insignificant degree of destruction (2-12%) of the homochiral biomolecules could be expected. Therefore, comets could be carriers of intact homochiral biomolecules. (author)

  2. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.

    Science.gov (United States)

    Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing

    2014-08-01

    Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  4. Cold fusion - todays situation

    International Nuclear Information System (INIS)

    Malmqvist, K.

    1993-01-01

    A brief review of the history of cold fusion is given. It is noted that it is not possible to draw any definite conclusions about all the experimental and theoretical details, but that some of the results presented do not seem to be reached according to the normal scientific methods. 6 figs

  5. Recent Cold War Studies

    Science.gov (United States)

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  6. Expert Cold Structure Development

    Science.gov (United States)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  7. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  8. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  9. Towards the microscopic description of the irradiation of biomolecules

    International Nuclear Information System (INIS)

    Dinh, P. M.; Suraud, E.; Reinhard, P. G.; Wang, Z.

    2009-01-01

    Full text: The irradiation of biomolecular nanosystems in the gas phase represents a significant opening in radiation science. We make a general presentation of the field and of its numerous applications to motivate the theoretical developments to be performed. We then focus on microscopic mechanisms of irradiation of biological molecules with the aim to analyze the effects of the water environment on such processes, ultimately by considering molecules coated with a well defined (tunable) number of water molecules. The path towards such an ambitious goal is long and due to the many elementary processes involved one needs to validate step by step the various experimental and theoretical ingredients. We consider here simple organic molecules as test cases, in particular single water molecules collided by a projectile. The step towards an assembly of molecules raises no major theoretical difficulty and we show as first examples of application examples of irradiation of small water clusters. The microscopic description of irradiation processes requires an explicit dynamical account of electronic degrees of freedom which are primarily responding in such situations. Moreover, it is necessary to treat electrons in a non-adiabatic way and to allow for ionization and/or electron transport. This invalidates most calculations based on the Born-Oppenheimer (BO) approximation except in some specific situations. Indeed, depending on the characteristics of the ionizing projectile (charge, velocity), one can treat the problem in a simplified manner by decoupling electronic and ionic dynamics. A typical example is the case of high velocity charged projectiles in which ions can be safely considered as frozen and the dynamics reduced to the electronic one, at least on short times. Another example is the case of low velocity neutral projectiles for which a ground state (Born-Oppenheimer, BO) treatment is acceptable. To the best of our knowledge low velocity charged and high velocity

  10. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  11. Composite Scaffold of Poly(Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery

    Science.gov (United States)

    Cutiongco, Marie Francene A.; Choo, Royden K. T.; Shen, Nathaniel J. X.; Chua, Bryan M. X.; Sju, Ervi; Choo, Amanda W. L.; Le Visage, Catherine; Yim, Evelyn K. F.

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA–IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA–IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA–IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA–IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA–IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue

  12. Composite scaffold of poly(vinyl alcohol) and interfacial polyelectrolyte complexation fibers for controlled biomolecule delivery.

    Science.gov (United States)

    Cutiongco, Marie Francene A; Choo, Royden K T; Shen, Nathaniel J X; Chua, Bryan M X; Sju, Ervi; Choo, Amanda W L; Le Visage, Catherine; Yim, Evelyn K F

    2015-01-01

    Controlled delivery of hydrophilic proteins is an important therapeutic strategy. However, widely used methods for protein delivery suffer from low incorporation efficiency and loss of bioactivity. The versatile interfacial polyelectrolyte complexation (IPC) fibers have the capacity for precise spatiotemporal release and protection of protein, growth factor, and cell bioactivity. Yet its weak mechanical properties limit its application and translation into a viable clinical solution. To overcome this limitation, IPC fibers can be incorporated into polymeric scaffolds such as the biocompatible poly(vinyl alcohol) hydrogel (PVA). Therefore, we explored the use of a composite scaffold of PVA and IPC fibers for controlled biomolecule release. We first observed that the permeability of biomolecules through PVA films were dependent on molecular weight. Next, IPC fibers were incorporated in between layers of PVA to produce PVA-IPC composite scaffolds with different IPC fiber orientation. The composite scaffold demonstrated excellent mechanical properties and efficient biomolecule incorporation. The rate of biomolecule release from PVA-IPC composite grafts exhibited dependence on molecular weight, with lysozyme showing near-linear release for 1 month. Angiogenic factors were also incorporated into the PVA-IPC grafts, as a potential biomedical application of the composite graft. While vascular endothelial growth factor only showed a maximum cumulative release of 3%, the smaller PEGylated-QK peptide showed maximum release of 33%. Notably, the released angiogenic biomolecules induced endothelial cell activity thus indicating retention of bioactivity. We also observed lack of significant macrophage response against PVA-IPC grafts in a rabbit model. Showing permeability, mechanical strength, precise temporal growth factor release, and bioinertness, PVA-IPC fibers composite scaffolds are excellent scaffolds for controlled biomolecule delivery in soft tissue engineering.

  13. Positron Plasma Control Techniques Applied to Studies of Cold Antihydrogen

    CERN Document Server

    Funakoshi, Ryo

    2003-01-01

    In the year 2002, two experiments at CERN succeeded in producing cold antihydrogen atoms, first ATHENA and subsequently ATRAP. Following on these results, it is now feasible to use antihydrogen to study the properties of antimatter. In the ATHENA experiment, the cold antihydrogen atoms are produced by mixing large amounts of antiprotons and positrons in a nested Penning trap. The complicated behaviors of the charged particles are controlled and monitored by plasma manipulation techniques. The antihydrogen events are studied using position sensitive detectors and the evidence of production of antihydrogen atoms is separated out with the help of analysis software. This thesis covers the first production of cold antihydrogen in the first section as well as the further studies of cold antihydrogen performed by using the plasma control techniques in the second section.

  14. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6).

    Science.gov (United States)

    Ke, Haochen; Lisy, James M

    2015-10-14

    The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.

  15. New method for immobilization of biomolecules using preirradiation grafting at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liang Chang Dong; Hoffman, A.S.

    1986-01-01

    A new method of biomolecule immobilization is described in which a monomer-conjugated enzyme (asparaginase, Asp) is grafted together with free monomer (acrylamide, AAm) onto a cellulose sheet which had been preirradiated in a /sup 60/Co source. The preirradiation and grafting steps are carried out in air at - 78/sup 0/C and in vacuum at 0/sup 0/C respectively. The grafting is probably caused by trapped radicals. The immobilized enzyme retains significant activity and is stable to storage. The technique is applicable to immobilization of a wide variety of biomolecules, such as enzymes, antibodies and drugs. The products may be used for therapeutic or diagnostic applications.

  16. Induction of Biomolecules in Mature Leaves of Terminalia arjuna Due to Feeding of Antheraea mylitta Drury

    Directory of Open Access Journals (Sweden)

    G. Abraham

    2004-01-01

    Full Text Available Terminalia arjuna is an important food plant of the tasar silkworm, Antheraea mylitta Drury. In this study, we investigated the induction of biomolecules in mature leaves of these plants subjected to insect feeding. Increase in total tannin content, lipid peroxidation, and trypsin inhibitor activity have been observed in mature leaves damaged by the insects. The growth rate of Vth instar larvae of A. mylitta fed on previously damaged foliage reduced by 87.1%. Induction of biomolecules for defense mechanisms in relation to herbivore damage has been discussed.

  17. Photopatterning of self assembled monolayers on oxide surfaces for the selective attachment of biomolecules.

    Science.gov (United States)

    Hazarika, Pompi; Behrendt, Jonathan M; Petersson, Linn; Wingren, Christer; Turner, Michael L

    2014-03-15

    The immobilization of functional biomolecules to surfaces is a critical process for the development of biosensors for disease diagnostics. In this work we report the patterned attachment of single chain fragment variable (scFv) antibodies to the surface of metal oxides by the photodeprotection of self-assembled monolayers, using near-UV light. The photodeprotection step alters the functionality at the surface; revealing amino groups that are utilized to bind biomolecules in the exposed regions of the substrate only. The patterned antibodies are used for the detection of specific disease biomarker proteins in buffer and in complex samples such as human serum. © 2013 Elsevier B.V. All rights reserved.

  18. A new method for immobilization of biomolecules using preirradiation grafting at low temperature

    International Nuclear Information System (INIS)

    Liang Chang Dong; Hoffman, A.S.

    1986-01-01

    A new method of biomolecule immobilization is described in which a monomer-conjugated enzyme (asparaginase, Asp) is grafted together with free monomer (acrylamide, AAm) onto a cellulose sheet which had been preirradiated in a 60 Co source. The preirradiation and grafting steps are carried out in air at - 78 0 C and in vacuum at 0 0 C respectively. The grafting is probably caused by trapped radicals. The immobilized enzyme retains significant activity and is stable to storage. The technique is applicable to immobilization of a wide variety of biomolecules, such as enzymes, antibodies and drugs. The products may be used for therapeutic or diagnostic applications. (author)

  19. Fabrication of Biomolecule Microarrays Using Rapid Photochemical Surface Patterning in Thiol-Ene-Based Microfluidic Devices.

    Science.gov (United States)

    Jönsson, Alexander; Lafleur, Josiane P

    2018-01-01

    In many biochip applications, it is advantageous to be able to immobilize biomolecules at specific locations on the surface of solid supports. In this protocol, we describe a photochemical surface patterning procedure based on thiol-ene/yne photochemistry which allows for the simple and rapid selective patterning of biomolecules on thiol-ene solid supports. We describe the preparation of solid supports which are required for the immobilization, including porous monoliths, as well as two different immobilization schemes based on biotin-streptavidin interactions and covalent linkage via free amino groups respectively.

  20. Study of interactions between cells and microbubbles in high speed centrifugation field for biomolecule delivery.

    Science.gov (United States)

    He, Chuan; Chen, Jie

    2014-01-01

    Biomolecule delivery has a very wide range of applications in biology and medicine. In this study, a microbubble based delivery method was developed. In a high centrifugation field, cells deform and collide with microbubbles to induce intracellular pathways on cell membranes. As a result, biomaterials can then easily enter cells. Experimental results show that this delivery method can achieve high delivery efficiency. Simulation results showed that cells with more deformed structure experienced higher strain on cell membranes than cells with less deformed structure. The models can help explain how centrifugation affects cell membrane permeability. By controlling cell morphology and its mechanical properties, high biomolecule delivery efficiency can be achieved.

  1. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  2. Real-time monitoring and manipulation of single bio-molecules in free solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hung-Wing [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored

  3. Flu and Colds: In Depth

    Science.gov (United States)

    ... to prevent colds or relieve cold symptoms. Andrographis (Andrographis paniculata) Chinese herbal medicines Green tea Guided imagery Hydrotherapy ... measurements (VAS) to assess the effectiveness of standardized Andrographis paniculata extract SHA-10 in reducing the symptoms of ...

  4. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  5. High-density nanopore array for selective biomolecule transport.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  6. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  7. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  8. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  9. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  10. The need to be cold : cold warriors

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, L.

    2008-10-15

    This article discussed the changing climate of Ellesmere Island and the adaptation of the Inuit in response to the climate change, with particular reference to Canada's most northern community of Grise Fiord. Because of the changing climate, the vast northern landscape that the Inuit navigated for centuries by reading its subtle signs is becoming warmer, softer, and unpredictable. The geographic history and demographics of Grise Fiord were described. The community's main water supply comes from a glacier which is sinking. The negative impacts of ice shrinkage on this northern community and on the environment were presented. These included more international shipping through the Arctic, more resource exploration, a greater risk of environmental contamination, and reduced habitat for the polar bears and seals that eat, mate, and reproduce on the ice. Climate change impacts on the sea and sea ice were also discussed. Several photographs illustrating the changing climate were presented. The article noted that climate change could destroy the Inuit culture, making climate change an issue of human rights, notably the right to live connected to the land and the right to be cold. It was concluded that in one generation, Inuit were swept up by both a social and an economic upheaval. In one more generation, they will undergo an environmental shift. 13 figs.

  11. Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection

    Science.gov (United States)

    Chanda, Manash; Dey, Prithu; De, Swapnadip; Sarkar, Chandan Kumar

    2015-10-01

    In this paper a charge plasma based dielectric modulated impact ionization MOSFET (CP-DIMOSFET) has been proposed for the first time to ease the label free detection of biomolecules. The concept of CP-DIMOSFET is proposed and analyzed on basis of simulated data using SILVACO ATLAS. Low thermal budgeting and thin silicon layer without any dopant implantations make the proposed structure advantageous compared to the existing MOSFET based biosensors. The results show that the proposed device is capable to detect the presence of biomolecules. Simple fabrication schemes, miniaturization, high sensitivity, dominance of dielectric modulation make the proposed biosensor a promising one that could one day revolutionize the healthcare industry.

  12. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  13. Progress with cold antihydrogen

    CERN Document Server

    Charlton, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Johnson, I; Jørgensen, L V; Kellerbauer, A G; Lagomarsino, V; Landua, Rolf; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; Van der Werf, D P; Yamazaki, Y; Zurlo, N

    2006-01-01

    The creation of cold antihydrogen by the ATHENA and ATRAP collaborations, working at CERN's unique Antiproton Decelerator (AD) facility, has ushered in a new era in atomic physics. This contribution will briefly review recent results from the ATHENA experiment. These include discussions of antiproton slowing down in a cold positron gas during antihydrogen formation, information derived on the dependence of the antihydrogen formation rate upon the temperature of the stored positron plasma and, finally, upon the spatial distribution of the emitted anti-atoms. We will discuss the implications of these studies for the major outstanding goal of trapping samples of antihydrogen for precise spectroscopic comparisons with hydrogen. The physics motivations for undertaking these challenging experiments will be briefly recalled.

  14. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  15. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  16. Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells.

    Science.gov (United States)

    Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi

    2014-01-01

    We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.

  17. The CMS COLD BOX

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    The CMS detector is built around a large solenoid magnet. This takes the form of a cylindrical coil of superconducting cable that generates a field of 3.8 Tesla: about 100,000 times the magnetic field of the Earth. To run, this superconducting magnet needs to be cooled down to very low temperature with liquid helium. Providing this is the job of a compressor station and the so-called “cold box”.

  18. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  19. Engine Cold Start

    Science.gov (United States)

    2015-09-01

    matching pre- calibrated amplifier • BEI Shaft Encoder (0.2 CAD) • Wolff Instrumented Injector The high speed data was recorded and post-processed by...14. ABSTRACT These fuels were used for testing a GEP 6.5L turbocharged V-8 diesel engine operation in a cold box. This engine architecture is...Z39.18 UNCLASSIFIED UNCLASSIFIED v EXECUTIVE SUMMARY A fuel’s cetane number is very important for the operation of modern diesel

  20. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  1. Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer.

    Science.gov (United States)

    Dinca, V; Ranella, A; Farsari, M; Kafetzopoulos, D; Dinescu, M; Popescu, A; Fotakis, C

    2008-10-01

    The direct-writing technique laser-induced forward transfer has been employed for the micro-array printing of liquid solutions of the enzyme horseradish peroxidase and the protein Titin on nitrocellulose solid surfaces. The effect of two UV laser pulse lengths, femtosecond and nanosecond has been studied in relation with maintaining the activity of the transferred biomolecules. The quantification of the active biomolecules after transfer has been carried out using Bradford assay, quantitative colorimetric enzymatic assay and fluorescence techniques. Spectrophotometric measurements of the HRP and the Titin activity as well as chromatogenic and fluorescence assay studies have revealed a connection between the properties of the deposited, biologically active biomolecules, the experimental conditions and the target composition. The bioassays have shown that up to 78% of the biomolecules remained active after femtosecond laser transfer, while this value reduced to 54% after nanosecond laser transfer. The addition of glycerol in a percentage up to 70% in the solution to be transferred has contributed to the stabilization of the micro-array patterns and the increase of their resolution.

  2. Microwave synthesis of metal nanocatalysts for the electrochemical oxidation of small biomolecules

    DEFF Research Database (Denmark)

    Jensen, Kathrine Schiørring Steen; Sun, Hongyu; Werchmeister, Rebecka Maria Larsen

    2017-01-01

    Electrochemical oxidation of small biomolecules provides an approach to generate clean energy from a sustainable resource. It serves as a principle for anode reactions in fuel cells to convert energy stored in chemical bonds into electrical power. Efficient and robust nanocatalysts are essential ...

  3. A photocleavable affinity tag for the enrichment of alkyne-modified biomolecules

    NARCIS (Netherlands)

    Koopmans, Timo; Dekker, Frank J.; Martin, Nathaniel I.

    2012-01-01

    A new photocleavable affinity tag for use in the enrichment of alkyne-labelled biomolecules is reported. The tag is prepared via a concise synthetic route using readily available materials. The photolytic conditions employed for cleavage of the tag provide for a clean release of enriched

  4. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Gennaro, Ane Kold Di; Neves Petersen, Teresa

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demons......, with a fine structured interference pattern superimposed. (C) 2010 Optical Society of America...

  5. Nanocoating for biomolecule delivery using layer-by-layer self-assembly.

    Science.gov (United States)

    Keeney, M; Jiang, X Y; Yamane, M; Lee, M; Goodman, S; Yang, F

    2015-11-07

    Since its introduction in the early 1990s, layer-by-layer (LbL) self-assembly of films has been widely used in the fields of nanoelectronics, optics, sensors, surface coatings, and controlled drug delivery. The growth of this industry is propelled by the ease of film manufacture, low cost, mild assembly conditions, precise control of coating thickness, and versatility of coating materials. Despite the wealth of research on LbL for biomolecule delivery, clinical translation has been limited and slow. This review provides an overview of methods and mechanisms of loading biomolecules within LbL films and achieving controlled release. In particular, this review highlights recent advances in the development of LbL coatings for the delivery of different types of biomolecules including proteins, polypeptides, DNA, particles and viruses. To address the need for co-delivery of multiple types of biomolecules at different timing, we also review recent advances in incorporating compartmentalization into LbL assembly. Existing obstacles to clinical translation of LbL technologies and enabling technologies for future directions are also discussed.

  6. High sensitivity detection of desorbed biomolecules by photoionization with tunable VUV

    International Nuclear Information System (INIS)

    Moore, J.F.; Calaway, W.F.; Veryovkin, I.V.; Pellin, M.J.; Lewellen, J.W.; Li, Y.; Milton, S.V.; King, B.V.

    2004-01-01

    Full text: The spectral region from 7 to 11eV has two attributes that make it attractive for biomolecule photoionization: 1. high photoionization cross sections, leading to high detection efficiency, and 2. overlap with nearly all first ionization energies of biomolecules, allowing possible control over fragmentation by accessing different final states via tuning. The lack of available tunable lasers in this energy range has generally hindered exploitation of these features thus far. A free-electron laser in operation at Argonne National Laboratory provides high pulse energy, widely tunable VUV pulses of 300 fs duration. Coupled with a novel time-of-flight mass spectrometer, this laser is able to photoionize and detect biomolecules, including peptides and nucleosides. Either laser desorption or primary ion beams are used to desorb sample material, followed by photoionization with a VUV laser. The instrument uses novel ion optics to extract photoions from a large volume while maintaining high mass resolution. This approach is capable of yielding dramatically improved detection limits over more conventional methods such as MALDI and SIMS. In the case of the common peptide substance P, for example, a substantial improvement over the MALDI signal was observed using VUV photoionization with very little observed fragmentation of the molecule. Nucleosides and cisplatin were also measured with typically order of magnitude improvements in signal. These and other examples show clearly the benefits that can be obtained in high sensitivity mass spectrometry of biomolecules with the increasing availability of VUV laser sources

  7. Preparation of Biomolecule Microstructures and Microarrays by Thiol–ene Photoimmobilization

    NARCIS (Netherlands)

    Weinrich, Dirk; Köhn, Maja; Jonkheijm, Pascal; Westerlind, Ulrika; Dehmelt, Leif; Engelkamp, Hans; Christianen, Peter C.M.; Kuhlmann, Jürgen; Maan, Jan C.; Nüsse, Dirk; Schröder, Hendrik; Wacker, Ron; Voges, Edgar; Breinbauer, Rolf; Kunz, Horst; Niemeyer, Christof M.; Waldmann, Herbert

    2010-01-01

    A mild, fast and flexible method for photoimmobilization of biomolecules based on the light-initiated thiol–ene reaction has been developed. After investigation and optimization of various surface materials, surface chemistries and reaction parameters, microstructures and microarrays of biotin,

  8. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  9. In situ biomolecule production by bacteria; a synthetic biology approach to medicine.

    Science.gov (United States)

    Flores Bueso, Yensi; Lehouritis, Panos; Tangney, Mark

    2018-04-10

    The ability to modify existing microbiota at different sites presents enormous potential for local or indirect management of various diseases. Because bacteria can be maintained for lengthy periods in various regions of the body, they represent a platform with enormous potential for targeted production of biomolecules, which offer tremendous promise for therapeutic and diagnostic approaches for various diseases. While biological medicines are currently limited in the clinic to patient administration of exogenously produced biomolecules from engineered cells, in situ production of biomolecules presents enormous scope in medicine and beyond. The slow pace and high expense of traditional research approaches has particularly hampered the development of biological medicines. It may be argued that bacterial-based medicine has been "waiting" for the advent of enabling technology. We propose that this technology is Synthetic Biology, and that the wait is over. Synthetic Biology facilitates a systematic approach to programming living entities and/or their products, using an approach to Research and Development (R&D) that facilitates rapid, cheap, accessible, yet sophisticated product development. Full engagement with the Synthetic Biology approach to R&D can unlock the potential for bacteria as medicines for cancer and other indications. In this review, we describe how by employing Synthetic Biology, designer bugs can be used as drugs, drug-production factories or diagnostic devices, using oncology as an exemplar for the concept of in situ biomolecule production in medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The Polygonal Model: A Simple Representation of Biomolecules as a Tool for Teaching Metabolism

    Science.gov (United States)

    Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo

    2018-01-01

    Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student.…

  11. Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Rubovič, Peter; Pysanenko, Andriy; Lengyel, Jozef; Nachtigallová, Dana; Fárník, Michal

    2016-01-01

    Roč. 120, č. 27 (2016), s. 4720-4730 ISSN 1089-5639 R&D Projects: GA ČR GA14-14082S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : doped nanoparticles * argon * biomolecule s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.847, year: 2016

  12. Systematic methods for defining coarse-grained maps in large biomolecules.

    Science.gov (United States)

    Zhang, Zhiyong

    2015-01-01

    Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.

  13. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    Science.gov (United States)

    Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.

    2010-01-01

    Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041

  14. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Prospects of biomolecule sequencing with the techniques of translocation through nanopores: A review

    International Nuclear Information System (INIS)

    Nosik, V. L.; Rudakova, E. B.

    2013-01-01

    The interest in the functional properties of biomolecules in native solutions (in particular, their interaction with membranes) constantly increases with accumulation of data on the macromolecular structure, obtained by X-ray diffraction (with synchrotron radiation sources), nuclear magnetic resonance, and mass spectrometry; this interest is closely related to the development of new technologies of sequencing (i.e., determining the sequence of nucleotides in DNA biomolecule). One of the most promising “physical” approaches to sequencing is the application of methods based on the use of nanochannels or nanopores, through which biomolecules pass in ionic solutions under an electric field applied. A nanopore provides spatial localization of molecules and makes it possible to detect a signal (electric, fluorescent, etc.) from an individual nucleotide. In view of the development of new high-intensity pulsed X-ray sources, the popularity of fluorescence analysis constantly increases. The existing methods for simulating the motion of biomolecules and interpreting their structure, sequencing techniques, and the prospects of further development of investigations in this field are discussed

  16. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Pedersen, Lars H.; Hoiby, Poul E.

    2004-01-01

    We demonstrate highly efficient evanescent-wave detection of fluorophore-labeled biomolecules in aqueous solutions positioned in the air holes of the microstructured part of a photonic crystal fiber. The air-suspended silica structures located between three neighboring air holes in the cladding c...

  17. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    Science.gov (United States)

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  18. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules

    Science.gov (United States)

    Knežević, Nikola Ž.; Durand, Jean-Olivier

    2015-01-01

    Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues.Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues. Dedicated to Professor Jeffrey I. Zink on the occasion of his 70th birthday.

  19. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  20. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  1. Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation.

    Science.gov (United States)

    Kumar, Saroj; Kumar, Dileep; Ahirwar, Rajesh; Nahar, Pradip

    2016-10-01

    Bioconjugation and functionalization of polymer surfaces are two major tasks in materials chemistry which are accomplished using a variety of coupling agents. Immobilization of biomolecules onto polymer surfaces and the construction of bioconjugates are essential requirements of many biochemical assays and chemical syntheses. Different linkers with a variety of functional groups are used for these purposes. Among them, the benzophenones, aryldiazirines, and arylazides represent the most commonly used photolinker to produce the desired chemical linkage upon their photo-irradiation. In this review, we describe the versatile applications of 4-fluoro-3-nitrophenyl azide, one of the oldest photolinkers used for photoaffinity labeling in the late 1960s. Surprisingly, this photolinker, historically known as 1-fluoro-2-nitro-4-azidobenzene (FNAB), has remained unexplored for a long time because of apprehension that FNAB forms ring-expanded dehydroazepine as a major product and hence cannot activate an inert polymer. The first evidence of photochemical activation of an inert surface by FNAB through nitrene insertion reaction was reported in 2001, and the FNAB-activated surface was found to conjugate a biomolecule without any catalyst, reagent, or modification. FNAB has distinct advantages over perfluorophenyl azide derivatives, which are contemporary nitrene-generating photolinkers, because of its simple, single-step preparation and ease of thermochemical and photochemical reactions with versatile polymers and biomolecules. Covering these aspects, the present review highlights the flexible chemistry of FNAB and its applications in the field of surface engineering, immobilization of biomolecules such as antibodies, enzymes, cells, carbohydrates, oligonucleotides, and DNA aptamers, and rapid diagnostics. Graphical Abstract An overview of the FNAB-engineered activated polymer surfaces for covalent ligation of versatile biomolecules.

  2. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  3. Trajectory calculations for the ternary cold fission of 252Cf

    International Nuclear Information System (INIS)

    Misicu, S.

    1998-01-01

    We compute the final kinetic energies of the fragments emitted in the light charged particle accompanied by cold fission of 252 Cf taking into account the deformation and the finite-size effects of the fragments and integrating the equations of motion for a three-body system subjected only to Coulomb forces. The initial conditions for the trajectory calculations were derived in the framework of a deformed cluster model which includes also the effect due to the absorbative nuclear part. Although the distributions of initial kinetic energies are rather broad we show that in cold fission the initial conditions can be better determined than in the usual spontaneous fission

  4. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution

    Science.gov (United States)

    Krishnan, M.

    2017-05-01

    We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or

  5. Internal energy effects on the solvation and reactivity of multiply charged biomolecules for electrospray ionization mass spectroscopy. [Bovine ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Light-Wahl, K.J.; Winger, B.E.; Rockwood, A.L.; Smith, R.D.

    1992-06-01

    Mild (capillary) interface conditions which do not completely desolvate the ions of proteins in electrospray ionization mass spectrometry (ESI-MS) may be required to probe the higher order structures and weak associations. For the small protein bovine ubiquitin, two ion distributions (unsolvated ions and unresolved solvated ions) were observed. The resolvable solvation for leucine-enkephalin with methanol and water shows that the use of countercurrent N{sub 2} flow at the capillary affects the solvation observed. 2 figs. (DLC)

  6. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Sanford, L.

    1989-01-01

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  7. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    International Nuclear Information System (INIS)

    Lyu, Hong-Kun; Kim, Dong-Sun; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun; Park, Hey-Jung; Park, Chin-Sung; Lim, Geun-Bae

    2004-01-01

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At V DS = -5 V and V GS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  8. Effect of biomolecules adsorption on oxide layers developed on metallic materials used in cooling water systems

    International Nuclear Information System (INIS)

    Torres-Bautista, Blanca-Estela

    2014-01-01

    This thesis was carried out in the frame of the BIOCOR ITN European project, in collaboration with the industrial partner RSE S.p.A. (Italy). Metallic materials commonly used in cooling systems of power plants may be affected by bio-corrosion induced by biofilm formation. The objective of this work was to study the influence of biomolecules adsorption, which is the initial stage of biofilm formation, on the electrochemical behaviour and the surface chemical composition of three metallic materials (70Cu-30Ni alloy, 304L stainless steel and titanium) in seawater environments. In a first step, the interactions between a model protein, the bovine serum albumin (BSA), and the surface of these materials were investigated. Secondly, tightly bound (TB) and loosely bound (LB) extracellular polymeric substances (EPS), that play a fundamental role in the different stages of biofilm formation, maturation and maintenance, were extracted from Pseudomonas NCIMB 2021 marine strain, and their effects on oxide layers were also evaluated. For that purpose, electrochemical measurements (corrosion potential E(corr) vs time, polarization curves and electrochemical impedance spectroscopy (EIS)) performed during the very first steps of oxide layers formation (1 h immersion time) were combined to surface analysis by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). Compared to 70Cu-30Ni alloy in static artificial seawater (ASW) without biomolecules, for which a thick duplex oxide layer (outer redeposited Cu 2 O layer and inner oxidized nickel layer) is shown, the presence of BSA, TB EPS and LB EPS leads to a mixed oxide layer (oxidized copper and nickel) with a lower thickness. In the biomolecules-containing solutions, this oxide layer is covered by an adsorbed organic layer, mainly composed of proteins. A model is proposed to analyse impedance data obtained at E(corr). The results show a slow-down of the anodic reaction in the presence

  9. Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent

    International Nuclear Information System (INIS)

    Gilmore, Joel; McKenzie, Ross H

    2005-01-01

    We give a theoretical treatment of the interaction of electronic excitations (excitons) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Foerster resonant energy transfer

  10. The Enceladus Ionizing Radiation Environment: Implications for Biomolecules

    Science.gov (United States)

    Teodoro, L. A.; Elphic, R. C.; Davila, A. F.; McKay, C.; Dartnell, L.

    2016-12-01

    Enceladus' subsurface ocean is a possible abode for life, but it is inaccessible with current technology. However, icy particles and vapor are being expelled into space through surface fractures known as Tiger Stripes, forming a large plume centered in the South Polar Terrains. Direct chemical analyses by Cassini have revealed salts and organic compounds in a significant fraction of plume particles, which suggests that the subsurface ocean is the main source of materials in the plume (i.e. frozen ocean spray). While smaller icy particles in the plume reach escape velocity and feed Saturn's E-ring, larger particles fall back on the moon's surface, where they accumulate as icy mantling deposits at practically all latitudes. The organic content of these fall-out materials could be of great astrobiological relevance. Galactic Cosmic Rays (GCRs) that strike both Enceladus' surface and the lofted icy particles produce ionizing radiation in the form of high-energy electrons, protons, gamma rays, neutrons and muons. An additional source of ionizing radiation is the population of energetic charged particles in Saturn's magnetosphere. The effects of ionizing radiation in matter always involve the destruction of chemical bonds and the creation of free radicals. Both affect organic matter, and can damage or destroy biomarkers over time. Using ionizing radiation transport codes, we recreated the radiation environment on the surface of Enceladus, and evaluated its possible effects on organic matter (including biomarkers) in the icy mantling deposits. Here, we present full Monte-Carlo simulations of the nuclear reactions induced by the GCRs hitting Enceladus's surface using a code based on the GEANT-4 toolkit for the transport of particles. To model the GCR primary spectra for Z= 1-26 (protons to iron nuclei) we assumed the CREAME96 model under solar minimum, modified to take into account Enceladus' location. We considered bulk compositions of: i) pure water ice, ii) water ice

  11. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  12. Efficacy of zinc against common cold viruses: an overview.

    Science.gov (United States)

    Hulisz, Darrell

    2004-01-01

    To review the laboratory and clinical evidence of the medicinal value of zinc for the treatment of the common cold. Published articles identified through Medline (1980-2003) using the search terms zinc, rhinovirus, and other pertinent subject headings. Additional sources were identified from the bibliographies of the retrieved articles. By the author. By the author. Human rhinoviruses, by attaching to the nasal epithelium via the intracellular adhesion molecule-1 (ICAM-1) receptor, cause most colds. Ionic zinc, based on its electrical charge, also has an affinity for ICAM-1 receptor sites and may exert an antiviral effect by attaching to the ICAM-1 receptors in the rhinovirus structure and nasal epithelial cells. Clinical tests of zinc for treatment of common colds have been inconsistent, primarily because of study design, blinding, and lozenge contents. Early formulations of lozenges also were unpalatable. In three trials with similar study designs, methodologies, and efficacy assessments, zinc effectively and significantly shortened the duration of the common cold when it was administered within 24 hours of the onset of symptoms. Recent reports of trials with zinc gluconate administered as a nasal gel have supported these findings; in addition, they have shown that treatment with zinc nasal gel is effective in reducing the duration and severity of common cold symptoms in patients with established illness. Clinical trial data support the value of zinc in reducing the duration and severity of symptoms of the common cold when administered within 24 hours of the onset of common cold symptoms. Additional clinical and laboratory evaluations are warranted to further define the role of ionic zinc for the prevention and treatment of the common cold and to elucidate the biochemical mechanisms through which zinc exerts its symptom-relieving effects.

  13. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  14. Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules

    Science.gov (United States)

    Ajay; Narang, Rakhi; Saxena, Manoj; Gupta, Mridula

    2015-12-01

    In this paper, an analytical model for gate drain underlap channel Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DG-MOSFET) for label free electrical detection of biomolecules has been proposed. The conformal mapping technique has been used to derive the expressions for surface potential, lateral electric field, energy bands (i.e. conduction and valence band) and threshold voltage (Vth). Subsequently a full drain current model to analyze the sensitivity of the biosensor has been developed. The shift in the threshold voltage and drain current (after the biomolecules interaction with the gate underlap channel region of the MOS transistor) has been used as a sensing metric. All the characteristic trends have been verified through ATLAS (SILVACO) device simulation results.

  15. Tiny Grains Give Huge Gains: Nanocrystal–Based Signal Amplification for Biomolecule Detection

    Science.gov (United States)

    Tong, Sheng; Ren, Binbin; Zheng, Zhilan; Shen, Han; Bao, Gang

    2013-01-01

    Nanocrystals, despite their tiny sizes, contain thousands to millions of atoms. Here we show that the large number of atoms packed in each metallic nanocrystal can provide a huge gain in signal amplification for biomolecule detection. We have devised a highly sensitive, linear amplification scheme by integrating the dissolution of bound nanocrystals and metal-induced stoichiometric chromogenesis, and demonstrated that signal amplification is fully defined by the size and atom density of nanocrystals, which can be optimized through well-controlled nanocrystal synthesis. Further, the rich library of chromogenic reactions allows implementation of this scheme in various assay formats, as demonstrated by the iron oxide nanoparticle linked immunosorbent assay (ILISA) and blotting assay developed in this study. Our results indicate that, owing to the inherent simplicity, high sensitivity and repeatability, the nanocrystal based amplification scheme can significantly improve biomolecule quantification in both laboratory research and clinical diagnostics. This novel method adds a new dimension to current nanoparticle-based bioassays. PMID:23659350

  16. Large scale commercial fabrication of high quality graphene-based assays for biomolecule detection

    Science.gov (United States)

    Lerner, Mitchell; Gao, Yingning; Goldsmith, Brett; Barron, Francie

    Large numbers of high quality graphene transistors with mobility approximately 5000 cm2 / V * s were fabricated by chemical vapor deposition and packaged into ceramic carriers with an open cavity design. The ceramic carrier is compatible with standard electronics assembly, enabling the readout of graphene properties on the benchtop without large, expensive probing systems. After chemical functionalization, these sensors demonstrate sensitivity in the pM range and selectivity to many classes of biomolecules as a three terminal liquid-gated field effect transistor. High precision measurements of protein kinetics captured using this technology, commercially known as AGILE R100, are comparable and can exceed the capabilities of state-of-the-art biomolecule characterization tools. Recently published in Sensors and Actuators B

  17. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review.

    Science.gov (United States)

    Ÿztürk, Sibel; Ÿalık, Pınar; Ÿzdamar, Tunçer H

    2016-04-01

    Bacillus subtilis is a highly promising production system for various biomolecules. This review begins with the algorithm of fed-batch operations (FBOs) and then illustrates the approaches to design the initial production medium and/or feed stream. Additionally, the feeding strategies developed with or without feedback control for fed-batch B. subtilis fermentations were compiled with a special emphasis on recombinant protein (r-protein) production. For biomolecule production by wild-type B. subtilis, due to the different intracellular production patterns, no consensus exists on the FBO strategy that gives the maximum productivity, whereas for r-protein production appropriate feeding strategies vary depending on the promoter used. Thus, we conclude that the B. subtilis community is still seeking an approved strong promoter and generalized FBO strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    International Nuclear Information System (INIS)

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 μm) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  19. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications.

    Science.gov (United States)

    Oh, Ju-Hwan; Park, Do Hyun; Joo, Jang Ho; Lee, Jae-Seung

    2015-11-01

    The recent synthetic development of a variety of nanoparticles has led to their widespread application in diagnostics and therapeutics. In particular, the controlled size and shape of nanoparticles precisely determine their unique chemical and physical properties, which is highly attractive for accurate analysis of given systems. In addition to efforts toward controlling the synthesis and properties of nanoparticles, the surface functionalization of nanoparticles with biomolecules has been intensively investigated since the mid-1990s. The complicated yet programmable properties of biomolecules have proved to substantially enhance and enrich the novel functions of nanoparticles to achieve "smart" nanoparticle materials. In this review, the advances in chemical functionalization of four types of representative nanoparticle with DNA and protein molecules in the past five years are critically reviewed, and their future trends are predicted.

  20. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A simplified biomolecule attachment strategy for biosensing using a porous Si oxide interferometer

    Science.gov (United States)

    Perelman, Loren A.; Schwartz, Michael P.; Wohlrab, Aaron M.; VanNieuwenhze, Michael S.; Sailor, Michael J.

    2008-01-01

    A simple strategy for linking biomolecules to porous Si surfaces and detecting peptide/drug binding is described. Porous Si is prepared using an electrochemical etch and then thermally oxidized by heating in ambient atmosphere. Bovine serum albumin (BSA) is then non-covalently adsorbed to the inner pore walls of the porous Si oxide (PSiO2) matrix. The BSA layer is used as a linker for covalent attachment of the peptide Ac-L-Lysine-D-Alanine-D-Alanine (KAA) using published bioconjugation chemistry. BSA-coated surfaces functionalized with KAA display specificity for the glycopeptide vancomycin while resisting adsorption of non-specific reagents. While the biomolecule attachment strategy reported here is used to bind peptides, the scheme can be generalized to the linking of any primary amine-containing molecule to PSiO2 surfaces. PMID:18458749

  2. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  3. Experiments in cold fusion

    International Nuclear Information System (INIS)

    Palmer, E.P.

    1986-01-01

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models

  4. Etymology of transition metal biomolecules as a learning aid in Biological Chemistry

    International Nuclear Information System (INIS)

    Silva, Jose A.L. da

    2013-01-01

    Numerous functional biomolecules are associated with metals, i.e. the metallobiomolecules; more specifically, some are dependent on transition metals required for several crucial biological roles. Nevertheless, their names can lead to ambiguous interpretations concerning the properties and performances of this group of biological molecules. Their etymology may be useful by providing a more perceptive insight into their features. However, etymology can lead to incongruous conclusions, requiring an especially careful approach to prevent errors. Examples illustrating these subjects shall be examined (author)

  5. Novel triphenylamine-cored two-photon absorbing dyes for labeling of biomolecules

    International Nuclear Information System (INIS)

    Xiao Haibo; Mei Chong; Wang Yaochuan; Li, Hui; Qian Shixiong; Yin Hongyao; Xu Zhisong

    2011-01-01

    Highlights: → Two novel triphenylamine-cored chromophores were synthesized. → These two dyes have sizable two-photon absorption cross-section at 800 nm. → They possess reasonable water solubility and are suitable as labels in aqueous biological environments. → These dyes have strong chelating ability. → They display a large set of reactivity for coupling to biomolecules. - Abstract: Two novel, V-shaped and Y-shaped dipicolinate derivatives branched from triphenylamine, {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinyl]}-N-phenyl-N-{4- [(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]}aniline (1) and {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N,N-bis {4-[(E)-2-(2,6-dimethoxycarbonyl pyridin-4-yl)vinylphenyl]}aniline (2) were synthesized. These compounds were designed for large two-photon absorption and in particular for labeling of biomolecules. Their linear absorption, fluorescence properties and their two-photon absorption properties as well as two-photon fluorescence cell imaging were examined. When excited at 800 nm, the two-photon absorption cross-section values of chromophores 1 and 2 in THF were 208 GM, 376 GM, respectively. These two-photon absorbing dyes possess reasonable water solubility, strong chelating ability and display a large set of reactivity for coupling to biomolecules, which are apparently due to the two methoxycarbonyl groups in pyridine ring. This work suggests that chromophores 1 and 2 are promising labels potentially applicable for the tracking of biomolecules using two-photon scanning microscopy.

  6. Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.

    Science.gov (United States)

    Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C

    2014-09-01

    Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue

  7. Development of radioactively labelled cancer seeking biomolecules for targeted radiotherapy. Uruguay

    International Nuclear Information System (INIS)

    Balter, H.; Verdera, S.

    2000-01-01

    The main objective of this project is the labelling and quality control of biomolecules with radionuclides beta emitters with high purity and stability. Techniques and methodology for labelling with 188 Re, 153 Sm, and 125 I as well as quality controls were done according to the recommendations of the first research coordination meeting of this CRP. Also some useful chelators reported in the literature were synthesized in our laboratory)

  8. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-01-01

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments

  9. Intensity of diffracted X-rays from biomolecules with radiation damage caused by strong X-ray pulses

    International Nuclear Information System (INIS)

    Kai, Takeshi; Tokuhisa, Atsushi; Moribayashi, Kengo; Fukuda, Yuji; Kono, Hidetoshi; Go, Nobuhiro

    2014-01-01

    In order to realize the coherent X-ray diffractive imaging of single biomolecules, the diffraction intensities, per effective pixel of a single biomolecule with radiation damage, caused by irradiation using a strong coherent X-ray pulse, were examined. A parameter survey was carried out for various experimental conditions, using a developed simulation program that considers the effect of electric field ionization, which was slightly reported on in previous studies. The two simple relationships among the parameters were identified as follows: (1) the diffraction intensity of a biomolecule slightly increases with the incident X-ray energy; and that (2) the diffraction intensity is approximately proportional to the target radius, when the radius is longer than 400 Å, since the upper limit of the incident intensity for damage to the biomolecules marginally changes with respect to the target radius. (author)

  10. A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.; Bump, E.; Sahu, S.K.; Berman, R.M.; Kassis, A.I.

    1993-01-01

    A novel method is described to quantitate radiation-induced hydroxyl radicals in the vicinity of biomolecules in aqueous solutions. Coumarin-3-carboxylic acid (CCA) is a non-fluorescent molecule that, upon interaction with radiation in aqueous solution, produces fluorescent products. CCA was derivatized to its succinimidyl ester (SECCA) and coupled to free primary amines of albumin, avidin, histone-H1, polylysine, and an oligonucleotide. When SECCA-biomolecule conjugates were irradiated, the relationship between induced fluorescence and dose was linear in the dose range examined (0.01-10 Gy). The data indicate that the induction of fluorescence on SECCA-biomolecule conjugates records specifically the presence of the hydroxyl radical in the immediate vicinity of the irradiated biomolecule. The method is rapid and sensitive, uses standard instrumentation, and the sample remains available for further studies. (Author)

  11. Dual functionalized graphene oxide serves as a carrier for delivering oligohistidine- and biotin-tagged biomolecules into cells.

    Science.gov (United States)

    Jana, Batakrishna; Mondal, Goutam; Biswas, Atanu; Chakraborty, Indrani; Saha, Abhijit; Kurkute, Prashant; Ghosh, Surajit

    2013-11-01

    A versatile method of dual chemical functionalization of graphene oxide (GO) with Tris-[nitrilotris(acetic acid)] (Tris-NTA) and biotin for cellular delivery of oligohistidine- and biotin-tagged biomolecules is reported. Orthogonally functionalized GO surfaces with Tris-NTA and biotin to obtain a dual-functionalized GO (DFGO) are prepared and characterized by various spectroscopic and microscopic techniques. Fluorescence microscopic images reveal that DFGO surfaces are capable of binding oligohistidine-tagged biomolecules/proteins and avidin/biotin-tagged biomolecules/proteins orthogonally. The DFGO nanoparticles are non-cytotoxic in nature and can deliver oligohistidine- and biotin-tagged biomolecules simultaneously into the cell. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

    KAUST Repository

    Daloglu, Mustafa Ugur

    2017-03-09

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  13. Development of new probes for NMR based analysis of biomolecules' cellular functions

    International Nuclear Information System (INIS)

    Fernandes, Laetitia

    2015-01-01

    Most NMR studies are carried out in vitro, but the structure and dynamics of some biomolecules inside cells differ from those in vitro. It thus becomes interesting to analyze biomolecules such as proteins in their natural environment: the cell. Recent progress of in cell NMR allowed to better understand the behaviour of proteins: their dynamics and their interactions with other biomolecules in the cell. But the low concentration of proteins leads to low signal intensity. Moreover, the viscosity of the environment induces faster transverse relaxation, resulting in line broadening for proteins signals. The use of the Long-Lived States and Coherencies (LLS and LLC, respectively) as well as dissolution Dynamic Nuclear Polarization (dissolution-DNP) can improve NMR observations in cells. LLS were used to understand and characterize the structure of the N-terminal domain of c-Src, which is intrinsically disordered. To follow the phosphorylation of proteins, a first preliminary study of a 21-aa peptides derived from IKBa electroporated into HepG2 cell lines was carried out. (author)

  14. A novel platform based on defect-rich knotted graphene nanotubes for detection of small biomolecules

    International Nuclear Information System (INIS)

    Lan, Shumin; Song, Yingpan; Chen, Qidi; Guo, Zhiyong; Zhan, Hongbing

    2016-01-01

    Highlights: • Curvature of the SC-CNTs’ cavities had more local pressure, leading to form k-GNTs. • k-GNTs are divided into sections by knots with abundant edge-plane sites/defects. • k-GNTs exhibited excellent catalytic activity, sensitivity and reproducibility. - Abstract: Detection of disease-related small biomolecules was of great significance for clinical diagnostics and treatment. In this work, we synthesized defect-rich knotted graphene nanotubes (k-GNTs) via chemical oxidative etching of stacked-up carbon nanotubes (SC-CNTs) followed by chemical reduction, to detect disease-related small biomolecules. We further studied the electrochemical properties using three representative redox probes and analyzed their biosensitivity using five biomolecules. The k-GNT-modified electrodes exhibited excellent electrochemical response, with the lowest ΔE p and the highest k 0 . Besides, the modified electrodes could simultaneously detect and discriminate between dopamine (DA), ascorbic acid and uric acid (UA), as well as differentiate phenethylamine (PEA) and epinephrine (EP) existed in newborn rat serum, providing the wide linear detection ranges with high sensitivities for DA, UA, PEA, and EP. These excellent electrocatalytic properties could be ascribe to the unique knotted graphene nanotube structure with high proportion of defect/edge sites, large, accessible, three-dimensional, accessible surface area, fewer oxygen-containing groups and doped N atoms. Our work reveals defect-rich k-GNTs as a promising platform for further applications in electrochemical biosensing and electrocatalysis.

  15. Electron Paramagnetic Resonance of a Single NV Nanodiamond Attached to an Individual Biomolecule.

    Science.gov (United States)

    Teeling-Smith, Richelle M; Jung, Young Woo; Scozzaro, Nicolas; Cardellino, Jeremy; Rampersaud, Isaac; North, Justin A; Šimon, Marek; Bhallamudi, Vidya P; Rampersaud, Arfaan; Johnston-Halperin, Ezekiel; Poirier, Michael G; Hammel, P Chris

    2016-05-10

    Electron paramagnetic resonance (EPR), an established and powerful methodology for studying atomic-scale biomolecular structure and dynamics, typically requires in excess of 10(12) labeled biomolecules. Single-molecule measurements provide improved insights into heterogeneous behaviors that can be masked in ensemble measurements and are often essential for illuminating the molecular mechanisms behind the function of a biomolecule. Here, we report EPR measurements of a single labeled biomolecule. We selectively label an individual double-stranded DNA molecule with a single nanodiamond containing nitrogen-vacancy centers, and optically detect the paramagnetic resonance of nitrogen-vacancy spins in the nanodiamond probe. Analysis of the spectrum reveals that the nanodiamond probe has complete rotational freedom and that the characteristic timescale for reorientation of the nanodiamond probe is slow compared with the transverse spin relaxation time. This demonstration of EPR spectroscopy of a single nanodiamond-labeled DNA provides the foundation for the development of single-molecule magnetic resonance studies of complex biomolecular systems. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    International Nuclear Information System (INIS)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed

  17. Morphological Effect of Non-targeted Biomolecule-Modified MNPs on Reticuloendothelial System.

    Science.gov (United States)

    Li, Xiao; Hu, Yan; Xiao, Jie; Cheng, Dengfeng; Xiu, Yan; Shi, Hongcheng

    2015-12-01

    Magnetic nanoparticles (MNPs) with special morphology were commonly used as biomaterials, while morphological effects of non-targeted biomolecule-modified MNPs on biological behaviors were still unclear. In this research, spherical and rod-like Fe3O4 in a comparable size were synthesized and then surface-modified by bovine serum albumin (BSA) as a model of non-targeted biomolecule-modified MNPs. Morphological effects were featured by TEM and quantification of in vitro phagocytic uptake, as well as the in vivo quantification of particles in reticuloendothelial system (RES)-related organs of normal Kunming mice. For these non-targeted BSA-modified MNPs, intracellular distributions were the same, but the rod-like MNPs were more likely to be uptake by macrophages; furthermore, the BSA-modified MNPs gathered in RES-related organs soon after intravenous injection, but the rod-like ones were expelled from the lung more quickly and expelled from the spleen more slowly. These preliminary results may be referable if MNPs or other similar biomolecule-modified nanoparticles were used.

  18. Biocompatible Water Soluble Polyacrylic Acid Coated CdSe/Cu Quantum Dot Conjugates for Biomolecule Detection.

    Science.gov (United States)

    Gomaa, Ola M; Okasha, Aly; Hosni, Hany M; El-Hag Ali, Amr

    2018-01-01

    Biocompatible polyacrylic acid functionalized CdSe/Cu quantum dot conjugates were synthesized to be used for biomolecules detection. The study results demonstrate the conjugation of the 2.5-3 nm QD with gram negative bacteria with a low detection limit of 28 cfu/ml. The photoluminescence (PL) intensity was correlated to bacterial count, cellular proteins and exopolysaccharides in the tested samples. Confocal Scanning Laser Microscopy (CSLM) images showed significant QD uptake within the cells, both cytoplasm and DNA were the predominant targeted biomolecules, higher fluorescent uptake was shown in gram negative bacteria than that observed for gram positive bacteria. Moreover, PL showed that there was a distinction between live and dead cells as well as gram negative and gram positive cells. Cell viability was not affected even after 6 days (100% viability) rendering it a non-toxic QD. The method is simple and is performed in a single step within approximately 10 min as compared to multi-step protocols for classical microbial count or fluorescent dye staining. All the above results indicate that the CdSe/Cu-PAA QDs are suitable for biomolecule detection, bio-labeling and bioimaging applications.

  19. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  20. Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.

    Science.gov (United States)

    Cheng, Gong; Wang, Zhi-Gang; Denagamage, Sachira; Zheng, Si-Yang

    2016-04-27

    Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.

  1. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light.

    Science.gov (United States)

    Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan

    2017-03-09

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm 2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  2. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review.

    Science.gov (United States)

    Nadar, Shamraja S; Rao, Priyanka; Rathod, Virendra K

    2018-06-01

    An interest in the development of extraction techniques of biomolecules from various natural sources has increased in recent years due to their potential applications particularly for food and nutraceutical purposes. The presence of polysaccharides such as hemicelluloses, starch, pectin inside the cell wall, reduces the extraction efficiency of conventional extraction techniques. Conventional techniques also suffer from low extraction yields, time inefficiency and inferior extract quality due to traces of organic solvents present in them. Hence, there is a need of the green and novel extraction methods to recover biomolecules. The present review provides a holistic insight to various aspects related to enzyme aided extraction. Applications of enzymes in the recovery of various biomolecules such as polyphenols, oils, polysaccharides, flavours and colorants have been highlighted. Additionally, the employment of hyphenated extraction technologies can overcome some of the major drawbacks of enzyme based extraction such as longer extraction time and immoderate use of solvents. This review also includes hyphenated intensification techniques by coupling conventional methods with ultrasound, microwave, high pressure and supercritical carbon dioxide. The last section gives an insight on application of enzyme immobilization as a strategy for large scale extraction. Immobilization of enzymes on magnetic nanoparticles can be employed to enhance the operational performance of the system by multiple use of expensive enzymes making them industrially and economically feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea.

    Science.gov (United States)

    Kaji, Yuichi; Akiyama, Toshihiro; Segawa, Hiroki; Oshika, Tetsuro; Kano, Hideaki

    2017-11-01

    In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.

  4. Non-linear vibrational modes in biomolecules: A periodic orbits description

    International Nuclear Information System (INIS)

    Kampanarakis, Alexandros; Farantos, Stavros C.; Daskalakis, Vangelis; Varotsis, Constantinos

    2012-01-01

    Graphical abstract: Vibrational frequency shifts in Fe IV = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: ► Periodic orbits are extended to multidimensional potentials of biomolecules. ► Highly anharmonic vibrational modes and center-saddle bifurcations are detected. ► Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole–Fe IV = O species.

  5. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill, E-mail: jventon@virginia.edu

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed.

  6. Observation for really cold fragmentation of heavy nucleus

    International Nuclear Information System (INIS)

    Goverdovskij, A.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Khryachkov, V.A.

    1998-01-01

    The results of the detailed study on mass-energy charged correlations of the thorium-232 fission fragments, produced by the 5 MeV neutrons are presented. The event of the thorium nucleus really cold fragmentation into tellurium-134 and strontium-99 at the basic quantum states is identified. It is shown that the whole reaction energy is exhausted by the motion kinetic energy of the fragments in the mutual field

  7. The tamers of cold chaos; Die Dompteure des kalten Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Hergersberg, P.

    2008-07-01

    The ISS International Space Station hosts only a select number of scientific experiments - like those of GREGOR E. MORFILL and his staff at the MAX PLANCK INSTITUTE FOR EXTRATERRESTRIAL PHYSICS. These physicists whip cold plasmas consisting of charged microparticles into line in order to study their crystallization, turbulence or flow properties through a nozzle. The results of these studies are relevant for applications in medicine and the microchip industry. (orig.)

  8. Development of Cold Neutron Depth Profiling System at HANARO

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.; Sun, G. M.

    2012-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. A number of analytical techniques for depth profiling have been developed. Neutron Depth Profiling (NDP) system which was developed by Ziegler et al. is one of the leading analytical techniques. In NDP, a thermal or cold neutron beam passes through a material and interacts with certain isotopes that are known to emit monoenergetic-charged particle remaining a recoil nucleus after neutron absorption. The depth is obtained from the energy loss of those charged particles escaping surface of substrate material. For various applications of NDP technique, the Cold Neutron Depth Profiling System (CN-NDP) was developed at a neutron guide CG1 installed at the HANARO cold neutron source. In this study the design features of the cold neutron beam and target chamber for the CN-NDP system are given. Also, some experiments for the performance tests of the CN-NDP system are described

  9. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura

    2012-03-01

    Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.

  10. Monitoring the vaccine cold chain.

    OpenAIRE

    Cheriyan, E

    1993-01-01

    Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.

  11. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in

  12. Initial heating in cold cars

    NARCIS (Netherlands)

    Daanen, H.A.M.; Teunissen, L.P.J.; Hoogh, I.M. de

    2012-01-01

    During the initial minutes after entering a cold car, people feel uncomfortably cold. Six different warming systems were investigated in a small car in order to find out how to improve the feeling of comfort using 16 volunteers. The methods were: no additional warming next to a standard heating

  13. The status of cold fusion

    Science.gov (United States)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  14. Facts about the Common Cold

    Science.gov (United States)

    ... different viruses. Rhinovirus is the most common cause, accounting for 10 to 40 percent of colds. Other common cold viruses include coronavirus and ... RSS | Terms Of Use | Privacy | Sitemap Our Family Of Sites ... Introduction Risk Factors Screening Symptoms Tumor Testing Summary '; var ...

  15. Quantification of biomolecules in herring (Clupea harengus) industry processing waters and their recovery using electroflocculation and ultrafiltration

    DEFF Research Database (Denmark)

    Osman, Ali; Gringer, Nina; Svendsen, Tore

    2015-01-01

    Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF). The high......Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF...

  16. Development of cold neutron spectrometers

    International Nuclear Information System (INIS)

    Lee, Changhee; Lee, C. H.; So, J. Y.; Park, S.; Han, Y. S.; Cho, S. J.; Moon, M. K.; Choi, Y. H.; Sun, G. M.

    2012-03-01

    Cold Neutron Triple Axsis Spectrometer (Cold-TAS) Development Ο Fabrication and Installation of the Major Cold-TAS Components Ο Performance Test of the Cold-TAS □ Cold Neutron Time-of-Flight Spectrometer(DC-TOF) Development Ο Fabrication of the Major DC-TOF Components Ο Development DC-TOF Data Reduction Software □ Expected Contribution The two world-class inelastic neutron scattering instruments measure atomic or molecular scale dynamics of meV energy range. This unprecedented measurement capability in the country will enable domestic and international scientists to observe new phenomena in their materials research to obtain world class results. Especially those who work in the fields of magnetic properties of superconductors and multiferroics, molecular dynamics, etc. will get more benefit from these two instruments

  17. Charge exchange in galaxy clusters

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; de Plaa, Jelle; Raassen, A. J. J.; Shah, Chintan; Kaastra, Jelle S.

    2018-03-01

    Context. Though theoretically expected, the charge exchange emission from galaxy clusters has never been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As previously suggested, a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. Aim. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM-Newton. Methods: We introduce a sample of 21 clusters observed with the RGS. In order to search for O VIII charge exchange, the sample selection criterion is a >35σ detection of the O VIII Lyα line in the archival RGS spectra. The dominating thermal plasma emission is modeled and subtracted with a two-temperature thermal component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. Results: By the residual stacking, we do find a hint of a line-like feature at 14.82 Å, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8σ, and the average equivalent width is 2.5 × 10-4 keV. We further demonstrate that the putative feature can be barely affected by the systematic errors from continuum modeling and instrumental effects, or the atomic uncertainties of the neighboring thermal lines. Conclusions: Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we expect that the oxygen abundance could have been overestimated by 8-22% in previous X

  18. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery".

    Science.gov (United States)

    Mahon, Eugene; Salvati, Anna; Baldelli Bombelli, Francesca; Lynch, Iseult; Dawson, Kenneth A

    2012-07-20

    The endogenous transport mechanisms which occur in living organisms have evolved to allow selective transport and processing operate on a scale of tens of nanometers. This presents the possibility of unprecedented access for engineered nanoscale materials to organs and sub-cellular locations, materials which may in principle be targeted to precise locations for diagnostic or therapeutic gain. For this reason, nano-architectures could represent a truly radical departure as delivery agents for drugs, genes and therapies to treat a host of diseases. Thus, for active targeting, unlike the case of small molecular drugs where molecular structure has evolved to promote higher physiochemical affinity to specific sites, one aims to exploit these energy dependant endogenous processes. Many active targeting strategies have been developed, but despite this truly remarkable potential, in applications they have met with mixed success to date. This situation may have more to do with our current understanding and integration of knowledge across disciplines, than any intrinsic limitation on the vision itself. In this review article we suggest that much more fundamental and detailed control of the nanoparticle-biomolecule interface is required for sustained and general success in this field. In the simplest manifestation, pristine nanoparticles in biological fluids act as a scaffold for biomolecules, which adsorb rapidly to the nanoparticles' surface, conferring a new biological identity to the nanoparticles. It is this nanoparticle-biomolecule interface that is 'read' and acted upon by the cellular machinery. Moreover, where targeting moieties are grafted onto nanoparticles, they may not retain their function as a result of poor orientation, and structural or conformational disruption. Further surface adsorption of biomolecules from the surrounding environment i.e. the formation of a biomolecule corona may also obscure specific surface recognition. To transfer the remarkable

  19. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  20. Production and detection of cold antihydrogen atoms

    CERN Multimedia

    Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Collier, M; Doser, Michael; Filippini, V; Fine, K S; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Holzscheiter, M H; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Marchesotti, M; Montagna, P; Pruys, H S; Regenfus, C; Riedler, P; Rochet, J; Rotondi, A; Rouleau, G; Testera, G; Van der Werf, D P; Variola, A; Watson, T L; CERN. Geneva

    2002-01-01

    A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and anti-hydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected...

  1. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  2. Nonlinear periodic waves in dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal; Bharuthram, R.

    2002-01-01

    Using the reductive perturbation method, we present a theory of nonlinear periodic waves, viz. the cnoidal waves, in a dusty plasma consisting of electrons, ions, and cold dust grains with charge fluctuations, which in the limiting case reduce to dust acoustic solitons. It is found that the frequency of the dust acoustic cnoidal wave increases with its amplitude. The dust charge fluctuations are found to affect the characteristics of the cnoidal waves

  3. Thermo-mechanical Design Methodology for ITER Cryodistribution cold boxes

    Science.gov (United States)

    Shukla, Vinit; Patel, Pratik; Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Shah, Nitin; Choukekar, Ketan; Chang, Hyun-Sik; Sarkar, Biswanath

    2017-04-01

    The ITER cryo-distribution (CD) system is in charge of proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users; namely the superconducting (SC) magnets and cryopumps (CPs). The CD system is also capable to use the magnet structures as a thermal buffer in order to operate the cryo-plant as much as possible at a steady state condition. A typical CD cold box is equipped with mainly liquid helium (LHe) bath, heat exchangers (HX’s), cryogenic valves, filter, heaters, cold circulator, cold compressor and process piping. The various load combinations which are likely to occur during the life cycle of the CD cold boxes are imposed on the representative model and impacts on the system are analyzed. This study shows that break of insulation vacuum during nominal operation (NO) along with seismic event (Seismic Level-2) is the most stringent load combination having maximum stress of 224 MPa. However, NO+SMHV (Séismes Maximaux Historiquement Vraisemblables = Maximum Historically Probable Earthquakes) load combination is having the least safety margin and will lead the basis of the design of the CD system and its sub components. This paper presents and compares the results of different load combinations which are likely to occur on a typical CD cold box.

  4. Biomolecule-mediated hydrothermal synthesis of polyoxoniobate-CdS nanohybrids with enhanced photocatalytic performance for hydrogen production and RhB degradation.

    Science.gov (United States)

    Liu, Meiying; Chen, Hong; Zhao, Hongmei; He, Yunfei; Li, Yunhe; Wang, Ran; Zhang, Lancui; You, Wansheng

    2017-07-25

    Using a biomolecule of l-cystine as the sulfur source and coordinating agent, polyoxoniobate-CdS nanohybrids were successfully synthesized under mild hydrothermal conditions. The adsorption of ammonium group (-NH 2 ) in l-cystine molecular structure on the surface of CdS renders the amine-anchored CdS positively charged, which readily combines with the negatively charged polyoxoniobate clusters in terms of the electrostatic interaction. The as-obtained polyoxoniobate-CdS nanohybrids exhibit much superior activity for H 2 evolution and RhB degradation under visible light as compared to the unhybridized CdS and polyoxoniobate. After co-loading Nb 6 and NiS as cocatalyst, the H 2 -evolution activity of the nanohybrids is further increased up to 39 times as high as that of naked CdS, which can be attributed to an enhanced electron-transfer by adopting polyoxoniobate as electron-acceptor to retard the electron-hole recombination. The work may open an avenue for the green synthesis of cost-effective POMs-CdS nanohybrid photocatalysts for solar energy applications.

  5. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  6. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  7. Observations of cold antihydrogen

    CERN Document Server

    Tan, J N; Gabrielse, G; Oxley, P; Speck, A; Storry, C H; Wessels, M; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Walz, J; Pittner, H; Hänsch, T W; Hessels, E A

    2004-01-01

    ATRAP's e/sup +/ cooling of p in a nested Penning trap has led to reports of cold H produced during such cooling by the ATHENA and ATRAP collaborations. To observe H, ATHENA uses coincident annihilation detection and ATRAP uses field ionization followed by p storage. Advantages of ATRAP's field ionization method include the complete absence of any background events, and the first way to measure which H states are produced. ATRAP enhances the H production rate by driving many cycles of e/sup +/ cooling in the nested trap, with more H counted in an hour than the sum of all the other antimatter atoms ever reported. The number of H counted per incident high energy p is also higher than ever observed. The first measured distribution of H states is made using a pre-ionizing electric field between separated production and detection regions. The high rate and the high Rydberg states suggest that the H is formed via three-body recombination, as expected. (22 refs).

  8. Observations of cold antihydrogen

    International Nuclear Information System (INIS)

    Tan, J.N.; Bowden, N.S.; Gabrielse, G.; Oxley, P.; Speck, A.; Storry, C.H.; Wessels, M.; Grzonka, D.; Oelert, W.; Schepers, G.; Sefzick, T.; Walz, J.; Pittner, H.; Haensch, T.W.; Hessels, E.A.

    2004-01-01

    ATRAP's e + cooling of p-bar in a nested Penning trap has led to reports of cold H-bar produced during such cooling by the ATHENA and ATRAP collaborations. To observe H-bar, ATHENA uses coincident annihilation detection and ATRAP uses field ionization followed by p-bar storage. Advantages of ATRAP's field ionization method include the complete absence of any background events, and the first way to measure which H-bar states are produced. ATRAP enhances the H-bar production rate by driving many cycles of e + cooling in the nested trap, with more H-bar counted in an hour than the sum of all the other antimatter atoms ever reported. The number of H-bar counted per incident high energy p-bar is also higher than ever observed. The first measured distribution of H-bar states is made using a pre-ionizing electric field between separated production and detection regions. The high rate and the high Rydberg states suggest that the H-bar is formed via three-body recombination, as expected

  9. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  10. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  11. Pelletized cold moderator of the IBR-2 reactor: current status and future development

    International Nuclear Information System (INIS)

    Ananiev, V; Beliakov, A; Bulavin, M; Verkhogliadov, A; Kulagin, E; Kulikov, S; Mukhin, K; Shabalin, E; Loktaev, K

    2016-01-01

    Current status and future development of the pelletized cold moderator of the IBR-2 reactor in Neutron Physics Laboratory of JINR are represented. Nowadays cold moderator works for physical experiments and allows conducting experiments in the region of wavelengths more than 4 Å up to 10-13 times faster in comparison with the warm water moderator. Future development of the pelletized cold moderator is aimed at increasing the time of its operation for experiments and is based on three components: creation of a system of continuous charging and discharging of beads, supplementation of various additives, and use of new materials, such as triphenylmethane. (paper)

  12. Cold nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tsyganov, E.N., E-mail: edward.tsyganov@coldfusion-power.com [Cold Fusion Power, International (United States); Bavizhev, M.D. [LLC “Radium”, Moscow (Russian Federation); Buryakov, M.G. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation); Dabagov, S.B. [RAS P.N. Lebedev Physical Institute, Leninsky pr. 53, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Golovatyuk, V.M.; Lobastov, S.P. [Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction’s theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300–700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of {sup 4}He{sup ∗}.

  13. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    C, respectively. Process variables were defined and effects of individual parameters were studied systematically through control variable method with Li2MoO4-water system. Crystalline structure, fractured surface morphology and chemical bonding information of the cold sintered pellets were studied with X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM) and Raman spectroscopy, etc. Densification mechanism studies were conducted on ZnO. Through comparison experiments, it was found that the Zn2+ concentration in the solution is critical for densification, while dissolution of grains only serves as a means to the former. Through pressure dependent studies, a critical value was found, which correlated well with the hydrostatic pressure keeping liquid water from thermal expansion. These results confirmed establishment of hydrothermal condition that would be important for mass transport in densification. Densification rate variations with process time was estimated and similar time dependence to Kingery's model was found. The densification process was proposed to be consist of three consecutive stages, which are quick initial compaction, grain rearrangement and dissolution-reprecipitation events. Binary metal oxides with different acidities were subjected to cold sintering with various aqueous solutions in establishing a criteria for material selection. It was found that in general materials with high solubility at around neutral pH, high dissolution kinetics and similar free energy to their hydroxides or hydrates at ambient would be more likely for full densification with high phase purity. The anions in solution should also be wisely selected to avoid stable compound or complex formation. To extend the applicable material list for full densification, non-aqueous solvent of dimethyl sulfoxide (DMSO) based solution was studied for cold sintering. Both improvement of pellet density and suppression of hydroxide formation were achieved for MnO by using DMSO

  14. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  15. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  16. Cold fusion labeled fiasco of century

    International Nuclear Information System (INIS)

    Huizenga, J.R.

    1992-01-01

    The gamble of researchers B. Stanley Pons and Martin Fleischmann to go public with their announcement of excess power from nuclear fusion at room temperature before they had solid evidence of fusion products is the scientific fiasco of the century, charges John R. Huizenga of the University of Rochester. He describes the claims of Pons and Fleischmann as a delusion and as pathological science. It would require belief in miracle after miracle for one to accept their discovery, he charges. Huizenga criticizes the researchers on several counts: they failed to challenge their own findings with control experiments and presentations to colleagues; they rushed to publication with unchecked and inaccurate data; they chose an unconventional method, a public press conference, to release scientific findings; their claims were not easily reproduced by others; and they lobbied Congress for funds before their claims were confirmed by independent researchers. Cold fusion producing excess power is an example of bad science where the normal rules and procedures of the scientific process were violated, Huizenga says

  17. Nonfreezing Cold-Induced Injuries

    Science.gov (United States)

    2012-01-01

    cold injury. ( Modi - fi ed from Jia J, Pollock M: The pathogenesis of non-freezing cold nerve injury: Observations in the rat, Brain 120:631, 1997...myelitis and sinus development ( Figures 7-17 to 7-19 ). Appearance and behavior of the neuropathic foot have many similarities to those of the diabetic ...foot. In the diabetic foot, infections tend to be polymicrobial with Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus and

  18. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    Science.gov (United States)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  19. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    International Nuclear Information System (INIS)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt; Luchowski, Rafal; Laursen, Bo W

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes. (paper)

  20. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  1. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  2. Azadioxatriangulenium (ADOTA+): A long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes. PMID:24058730

  3. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  4. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures

    International Nuclear Information System (INIS)

    Kaowphong, Sulawan

    2012-01-01

    Silver bismuth sulfide (AgBiS 2 ) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 °C for 12–72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS 2 nanoparticles with a diameter range of about 20–75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS 2 . The optical band gap of the AgBiS 2 nanoparticles, calculated from UV–vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS 2 nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS 2 nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS 2 caused by the quantum confinement effects. Highlights: ► A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS 2 . ► L-Cysteine is served as the sulfide source and a complexing agent. ► Increase in band gap of the AgBiS 2 nanoparticles attributes to the quantum confinement effects.

  5. Study on the preparation and stability of 188Re biomolecules via EHDP

    International Nuclear Information System (INIS)

    Ferro-Flores, G.; Garcia-Salinas, L.; Paredes-Gutierrez, L.; Hashimoto, K.; Melendez-Alafort, L.; Murphy, C.A.

    2001-01-01

    A direct labelling technique via ethane-1-hydroxy-1,1-diphosphonic acid (EHDP) as a weak competing ligand was developed for the preparation of several biomolecules: 188 Re-monoclonal antibody ior cea1 against carcinoembryonic antigen ( 188 Re-MoAb), biotinylated 188 Re-MoAb ( 188 Re-MoAb-biotin), 188 Re-polyclonal IgG ( 188 Re-IgG), 188 Re-peptide (somatostatine analogue peptide b-(2-naphtyl)-D-Ala-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-amide), 188 Re-MoAb fragments ( 188 Re-F(ab') 2 ) and biotinylated 188 Re-F(ab') 2 ( 188 Re-F(ab') 2 -biotin). The reaction conditions such as pH, temperature, weak ligand concentration and stannous chloride concentration were optimized during the radiolabelling of each biomolecule. Before the labelling procedure, disulphide bridge groups of the biomolecules were reduced with 2-mercaptoethanol (2-ME). To obtain 188 Re labelled antibodies and peptides in high radiochemical yields (>90%) via EHDP, it was necessary to use acidic conditions and a high concentration of stannous chloride to allow the redox reaction Re +7 →Re +5 :Re +4 . The labelling of MoAb and F(ab') 2 with 188 Re via EHDP was also evaluated employing a pretargeted technique by avidin-biotin strategy in normal mice, demonstrating that the 188 Re-labelled biotinylated antibodies are stable complexes in vivo. The 188 Re-peptide complex prepared by this method, was stable for 24 h and no radiolytic degradation was observed. (author)

  6. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  7. The polygonal model: A simple representation of biomolecules as a tool for teaching metabolism.

    Science.gov (United States)

    Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo

    2018-01-01

    Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student. In this report, we describe the "polygonal model" as a new means of graphically representing biomolecules. This model is based on the use of geometric figures such as open triangles, squares, and circles to represent hydroxyl, carbonyl, and carboxyl groups, respectively. The usefulness of the polygonal model was assessed by undergraduate students in a classroom activity that consisted of "transforming" molecules from Fischer models to polygonal models and vice and versa. The survey was applied to 135 undergraduate Biology and Nursing students. Students found the model easy to use and we noted that it allowed identification of students' misconceptions in basic concepts of organic chemistry, such as in stereochemistry and organic groups that could then be corrected. The students considered the polygonal model easier and faster for representing molecules than Fischer representations, without loss of information. These findings indicate that the polygonal model can facilitate the teaching of metabolism when the structures of biomolecules are discussed. Overall, the polygonal model promoted contact with chemical structures, e.g. through drawing activities, and encouraged student-student dialog, thereby facilitating biochemical learning. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):66-75, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  8. Stable functionalization of germanium surface and its application in biomolecules immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Ye, Lin [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Tang, Teng; Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Bian, Xiaojun; Zhang, Jishen [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China)

    2014-10-15

    Highlights: • An effective method to immobilize biomolecules on the functionalized Ge surface. • The surface of Ge was functionalized with 11-Mercaptoundecanoic acid (11-MUA). • Stable and uniform SAMs was obtained on Ge surface after 11-MUA treatment. • The functionalized Ge was employed as substrate for protein immobilization. • Paving the way of Ge for further applications in bioelectronics field. - Abstract: As a typical semiconductor material, germanium (Ge) has the potential to be utilized in microelectronics and bioelectronics. Herein, we present a simple and effective method to immobilize biomolecules on the surface of functionalized Ge. The surface oxide of Ge was removed with the pretreatment of hydrochloric acid and the Cl-terminated Ge reacted with 11-Mercaptoundecanoic acid (11-MUA). The surface of Ge was coated with 11-MUA self-assembled monolayers (SAMs) due to the bonding reaction between the sulfhydryl group of 11-MUA and Cl-terminated Ge. Furthermore, typical biomolecule, a green fluorescent protein was chosen to be immobilized on the surface of the functionalized Ge. Contact angle analysis, atomic force microscopy and X-ray photoelectron spectroscopy were used to study the characteristics including wettability, stability, roughness and component of the functionalized Ge, respectively. Fluorescence microscopy was utilized to indicate the efficiency of protein immobilization on the surface of the functionalized Ge. With these studies, stable and uniform functionalized monolayer was obtained on the surface of Ge after 11-MUA treatment and the functionalized Ge was effectively applied in protein immobilization. Furthermore, this study may pave the way for further applications such as the integration of bioelectronics and biosensors with the attractive semiconductor material-Ge in future work.

  9. Theoretical and experimental study of charge transfer through DNA: impact of mercury mediated T-Hg-T base pair

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Golan, Martin; Vala, M.; Špérová, M.; Weiter, M.; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír; Tanaka, Y.; Bickelhaupt, F.M.

    2014-01-01

    Roč. 118, č. 20 (2014), s. 5374-5381 ISSN 1520-6106 R&D Projects: GA TA ČR TA01011165; GA ČR(CZ) GA14-10279S; GA ČR GA13-26526S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : charge transfer in DNA-Hg complexes * steady state fluorescence spectroscopy * density functional theory * electronic properties of biomolecules Subject RIV: BO - Biophysics Impact factor: 3.302, year: 2014

  10. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  11. Development of radioactively labelled cancer seeking biomolecules for targeted radiotherapy. Greece

    International Nuclear Information System (INIS)

    Varvarigou, Alexandra D.; Archimandritis, Spyridon C.

    2000-01-01

    Within the framework of the above project we are studying the labelling of biomolecules, peptides and antibodies, with radionuclides emitting β - and γ radiation. More specifically, for the time being, we have investigated the labelling of peptides with Re-188 and of antibodies with Sm-153 and Re-188. The radiolabelled derivatives are further evaluated in vivo for possible application in Oncology. For these radiobiological studies we are trying to apply ectopic and orthotopic tumour animal models and to develop, in collaboration with other national and foreign institutes, proper imaging devices for small animal imaging

  12. MPAI (mass probes aided ionization) method for total analysis of biomolecules by mass spectrometry.

    Science.gov (United States)

    Honda, Aki; Hayashi, Shinichiro; Hifumi, Hiroki; Honma, Yuya; Tanji, Noriyuki; Iwasawa, Naoko; Suzuki, Yoshio; Suzuki, Koji

    2007-01-01

    We have designed and synthesized various mass probes, which enable us to effectively ionize various molecules to be detected with mass spectrometry. We call the ionization method using mass probes the "MPAI (mass probes aided ionization)" method. We aim at the sensitive detection of various biological molecules, and also the detection of bio-molecules by a single mass spectrometry serially without changing the mechanical settings. Here, we review mass probes for small molecules with various functional groups and mass probes for proteins. Further, we introduce newly developed mass probes for proteins for highly sensitive detection.

  13. Visible wavelength surface-enhanced Raman spectroscopy from In-InP nanopillars for biomolecule detection

    Science.gov (United States)

    Murdoch, B. J.; Portoles, J. F.; Tardio, S.; Barlow, A. J.; Fletcher, I. W.; Cumpson, P. J.

    2016-12-01

    Visible wavelength surface-enhanced Raman spectroscopy (SERS) has been observed from bovine serum albumin (BSA) using In-InP nanopillars synthesised by Ar gas cluster ion beam sputtering of InP wafers. InP provides a high local refractive index for plasmonic In structures, which increases the wavelength of the In surface plasmon resonance. The Raman scattering signal was determined to be up to 285 times higher for BSA deposited onto In-InP nanopillars when compared with Si wafer substrates. These substrates demonstrate the label-free detection of biomolecules by visible wavelength SERS, without the use of noble metal particles.

  14. Plastic Trash goes Biohybrid"-Rapid and Selective Functionalization of Inert Plastic Surfaces with Biomolecules

    DEFF Research Database (Denmark)

    Schiller, Stefan M; Kambhampati, Dev; Stengel, Gudrun

    2010-01-01

    The covalent functionalization of "inert" polymers such as polypropylene with biomolecules for biocompatible or biosensor surfaces is challenging. Here we present a powerful approach to covalently modify "inert" macromolecular surfaces with biomacromolecules reusing old plastic material. A special...... emphasis was placed on easily accessible materials and a process which is easy, fast, efficient, cheap, and reliable. "Plastic trash" (lids from Eppendorf® pipet tip containers) was used as a polymer substrate to demonstrate the use/reuse of commercial packing material to covalently modify this material...

  15. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations

    Directory of Open Access Journals (Sweden)

    Christopher M. Mahoney

    2018-05-01

    Full Text Available Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  16. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations.

    Science.gov (United States)

    Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G

    2018-01-01

    Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  17. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  18. From phosphorous to arsenic: changing the classic paradigm for the structure of biomolecules.

    Science.gov (United States)

    Knodle, Ryan; Agarwal, Pratima; Brown, Mark

    2012-05-30

    Biomolecules are composed primarily of the elements carbon, nitrogen, hydrogen, oxygen, sulfur, and phosphorus. The structured assembly of these elements forms the basis for proteins, nucleic acids and lipids. However, the recent discovery of a new bacterium, strain GFAJ-1 of the Halomonadaceae, has shaken the classic paradigms for the architecture of life. Mounting evidence supports the claim that these bacteria substitute arsenic for phosphorus in macromolecules. Herein, we provide a brief commentary and fuel the debate related to what may be a most unusual organism.

  19. Proceedings of the international conference on molecular spectroscopy of advanced materials and biomolecules

    International Nuclear Information System (INIS)

    Sajan, D.

    2012-01-01

    This conference was an effort towards exploring advanced applications, with emphasis on recent trends in the Infrared and Raman spectra of advanced materials and biomolecules. The conference topics focused on a wide range of molecular spectroscopy, yet connected with molecular biological systems and materials. As molecular spectroscopy is finding tremendous significance in various fields of materials science, biomedical, pharmaceutical, planetary, mineral and forensic sciences, IMSAB 2012, provided a very dynamic and interactive platform for the international scientific community specializing in the field. Papers relevant to INIS are indexed separately

  20. Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels.

    Science.gov (United States)

    Grim, Joseph C; Marozas, Ian A; Anseth, Kristi S

    2015-12-10

    Hydrogels have emerged as promising scaffolds in regenerative medicine for the delivery of biomolecules to promote healing. However, increasing evidence suggests that the context that biomolecules are presented to cells (e.g., as soluble verses tethered signals) can influence their bioactivity. A common approach to deliver biomolecules in hydrogels involves physically entrapping them within the network, such that they diffuse out over time to the surrounding tissues. While simple and versatile, the release profiles in such system are highly dependent on the molecular weight of the entrapped molecule relative to the network structure, and it can be difficult to control the release of two different signals at independent rates. In some cases, supraphysiologically high loadings are used to achieve therapeutic local concentrations, but uncontrolled release can then cause deleterious off-target side effects. In vivo, many growth factors and cytokines are stored in the extracellular matrix (ECM) and released on demand as needed during development, growth, and wound healing. Thus, emerging strategies in biomaterial chemistry have focused on ways to tether or sequester biological signals and engineer these bioactive scaffolds to signal to delivered cells or endogenous cells. While many strategies exist to achieve tethering of peptides, protein, and small molecules, this review focuses on photochemical methods, and their usefulness as a mild reaction that proceeds with fast kinetics in aqueous solutions and at physiological conditions. Photo-click and photo-caging methods are particularly useful because one can direct light to specific regions of the hydrogel to achieve spatial patterning. Recent methods have even demonstrated reversible introduction of biomolecules to mimic the dynamic changes of native ECM, enabling researchers to explore how the spatial and dynamic context of biomolecular signals influences important cell functions. This review will highlight how two

  1. Studies of metal-biomolecule systems in liquids with beta-detected NMR

    CERN Document Server

    Walczak, Michal

    2017-01-01

    My internship took place within a small research team funded via the European Research Council (ERC Starting Grant: Beta-Drop NMR) at ISOLDE. It was devoted to laser spin-polarization and beta-detected NMR techniques and their future applications in chemistry and biology. I was involved in the design and tests of the beta-NMR spectrometer which will be used in the upcoming experiments. In this way I have been exposed to many topics in physics (atomic and nuclear physics), experimental techniques (vacuum technology, lasers, beta detectors, electronics, DAQ software), as well as chemistry and biology (NMR on metal ions, metal ion binding to biomolecules, quantum chemistry calculations).

  2. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Knížek, Antonín; Ivanek, Ondřej; Kubelík, Petr; Zukalová, Markéta; Kavan, Ladislav; Ferus, Martin

    2017-01-01

    Roč. 1, č. 10 (2017), s. 721-726 E-ISSN 2397-3366 R&D Projects: GA ČR GA17-05076S; GA ČR GA13-07724S Grant - others:Akademie věd - GA AV ČR(CZ) R200401721; Akademie věd - GA AV ČR(CZ) R200401521 Institutional support: RVO:61388955 Keywords : biomolecules * CO2 cycle on terrestrial planets * Mars Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  3. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Science.gov (United States)

    Hache, F.

    2010-06-01

    Circular dichroism (CD) is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  4. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Directory of Open Access Journals (Sweden)

    Hache F.

    2010-06-01

    Full Text Available Circular dichroism (CD is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  5. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  6. High-yielding and photolabile approaches to the covalent attachment of biomolecules to surfaces via hydrazone chemistry.

    Science.gov (United States)

    Lee, Ju Hun; Domaille, Dylan W; Noh, Hyunwoo; Oh, Taeseok; Choi, Chulmin; Jin, Sungho; Cha, Jennifer N

    2014-07-22

    The development of strategies to couple biomolecules covalently to surfaces is necessary for constructing sensing arrays for biological and biomedical applications. One attractive conjugation reaction is hydrazone formation--the reaction of a hydrazine with an aldehyde or ketone--as both hydrazines and aldehydes/ketones are largely bioorthogonal, which makes this particular reaction suitable for conjugating biomolecules to a variety of substrates. We show that the mild reaction conditions afforded by hydrazone conjugation enable the conjugation of DNA and proteins to the substrate surface in significantly higher yields than can be achieved with traditional bioconjugation techniques, such as maleimide chemistry. Next, we designed and synthesized a photocaged aryl ketone that can be conjugated to a surface and photochemically activated to provide a suitable partner for subsequent hydrazone formation between the surface-anchored ketone and DNA- or protein-hydrazines. Finally, we exploit the latent functionality of the photocaged ketone and pattern multiple biomolecules on the same substrate, effectively demonstrating a strategy for designing substrates with well-defined domains of different biomolecules. We expect that this approach can be extended to the production of multiplexed assays by using an appropriate mask with sequential photoexposure and biomolecule conjugation steps.

  7. Cold acclimation and cognitive performance: A review.

    Science.gov (United States)

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  9. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  10. Color and magnetic charge

    International Nuclear Information System (INIS)

    Kim, B.R.

    1976-01-01

    Schwinger's conjecture that the color degree of freedom of a quark is equivalent to its degree of freedom of taking different magnetic charges provides a plausible motivation for extending color to leptons. Leptons are just quarks with zero magnetic charges. It is shown that baryon number and lepton number can be replaced by fermion number and magnetic charge

  11. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces

    KAUST Repository

    Bulyha, Alena

    2011-01-01

    In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding of biofunctionalized surfaces in nanowire field-effect biosensors (BioFETs). This work provides the simulation capability for the boundary layer that is crucial in the detection mechanism of these sensors; slight changes in the charge concentration in the boundary layer upon binding of analyte molecules modulate the conductance of nanowire transducers. The simulation of biofunctionalized surfaces poses special requirements on the Monte-Carlo simulations and these are addressed by the algorithm. The constant-voltage ensemble enables us to include the right boundary conditions; the dna strands can be rotated with respect to the surface; and several molecules can be placed in a single simulation box to achieve good statistics in the case of low ionic concentrations relevant in experiments. Simulation results are presented for the leading example of surfaces functionalized with pna and with single- and double-stranded dna in a sodium-chloride electrolyte. These quantitative results make it possible to quantify the screening of the biomolecule charge due to the counter-ions around the biomolecules and the electrical double layer. The resulting concentration profiles show a three-layer structure and non-trivial interactions between the electric double layer and the counter-ions. The numerical results are also important as a reference for the development of simpler screening models. © 2011 The Royal Society of Chemistry.

  12. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... the Cold War Advisory Committee for the Cold War Theme Study AGENCY: National Park Service, Interior... Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will... National Park Service (NPS) concerning the Cold War Theme Study. DATES: The teleconference meeting will be...

  13. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    Science.gov (United States)

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  14. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    Science.gov (United States)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  15. Simplified TiO2 force fields for studies of its interaction with biomolecules

    Science.gov (United States)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  16. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases

    International Nuclear Information System (INIS)

    Ahmed, Towfiq; Haraldsen, Jason T; Balatsky, Alexander V; Rehr, John J; Di Ventra, Massimiliano; Schuller, Ivan

    2014-01-01

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new ‘multi-point cross-correlation’ technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology. (paper)

  17. Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases

    Science.gov (United States)

    Ahmed, Towfiq; Haraldsen, Jason T.; Rehr, John J.; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V.

    2014-03-01

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new ‘multi-point cross-correlation’ technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  18. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    Science.gov (United States)

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  19. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Science.gov (United States)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. PMID:26320782

  20. Synchrotron and small bio-molecules in gas phase and liquid environment: new opportunities in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Naves de Brito, A. [State University of Campinas (UNICAMP), SP (Brazil). Dept. of Applied Physics

    2011-07-01

    Full text: Two techniques are critically related to the photoelectric law, namely: photoelectron spectroscopy and photoelectron-photoion coincidence spectroscopy. Both are strongly used now a day within synchrotron laboratories. Our group is employing both to investigate fragmentation of bio-molecules in gas phase such as amino acids and DNA basis using V UV and soft x-ray photons. In the near future lager scale instruments developed in Brazil will allow unique opportunities to apply these two spectroscopic methods to molecules immersed in liquids such as water. We will present details from this advanced x-ray source and experimental stations with capabilities not present in other places in the world. Experiments connected to the molecular origin of live will be shown. Among them an experiment where we mimic the atmosphere at Titan moon producing bio- molecules will discussed. Another experiment will be presented where we test the Panspermia viability using special bacteria. We will also present experiments where frozen simple molecules connected to pre-biotic mate- rial are bombardment by UV photons and energetic particles showing interesting trends. Spectroscopic studies of gas phase photo-fragmentation of bio-molecules may be critical to understand in the future these molecules immersed in liquids. We plan to spend some time showing our recent results in this area. (author)