Long Life Cold Cathodes for Hall effect Thrusters Project
National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...
Verification of high efficient broad beam cold cathode ion source
Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.
2016-08-01
An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.
High-Current Cold Cathode Employing Diamond and Related Materials
Energy Technology Data Exchange (ETDEWEB)
Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)
2014-10-22
The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.
Cold cathodes based on carbonic nanostructured layered structures
Directory of Open Access Journals (Sweden)
Belyanin A. F.
2013-06-01
Full Text Available The paper describes formation conditions for and the structure of diamond-like materials films used in the manufacture of layered cold cathodes of emission electronics devices. The authors study the structure and field emission properties of layered structures with polycluster diamond and diamond-like carbon films (DCF formed by various methods. It has been found that the best emission properties are characteristic of DCFs obtained by cathode sputtering. Emission from the surface of such films occurs on the boundaries of the globules.
Cold-cathode, pulsed-power plasma discharge switch
Goebel, Dan M.
1996-09-01
CROSSATRONTMmodulator switches are cold-cathode, grid-controlled, plasma-discharge devices that are used for thyratron and hard-tube replacement in high-voltage, pulsed-power applications. CROSSATRON modulator switches have been used to produce square pulses of up to 100 kV and 1000 A, and CROSSATRON laser-discharge switches have switched peak discharge currents of up to 10 kA at 40 kV. The major advantage that CROSSATRON switches offer over other plasma switches is a rapid deionization time that permits high pulse-repetition frequencies (103 to 106 pulses per second depending on the application), and a long life associated with the cold-cathode plasma production mechanism. Compared to hard tubes, CROSSATRON switches have a relatively low forward voltage drop (500 V), the ability to close and open up to 1 kA of peak current, and lower grid-drive power requirements. In this article, we describe the physical mechanisms for how the switch works based on simple models and experimental data. The design of CROSSATRON switches is explained, and characteristic performance in closing and opening applications is described and explained.
Cold-Cathodes for Sensors and Vacuum Microelectronics
Energy Technology Data Exchange (ETDEWEB)
Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L. [Sandia National Labs., Albuquerque, NM (United States); DiNardo, N.J.; Mercer, T.W. [Drexel Univ., Philadelphia, PA (United States). Dept. of Physics and Astronomy; Martinez-Miranda, L.J. [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering
1998-05-01
The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.
2013-03-18
... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Cold Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products Containing Same... importation, and the sale within the United States after importation of certain cold cathode fluorescent...
Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays
Directory of Open Access Journals (Sweden)
Xuesong Yuan
2017-01-01
Full Text Available Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm.
Optical properties of lamps with cold emission cathode
Kalenik, Jerzy; Czerwosz, ElŻbieta; Biernacki, Krzysztof; Rymarczyk, Joanna; Stepińska, Izabela
2016-12-01
A luminescent lamp was constructed and tested. Phosphor excited by electrons is the source of light. The source of electrons is field emission cathode. The cathode is covered with nickel-carbon layer containing carbon nanotubes that enhance electron emission from the cathode. Results of luminance measurements are presented. Luminance is high enough for lighting application.
Investigation of cold cathodes of plasma sources generating of hydrogen ion beams
Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A
2001-01-01
Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC
Institute of Scientific and Technical Information of China (English)
PENG Peng; YANG Quan
2009-01-01
Load distribution is the foundation of shape control and gauge control, in which it is necessary to take into account the shape control ability of TCM (tandem cold mill) for strip shape and gauge quality. First, the objective function of generalized shape and gauge decoupling load distribution optimization was established, which considered the rolling force characteristics of the first and last stands in TCM, the relative power, and the TCM shape control ability. Then, IGA (immune genetic algorithm) was used to accomplish this multi-objective load distribution optimization for TCM. After simulation and comparison with the practical load distribution strategy in one tandem cold mill, general-ized shape and gauge decoupling load distribution optimization on the basis of IGA approved good ability of optimizing shape control and gauge control simultaneously.
A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron
Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi
2016-09-01
Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.
Low-current hollow-cathode discharge in a trigger unit of a cold cathode thyratron
Landl, N. V.; Korolev, Yuriy Dmitrievich; Frants, O. B.; Geyman, V. G.; Bolotov, A. V.
2015-01-01
The paper deals with the investigations of the effect of cathode emissivity on the regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the emissivity due to the so-called high-emissivity tablet allows the essential decrease in the discharge initiation voltage and the discharge burning voltage. The model of current sustaining for the hollow-cathode discharge, which takes into account the external emission current has been developed. On basis of the model, the ...
Low-current hollow-cathode discharge in a trigger unit of a cold cathode thyratron
Landl, N. V.; Korolev, Y. D.; Frants, O. B.; Geyman, V. G.; Bolotov, A. V.
2015-11-01
The paper deals with the investigations of the effect of cathode emissivity on the regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the emissivity due to the so-called high-emissivity tablet allows the essential decrease in the discharge initiation voltage and the discharge burning voltage. The model of current sustaining for the hollow-cathode discharge, which takes into account the external emission current has been developed. On basis of the model, the current-voltage characteristics of the discharge have been interpreted.
2010-06-24
... COMMISSION In the Matter of Certain Cold Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products... United States after importation of certain cold cathode fluorescent lamp inverter circuits and products..., and the sale within the United States after importation of CCFL inverter circuits and...
A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source
Directory of Open Access Journals (Sweden)
Alexander N. Obraztsov
2013-08-01
Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.
Methods for batch fabrication of cold cathode vacuum switch tubes
Energy Technology Data Exchange (ETDEWEB)
Walker, Charles A. (Albuquerque, NM); Trowbridge, Frank R. (Albuquerque, NM)
2011-05-10
Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.
Adaptive Automatic Gauge Control of a Cold Strip Rolling Process
Directory of Open Access Journals (Sweden)
ROMAN, N.
2010-02-01
Full Text Available The paper tackles with thickness control structure of the cold rolled strips. This structure is based on the rolls position control of a reversible quarto rolling mill. The main feature of the system proposed in the paper consists in the compensation of the errors introduced by the deficient dynamics of the hydraulic servo-system used for the rolls positioning, by means of a dynamic compensator that approximates the inverse system of the servo-system. Because the servo-system is considered variant over time, an on-line identification of the servo-system and parameter adapting of the compensator are achieved. The results obtained by numerical simulation are presented together with the data taken from real process. These results illustrate the efficiency of the proposed solutions.
Modeling a short cold cathode DC discharge device with controllable plasma parameters
Kudryavtsev, Anatoly; Adams, Steven; Demidov, Vladimir; Bogdanov, Yevgeny
2009-11-01
A short (without positive column) DC gas-discharge device with a cold cathode has been modeled. The device consists of the plane disk-shaped cathode and anode while the inter-electrode gap is bounded by a cylindrical wall. The cathode and anode are each 2.5 cm in diameter, and the inter-electrode gap is 12 mm. The wall is made of conducting parts divided by an insulator. The modeling has been performed for argon plasma at 1 Torr pressure. It is demonstrated in the model that spatial distributions of electron density and temperature and argon metastable atom density depend on the DC voltage applied to different conducting parts of the wall. Applied voltage can trap within the device volume energetic electrons arising from atomic and molecular processes in the plasma. This leads to a modification in the heating of slow electrons by energetic electrons and as a result modifies the controlling plasma parameters.
Cold-atom quantum simulation of U(1) lattice gauge-Higgs model
Kasamatsu, Kenichi; Kuno, Yoshihito; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo
2015-03-01
We discuss the possible methods to construct a quantum simulator of the U(1) lattice gauge-Higgs model using cold atoms in an optical lattice. These methods require no severe fine tunings of parameters of atomic-interactions in contrast with the other previous literature. We propose some realistic experimental setups to realize the atomic quantum simulator of the U(1) lattice gauge-Higgs model in a two-dimensional optical lattice. Our target gauge-Higgs model has a nontrivial phase structure, i.e., existence of the phase boundary between confinement and Higgs phases, and this phase boundary is to be observed by cold-atom experiments. As a reference to such experiments, we make numerical simulations of the time-dependent Gross-Pitaevskii equation and observe the real-time dynamics of the atomic simulators. Clarification of the dynamics of this gauge-Higgs model sheds some lights upon various unsolved problems including the inflation process of the early universe.
Main reaction process simulation of hydrogen gas discharge in a cold cathode electric vacuum device
Indian Academy of Sciences (India)
Jing-Ye Liu; Yuan Gao; Gang Wang
2012-07-01
Based on the related theory of plasma discharge process and the COMSOL multiphysics software, and considering the corresponding boundary conditions, the related recation types in the hydrogen plasma discharge were simulated and analysed, and the main reactions of hydrogen discharge in small electric vacuum components at low pressure and weak ionization were confirmed. Among the 21 types of reactions in hydrogen discharge process, 11 of them play importnat roles under low pressure and weak ionization in cold cathode electric vacuum device. The simulated results are consistent with the test result.
Stabilization of a cold cathode electron beam glow discharge for surface treatment
Energy Technology Data Exchange (ETDEWEB)
Mingolo, N.; Gonzalez, C.R. [Lab. de Haces Dirigidos, Depto. de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Martinez, O.E. [Lab. de Electronica Cuantica, Depto. de Fisica, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Rocca, J.J. [Department of Electrical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)
1997-10-01
We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 {mu}A was found to limit the shot to shot current variation to within 1.5{percent}. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. {copyright} {ital 1997 American Institute of Physics.}
Unique combination of zero-one-two dimensional carbon-titania hybrid for cold cathode application
Banerjee, D.; Kumar, D.; Das, N. S.; Sarkar, S.; Chattopadhyay, K. K.
2015-11-01
A unique multi-dimensional hybrid system has been developed by incorporating titania nanoparticle into chemically synthesized amorphous carbon nanotubes (a-CNTs)-amorphous graphene composites. The as-synthesized samples were characterized by x-ray diffraction, scanning and transmission electron microscopy; Raman spectroscopy and photoluminescence spectroscopy. The microscopic studies confirm the attachment of the TiO2 nanoparticles on carbon structures. The performance of the both the pure and hybrid samples as cold cathode emitter has been investigated and it has been found that cold emission performance of the pure carbon system improves considerably after TiO2 nanoparticles being added to it giving a turn on field as low as 2.1 V/μm and enhancement factor 2746. The enhancement of field emission characteristic after TiO2 addition was justified from the 'ANSYS- Maxwell' software based simulation study.
Development of an amorphous selenium-based photodetector driven by a diamond cold cathode.
Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T T; Chua, Daniel H C; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken
2013-10-11
Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized.
Role of Gate in Triode-Structure for Carbon Nanotube Cold Cathode
Institute of Scientific and Technical Information of China (English)
Yong-Qing Guo; Wei-Min Zheng; Xiao-Juan Zhang
2014-01-01
⎯Field emission properties of carbon nanotube cold cathode (CNT-CC) of triode- and diode-structure have been investigated by using the finite element method of numerical simulation. Specially, the effects of gate voltage and hole radius R on the emission properties have been analyzed based on the finite element method. Results indicate that the gate can make the excitation electric field E increase, turn-on voltage decrease, and the emission current density J rise. The result shows that the E reaches its maximum value at the top of carbon nanotube (CNT), and the optimum field emission performance can be obtained when R is equal to 10 times the diameter of the carbon nanotube.
Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode
Directory of Open Access Journals (Sweden)
E. F. Shevchenko
2014-01-01
Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.
Influence of quantum effects on the parameters of a cold cathode with carbon nanotubes
Glukhova, O. E.; Kolesnikova, A. S.; Slepchenkov, M. M.
2016-01-01
We consider the effect of an external electric field on the parameters of a cold cathode on carbon nanotubes using the quantum-mechanical approach to the description of the interaction of the field with the atomic structure of nanoemitters. It is established for the first time that an increase in the length of the emitting edge of the tube in a field of 10-11 V/nm increases the field emission current of electrons by 3-10%. It is found that in a field of 11 V/nm and higher, atoms of the upper edge of a carbon nanotube are detached with the subsequent destruction of the atomic core.
Institute of Scientific and Technical Information of China (English)
赵容斌; 李冠军
2002-01-01
The electromotive force (EMF) changes in type K heavy-gauge sheathed thermocouple cables was investigated. To cope with this discrepancy owing to EMF steep reduction and understand the difference between type K heavy-gauge sheathed thermocouple cables and small ones, the affects of EMF from sheath pipe, drawing times, annealing temperature, annealing time and annealing way were mainly studied and appropriately analyzed. The results show the change in the thermal EMF is related with the residual stress and crystal defects, which are imparted by cold work during manufacture. The affects of cold work can be removed by annealing. Finally, a feasible way of fabricating heavy-gauge sheathed thermocouples was suggested according to practical situation.
Kuno, Yoshihito; Kasamatsu, Kenichi; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo
2015-06-01
Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory, the lattice gauge-Higgs model is a quite important one because it describes a wide variety of phenomena/models related to the Anderson-Higgs mechanism, such as superconductivity, the standard model of particle physics, and the inflation process of the early Universe. In this paper, we first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of the gauge variables by using the Gross-Pitaevskii equations. Numerical simulations of the time development of an electric flux reveal some interesting characteristics of the dynamic aspect of the model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice gauge-Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i) Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay attention to the constraint of Gauss's law and avoid nonlocal gauge interactions.
Synthesis and characterisation of nickel nanorods for cold cathode fluorescent lamps
Energy Technology Data Exchange (ETDEWEB)
Feizi, E.; Scott, K.; Baxendale, M. [Centre for Materials Research, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Pal, C. [The Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Ray, A.K., E-mail: asim.ray@brunel.ac.uk [The Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Wang, W.; Pang, Y.; Hodgson, S.N.B. [School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA (United Kingdom)
2012-08-15
Self supporting nickel substrates coated with nickel nanorods having diameters distributed between 110 nm and 170 nm were electrochemically synthesised using a two-step anodisation process, using as freshly anodised nanoporous alumina membrane as template. Field emission from the nanorods was observed at a relatively low bias potential V{sub bias} (V{sub bias} {<=} 1 V) using scanning tunnelling microscopy; the emission current was found to be larger than that from the nickel substrate at least by a factor of 4 at V{sub bias} = 1.0 V. Experimental results were interpreted in the modified Millikan-Lauritsen plot and values of the emission parameters were estimated using the value of the work function measured by the Kelvin probe technique. -- Highlights: Black-Right-Pointing-Pointer Electrochemical synthesis of Ni nanorods, 110-170 nm in diameter on Ni substrate. Black-Right-Pointing-Pointer Low bias field emission from nickel nanorods as cathodes for CCFL applications. Black-Right-Pointing-Pointer Scanning Tunnelling microscopic recording of electron emissions. Black-Right-Pointing-Pointer Empirical Millikan-Lauritsen law for cold field electron emission from Ni nanorods.
Cold test results for the test cavities w/out the deposited lead photo cathode
Sekutowicz, J
2013-01-01
In this report we present tests of a 1.5-cell superconducting photo-injector cavity, which was built in the frame of Task 4. The cavity was tested twice: without the cathode (baseline test) and with the lead photo-cathode. The result of tests was very encouraging and the decision was made to continue the experiment, beyond scope of the task, at HZB in Berlin to learn more about quality of the cathode.
Real gauge singlet scalar extension of the Standard Model: A possible candidate for cold dark matter
Indian Academy of Sciences (India)
Anirban Biswas; Debasish Majumdar
2013-03-01
The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry $Z_{2}$ is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of is achieved by the application of $Z_{2}$ symmetry on . Considering as a possible candidate of CDM, Boltzmann’s equation is solved to find the freeze-out temperature and relic density of for Higgs mass 120 GeV in the scalar mass range 5 GeV to 1 TeV. As HHSS coupling 2 appearing in Lagrangian depends upon the value of scalar mass $m_{S}$ and Higgs mass $m_{h}$, the $m_{S}$ − 2 parameter space has been constrained by using the Wilkinson microwave anisotropy probe (WMAP) limit on the relic density of DM in the Universe and the results of recent ongoing DM direct search experiments, namely CDMS-II, CoGeNT, DAMA, EDELWEISS-II, XENON-10 and XENON-100. From such analyses, two distinct mass regions are found (a lower and higher mass domain) for such a DM candidate that satisfy both the WMAP limit and the experimental results considered here. The possible differential direct detection rates and annual variation of total detection rates have been estimated for this scalar DM candidate for two detector materials, namely Ge and Xe. Finally, the -ray flux has been calculated from the galactic centre due to annihilation of two 130 GeV scalar DM into two monoenergetic -rays.
Directory of Open Access Journals (Sweden)
P. Verma
2008-09-01
Full Text Available Carbon nanotubes (CNTs can be grown in the form of small, sharp spikes capable of carrying very highcurrent densities which suggest great potential application of CNTs as cold cathode in high power microwavevacuum device applications. These cold cathode vacuum microwave devices are expected to be ideally suitedfor air-borne and space applications. This paper reports the initial efforts made in the development of coldcathode using PECVD grown vertically-aligned matrix of CNTs with uniform height and optimum tip densityon silicon substrate. The high aspect ratio (of the order of 10,000 and novel electrical, mechanical, and thermalproperties of the CNT are found to be very attractive characteristics for emission of large and stable currentdensities at reasonably low field. The field emission current voltage characteristics of a typical cathode gaveemission current density in excess of 35 mA/cm2 at reasonably low field. The emission current in most of thesamples is found to be stable over long period of time but is greatly effected by the vacuum condition duringmeasurement. The initial measured data suggests great promise for achieving high current densities at practicalelectric fields.Defence Science Journal, 2008, 58(5, pp.650-654, DOI:http://dx.doi.org/10.14429/dsj.58.1688
Toward electroweak scale cold dark matter with local dark gauge symmetry and beyond the DM EFT
Energy Technology Data Exchange (ETDEWEB)
Ko, Pyungwon, E-mail: pko@kias.re.kr [School of Physics, Korea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)
2016-06-21
In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singlet portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for DM.
Carbon nanotube—Based cold cathodes: Field emission angular properties and temporal stability
Iacobucci, S.; Fratini, M.; Rizzo, A.; Zhang, Y.; Cole, M. T.; Milne, W. I.; Lagomarsino, S.; Liscio, A.; Stefani, G.
2016-10-01
The field emission (FE) properties of carbon nanotube (CNT)-based cathodes have been investigated on nanostructured surfaces grown by plasma enhanced chemical vapor deposition. The FE angular properties and temporal stability of the emergent electron beam have been determined using a dedicated apparatus for cathodes of various architectures and geometries, characterized by scanning electron microscopy and I-V measurements. The angular electron beam divergence and time instability at the extraction stage, which are crucial parameters in order to obtain high brilliance of FE-based-cathode electron sources, have been measured for electrons emitted by several regular architectures of vertically aligned arrays and critically compared to conventional disordered cathodes. The measured divergences strongly depend on the grid mesh. For regular arrays of individual CNT, divergences from 2° to 5° have been obtained; in this specific case, measurements together with ray-tracing simulations suggest that the maximum emission angle is of the order of ±30° about the tube main axis. Larger divergences have been measured for electron beams emitted from honeycomb-structured cathodes (6°) and significantly broader angle distributions (10°) from disordered CNT surfaces. Emission current instabilities of the order of 1% for temporal stability studies conducted across a medium time scale (hours) have been noted for all cathodes consisting of a high number (104 and larger) of aligned CNTs, with the degree of stability being largely independent of the architecture.
Propaganda, Effect, and the Cold War: Gauging the Status of America's "War of Words."
Parry-Giles, Shawn J.
1994-01-01
Examines the interrelationship among propaganda, effect, and the Cold War during congressional debates over America's first peacetime propaganda program. Argues that the "war of words" metaphor further heightened the need for empirical proof of America's status in that conflict. Suggests that the Cold War helped to ensure the…
HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION
Energy Technology Data Exchange (ETDEWEB)
Hirshfield, Jay L
2012-12-28
During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.
Free energy for a damped cold atom in SU(2) non-Abelian gauge potentials
Guingarey, Issoufou; Avossevou, Gabriel Y. H.
2017-03-01
Our main aim in this work is to find out the exact formula of the equilibrium free energy for a cold atom subjected to a harmonic potential in the background of an artificial non-Abelian uniform magnetic field and linearly coupled to a heat bath. The heat bath consists of a collection of independent quantum harmonic oscillators, while its interaction with the cold atom is modeled in terms of bilinear coupling between the coordinate variables of the cold atom and the oscillators. The main thermodynamic properties of such a system are modified in comparison with the Abelian case. For a non-Abelian magnetic field generated from the laser methods employing degenerate dark states, we evaluate the effect of the non-Abelian dynamics on the magnetic moment of the cold atom.
Ivanov, Alexander A; Davydenko, Vladimir I; Deichuli, Petr P; Shulzhenko, Grigori I; Stupishin, Nikolay V
2008-02-01
In the Budker Institute, Novosibirsk, an ion source with arc-discharge plasma box has been developed in the recent years for application in thermonuclear devices for plasma diagnostics. Several modifications of the ion source were provided with extracted current ranging from 1 to 7 A and pulse duration of up to 4 s. Initially, the arc-discharge plasma box with cold cathode was used, with which pulse duration is limited to 2 s by the cathode overheating and sputtering in local arc spots. Recently, a directly heated LaB(6) electron emitter was employed instead, which has extended lifetime compared to the cold cathode. In the paper, characteristics of the beam produced with both arrangements of the plasma box are presented.
Negative refraction of ultra-cold atoms in optical lattices with nonuniform artificial gauge fields
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ai-Xia, E-mail: zhangax@nwnu.edu.cn; Xue, Ju-Kui
2016-07-01
We theoretically study the reflection and refraction of ultra-cold atoms in optical lattices exposed to a nonuniform artificial magnetic field. The introduction of the nonuniform artificial magnetic field to the optical lattice for suitable designer magnetic potential barrier can lead to a series of intriguing reflection and refraction phenomena of atoms, including reflection, positive refraction, negative refraction and atomic matter wave splitting. Both the occurrence and the distribution of these reflection and refraction scenarios can be coherently controlled by the nonuniform artificial magnetic field. In particular, the regions close to the boundary of reflection demonstrate two more interesting propagation modes, i.e., a reflected branch of atoms comprising a positive or negative refracted branch of atoms with almost same atom population will be excited simultaneously at the magnetic potential barrier. The results can be a guide for the coherent control of the matter waves in optical lattices and the design of new atom optics devices. - Highlights: • Ultra-cold atoms in OL with nonuniform magnetic field are studied. • Matter wave reflection, refraction and splitting are coherently controlled. • Results provide a guide for the design of new atomic optics devices.
The role of gauge fields in cold and dense quark matter
Energy Technology Data Exchange (ETDEWEB)
Noronha, J.
2007-07-01
In this thesis we investigate the role played by gauge fields in providing new observable signatures that can attest to the presence of color superconductivity in neutron stars. We show that thermal gluon fluctuations in color-flavor locked superconductors can substantially increase their critical temperature and also change the order of the transition, which becomes a strong first-order phase transition. Moreover, we explore the effects of strong magnetic fields on the properties of color-flavor locked superconducting matter. We find that both the energy gaps as well as the magnetization are oscillating functions of the magnetic field. Also, it is shown that the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. This points towards the existence of magnetic domains or other types of magnetic inhomogeneities in the hypothesized quark cores of magnetars. Obviously, our results only apply if the strong magnetic fields observed on the surface of magnetars can be transmitted to their inner core. This can occur if the superconducting protons expected to exist in the outer core form a type-II superconductor. However, it has been argued that the observed long periodic oscillations in isolated pulsars can only be explained if the outer core is a type-I superconductor rather than type-II. We show that this is not the only solution for the precession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-11 can be explained in terms of Tkachenko oscillations within superfluid shells. (orig.)
Sarkar, Sourav; Banerjee, Diptonil; Das, Nirmalya Sankar; Chattopadhyay, Kalyan Kumar
2015-08-01
A simple approach has been implemented to synthesize amorphous carbon nanotubes (a-CNTs) and manganese oxide (MnO2) hybrid nanostructure at temperature as low as ∼250 °C in open atmosphere. Microscopic studies of the samples revealed that the walls of the a-CNTs were coated uniformly by MnO2 nanoflakes. The composition of the as prepared sample was studied with the help of energy dispersive X-ray and X-ray photoelectron spectroscopy. Electron field emission study was done in a custom built high vacuum field emission setup for the prepared a-CNT and manganese oxide (MnO2) hybrid nanostructure. It is seen that the performance of the a-CNTs as cold cathode emitter has been enhanced greatly when MnO2 nanoflakes were coated uniformly over it. The turn on field has been reduced from 7.17 to value as low as 3.82 V/mm with enhancement factor increases from 2428 to 6965. Finite element based simulation study theoretically confirms the enhancement of field emission properties of as prepared MnO2 nanoflake coated a-CNTs. The results have been explained due to enhanced surface roughness leading to higher enhancement factor and overall increase of emission sites.
Directory of Open Access Journals (Sweden)
Ming-Chin Chang
2012-01-01
Full Text Available High color and organic composition, the effluents from the textile dyeing and finishing industry, can be treated by photocatalytic oxidation with UV/TiO2. The objective of this study was to prepare a new photocatalytic system by coating nanosized TiO2 particles on steel mesh support and using cold cathode fluorescent light (CCFL irradiation at 365 nm in a closed reactor for the oxidation of azo dye C.I. Orange G (OG. Various factors such as reaction time, coating temperature, TiO2 dosage, pH, initial dye concentration, and service duration were studied. Results showed efficient color removal of the OG azo dye by the photocatalytic system with TiO2-coated temperature at 150°C. The optimal TiO2 dosage for color removal was 60 g m−2. An acidic pH of 2.0 was sufficient for photocatalytic oxidation whereas basic condition was not. The rate of color removal decreased with increase in the initial dye concentration. The TiO2-coated steel mesh can be used repeatedly over 10 times without losing the photocatalytic efficiency. Results of FTIR and IC indicated the breakage of N=N bonds, with sulfate as the major and nitrite and nitrate as the minor products, which implied degradation of dye molecules.
Hoshi, M; Goodhead, D T; Brenner, D J; Bance, D A; Chmielewski, J J; Paciotti, M A; Bradbury, J N
1985-10-01
Ultrasoft x-rays of 0.3-5 keV have provided a unique tool for the investigation of intracellular mechanisms of radiation action in biological organisms, including mammalian cells. However, their use presents unique practical problems in dosimetry and experimental design. Detailed interpretation of the biological results requires reliable dosimetry and well characterised monoenergetic beams. This paper presents a comparison between two fundamentally different dosimetric techniques, namely the ionisation current in an extrapolation chamber and photon counts in a proportional counter. Agreement within 7% was obtained when these two methods were applied to an Al K x-ray beam (1.5 keV) from an MRC cold-cathode transmission target discharge tube as previously used in many biological experiments. Photographic film was calibrated as a relative dosimetric technique and used for investigation of the intensity uniformity of the radiation field. These techniques provide a comprehensive characterisation of the beam in the position of the biological cells, including photon flux (or absorbed dose rate), spectral purity (showing much less than 1% bremsstrahlung relative to characteristic Al x-rays) and uniformity over the irradiation area (within about 5% for mammalian cell irradiations).
Stabilization of carbon-fiber cold field-emission cathodes with a dielectric coating.
Mousa, M S; Kelly, T F
2003-01-01
A comprehensive investigation has been carried out to determine the source of an inherent temporal instability in the spatial distribution and the electron emission current obtained from field-emitting carbon fiber tips. These instability effects were successfully overcome by coating the tip with a sub-micron layer of dielectric epoxy resin coating. The influence of the coating thickness was studied and an optimum thickness of 0.2-0.3 microm that produced high emission stability was found. A large reduction in the intensity fluctuations of the emission image, at this coating thickness is demonstrated by using chart recorder traces in addition to slow scans of an optically monitored screen signal. The current-voltage (I-V) characteristics were obtained at a threshold field that is a few times lower than that of the uncoated tip. At low emission current levels linear F-N plots were obtained with a slope value lower than that of the uncoated emitter. The spatial distribution consisted of a very bright spot without any internal structure. The total energy distribution of the emitted electrons demonstrated a non-metallic behavior. The spectra obtained consisted of a single peak for low currents and a double peak for higher currents. The electron energy was measured relative to the Fermi level of tungsten and a spectral shift was shown to be a function of the current. Experiments have shown that the coated tips are not affected by the variations of pressure conditions down to 10(-6) mbar. These results suggest that a resin coated fiber tip offers superior performance to tungsten as a cold field emission electron source. Numerous improvements in the performance are underway. This includes a variety of polymeric coatings and more emissive carbon fibers.
Energy Technology Data Exchange (ETDEWEB)
Lim, Hyun Ju; Chung, Myung Jin; Lee, Gee Won; Yie, Miyeon; Shin, Kyung Eun; Moon, Jung Won; Lee, Kyung Soo [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)
2013-12-15
To compare the diagnostic performance of light emitting diode (LED) backlight monitors and cold cathode fluorescent lamp (CCFL) monitors for the interpretation of digital chest radiographs. We selected 130 chest radiographs from health screening patients. The soft copy image data were randomly sorted and displayed on a 3.5 M LED (2560 x 1440 pixels) monitor and a 3 M CCFL (2048 x 1536 pixels) monitor. Eight radiologists rated their confidence in detecting nodules and abnormal interstitial lung markings (ILD). Low dose chest CT images were used as a reference standard. The performance of the monitor systems was assessed by analyzing 2080 observations and comparing them by multi-reader, multi-case receiver operating characteristic analysis. The observers reported visual fatigue and a sense of heat. Radiant heat and brightness of the monitors were measured. Measured brightness was 291 cd/m{sup 2} for the LED and 354 cd/m{sup 2} for the CCFL monitor. Area under curves for nodule detection were 0.721 ± 0.072 and 0.764 ± 0.098 for LED and CCFL (p = 0.173), whereas those for ILD were 0.871 ± 0.073 and 0.844 ± 0.068 (p = 0.145), respectively. There were no significant differences in interpretation time (p = 0.446) or fatigue score (p = 0.102) between the two monitors. Sense of heat was lower for the LED monitor (p = 0.024). The temperature elevation was 6.7 degree C for LED and 12.4 degree C for the CCFL monitor. Although the LED monitor had lower maximum brightness compared with the CCFL monitor, soft copy reading of the digital chest radiographs on LED and CCFL showed no difference in terms of diagnostic performance. In addition, LED emitted less heat.
Forringer, Edward
2005-01-01
Experimental measurements of the emittance and luminosity of beams produced by a cold-cathode Phillips Ionization Guage (PIG) ion source for cyclotrons under dc extraction are reviewed. (The source being studied is of the same style as ones that will be used in a series of 250 MeV proton cyclotrons being constructed for cancer therapy by ACCEL Inst, Gmbh, of Bergisch Gladbach, Germany.) The concepts of 'plasma boundary' and 'plasma temperature' are presented as a useful set of parameters for describing the initial conditions used in computational orbit tracking. Experimental results for r-pr and z-pz emittance are compared to predictions from the MSU orbit tracking code Z3CYCLONE with results indicating that the code is able to predict the beam produced by these ion sources with adequate accuracy such that construction of actual cyclotrons can proceed with reasonably prudent confidence that the cyclotron will perform as predicted.
Topological insulators in cold-atom gases with non-Abelian gauge fields: the role of interactions
Energy Technology Data Exchange (ETDEWEB)
Orth, Peter Philipp [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, 76128 Karlsruhe (Germany); Cocks, Daniel; Buchhold, Michael; Hofstetter, Walter [Institut fuer Theoretische Physik, Goethe Universitaet, 60438 Frankfurt am Main (Germany); Rachel, Stephan [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Le Hur, Karyn [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Center for Theoretical Physics, Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2012-07-01
With the recent technological advance of creating (non)-Abelian gauge fields for ultracold atoms in optical lattices, it becomes possible to study the interplay of topological phases and interactions in these systems. Specifically, we consider a spinful and time-reversal invariant version of the Hofstadter problem. In addition, we allow for a hopping term which does not preserve S{sub z} spin symmetry and a staggered sublattice potential. Without interactions, the parameters can be tuned such that the system is a topological insulator. Using a combination of analytical techniques and the powerful real-space dynamical mean-field (R-DMFT) method, we discuss the effect of interactions and determine the interacting phase diagram.
Development of a new X-ray source using backscattered X-ray with the use of a cold cathode
Tanizawa, Keisuke; Sekiya, Tetsuo; Ohshio, Shigeo; Akasaka, Hiroki; Saitoh, Hidetoshi
2011-02-01
The development of an intense X-ray source using backscattered X-ray produced using an advanced electrode configuration is described. The electrodes were composed of field emitters deposited on a wire mounted on a perforated plate as the cathode and a copper plate as the anode. Electrons from these emitters collided with the copper plate and X-ray was generated at collision points. The backscattered X-ray in the direction normal to the electron trajectory through a hole in the anode escaped from the vacuum chamber through a beryllium window. Continuous and characteristic X-rays were detected at an applied voltage lower than that of a conventional X-ray source from 3.0 to 9.4 kV, respectively. Moreover, the X-ray dosage measured with a survey meter reached 0.95 mSv/h at 5.0 kV of applied voltage. The transmission images of three types of material used as an X-ray source for the X-ray imaging system indicate three advantages; low power consumption, focal point controllable by adjusting applied voltage, and photographable motion picture of X-ray transmission.
Trigiante, Mario
2016-01-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
Trigiante, Mario
2017-03-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
Weatherall, James Owen
2015-01-01
I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure in this sense.
Anders, Andre
2003-01-01
Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...
Hofmann, Ralf; Hofmann, Ralf; Keil, Mathias Th.
2002-01-01
Based on thermal equilibrium between the vacuum and its relevant excitations a model for cosmic inflation is presented. Due to a vacuum dominating, U(1) gauged inflaton field an inflationary regime can be reached without explicitly imposing slow-roll conditions. Thereby, nontrivial euclidean BPS saturation of the inflaton bans gravity from the field equations and masquerades the gauge symmetry as a $Z_{N+1}$ symmetry at the point where thermal equilibrium breaks down. Solving the vacuum dynamics of the gauge field in the inflaton background in the spirit of a Born-Oppenheimer approximation, a temperature dependent cosmological constant $\\La=\\La(T)$ is obtained. The $T$ dependence of $\\La$ competes with the black body radiation of the (massive) gauge field during cosmic expansion. This leads to (initial condition independent) inflation at some critical value of the inflaton amplitude. The model allows for a closed, noncollapsing universe with Planckian initial density, and hence it resolves the flatness proble...
Energy Technology Data Exchange (ETDEWEB)
Anders, Andre
2003-10-29
Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.
Mangiarotti, L
1998-01-01
This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;
Rf Gun with High-Current Density Field Emission Cathode
Energy Technology Data Exchange (ETDEWEB)
Jay L. Hirshfield
2005-12-19
High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same
Rao, Triveni; Walsh, John; Gangone, Elizabeth
2014-12-30
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
Energy Technology Data Exchange (ETDEWEB)
Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert
2006-11-01
Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still
Gauge theory and little gauge theory
Koizumi, Kozo
2016-01-01
The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.
Hollow-Cathode Source Generates Plasma
Deininger, W. D.; Aston, G.; Pless, L. C.
1989-01-01
Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.
Light-induced gauge fields for ultracold atoms.
Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B
2014-12-01
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle-the graviton-that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms 'feeling' laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.
Light-induced gauge fields for ultracold atoms
Goldman, N.; Juzeliūnas, G.; Öhberg, P.; Spielman, I. B.
2014-12-01
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.
Gauge engineering and propagators
Maas, Axel
2016-01-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Gauge engineering and propagators
Maas, Axel
2017-03-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
de Wild Propitius, M.D.F.; Bais, F.A.
1999-01-01
In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$ cha
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
Zhang, Fang
2009-11-01
An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Quantum Gauge General Relativity
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.
... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...
Lewellen, J W
2005-01-01
Conventional pi-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength, but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and also requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode, and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design.
Evaluation of externally heated pulsed MPD thruster cathodes
Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.
1993-01-01
Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.
Cathodic Protection Model Facility
Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...
Generalized Higher Gauge Theory
Ritter, Patricia; Schmidt, Lennart
2015-01-01
We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.
Gauge symmetry from decoupling
Energy Technology Data Exchange (ETDEWEB)
Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de
2017-02-15
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Supergravity from Gauge Theory
Berkowitz, Evan
2016-01-01
Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.
Diseases and Conditions Cold urticaria By Mayo Clinic Staff Cold urticaria (ur-tih-KAR-e-uh) is a skin reaction to cold. Skin that has ... in contact with cold develops reddish, itchy welts (hives). The severity of cold urticaria symptoms varies widely. ...
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
Hollow-cathode electrode for high-power, high-pressure discharge devices
Chang, J.J.; Alger, T.W.
1995-08-22
Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.
An improved reservoir oxide cathode
Wang, Xiaoxia; Liao, Xianheng; Luo, Jirun; Zhao, Qinglan
2005-09-01
A new type of reservoir oxide cathode has been developed in IECAS. The emission characteristics of the cathode are tested. The results show the new cathode has higher emission current density and better resistance to poisoning at same operating condition compared with those of conventional reservoir oxide cathode.
Von Smekal, L; Sternbeck, A; Williams, A G
2007-01-01
We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.
A new atmospheric RF cold plasma source with microhollow cathode structure%一种新型微空阴极结构的大气压射频冷等离子体源
Institute of Scientific and Technical Information of China (English)
裘亮; 孟月东; 任兆杏; 钟少锋
2006-01-01
介绍微空阴极的结构和物理机理,着重介绍一种新型大气压下射频激励的大面积冷等离子体源--融合空心阴极(fused hollow cathodes,FHC).结合应用和与之有关的研究,简单介绍空心阴极的放电特性,以及影响其放电特性的因素,如阴极材料、气体种类、频率、气体流速、气压、阴极内径等.另外提到了其他两种相关的微空阴极系统.
Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection
LaCoursiere, Marissa P.
Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is
Influence of substrate topography on cathodic delamination of anticorrosive coatings
DEFF Research Database (Denmark)
Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim
2009-01-01
The cathodic delamination of a commercial magnesium silicate and titanium dioxide pigmented epoxy coating on abrasive cleaned cold rolled steel has been investigated. The rate of delamination was found to depend on interfacial transport from the artificial defect to the delamination front...... and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled...... by migration of cations from the defect to the delamination front. This means that abrasive blasting, to some extent, can be applied to control and minimize the observed rate of cathodic delamination. The lifetime of the species causing disbondment suggested that sodium hydroxide or potassium hydroxide...
Nanostructured sulfur cathodes
Yang, Yuan
2013-01-01
Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.
Cathodic hydrodimerization of nitroolefins
Michael Weßling; Hans J. Schäfer
2015-01-01
Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation...
Gauge coupling unification in gauge-Higgs grand unification
Yamatsu, Naoki
2016-04-01
We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.
Chung, Daniel J H
2016-01-01
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Maas, Axel
2012-01-01
QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
Healey, Richard
Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum "particles", it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov-Bohm effect. By contrast with electromagnetism in the original Aharonov-Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part-whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.
Frampton, Paul H
2008-01-01
This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Gauge engineering and propagators
Directory of Open Access Journals (Sweden)
Maas Axel
2017-01-01
The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Lenz, F
2009-01-01
By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.
DARHT 2 kA Cathode Development
Energy Technology Data Exchange (ETDEWEB)
Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.
2009-03-09
In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function
Gauge Model with Massive Gravitons
Institute of Scientific and Technical Information of China (English)
WU Ning
2003-01-01
Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.
Energy Technology Data Exchange (ETDEWEB)
Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)
2014-06-16
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.
Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.
2014-06-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.
Sharma, Bikash; Kar, R.; Pal, Arup R.; Shilpa, R. K.; Dusane, R. O.; Patil, D. S.; Suryawanshi, S. R.; More, M. A.; Sinha, S.
2017-04-01
Carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are grown on inconel substrates under two different experimental conditions using atmospheric pressure glow discharge radio-frequency (RF) PECVD process. A specially designed hollow cathode is used for this plasma generation. The growth is carried out at 610 and 660 °C substrate temperatures on inconel substrates. Our results show that CNFs and CNTs could be synthesized at 610 and 660 °C respectively irrespective of pre-treatment methods in either set. HRTEM results indicate that a temperature-induced transformation of CNFs into CNTs occur when the growth temperature is raised from 610 to 660 °C. With the help of characterization results and a schematic model, it is shown how an increase in hydrogen diffusion (~44% increase) plays a pivotal role in this transformation by providing a sink for hydrogen atoms. Field emission results show that most defective CNFs contribute to the maximum emission current density. This better field emission behavior is explained on the basis that the outer surfaces of CNFs are more defective due to the presence of the open edges of the graphene planes, which results in better field emission from the outer surfaces of the CNFs.
Maleknejad, A; Soda, J
2012-01-01
The isotropy and homogeneity of the cosmic microwave background (CMB) favors "scalar driven" early Universe inflationary models. Non-scalar fields, and in particular gauge fields, are on the other hand commonplace in all high energy particle physics models proposed to be at work at the upper bound on energy scale of inflation set by the current CMB observations. In this review we consider the role and consequences, theoretical and observational, that gauge fields can have during inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main class of models with gauge fields in the background, models which show violation of cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of the...
Local gauge symmetry on optical lattices?
Liu, Yuzhi; Tsai, Shan-Wen
2012-01-01
The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.
Massless gauge bosons other than the photon
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A.; /Fermilab
2004-11-01
Gauge bosons associated with unbroken gauge symmetries, under which all standard model fields are singlets, may interact with ordinary matter via higher-dimensional operators. A complete set of dimension-six operators involving a massless U(1) field, {gamma}', and standard model fields is presented. The {mu} {yields} e{gamma}' decay, primordial nucleosynthesis, star cooling and other phenomena set lower limits on the scale of chirality-flip operators in the 1-15 TeV range, if the operators have coefficients given by the corresponding Yukawa couplings. Simple renormalizable models induce {gamma}' interactions with leptons or quarks at two loops, and may provide a cold dark matter candidate.
Falabella, Steven; Sanders, David M.
1994-01-01
A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.
Aganagic, Mina; Kozcaz, Can; Shakirov, Shamil
2013-01-01
Conformal blocks of Liouville theory have a Coulomb-gas representation as Dotsenko-Fateev (DF) integrals over the positions of screening charges. For q-deformed Liouville, the conformal blocks on a sphere with an arbitrary number of punctures are manifestly the same, when written in DF representation, as the partition functions of a class of 3d U(N) gauge theories with N=4 supersymmetry, mass deformed to N=2, in the Omega-background. Coupling the 3d gauge theory to a hypermultiplet in fundamental representation corresponds to inserting a Liouville vertex operator; the two real mass parameters determine the momentum and position of the puncture. The DF integrals can be computed by residues. The result is the instanton sum of a five dimensional N=1 gauge theory. The positions of the poles are labeled by tuples of partitions, the residues of the integrand are the Nekrasov summands.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Energy Technology Data Exchange (ETDEWEB)
Lee, K.; Stein-Schabes, J.A.; Watkins, R.; Widrow, L.M.
1989-03-15
Classical nontopological soliton configurations are considered within the theory of a complex scalar field with a gauged U(1) symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U(1) symmetry is broken, the gauge field becomes massive, and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q matter in bulk form. We also briefly discuss solitons with fermions in a U(1) gauge theory.
Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.
1988-01-01
Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.
Energy Technology Data Exchange (ETDEWEB)
Lee, K.; Stein-Schabes, J.A.; Watkins, R.; Widrow, L.M.
1988-09-01
Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.
Advanced Cathode Electrolyzer (ACE) Project
National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...
Advanced Cathode Electrolyzer (ACE) Project
National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...
Highly Efficient Micro Cathode Project
National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...
Accelerating abelian gauge dynamics
Adler, Stephen Louis
1991-01-01
In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In the course of a year, people ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest ...
Miniaturized cathodic arc plasma source
Anders, Andre; MacGill, Robert A.
2003-04-15
A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2013-07-23
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Electrochemical cells and cathode materials
Energy Technology Data Exchange (ETDEWEB)
Skarstad, P.M.; Untereker, D.F.; Meritt, D.R.
1988-08-02
This patent describes an electrochemical cell comprising anode and cathode means in operative relationship. The cathode means comprising a cathode material comprised of, at least in part: a halogen component selected from the group consisting of iodine, bromine, iodine bromide and mixtures thereof, and poly(ethylene oxide), at least in part.
Calibrating System for Vacuum Gauges
Institute of Scientific and Technical Information of China (English)
MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun
2003-01-01
In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).
Perfect and Imperfect Gauge Fixing
Shirzad, A
2006-01-01
Gauge fixing may be done in different ways. We show that using the chain structure to describe a constrained system, enables us to use either a perfect gauge, in which all gauged degrees of freedom are determined; or an imperfect gauge, in which some first class constraints remain as subsidiary conditions to be imposed on the solutions of the equations of motion. We also show that the number of constants of motion depends on the level in a constraint chain in which the gauge fixing condition is imposed. The relativistic point particle, electromagnetism and the Polyakov string are discussed as examples and perfect or imperfect gauges are distinguished.
Synthetic gauge potentials for ultracold neutral atoms
Lin, Yu-Ju; Spielman, I. B.
2016-09-01
Synthetic gauge fields for ultracold neutral atoms—engineered using the interaction between laser fields and the atoms’ internal ‘spin’ degrees of freedom—provide promising techniques for generating the large (synthetic) magnetic fields required to reach the fractional quantum Hall (FQH) limit in quantum gases, bosonic or fermionic alike. Because neutral atoms can move in a nearly disorder-free environment and they have extremely simple contact interactions, the resulting FQH states would be revealed in their most essential form. Moreover, bosonic FQH states represent a new frontier and have never been seen in any setting. Going beyond electromagnetism's conventional scalar gauge field, it is possible to create more general non-Abelian gauge potentials. When these are spatially uniform, they are equivalent to spin-orbit coupling familiar in material systems, and can lead to cold atom analogs of topological insulators and topological superconductors. In this tutorial, we introduce basic concepts underlying these gauge fields, making connections to the Aharonov-Bohm phase and geometric phase. We focus on the system of neutral atoms ‘dressed’ by multiple laser beams, where the eigenstates of the resulting Hamiltonian are known as dressed states. Synthetic gauge potentials arise from the unitary transformation required to express these dressed states in terms of the laser-free eigenstates. We discuss stability of laser-dressed atoms corresponding to the adiabatic condition and the probability of non-adiabatic transitions. Adopting both the semiclassical and quantum mechanical approaches, we demonstrate they agree in the suitable limit. We also analyze using both the conventional adiabatic picture and exact picture, where the kinetic energy is neglected in the former and retained in the latter picture.
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Blagojević, Milutin
2012-01-01
During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...
Thermally favourable gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Dalianis, Ioannis, E-mail: Ioannis.Dalianis@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland); Lalak, Zygmunt, E-mail: Zygmunt.Lalak@fuw.edu.p [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland)
2011-03-14
We discuss the thermal evolution of the spurion and messenger fields of ordinary gauge mediation models taking into account the Standard Model degrees of freedom. It is shown that for thermalized messengers the metastable susy breaking vacuum becomes thermally selected provided that the susy breaking sector is sufficiently weakly coupled to messengers or to any other observable field.
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in s.......e. they are independent on the specific matter representation.......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Gauging without Initial Symmetry
Kotov, Alexei
2016-01-01
The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Freund, Peter G O
2010-01-01
Erik Verlinde's proposal of the emergence of the gravitational force as an entropic force is extended to abelian and non-abelian gauge fields and to matter fields. This suggests a picture with no fundamental forces or forms of matter whatsoever.
DEFF Research Database (Denmark)
Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse
1996-01-01
The transient response of SOFC oxygen cathodes shows a characteristic inductive hysteresis and correspondingly the impedance diagram combines one or two capacitive arcs with a low frequency inductive arc. These features are discussed on the basis of a three step reaction sequence taken from...
Smart cathodic protection systems
Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.
2010-01-01
Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan
Weighing Rain Gauge Recording Charts
National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...
Renormalisation group flows for gauge theories in axial gauges
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Ter-Kazarian, G T
1997-01-01
Suggested theory involves a drastic revision of a role of local internal symmetries in physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries is generalized. The gravitation gauge group is proposed, which is generated by hidden local internal symmetries. The developed mechanism enables one to infer Einstein's equation of gravitation, but only with strong difference from Einstein's theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as general distortion of manifold G(2.2.3) with hidden group U(1) was considered.
Energy Technology Data Exchange (ETDEWEB)
Heeck, Julian
2013-04-15
Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.
Gravitational Wave - Gauge Field Oscillations
Caldwell, R R; Maksimova, N A
2016-01-01
Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.
Are gauge shocks really shocks?
Alcubierre, M
2005-01-01
The existence of gauge pathologies associated with the Bona-Masso family of generalized harmonic slicing conditions is proven for the case of simple 1+1 relativity. It is shown that these gauge pathologies are true shocks in the sense that the characteristic lines associated with the propagation of the gauge cross, which implies that the name ``gauge shock'' usually given to such pathologies is indeed correct. These gauge shocks are associated with places where the spatial hypersurfaces that determine the foliation of spacetime become non-smooth.
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
Semenov, A P
2001-01-01
One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode
Computer modeling of piezoresistive gauges
Energy Technology Data Exchange (ETDEWEB)
Nutt, G. L.; Hallquist, J. O.
1981-08-07
A computer model of a piezoresistive gauge subject to shock loading is developed. The time-dependent two-dimensional response of the gauge is calculated. The stress and strain components of the gauge are determined assuming elastic-plastic material properties. The model is compared with experiment for four cases. An ytterbium foil gauge in a PPMA medum subjected to a 0.5 Gp plane shock wave, where the gauge is presented to the shock with its flat surface both parallel and perpendicular to the front. A similar comparison is made for a manganin foil subjected to a 2.7 Gp shock. The signals are compared also with a calibration equation derived with the gauge and medium properties accounted for but with the assumption that the gauge is in stress equilibrium with the shocked medium.
Reduction of cathodic delamination rates of anticorrosive coatings using free radical scavengers
DEFF Research Database (Denmark)
Sørensen, Per Aggerholm; Weinell, C. E.; Dam-Johansen, Kim
2010-01-01
Cathodic delamination is one of the major modes of failure for anticorrosive coatings subjected to a physical damage and immersed in seawater. The cause of cathodic delamination has been reported to be the result of a chemical attack at the coating-steel interface by free radicals and peroxides...... formed as intermediates in the cathodic reaction during the corrosion process. In this study, antioxidants (i.e., free radical scavengers and peroxide decomposers) have been incorporated into various generic types of coatings to investigate the effect of antioxidants on the rate of cathodic delamination...... of epoxy coatings on cold rolled steel. The addition of cathodic delamination by up to 50% during seawater immersion, while peroxide decomposers had a limited effect. Testing using substrates prepared from stainless steel...
... Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores Canker Sore or Cold Sore? Mouth Sores: Caused By Student Stress? games Home | InfoBites | Find a Dentist | Your Family's Oral Health | Newsroom | RSS About AGD | Contact AGD | Site Map | ...
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Gauge Mediation with Gauge Messengers in SU(5)
Matos, Luis
2010-01-01
The inclusion of gauge messengers in models of gauge mediation allows for more general predictions that those described by the framework of general gauge mediation. Motivated by this, we explore some models of gauge mediation with gauge messengers in SU(5) GUTs. In most previous attempts of building viable models where gauge messengers play a role in determining the soft terms, squark and/or slepton masses turned out to be tachyonic. The objective of this paper is to address this problem and propose two possible solutions, one of which has a natural realization in the solution of the doublet-triplet problem. Another interesting result is that in these models the association of SUSY breaking with the breaking of the GUT group provides a simple mechanism that can explain why $SU(5)\\rightarrow SU(3)\\times SU(2) \\times U(1)$ is preferred over other symmetry breaking patterns.
Gauge-fixing approach to lattice chiral gauge theories
Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten F.L.; Shamir, Yigal
1998-01-01
We review the status of our recent work on the gauge-fixing approach to lattice chiral gauge theories. New numerical results in the reduced version of a model with a U(1) gauge symmetry are presented which strongly indicate that the factorization of the correlation functions of the left-handed neutral and right-handed charged fermion fields, which we established before in perturbation theory, holds also nonperturbatively.
DEFF Research Database (Denmark)
2017-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... the measurement grid sections at their ends. The end loops at both ends of the measurement grid extend a length (L, 500) in the axial direction in millimetres of a factor times a ratio between a width of a grid section and the gap distance, wherein the factor is larger or equal to 1.5. The invention further...
Field emission digital display tube with nano-graphite film cathode
Institute of Scientific and Technical Information of China (English)
Jicai Deng; Zhanling Lu; Binglin Zhang
2008-01-01
The field emission digital display tube with a nano-crystalline graphite cold cathode is designed and fabricated. Under the control of the driving circuits, a dynamic digital display with uniform luminance distribution is realized. The luminance of the character segments is 190 cd/m2 at the operating voltage of 900 V. And the stable emission is attained with a fluctuation of about 3% at an average segment current of 75 μA. The results demonstrate that nano-crystalline graphite film is a promising material for cold cathode.
Zucchini, Roberto
2010-01-01
A BV algebra is a formal framework within which the BV quantization algorithm is implemented. In addition to the gauge symmetry, encoded in the BV master equation, the master action often exhibits further global symmetries, which may be in turn gauged. We show how to carry this out in a BV algebraic set up. Depending on the nature of the global symmetry, the gauging involves coupling to a pure ghost system with a varying amount of ghostly supersymmetry. Coupling to an N=0 ghost system yields an ordinary gauge theory whose observables are appropriately classified by the invariant BV cohomology. Coupling to an N=1 ghost system leads to a topological gauge field theory whose observables are classified by the equivariant BV cohomology. Coupling to higher $N$ ghost systems yields topological gauge field theories with higher topological symmetry. In the latter case, however, problems of a completely new kind emerge, which call for a revision of the standard BV algebraic framework.
Comparing dualities and gauge symmetries
De Haro, Sebastian; Teh, Nicholas; Butterfield, Jeremy N.
2017-08-01
We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4-6) is much more specific. We give a result about gauge/gravity duality that shows its relation to gauge symmetries (in the physical sense of symmetry transformations that are spacetime-dependent) to be subtler than you might expect. For gauge theories, you might expect that the duality bijections relate only gauge-invariant quantities and states, in the sense that gauge symmetries in one theory will be unrelated to any symmetries in the other theory. This may be so in general; and indeed, it is suggested by discussions of Polchinski and Horowitz. But we show that in gauge/gravity duality, each of a certain class of gauge symmetries in the gravity/bulk theory, viz. diffeomorphisms, is related by the duality to a position-dependent symmetry of the gauge/boundary theory.
Cosmological perturbation theory in the synchronous and conformal newtonian gauges
Ma Chung Pei; Ma, Chung Pei; Bertschinger, Edmund
1995-01-01
This paper presents a systematic treatment of the linear theory of scalar gravitational perturbations in the synchronous gauge and the conformal Newtonian (or longitudinal) gauge. It differs from others in the literature in that we give, in both gauges, a complete discussion of all particle species that are relevant to any flat cold dark matter (CDM), hot dark matter (HDM), or CDM+HDM models (including a possible cosmological constant). The particles considered include CDM, baryons, photons, massless neutrinos, and massive neutrinos (an HDM candidate), where the CDM and baryons are treated as fluids while a detailed phase-space description is given to the photons and neutrinos. Particular care is applied to the massive neutrino component, which has been either ignored or approximated crudely in previous works. Isentropic initial conditions on super-horizon scales are derived. The coupled, linearized Boltzmann, Einstein and fluid equations that govern the evolution of the metric and density perturbations are t...
Energy Technology Data Exchange (ETDEWEB)
Ter-Kazarian, G. T. [Byurakan Astrophysical Observatory (Armenia)
1997-06-01
The suggested theory involves a drastic revision of the role of local internal symmetries in the physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries has been generalized. A gravitation gauge group is proposed, which is generated by hidden local internal symmetries. In all circumstances, it seemed to be of the greatest importance for the understanding of the physical nature of gravity. The most promising aspect in their approach so far is the fact that the energy-momentum conservation laws of gravitational interacting fields are formulated quite naturally by exploiting all the advantages of auxiliary shadow fields on flat shadow space. The mechanism developed here enables one to infer Einstein`s equation of gravitation, but only with a strong difference from Einstein`s theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as the general distortion of the manifold G(2.2.3) with hidden group U{sup loc} (1) has been considered.
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Nieto, Carlos M.; Rodríguez, Yeinzon
2016-06-01
Gauge-flation model at zeroth-order in cosmological perturbation theory offers an interesting scenario for realizing inflation within a particle physics context, allowing us to investigate interesting possible connections between inflation and the subsequent evolution of the Universe. Difficulties, however, arise at the perturbative level, thus motivating a modification of the original model. In order to agree with the latest Planck observations, we modify the model such that the new dynamics can produce a relation between the spectral index ns and the tensor-to-scalar ratio r allowed by the data. By including an identical mass term for each of the fields of the system, we find interesting dynamics leading to slow-roll inflation of the right length. The presence of the mass term has the potential to modify the ns versus r relation so as to agree with the data. As a first step, we study the model at zeroth-order in cosmological perturbation theory, finding the conditions required for slow-roll inflation and the number of e-foldings of inflation. Numerical solutions are used to explore the impact of the mass term. We conclude that the massive version of gauge-flation offers a viable inflationary model.
Mojaza, Matin; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary o...
Alternate Gauge Electroweak Model
Dalton, Bill
2010-01-01
We describe an alternate gauge electroweak model that permits neutrinos with mass, and at the same time explains why right-handed neutrinos do not appear in weak interactions. This is a local gauge theory involving a space [V ] of three scalar functions. The standard Lagrangian density for the Yang-Mills field part and Higgs doublet remain invariant. A ma jor change is made in the transformation and corresponding Lagrangian density parts involving the right-handed leptons. A picture involving two types of right-handed leptons emerges. A dichotomy of matter on the [V ] space corresponds to coupled and uncoupled right-handed Leptons. Here, we describe a covariant dipole-mode solution in which the neutral bosons A{\\mu} and Z{\\mu} produce precessions on [V ]. The W {\\pm} {\\mu} bosons provide nutations on [V ], and consequently, provide transitions between the coupled and uncoupled regions. To elucidate the [V ] space matter dichotomy, and to generate the boson masses, we also provide an alternate potential Lagran...
Operator Gauge Symmetry in QED
Directory of Open Access Journals (Sweden)
Siamak Khademi
2006-01-01
Full Text Available In this paper, operator gauge transformation, first introduced by Kobe, is applied to Maxwell's equations and continuity equation in QED. The gauge invariance is satisfied after quantization of electromagnetic fields. Inherent nonlinearity in Maxwell's equations is obtained as a direct result due to the nonlinearity of the operator gauge transformations. The operator gauge invariant Maxwell's equations and corresponding charge conservation are obtained by defining the generalized derivatives of the first and second kinds. Conservation laws for the real and virtual charges are obtained too. The additional terms in the field strength tensor are interpreted as electric and magnetic polarization of the vacuum.
Warshawsky, I.
1982-01-01
Calibrations by four U.S. laboratories of four hot-cathode ion gauges, in the range 0.07-13 mPa, showed systematic differences among laboratories that were much larger than the expected error of any one calibration. They also suggested that any of the four gauges tested, if properly packaged and shipped, was able to serve as a transfer standard with probable error of 2%. A second comparison was made of the calibrations by two U.S. laboratories of some other gauges that had also been calibrated by the National Physical Laboratory, England. Results did not permit conclusive determination of whether differences were due to the laboratories or to changes in the gauges.
Nanostructured lanthanum manganate composite cathode
DEFF Research Database (Denmark)
Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus
2005-01-01
that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...
Cathodic hydrodimerization of nitroolefins
Directory of Open Access Journals (Sweden)
Michael Weßling
2015-07-01
Full Text Available Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.
Cathodic hydrodimerization of nitroolefins.
Weßling, Michael; Schäfer, Hans J
2015-01-01
Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C-C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.
Compact lanthanum hexaboride hollow cathode.
Goebel, Dan M; Watkins, Ronald M
2010-08-01
A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.
Quantification of precipitation measurement discontinuity induced by wind shields on national gauges
Yang, D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.; Leavesley, G.; Emerson, D.; Hanson, C.L.; Golubev, V.S.; Elomaa, E.; Gunther, T.; Pangburn, T.; Kang, E.; Milkovic, J.
1999-01-01
Various combinations of wind shields and national precipitation gauges commonly used in countries of the northern hemisphere have been studied in this paper, using the combined intercomparison data collected at 14 sites during the World Meteorological Organization's (WMO) Solid Precipitation Measurement Intercomparison Project. The results show that wind shields improve gauge catch of precipitation, particularly for snow. Shielded gauges, on average, measure 20-70% more snow than unshielded gauges. Without a doubt, the use of wind shields on precipitation gauges has introduced a significant discontinuity into precipitation records, particularly in cold and windy regions. This discontinuity is not constant and it varies with wind speed; temperature, and precipitation type. Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies. The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields. Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types. The linear relation does not fully take into account the varying effect of wind and temperature on gauge catch. Overadjustment by the linear relation may occur at those sites with lower wind speeds, and underadjustment may occur at those stations with higher wind speeds. The RCR technique is anticipated to be more applicable in a wide range of climate conditions. The RCR technique and the linear relation have been tested at selected WMO intercomparison stations, and reasonable agreement between the adjusted amounts and the shielded gauge measurement was obtained at most of the sites. Test application of the developed methodologies to a regional or national network is therefore recommended to further evaluate their applicability in
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
Neutrino assisted gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung Do; Mo, Doh Young; Seo, Min-Seok [Seoul National University, Department of Physics and Astronomy and Center for Theoretical Physics, Seoul (Korea, Republic of)
2013-06-15
Recent observation shows that the Higgs mass is at around 125 GeV while the prediction of the minimal supersymmetric standard model is below 120 GeV for stop mass lighter than 2 TeV unless the top squark has a maximal mixing. We consider the right-handed neutrino supermultiplets as messengers in addition to the usual gauge mediation to obtain sizeable trilinear soft parameters A{sub t} needed for the maximal stop mixing. Neutrino messengers can explain the observed Higgs mass for stop mass around 1 TeV. Neutrino assistance can also generate charged lepton flavor violation including {mu}{yields}e {gamma} as a possible signature of the neutrino messengers. We consider the S{sub 4} discrete flavor model and show the relation of the charged lepton flavor violation, {theta} {sub 13} of neutrino oscillation and the muon's g-2. (orig.)
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
On Gauge Invariant Descriptions of Gluon Polarization
Guo, Zhi-Qiang
2012-01-01
We propose methods to construct gauge invariant decompositions of nucleon spin, especially gauge invariant descriptions of gluon polarization. We show that gauge invariant decompositions of nucleon spin can be derived naturally from the conserved current of a generalized Lorentzian transformation by Noether theorem. We also examine the problem of gauge dependence with a gauge invariant extension of the Chern-Simons current.
Algebraic aspects of gauge theories
Zharinov, V. V.
2014-08-01
Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
Introduction to Supersymmetric Gauge Theories
Piguet, O
1997-01-01
In these lectures I present a basic introduction to supersymmetry, especially to N=1 supersymmetric gauge theories and their renormalization, in the Wess-Zumino gauge. I also discuss the various ways supersymmetry may be broken in order to account for the lack of exact supersymmetry in the actual world of elementary particles.
Roo, M. de
1985-01-01
The N = 4 Yang-Mills multiplet is coupled to N = 4 conformal supergravity. The action has a local U(4)Ã—G symmetry, where G is the Yang-Mills gauge group. The action and supersymmetry transformation rules are presented in the PoincarÃ© gauge, and properties of the scalar potential are discussed.
Symmetries, Symmetry Breaking, Gauge Symmetries
Strocchi, Franco
2015-01-01
The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...
Gauging the Poisson sigma model
Zucchini, Roberto
2008-01-01
We show how to carry out the gauging of the Poisson sigma model in an AKSZ inspired formulation by coupling it to the a generalization of the Weil model worked out in ref. arXiv:0706.1289 [hep-th]. We call the resulting gauged field theory, Poisson--Weil sigma model. We study the BV cohomology of the model and show its relation to Hamiltonian basic and equivariant Poisson cohomology. As an application, we carry out the gauge fixing of the pure Weil model and of the Poisson--Weil model. In the first case, we obtain the 2--dimensional version of Donaldson--Witten topological gauge theory, describing the moduli space of flat connections on a closed surface. In the second case, we recover the gauged A topological sigma model worked out by Baptista describing the moduli space of solutions of the so--called vortex equations.
Electroweak Vortices and Gauge Equivalence
MacDowell, Samuel W.; Törnkvist, Ola
Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Organic nanowire hierarchy over fabric platform for flexible cold cathode
Maiti, Soumen; Narayan Maiti, Uday; Pal, Shreyasi; Chattopadhyay, Kalyan Kumar
2013-11-01
Organic charge transfer (CT) complexes initiated a growing interest in modern electronic devices owing to their easy processability and unique characteristics. In this work, three-dimensional field emitters comprising metal-organic charge transfer complex nanostructures of AgTCNQ and CuTCNQ (TCNQ, 7,7,8,8-tetracyanoquinodimethane) over flexible fabric substrate are realized. Deliberate control over the reaction parameter during organic solid phase reaction leads to modification in structural parameters of the nanowires (i.e. length, diameter) as well as their arrangement atop the carbon fibers. The optimized arrays of AgTCNQ and CuTCNQ nanowires exhibit excellent field electron emission performance with very low turn-on (1.72 and 2.56 V μm-1) and threshold fields (4.21 and 6.33 V μm-1) respectively, which are comparable to those of the best organic field emitters reported to date. The underlying conducting carbon cloth with special woven-like geometry not only offers a flexible platform for nanowire growth, but also provides an additional field enhancement to ease the electron emission.
Field Emission Cold Cathode Devices Based on Eutectic Systems
1981-07-01
suggested that the most promising candidates are the carbides and borides of tantalum, hafnium and niobium together with zirconium carbide. The choice of...in ternary La-B-X systems, some evidence is available6 5 ’ 6 6( , to suggest that LaB6 and aluminium form a eutectic equilibrium, thereby creating a...the composition of the fibres and matrix. Fibres Matrix Nickel, wt.% 27.9 70.1 Molybdenum, wt.% 65.7 20.8 Tantalim, wt.% 2.0 2.8 Aluminium , wt.% 4.5
Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.
2013-07-01
The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic
Gauge Fixing on the Lattice without Ambiguity
Vink, Jeroen C; 10.1016/0370-2693(92)91372-G
2009-01-01
A new gauge fixing condition is discussed, which is (lattice) rotation invariant, has the `smoothness' properties of the Landau gauge but can be efficiently computed and is unambiguous for almost all lattice gauge field configurations.
Gauge Invariants and Correlators in Flavoured Quiver Gauge Theories
Mattioli, Paolo
2016-01-01
In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.
Toward semistrict higher gauge theory
Zucchini, Roberto
2011-01-01
We work out a formulation of higher gauge theory, whose symmetry is encoded in a semistrict Lie 2-algebra v and which we call semistrict. We view v as a 2-term L-infinity algebra, a special case of strong homotopy Lie algebra generalizing an ordinary Lie algebra by allowing the Lie bracket to have a non trivial Jacobiator. Fields are v-valued and gauge transformations are special Aut(v)-valued maps organized as an ordinary group and acting on them. The global behaviour of fields is controlled by appropriate gauge transformation 1-cocycles. Using the BV quantization method in the AKSZ geometrical version, we write down a 3-dimensional semistrict higher BF gauge theory generalizing ordinary BF theory, carry out its gauge fixing and obtain as end result a semistrict higher topological gauge field theory of the Witten type. We also introduce a related 4-dimensional semistrict higher Chern--Simons gauge theory. We discuss merits and weaknesses of our formulation in relations to other approaches.
Nieto, Carlos M
2016-01-01
The appealing properties of the Gauge-flation model at zeroth order in cosmological perturbation theory constitute a step ahead at cementing inflation on solid particle physics foundations; this, in turn, allows us to have an interesting connection between inflation and the physics of the subsequent evolution of the Universe. However, there are issues at the perturbative level which suggest a modification to the original model. As we want to be in agreement with the latest observations of Planck, we modify the model such that the new dynamics could produce a relation between the spectral index $n_{s}$ and the tensor-to-scalar ratio $r$ in agreement with the allowed parameter window. By including an identical mass term for each of the fields composing the system, we find an interesting dynamics among all the terms in the Lagrangian such that a successful inflationary period is still reproduced. It would indeed be the mass term the responsible for the expected successful modification of the $n_{s}$ vs. $r$ rela...
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-10-15
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.
Hollow Cathode With Multiple Radial Orifices
Brophy, John R.
1992-01-01
Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.
... have a low fever or no fever. Young children often run a fever around 100 to 102°F (37.7 to 38.8°C). Depending on which virus caused your cold, you may also have: Cough Decreased appetite Headache Muscle aches Postnasal drip Sore throat
Kazanjian, Wendy C.
1982-01-01
Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)
Dynamical Messengers for Gauge Mediation
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2011-08-17
We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Functional integration and gauge ambiguities in generalized abelian gauge theories
Kelnhofer, Gerald
2007-01-01
We consider the covariant quantization of generalized abelian gauge theories on a closed and compact n-dimensional manifold whose space of gauge invariant fields is the abelian group of Cheeger-Simons differential characters. The space of gauge fields is shown to be a non-trivial bundle over the orbits of the subgroup of smooth Cheeger-Simons differential characters. Furthermore each orbit itself has the structure of a bundle over a multi-dimensional torus. As a consequence there is a topological obstruction to the existence of a global gauge fixing condition. A functional integral measure is proposed on the space of gauge fields which takes this problem into account and provides a regularization of the gauge degrees of freedom. For the generalized p-form Maxwell theory closed expressions for all physical observables are obtained. The Greens functions are shown to be affected by the non-trivial bundle structure. Finally the vacuum expectation values of circle-valued homomorphisms, including the Wilson operato...
Beyond the standard gauging: gauge symmetries of Dirac sigma models
Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa; Strobl, Thomas
2016-08-01
In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.
Beyond the standard gauging: gauge symmetries of Dirac Sigma Models
Chatzistavrakidis, Athanasios; Jonke, Larisa; Strobl, Thomas
2016-01-01
In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic sigma-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field th...
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
Satish D Joglekar
2003-11-01
We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter varies, depends very sensitively on the parameter variation. We do this with a gauge used by Doust. We also consider the Lagrangian path-integrals in Minkowski space for gauges with a residual gauge-invariance. We point out the necessity of inclusion of an -term (even) in the formal treatments, without which one may reach incorrect conclusions. We, further, point out that the -term can contribute to the BRST WT-identities in a non-trivial way (even as → 0). We point out that these contributions lead to additional constraints on Green’s function that are not normally taken into account in the BRST formalism that ignores the -term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable.
A Propellant Mass Gauge Project
National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...
Gauge Mediation in String Theory
Kawano, Teruhiko; Ooguri, Hirosi; Ookouchi, Yutaka
2007-01-01
We show that a large class of phenomenologically viable models for gauge mediation of supersymmetry breaking based on meta-stable vacua can be realized in local Calabi–Yau compactifications of string theory.
Strong Coupling Gauge Theories in LHC ERA
Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.
2011-01-01
AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal
Liquid cathode primary batteries
Schlaikjer, Carl R.
1985-03-01
Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.
Microhollow cathode discharges
Schoenbach, K. H.; Moselhy, M.; Shi, W.; Bentley, R.
2003-07-01
By reducing the dimensions of hollow cathodes into the hundred micrometer range, stable, direct current, high (atmospheric) pressure glow discharges in rare gases, rare gas-halide mixtures and in air could be generated. The electron energy distribution in these microdischarges is non-Maxwellian, with a pronounced high-energy tail. The high electron energy together with the high gas density, which favors three-body collisions, is the reason for an efficient excimer generation in these microplasmas. Excimer efficiencies from 1% to 9% have been measured for argon, xenon, argon fluoride, and xenon chloride direct current excimer emitters, with a radiant excimer emittance of up to 2 W/cm2 for xenon. Adding small amounts of oxygen to argon has allowed us to generate vacuum ultraviolet line radiation at 130.5 nm with an efficiency approaching 1%. Pulsing xenon discharges with nanosecond electrical pulses has led to an increase in intensity to 15 W/cm2 and to a simultaneous increase in efficiency to more than 20%. Operating the discharges in an abnormal glow mode has allowed us to generate microdischarge arrays without individual ballast. Applications of these plasma arrays are excimer lamps and plasma reactors.
Liquid cathode primary batteries
Energy Technology Data Exchange (ETDEWEB)
Schlaikjer, C.R.
1985-01-15
Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.
Optical Rain Gauge Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-01
To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).
Current forms and gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Lopez, M Castrillon [Departemento de GeometrIa y TopologIa, Facultad de Matematicas, Universidad Complutense de Madrid, 28040-Madrid (Spain); Masque, J Munoz [Instituto de FIsica Aplicada, CSIC, C/Serrano 144, 28006-Madrid (Spain)
2004-05-14
Let C be the bundle of connections of a principal G-bundle {pi}:P {yields} M, and let V be the vector bundle associated with P by a linear representation G {yields} GL(V) on a finite-dimensional vector space V. The Lagrangians on J{sup 1}(C x {sub M}V) whose current form is gauge invariant, are described and the gauge-invariant Lagrangians on J{sup 1}(V) are classified.
Energy Technology Data Exchange (ETDEWEB)
Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-02-01
So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).
2010-10-01
... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...
33 CFR 117.47 - Clearance gauges.
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Clearance gauges. 117.47 Section... OPERATION REGULATIONS General Requirements § 117.47 Clearance gauges. (a) Clearance gauges are required for... specify otherwise for particular drawbridges, clearance gauges shall be designed, installed,...
On the gauging of chiral bosons
Wotzasek, C
1995-01-01
We study the coupling of chiral bosons to external electromagnetic fields. It is observed that a naive gauging procedure leaves the gauge invariant chirality condition incompatible with the field equations. We propose the use of this feature as a consistency test to select the appropriate way to perform the gauge coupling. We verify that among all the possible gauging schemes, only the coupling of gauge fields with chiral currents passes the consistency test. As an application, we use this gauging scheme to show how the introduction of a gauge field becomes necessary in order to sold together a right and a left chiral boson.
Invariance, symmetry and periodicity in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jackiw, R
1980-02-01
The interplay between gauge transformations and coordinate transformations is discussed; the theory will aid in understanding the mixing of space-time and internal degrees of freedom. The subject is presented under the following headings: coordinate transformation laws for arbitrary fields, coordinate transformation laws for gauge fields, properties of symmetric gauge fields, construction of symmetric gauge fields, physical significance of gauge transformations, and magnetic monopole topology without Higgs fields. The paper ends with conclusions and suggestions for further research. (RWR)
Gauged twistor spinors and symmetry operators
Ertem, Ümit
2016-01-01
We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satify the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.
Comparing Dualities and Gauge Symmetries
De Haro, Sebastian; Butterfield, Jeremy N
2016-01-01
We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4, 5 and 6) is much more specific. We give a result about gauge/gravity duality that shows its rela...
Key techniques of automatic gauge control and profile control for aluminium strip and foil
Institute of Scientific and Technical Information of China (English)
LI Mou-wei; LIU Hong-fei; WANG Xiang-li; TONG Chao-nan; YIN Feng-fu; BIAN Xin-xiao; ZHANG Lei
2006-01-01
Such characteristics of aluminium strip and foil as soft and thin gauge make tension control one of the key techniques for automation gauge control(AGC). To avoid the disadvantage of traditional mathematical control method which is unfitful for nonlinear hysteresis, the technique for tension AGC fuzzy control was developed and thickness deviation more than 3% of product thickness was achieved consequently in 1 350 mm cold rolling mill of aluminium strip and foil. Additionally, because the gauge of aluminium strip and foil is thin, stage-cooling roll method becomes a key technique for profile control. So stage-cooling roll intelligent control method is developed and pre-coated aluminum foil with good profile less than 10 I (the relative differences in elongation of 0.01% ) is produced using the profile control system in 1 400 mm cold rolling mill of aluminium strip and foil.
Reservoir Cathode for Electric Space Propulsion Project
National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...
Reservoir Cathode for Electric Space Propulsion Project
National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Gauge and Gravity Amplitude Relations
Carrasco, John Joseph M
2015-01-01
In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.
Introduzione alle teorie di gauge
Cabibbo, Nicola; Benhar, Omar
2016-01-01
"Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...
Interacting Gauge-Fluid system
Banerjee, Rabin; Mitra, Arpan Krishna
2016-01-01
A gauge-fluid relativistic model where a non-isentropic fluid is coupled to a dynamical Maxwell ($U(1)$) gauge field, has been studied. We have examined in detail the structures of energy momentum tensor, derived from two definitions, {\\it{ie.}} the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the spacetime transformations obtained from these two definitions agree, modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.
Gravity: a gauge theory perspective
Nester, James M
2016-01-01
The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether's two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincar\\'e group. The dynamical potentials of the Poincar\\'e gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed,...
High-current-density, high brightness cathodes for free electron laser applications
Energy Technology Data Exchange (ETDEWEB)
Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)
1987-06-01
This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.
Gravitational Gauge Interactions of Scalar Field
Institute of Scientific and Technical Information of China (English)
WUNing
2003-01-01
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.
Gravitational Gauge Interactions of Scalar Field
Institute of Scientific and Technical Information of China (English)
WU Ning
2003-01-01
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.
Mechanistic Enhancement of SOFC Cathode Durability
Energy Technology Data Exchange (ETDEWEB)
Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)
2016-02-01
Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.
Penteado, Poliana; Egues, J. Carlos
2013-03-01
In condensed matter systems, the coupling between spatial and spin degrees of freedom through the spin-orbit (SO) interaction offers the possibility of manipulating the electron spin via its orbital motion. The proposal by Datta and Das of a `spin transistor' for example, highlights the use of the SO interaction to control the electron spin via electrical means. Recently, arrangements of crossed lasers and magnetic fields have been used to trap and cool atoms in optical lattices and also to create light-induced gauge potentials, which mimic the SO interactions in real solids. In this work, we investigate the Zitterbewegung in cold atoms by starting from the effective SO Hamiltonian derived in Ref.. Cross-dressed atoms as effective spins can provide a proper setting in which to observe this effect, as the relevant parameter range of SO strengths may be more easily attainable in this context. We find a variety of peculiar Zitterbewegung orbits in real and pseudo-spin spaces, e.g., cycloids and ellipses - all of which obtained with realistic parameters. This work is supported by FAPESP, CAPES and CNPq.
Amp\\`ere-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator
Mihalcea, D; Hartzell, J; Panuganti, H; Boucher, S M; Murokh, A; Piot, P; Thangaraj, J C T
2015-01-01
Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.
Stream Gauges and Satellite Measurements
Alsdorf, D. E.
2010-12-01
Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Gauge theory and variational principles
Bleecker, David
2005-01-01
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field
Gauge Theories, Tessellations & Riemann Surfaces
He, Yang-Hui
2014-01-01
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-05
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Gauge theories, tessellations & Riemann surfaces
Energy Technology Data Exchange (ETDEWEB)
He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom); Loon, Mark van [Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom)
2014-06-10
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
Novel Cathodes Prepared by Impregnation Procedures
Energy Technology Data Exchange (ETDEWEB)
Eduardo Paz
2006-09-30
(1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.
Emergent gauge field for a chiral bound state on curved surface
Shi, Zhe-Yu; Zhai, Hui
2017-09-01
Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.
Correction of Gauge Factor for Strain Gauges Used in Polymer Composite Testing
DEFF Research Database (Denmark)
Zike, Sanita; Mikkelsen, Lars Pilgaard
2014-01-01
error is found on the strain measurements obtained by the strain gauges. This is documented both experimentally and numerically. A stiffness, also test sample and strain gauge geometry dependent correction coefficient of the gauge factor is proposed. A correction coefficient covers material stiffnesses......Strain gauges are used together with the corresponding gauge factor to relate the relative electrical resistance change of the strain gauge with the strain of the underlying material. The gauge factor is found from a calibration on a stiff material - steel. Nevertheless, the gauge factor depends...
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WUNing; ZHANGDa-Hua; RUANTu-Nan
2003-01-01
DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.
Quantum gauge freedom in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)
2017-02-15
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Quantum Gauge Freedom in Very Special Relativity
Upadhyay, Sudhaker
2016-01-01
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Quantum gauge freedom in very special relativity
Upadhyay, Sudhaker; Panigrahi, Prasanta K.
2017-02-01
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Quantum gauge freedom in very special relativity
Directory of Open Access Journals (Sweden)
Sudhaker Upadhyay
2017-02-01
Full Text Available We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell as well as for Abelian two-form gauge theory in the very special relativity (VSR framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Energy Technology Data Exchange (ETDEWEB)
Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)
2016-03-01
Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.
Optical and electrical investigations into cathode ignition and diode closure
Energy Technology Data Exchange (ETDEWEB)
Coogan, J.J.; Rose, E.A.; Shurter, R.P.
1991-01-01
The temporal behavior of high-power diodes is closely related to the impedance collapse caused by the movement of the cathode and/or anode plasmas. This impedance collapse can be especially problematic when a constant power electron beam is required. This is the case for the very large area (square meters) diodes used to pump the amplifiers within the Aurora KrF laser system. The electron beam technology development program at Los Alamos utilizes the Electron Beam Test Facility (EGTF) to study diode physics in an attempt to better understand the basic phenomenology of ignition and closure. A combination of optical and electric diagnostics has been fielded on the Electron Beam Test Facility to study ignition and closure in large area electron beam diodes. A four-channel framing camera is used to observe the formation of microplasmas on the surface of the cathode and the subsequent movement of these plasmas toward the anode. Additionally, a perveance model is used to extract information about this plasma from voltage and current profiles. Results from the two diagnostics are compared. Closure velocity measurements are presented showing little dependence on applied magnetic field for both velvet and carbon felt emitters. We also report the first observation of the screening effect in large area cold cathode diodes. 13 refs., 11 figs.
Optical and electrical investigations into cathode ignition and diode closure
Coogan, J. J.; Rose, E. A.; Shurter, R. P.
The temporal behavior of high-power diodes is closely related to the impedance collapse caused by the movement of the cathode and/or anode plasmas. This impedance collapse can be especially problematic when a constant power electron beam is required. This is the case for the very large area (square meters) diodes used to pump the amplifiers within the Aurora KrF laser system. The electron beam technology development program at Los Alamos utilizes the Electron Beam Test Facility (EGTF) to study diode physics in an attempt to better understand the basic phenomenology of ignition and closure. A combination of optical and electric diagnostics has been fielded on the Electron Beam Test Facility to study ignition and closure in large area electron beam diodes. A four-channel framing camera is used to observe the formation of microplasmas on the surface of the cathode and the subsequent movement of these plasmas toward the anode. Additionally, a perveance model is used to extract information about this plasma from voltage and current profiles. Results from the two diagnostics are compared. Closure velocity measurements are presented showing little dependence on applied magnetic field for both velvet and carbon felt emitters. We also report the first observation of the screening effect in large area cold cathode diodes.
Microhollow Cathode Discharge Excimer Lamps
Schoenbach, K. H.
1999-11-01
character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract
Entwinement in discretely gauged theories
Balasubramanian, V.; Bernamonti, A.; Craps, B.; De Jonckheere, T.; Galli, F.
2016-12-01
We develop the notion of "entwinement" to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an S N gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS3 at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the system which are gravitationally described as conical defects and the M = 0 BTZ black hole. The possible types of entwinement that can be computed define a very large new class of quantities characterizing the fine structure of quantum wavefunctions.
Entwinement in discretely gauged theories
Balasubramanian, V; Craps, B; De Jonckheere, T; Galli, F
2016-01-01
We develop the notion of entwinement to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an $S_N$ gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS$_3$ at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the...
Low energy gauge unification theory
Li Tian Jun
2002-01-01
Because of the problems arising from the fermion unification in the traditional Grand Unified Theory and the mass hierarchy between the 4-dimensional Planck scale and weak scale, we suggest the low energy gauge unification theory with low high-dimensional Planck scale. We discuss the non-supersymmetric SU(5) model on M sup 4 xS sup 1 /Z sub 2 xS sup 1 /Z sub 2 and the supersymmetric SU(5) model on M sup 4 xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 ')xS sup 1 /(Z sub 2 xZ sub 2 '). The SU(5) gauge symmetry is broken by the orbifold projection for the zero modes, and the gauge unification is accelerated due to the SU(5) asymmetric light KK states. In our models, we forbid the proton decay, still keep the charge quantization, and automatically solve the fermion mass problem. We also comment on the anomaly cancellation and other possible scenarios for low energy gauge unification.
Cardoso, Nuno; Bicudo, Pedro; Oliveira, Orlando
2012-01-01
In this paper we present and explore the performance of Landau gauge fixing in GPUs using CUDA. We consider the steepest descent algorithm with Fourier acceleration, and compare the GPU performance with a parallel CPU implementation. Using $32^4$ lattice volumes, we find that the computational power of a single Tesla C2070 GPU is equivalent to approximately 256 CPU cores.
Levi, T; Levi, Thomas s.; Gleiser, Marcelo
2002-01-01
We present a new model for a non-topological soliton (NTS) that contains fermions, scalar particles and a gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that it can be the lowest energy state of the system for a wide range of parameters.
Gauge-fixing parameter dependence of two-point gauge variant correlation functions
Zhai, C
1996-01-01
The gauge-fixing parameter \\xi dependence of two-point gauge variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge variant two-point correlation functions (e.g. fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose ...
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
... A Week of Healthy Breakfasts Shyness Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...
The inaction approach to gauge theories
Pivovarov, Grigorii
2012-01-01
The inaction approach introduced previously for phi^4 is generalized to gauge theories. It combines the advantages of the effective field theory and causal approaches to quantum fields. Also, it suggests ways to generalizing gauge theories.
Energy-Momentum and Gauge Conservation Laws
Giachetta, G; Sardanashvily, G
1999-01-01
We treat energy-momentum conservation laws as particular gauge conservation laws when generators of gauge transformations are horizontal vector fields on fibre bundles. In particular, the generators of general covariant transformations are the canonical horizontal prolongations of vector fields on a world manifold. This is the case of the energy-momentum conservation laws in gravitation theories. We find that, in main gravitational models, the corresponding energy-momentum flows reduce to the generalized Komar superpotential. We show that the superpotential form of a conserved flow is the common property of gauge conservation laws if generators of gauge transformations depend on derivatives of gauge parameters. At the same time, dependence of conserved flows on gauge parameters make gauge conservation laws form-invariant under gauge transformations.
Supersymmetric composite gauge fields with compensators
Nishino, Hitoshi; Rajpoot, Subhash
2016-06-01
We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.
Calibration of pressure gauge for Cherenkov detector
Saponjic, Nevena
2013-01-01
Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.
Theorems for Asymptotic Safety of Gauge Theories
Bond, Andrew D
2016-01-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Groupthink and the Blunder of the Gauges
2011-12-01
uncritical acceptance of this concept, all textbooks (until very recently) have attributed the concept to H.A. Lorentz rather than its rightful...author, L. Lorenz [1]. The first two editions of Jackson’s “Electrodynamics”, for example, attribute this gauge to H.A. Lorentz . This error is...hidden gauge I =0 and the conflicting Coulomb gauge . One cannot select conflicting gauge choices without violating the laws of physics. 8
Parameter space of general gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: arajaram@uci.edu; Shirman, Yuri [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: yshirman@uci.edu; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: jsmidt@uci.edu; Yu, Felix [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: felixy@uci.edu
2009-07-27
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
Renormalizable Quantum Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
A nilpotent symmetry of quantum gauge theories
Lahiri, Amitabha
2001-09-01
For the Becchi-Rouet-Stora-Tyutin invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher-order ghost terms are also possible.
$\\Phi$-derivable approximations in gauge theories
Arrizabalaga, A
2003-01-01
We discuss the method of $\\Phi$-derivable approximations in gauge theories. There, two complications arise, namely the violation of Bose symmetry in correlation functions and the gauge dependence. For the latter we argue that the error introduced by the gauge dependent terms is controlled, therefore not invalidating the method.
BRST symmetry in the general gauge theories
Hyuk-Jae, Lee; Jae, Hyung, Yee
1994-01-01
By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.
LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES
Energy Technology Data Exchange (ETDEWEB)
Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky
2002-03-31
This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is
Using a Multi-Cathode Counter (MCC) in the Search for Hidden Photon CDM
Kopylov, A V; Petukhov, V V
2015-01-01
We report on a new technique of a Multi-Cathode Counter (MCC) developed to search for hidden photon (HP) cold dark matter (CDM) with a mass from 5 to 10 eV. The method suggested in the assumption that hidden photons of the mass greater than a work function of the metal, the cathode of the counter is fabricated induce emission of single electrons from a cathode. Three configurations of the same counter are used to measure the count rates R1, R2 and R3 of the single electron events sequentially each week, where the difference R1- R2 measures the effect from HP and R3 is used as a reference sequence to monitor the counting process. At present the work is aimed to refine the procedure of data treatment and to look for long term variations which should be accounted for in the final analysis of data.
Inflation in maximal gauged supergravities
Energy Technology Data Exchange (ETDEWEB)
Kodama, Hideo [Theory Center, KEK,Tsukuba 305-0801 (Japan); Department of Particles and Nuclear Physics,The Graduate University for Advanced Studies,Tsukuba 305-0801 (Japan); Nozawa, Masato [Dipartimento di Fisica, Università di Milano, and INFN, Sezione di Milano,Via Celoria 16, 20133 Milano (Italy)
2015-05-18
We discuss the dynamics of multiple scalar fields and the possibility of realistic inflation in the maximal gauged supergravity. In this paper, we address this problem in the framework of recently discovered 1-parameter deformation of SO(4,4) and SO(5,3) dyonic gaugings, for which the base point of the scalar manifold corresponds to an unstable de Sitter critical point. In the gauge-field frame where the embedding tensor takes the value in the sum of the 36 and 36’ representations of SL(8), we present a scheme that allows us to derive an analytic expression for the scalar potential. With the help of this formalism, we derive the full potential and gauge coupling functions in analytic forms for the SO(3)×SO(3)-invariant subsectors of SO(4,4) and SO(5,3) gaugings, and argue that there exist no new critical points in addition to those discovered so far. For the SO(4,4) gauging, we also study the behavior of 6-dimensional scalar fields in this sector near the Dall’Agata-Inverso de Sitter critical point at which the negative eigenvalue of the scalar mass square with the largest modulus goes to zero as the deformation parameter s approaches a critical value s{sub c}. We find that when the deformation parameter s is taken sufficiently close to the critical value, inflation lasts more than 60 e-folds even if the initial point of the inflaton allows an O(0.1) deviation in Planck units from the Dall’Agata-Inverso critical point. It turns out that the spectral index n{sub s} of the curvature perturbation at the time of the 60 e-folding number is always about 0.96 and within the 1σ range n{sub s}=0.9639±0.0047 obtained by Planck, irrespective of the value of the η parameter at the critical saddle point. The tensor-scalar ratio predicted by this model is around 10{sup −3} and is close to the value in the Starobinsky model.
Energy Technology Data Exchange (ETDEWEB)
Chapline, G.
1989-07-01
On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.
Low-energy, high-current, ion source with cold electron emitter
Energy Technology Data Exchange (ETDEWEB)
Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)
2012-02-15
An ion source based on a two-stage discharge with electron injection from a cold emitter is presented. The first stage is the emitter itself, and the second stage provides acceleration of injected electrons for gas ionization and formation of ion flow (<20 eV, 5 A dc). The ion accelerating system is gridless; acceleration is accomplished by an electric field in the discharge plasma within an axially symmetric, diverging, magnetic field. The hollow cathode electron emitter utilizes an arc discharge with cathode spots hidden inside the cathode cavity. Selection of the appropriate emitter material provides a very low erosion rate and long lifetime.
General Gauge Mediation and Deconstruction
McGarrie, Moritz
2010-01-01
We locate a supersymmetry breaking hidden sector and supersymmetric standard model on different lattice points of an orbifold moose. The hidden sector is encoded in a set of current correlators and the effects of the current correlators are mediated by the lattice site gauge groups with "lattice hopping" functions and through the bifundamental matter that links the lattice sites together. We show how the gaugino mass, scalar mass and Casimir energy of the lattice can be computed for a general set of current correlators and then give specific formulas when the hidden sector is specified to be a generalised messenger sector coupled to a supersymmetry breaking spurion. The results reproduce the effect of five dimensional gauge mediation from a purely four dimensional construction.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Weak interactions and gauge theories
Energy Technology Data Exchange (ETDEWEB)
Gaillard, M.K.
1979-12-01
The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)
Microhollow cathode discharge excimer lamps
Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.
2000-05-01
Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.
Characterization of multicapillary dielectric cathodes
Gleizer, J. Z.; Hadas, Y.; Yarmolich, D.; Felsteiner, J.; Krasik, Ya. E.
2007-04-01
Parameters of the plasma and electron beam produced by a multicapillary cathode in a diode powered by a ˜200kV, ˜300ns pulse are presented. It was found that the source of electrons is the plasma ejected from the capillaries. Inside the capillaries this plasma obtains electron density and temperature of ˜8×1015cm-3 and ˜5eV, respectively. In the vicinity of the cathode, the density and temperature of the plasma electrons were found to be 2×1014cm-3 and 4.5eV, respectively, for electron current density of ˜40A/cm2. It was shown that the plasma expansion velocity is in the range of (1-2)×106cm/s for current density of >12A/cm2.
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
Narayanan, Rajamani
2008-01-01
Wilson loops in large N gauge theory exhibit a weak to strong coupling transition as the loop is dilated. A multiplicative matrix model captures the universal behavior associated with this transition. A universal scaling function is obtained in a double scaling limit. Numerical studies show that both large N QCD in three dimensions and the SU(N) principal chiral model in two dimensions are in the same universality class.
Gauge strata and particle generations
Mendes, R V
2000-01-01
Phenomenological evidence suggests the existence of non-trivial background fields in the QCD vacuum. On the other hand SU(3) gauge theory possessses three different classes of both non-generic and non-trivial strata that may be used as classical backgrounds. It is suggested that this three-fold multiplicity of non-trivial vacua may be related to the existence of particle generations, which would then find an explanation in the framework of the standard model.
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
Neutrinos and electromagnetic gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Pisano, F.; Silva-Sobrinho, J.A. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Tonasse, M.D. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1996-02-01
It is discussed a recently proposed connection among electromagnetic gauge invariance U(1){sub em} and the nature of the neutrino mass terms in the framework of SU(3){sub C} x G{sub W} x U(1){sub N}, G{sub W} SU(3){sub L}, extensions of the Standard Model. The impossibility of that connection, also in the case G{sub W} = SU(4){sub L}, is demonstrated. (author). 7 refs.
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Suzuki, H
1999-01-01
We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
On unification of gravity and gauge interactions
Chamseddine, Ali; Mukhanov, Viatcheslav
2016-01-01
Considering a higher dimensional Lorentz group as the symmetry of the tangent space, we unify gravity and gauge interactions in a natural way. The spin connection of the gauged Lorentz group is then responsible for both gravity and gauge fields, and the action for the gauged fields becomes part of the spin curvature squared. The realistic group which unifies all known particles and interactions is the SO(1, 13) Lorentz group whose gauge part leads to SO(10) grand unified theory and contains d...
Gravitational Gauge Interactions of Dirac Field
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge tield, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.
On gauge-independence in quantum gravity
Vasilevich, D V
1995-01-01
We prove gauge-independence of one-loop path integral for on-shell quantum gravity obtained in a framework of modified geometric approach. We use projector on pure gauge directions constructed via quadratic form of the action. This enables us to formulate the proof entirely in terms of determinants of non-degenerate elliptic operators without reference to any renormalization procedure. The role of the conformal factor rotation in achieving gauge-independence is discussed. Direct computations on CP^2 in a general three-parameter background gauge are presented. We comment on gauge dependence of previous results by Ichinose.
Flux compactifications, gauge algebras and De Sitter
Energy Technology Data Exchange (ETDEWEB)
Dibitetto, Giuseppe, E-mail: g.dibitetto@rug.n [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Linares, Roman, E-mail: lirr@xanum.uam.m [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, San Rafael Atlixco 186, C.P. 09340, Mexico D.F. (Mexico); Roest, Diederik, E-mail: d.roest@rug.n [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)
2010-04-26
The introduction of (non-)geometric fluxes allows for N=1 moduli stabilisation in a De Sitter vacuum. The aim of this Letter is to assess to what extent this is true in N=4 compactifications. First we identify the correct gauge algebra in terms of gauge and (non-)geometric fluxes. We then show that this algebra does not lead to any of the known gaugings with De Sitter solutions. In particular, the gaugings that one obtains from flux compactifications involve non-semi-simple algebras, while the known gaugings with De Sitter solutions consist of direct products of (semi-)simple algebras.
Wallace, John P.
2015-12-01
Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.
Energy Technology Data Exchange (ETDEWEB)
Wallace, John P., E-mail: jpw@castinganalysis.com [Casting Analysis Corp., PO Box 52, Weyers Cave, VA 24486 (United States)
2015-12-04
Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Introduction to lattice gauge theory
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Gravity: A gauge theory perspective
Nester, James M.; Chen, Chiang-Mei
2016-07-01
The evolution of a generally covariant theory is under-determined. One hundred years ago such dynamics had never before been considered; its ramifications were perplexing, its future important role for all the fundamental interactions under the name gauge principle could not be foreseen. We recount some history regarding Einstein, Hilbert, Klein and Noether and the novel features of gravitational energy that led to Noether’s two theorems. Under-determined evolution is best revealed in the Hamiltonian formulation. We developed a covariant Hamiltonian formulation. The Hamiltonian boundary term gives covariant expressions for the quasi-local energy, momentum and angular momentum. Gravity can be considered as a gauge theory of the local Poincaré group. The dynamical potentials of the Poincaré gauge theory of gravity are the frame and the connection. The spacetime geometry has in general both curvature and torsion. Torsion naturally couples to spin; it could have a significant magnitude and yet not be noticed, except on a cosmological scale where it could have significant effects.
Discerning Secluded Sector gauge structures
Carloni, Lisa; Sjostrand, Torbjorn
2011-01-01
New fundamental particles, charged under new gauge groups and only weakly coupled to the standard sector, could exist at fairly low energy scales. In this article we study a selection of such models, where the secluded group either contains a softly broken U(1) or an unbroken SU(N). In the Abelian case new {\\gamma}v gauge bosons can be radiated off and decay back into visible particles. In the non-Abelian case there will not only be a cascade in the hidden sector, but also hadronization into new {\\pi}v and {\\rho}v mesons that can decay back. This framework is developed to be applicable both for e+e- and pp collisions, but for these first studies we concentrate on the former process type. For each Abelian and non-Abelian group we study three different scenarios for the communication between the standard sector and the secluded one. We illustrate how to distinguish the various characteristics of the models and especially study to what extent the underlying gauge structure can be determined experimentally.
Open String Amplitudes in Various Gauges
Fuji, H; Suzuki, H; Fuji, Hiroyuki; Nakayama, Shinsaku; Suzuki, Hisao
2007-01-01
Recently, Schnabl constructed the analytic solution of the open string tachyon. Subsequently, the absence of the physical states at the vacuum was proved. The development relies heavily on the use of the gauge condition different from the ordinary one. It was shown that the choice of gauge simplifies the analysis drastically. When we perform the calculation of the amplitudes in Schnabl gauge, we find that the off-shell amplitudes of the Schnabl gauge is still very complicated. In this paper, we propose the use of the propagator in the modified Schnabl gauge and show that this modified use of the Schnabl gauge simplifies the computation of the off-shell amplitudes drastically. We also compute the amplitudes of open superstring in this gauge.
On Gauging Symmetry of Modular Categories
Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan
2016-05-01
Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4} -obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.
Quantum Gravitational Contributions to Gauge Field Theoriest
Institute of Scientific and Technical Information of China (English)
汤勇; 吴岳良
2012-01-01
We revisit quantum gravitational contributions to quantum gauge field theories in the gauge condition independent Vilkovisky-DeWitt formalism based on the background field method. With the advantage of Landau- DeWitt gauge, we explicitly obtain the gauge condition independent result for the quadratically divergent gravitational corrections to gauge couplings. By employing, in a general way, a scheme-independent regularization method that can preserve both gauge invariance and original divergent behavior of integrals, we show that the resulting gauge coupling is power-law running and asymptotically free. The regularization scheme dependence is clarified by comparing with results obtained by other methods. The loop regularization scheme is found to be applicable for a consistent calculation.
On Gauging Symmetry of Modular Categories
Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan
2016-12-01
Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4}-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.
Reflective article having a sacrificial cathodic layer
Energy Technology Data Exchange (ETDEWEB)
Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.
2017-09-12
The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.
A pulsed cathodic arc spacecraft propulsion system
Energy Technology Data Exchange (ETDEWEB)
Neumann, P R C; Bilek, M M M; Tarrant, R N; McKenzie, D R [School of Physics, University of Sydney, NSW 2006 Australia (Australia)
2009-11-15
We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>10{sup 4} m s{sup -1}), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Sun powers Libya cathodic-protection system
Energy Technology Data Exchange (ETDEWEB)
Currer, G.W.
1982-03-22
Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.
Preventing Corrosion by Controlling Cathodic Reaction Kinetics
2016-03-25
Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...dominate the metal’s cathodic behavior. Within an alkaline environment, we expect the following reduction reactions to be catalyzed on the oxide
VanDresar, Neil T.; Zimmerli, Gregory A.
2014-01-01
Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.
Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da
2016-03-01
Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.
Unitary Representations of Gauge Groups
Huerfano, Ruth Stella
I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.
Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups
Shi, Yan-Liang; Shrock, Robert
2016-09-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups
Shi, Yan-Liang
2016-01-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Gauge Invariant Fractional Electromagnetic Fields
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
Kojima, Kentaro; Yamashita, Toshifumi
2011-01-01
We propose a novel way to break grand unified gauge symmetries via the Hosotani mechanism in models that can accommodate chiral fermions. Adjoint scalar fields are realized through the so-called diagonal embedding method which is often used in the heterotic string theory. We calculate the one-loop effective potential of the adjoint scalar field in a five dimensional model compactified on an S^1/Z_2 orbifold, as an illustration. It turns out that the potential is basically the same as the one in an S^1 model, and thus the results in literatures, in addition to the chiral fermions, can be realized easily.
Gauging Geometry: A Didactic Lecture
Kannenberg, L
2016-01-01
Local inertial frame invariance is taken as the fundamental principle of physical geometry, where a local inertial frame is represented by a verbein. Invariance of the vierbein with respect to local Lorentz transformations then expresses local inertial frame invariance. The dynamics of physical geometry develops as a gauge theory of the verbein that is closely analogous to the Yang-Mills field provided the verbein connection and curvature correspond to the geometric potential and field respectively. The resulting theory is shown to be equivalent to Einstein's tensor form of relativistic gravitation.
Superpotentials for Quiver Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Aspinwall, Paul S.; /Stanford U., Phys. Dept. /SLAC /Duke U., CGTP; Fidkowski, Lukasz M.; /Stanford U., Phys. Dept.
2005-06-10
We compute superpotentials for quiver gauge theories arising from marginal D-Brane decay on collapsed del Pezzo cycles S in a Calabi-Yau X. This is done using the machinery of A{sub {infinity}} products in the derived category of coherent sheaves of X, which in turn is related to the derived category of S and quiver path algebras. We confirm that the superpotential is what one might have guessed from analyzing the moduli space, i.e., it is linear in the fields corresponding to the Exts of the quiver and that each such Ext multiplies a polynomial in Exts equal to precisely the relation represented by the Ext.
Gauge fields in accelerated frames
Lenz, F
2008-01-01
Quantized fields in accelerated frames (Rindler spaces) with emphasis on gauge fields are investigated. Important properties of the dynamics in Rindler spaces are shown to follow from the scale invariance of the corresponding Hamiltonians. Origin and consequences of this extraordinary property of Hamiltonians in Rindler spaces are elucidated. Characteristics of the Unruh radiation, the appearance of a photon condensate and the interaction energy of vector and scalar static charges are discussed and implications for Yang-Mills theories and QCD in Rindler spaces are indicated.
Cathode materials: A personal perspective
Energy Technology Data Exchange (ETDEWEB)
Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)
2007-12-06
A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi
1998-01-01
We formulate a manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. In our scheme, the effective action in the superfield background-field method above one-loop is always supersymmetric and gauge invariant. The gauge anomaly has the covariant form and can emerge only in one-loop diagrams with all the external lines are the background gauge superfield. We also present several illustrative applications in the one-loop approximation: The self-energy part of the chiral multiplet and the gauge multiplet; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and the anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Transport properties of cascading gauge theories
Buchel, A
2005-01-01
Cascading gauge theories of Klebanov et.al. provide a model within a framework of gauge theory/string theory duality for a four dimensional non-conformal gauge theory with a spontaneously generated mass scale. Using the dual supergravity description we study sound wave propagation in strongly coupled cascading gauge theory plasma. We analytically compute the speed of sound and the bulk viscosity of cascading gauge theory plasma at a temperature much larger than the strong coupling scale of the theory. The sound wave dispersion relation is obtained from the hydrodynamic pole in the stress-energy tensor two-point correlation function. The speed of sound extracted from the pole of the correlation function agrees with its value computed in [hep-th/0506002] using the equation of state. We find that the bulk viscosity of the hot cascading gauge theory plasma is non-zero at the leading order in the deviation from conformality.
Lattice Gauge Theories and Spin Models
Mathur, Manu
2016-01-01
The Wegner $Z_2$ gauge theory-$Z_2$ Ising spin model duality in $(2+1)$ dimensions is revisited and derived through a series of canonical transformations. These $Z_2$ results are directly generalized to SU(N) lattice gauge theory in $(2+1)$ dimensions to obtain a dual SU(N) spin model in terms of the SU(N) magnetic fields and electric scalar potentials. The gauge-spin duality naturally leads to a new gauge invariant disorder operator for SU(N) lattice gauge theory. A variational ground state of the dual SU(2) spin model with only nearest neighbour interactions is constructed to analyze SU(2) lattice gauge theory.
Gauge coupling unification in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics
2006-11-15
We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)
A Nonperturbative Regulator for Chiral Gauge Theories
Grabowska, Dorota M
2015-01-01
We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.
Entanglement of Distillation for Lattice Gauge Theories
Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B.; Verstraete, Frank
2016-09-01
We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws—including a topological correction—emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.
Gauge Blocks – A Zombie Technology
Doiron, Ted
2008-01-01
Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearly the same length as the part being inspected, and thus one of the primary attributes of gauge blocks, wringing stacks to match the part, is no longer needed. Relaxing the requirement that gauges wring presents an opportunity to develop new types of end standards that would increase the accuracy and usefulness of gauging systems. PMID:27096119
Gribov horizon beyond the Landau gauge
Lavrov, Peter M.; Lechtenfeld, Olaf
2013-10-01
Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general Rξ gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gribov horizon beyond the Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2013-10-01
Gribov and Zwanziger proposed a modification of Yang–Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov–Zwanziger model from the Landau gauge to general R{sub ξ} gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gribov horizon beyond the Landau gauge
Lavrov, Peter M
2013-01-01
Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general R_xi gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gauge Blocks – A Zombie Technology
Doiron, Ted
2008-01-01
Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearl...
Gauge dependence in Chern-Simons theory
Dilkes, F A; McKeon, D G C; Sherry, T N
1996-01-01
We compute the contribution to the modulus of the one-loop effective action in pure non-Abelian Chern-Simons theory in an arbitrary covariant gauge. We find that the results are dependent on both the gauge parameter (\\alpha) and the metric required in the gauge fixing. A contribution arises that has not been previously encountered; it is of the form (\\alpha / \\sqrt{p^2}) \\epsilon _{\\mu \\lambda \
Improving naturalness in Gauge Mediation with non-unified messenger sectors
Calibbi, Lorenzo; Mustafayev, Azar; Raza, Shabbar
2016-01-01
We study models of gauge-mediated supersymmetry breaking with messengers that do not belong to complete representations of grand-unified gauge groups. We show that certain setups characterized by heavy Wino can greatly improve the fine tuning with respect to models with unified messengers, such as minimal gauge mediation. The typical models with low tuning feature multi-TeV superparticles, with the exception of the Higgsinos and possibly Bino and right-handed sleptons. As a consequence, the absence of signals for supersymmetry at the LHC is trivially accommodated in our framework. On the other hand, testing these models will be challenging at the LHC. We finally show that the gravitino can be a consistent candidate for cold dark matter, provided a rather low reheating temperature, if a standard thermal history of the universe is assumed.
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Towards the Natural Gauge Mediation
Ding, Ran; Wang, Liucheng; Zhu, Bin
2015-01-01
The sweet spot supersymmetry (SUSY) solves the mu problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the mu-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the \\mu/B_{\\mu}-problem. Moreover, there are only five free parame...
Absence of the Gribov ambiguity in a special algebraic gauge
Raval, Haresh
2016-11-01
The Gribov ambiguity exists in various gauges except algebraic gauges. However in general, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We show that nontrivial copies can not occur in this gauge. We then provide an example of spherically symmetric gauge field configuration and prove that with a proper boundary condition on the configuration, this gauge removes the ambiguity on a compact manifold S^3.
Lattice Chiral Fermions Through Gauge Fixing
Bock, W; Shamir, Y; Bock, Wolfgang; Golterman, Maarten; Shamir, Yigal
1998-01-01
We study a concrete lattice regularization of a U(1) chiral gauge theory. We use Wilson fermions, and include a Lorentz gauge-fixing term and a gauge-boson mass counterterm. For a reduced version of the model, in which the gauge fields are constrained to the trivial orbit, we show that there are no species doublers, and that the fermion spectrum contains only the desired states in the continuum limit, namely charged left-handed (LH) fermions and neutral right-handed (RH) fermions.
Global anomalies in Chiral Lattice Gauge Theory
Bär, Oliver; Campos, Isabel
As first realized by Witten an SU(2) gauge theory coupled to a single Weyl fermion suffers from a global anomaly. This problem is addressed here in the context of the recent developments on chiral gauge theories on the lattice. We find Witten's anomaly manifests in the impossibility of defining globally a fermion measure that reproduces the proper continuum limit. Moreover, following Witten's original argument, we check numerically the crossing of the lowest eigenvalues of Neuberger's operator along a path connecting two gauge fields that differ by a topologically non-trivial gauge transformation.
Classical Higgs fields on gauge gluon bundles
Directory of Open Access Journals (Sweden)
Palese Marcella
2016-01-01
Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.
Focus point supersymmetry in extended gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)
2014-03-27
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.
Quantum gauge models without (classical) Higgs mechanism
Energy Technology Data Exchange (ETDEWEB)
Duetsch, Michael [Univ. Goettingen, Courant Research Center ' ' Higher order Structures in Mathematics' ' , Mathematisches Institut, Goettingen (Germany); Gracia-Bondia, Jose M. [Universidad de Zaragoza, Departamento de Fisica Teorica, Zaragoza (Spain); Scheck, Florian [Johannes Gutenberg-Universitaet, Institut fuer Physik, Theoretische Elementarteilchenphysik, Mainz (Germany); Varilly, Joseph C. [Universidad de Costa Rica, Escuela de Matematica, San Jose (Costa Rica)
2010-10-15
We examine the status of massive gauge theories, such as those usually obtained by spontaneous symmetry breakdown, from the viewpoint of causal (Epstein-Glaser) renormalization. The BRST formulation of gauge invariance in this framework, starting from canonical quantization of massive (as well as massless) vector bosons as fundamental entities, and proceeding perturbatively, allows one to rederive the reductive group symmetry of interactions, the need for scalar fields in gauge theory, and the covariant derivative. Thus the presence of higgs particles is understood without recourse to a Higgs(-Englert-Brout-Guralnik-Hagen-Kibble) mechanism. Along the way, we dispel doubts about the compatibility of causal gauge invariance with grand unified theories. (orig.)
Lattice gauge theories and Monte Carlo simulations
Rebbi, Claudio
1983-01-01
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua; RUAN Tu-Nan
2003-01-01
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)
2015-12-14
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)
2015-12-15
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)
G_2 gauge theory at finite temperature
Cossu, Guido; Di Giacomo, Adriano; Lucini, Biagio; Pica, Claudio
2007-01-01
The gauge group being centreless, $G_2$ gauge theory is a good laboratory for studying the role of the centre of the group for colour confinement in Yang-Mills gauge theories. In this paper, we investigate $G_2$ pure gauge theory at finite temperature on the lattice. By studying the finite size scaling of the plaquette, the Polyakov loop and their susceptibilities, we show that a deconfinement phase transition takes place. The analysis of the pseudocritical exponents give strong evidence of the deconfinement transition being first order. Implications of our findings for scenarios of colour confinement are discussed.
Exact formulas in noncommutative gauge theories
Wallet, Jean-Christophe
2016-01-01
The noncommutative space $\\mathbb{R}^3_\\lambda$, a deformation of $\\mathbb{R}^3$, supports a $3$-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of $\\mathbb{R}^3_\\lambda$. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Preliminary Results of Field Emission Cathode Tests
Sovey, James S.; Kovaleski, Scott D.
2001-01-01
Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.
Cold Stress and the Cold Pressor Test
Silverthorn, Dee U.; Michael, Joel
2013-01-01
Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…
Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M
2001-01-01
Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids
Ampère-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator
Energy Technology Data Exchange (ETDEWEB)
Mihalcea, D. [Northern Illinois U.; Faillace, L. [RadiaBeam Tech.; Hartzell, J. [RadiaBeam Tech.; Panuganti, H. [Northern Illinois U.; Boucher, S. M. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piot, P. [Fermilab; Thangaraj, J. C.T. [Fermilab
2014-12-01
Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.
The Indispensability of Ghost Fields in the Light-Cone Gauge Quantization of Gauge Fields
Nakawaki, Yuji; McCartor, Gary
1999-01-01
We continue McCartor and Robertson's recent demonstration of the indispensability of ghost fields in the light-cone gauge quantization of gauge fields. It is shown that the ghost fields are indispensable in deriving well-defined antiderivatives and in regularizing the most singular component of gauge field propagator. To this end it is sufficient to confine ourselves to noninteracting abelian fields. Furthermore to circumvent dealing with constrained systems, we construct the temporal gauge c...
... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...
van Marken Lichtenbelt, W.D.; Daanen, A.M.
2003-01-01
Cold-induced metabolism. van Marken Lichtenbelt WD, Daanen HA. Department of Human Biology, Maastricht University, Maastricht, The Netherlands. PURPOSE OF REVIEW: Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesi
National Research Council Canada - National Science Library
Huang Zhenqiang Huang Yuxiang
2013-01-01
...... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion...
Vacuum arc on the polycrystalline silica cathode
Directory of Open Access Journals (Sweden)
D. V. Duhopel'nikov
2014-01-01
Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.
The Gribov ambiguity for maximal abelian and center gauges in SU(2) lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Stack, John D.; Tucker, William W
2001-03-01
We present results for the fundamental string tension in SU(2) lattice gauge theory after projection to maximal abelian and direct maximal center gauges. We generate 20 Gribov copies/configuration. Abelian and center projected string tensions slowly decrease as higher values of the gauge functionals are reached.
Gauge Invariant Cosmological Perturbation Theory
Durrer, R
1993-01-01
After an introduction to the problem of cosmological structure formation, we develop gauge invariant cosmological perturbation theory. We derive the first order perturbation equations of Einstein's equations and energy momentum ``conservation''. Furthermore, the perturbations of Liouville's equation for collisionless particles and Boltzmann's equation for Compton scattering are worked out. We fully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs--Wolfe effect and light deflection. The perturbation equations are extended to accommodate also perturbations induced by seeds. With these general results we discuss some of the main aspects of the texture model for the formation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model, perturbations in the dark matter are induced by texture seeds. The gravitational effects of a spherically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in first orde...
Technicolor and Lattice Gauge Theory
Chivukula, R Sekhar
2010-01-01
Technicolor and other theories of dynamical electroweak symmetry breaking invoke chiral symmetry breaking triggered by strong gauge-dynamics, analogous to that found in QCD, to explain the observed W, Z, and fermion masses. In this talk we describe why a realistic theory of dynamical electroweak symmetry breaking must, relative to QCD, produce an enhanced fermion condensate. We quantify the degree to which the technicolor condensate must be enhanced in order to yield the observed quark masses, and still be consistent with phenomenological constraints on flavor-changing neutral-currents. Lattice studies of technicolor and related theories provide the only way to demonstrate that such enhancements are possible and, hopefully, to discover viable candidate models. We comment briefly on the current status of non-perturbative investigations of dynamical electroweak symmetry breaking, and provide a "wish-list" of phenomenologically-relevant properties that are important to calculate in these theories
Gauge Trimming of Neutrino Masses
Energy Technology Data Exchange (ETDEWEB)
Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Leptogenesis and neutral gauge bosons
Heeck, Julian
2016-01-01
We consider low-scale leptogenesis via right-handed neutrinos $N$ coupled to a $Z'$ boson, with gauged $U(1)_{B-L}$ as a simple realization. Keeping the neutrinos sufficiently out of equilibrium puts strong bounds on the $Z'$ coupling strength and mass, our focus being on light $Z'$ and $N$, testable in the near future by SHiP, HPS, Belle II, and at the LHC. We show that leptogenesis could be robustly falsified in a large region of parameter space by the double observation of $Z'$ and $N$, e.g. in the channel $pp\\to Z' \\to NN$ with displaced $N$-decay vertex, and by several experiments searching for light $Z'$, according to the mass of $N$.
Gauge Theory and Langlands Duality
Frenkel, Edward
2009-01-01
The Langlands Program was launched in the late 60s with the goal of relating Galois representations and automorphic forms. In recent years a geometric version has been developed which leads to a mysterious duality between certain categories of sheaves on moduli spaces of (flat) bundles on algebraic curves. Three years ago, in a groundbreaking advance, Kapustin and Witten have linked the geometric Langlands correspondence to the S-duality of 4D supersymmetric gauge theories. This and subsequent works have already led to striking new insights into the geometric Langlands Program, which in particular involve the Homological Mirror Symmetry of the Hitchin moduli spaces of Higgs bundles on algebraic curves associated to two Langlands dual Lie groups.
A new approach to radial and axial gauges
Weigert, Heribert; Heinz, Ulrich
1992-03-01
We develop a new path integral formulation of QCD in radial and axial gauges. This formalism yields free propagators which are free of gauge poles. We find that radial gauges are ghost free. In axial gauges ghosts cannot generally be excluded from the formalism due to the need to fix the residual gauge freedom.
Gauge Choice in Conformal Gravity
Sultana, Joseph; Kazanas, Demosthenes
2017-01-01
In a recent paper (MNRAS 458, 4122 (2016)) K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity (CG), and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length scale, the equivalent Higgs-frame Mannheim-Kazanas metric tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note we point out that the representation of the Mannheim-Kazanas metric in a gauge where it lacks the linear term has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.
Towards the natural gauge mediation
Ding, Ran; Li, Tianjun; Wang, Liucheng; Zhu, Bin
2015-10-01
The sweet spot supersymmetry (SUSY) solves the μ/ B μ problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the μ-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the μ/ B μ -problem. Moreover, there are only five free parameters in our model. So we can determine the characteristic low energy spectra and explore its distinct phenomenology. The fine-tuning measure can be as low as 100. For some benchmark points, the stop mass can be as low as 1.7 TeV while the glunio mass is around 2.5 TeV. The gravitino dark matter can come from a thermal production with the correct relic density and be consistent with the thermal leptogenesis. Because gluino and stop can be relatively light in our model, how to search for such GMSB at the upcoming run II of the LHC experiment could be very interesting.
27 CFR 19.319 - Production gauge.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production gauge. 19.319... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.319 Production gauge. (a) General... production is completed. Except as otherwise specifically provided in this section, quantities may be...
Gauge coupling unification with extra Higgs doublets
Energy Technology Data Exchange (ETDEWEB)
Harada, Junpei [Research Center for Higher Education, Health Sciences University of Hokkaido (Japan)
2016-06-15
Gauge coupling unification is studied within the framework where there are extra Higgs doublets and E{sub 6} exotic fields. Supersymmetric models and nonsupersymmetric models are investigated, and a catalog of models with gauge coupling unification is presented. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Anomalous coupling of scalars to gauge fields
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Geneve Univ. (Switzerland). Dept. de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Davis, Anne-Christine [Centre for Mathematical Sciences, Cambridge (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Weltman, Amanda [Cape Town Univ., Rondebosch (South Africa). Astronomy, Cosmology and Gravity Centre
2010-10-15
We study the transformation properties of a scalar-tensor theory, coupled to fermions, under the Weyl rescaling associated with a transition from the Jordan to the Einstein frame. We give a simple derivation of the corresponding modification to the gauge couplings. After changing frames, this gives rise to a direct coupling between the scalar and the gauge fields. (orig.)
Lectures on quantization of gauge systems
Reshetikhin, N.; Booß-Bavnbek, B.; Esposito, G.; Lesch, M.
2010-01-01
A gauge system is a classical field theory where among the fields there are connections in a principal G-bundle over the space - time manifold and the classical action is either invariant or transforms appropriately with respect to the action of the gauge group. The lectures are focused on the path
Gauge Invariance for the Massive Axion
Arias, P J; Arias, Pio Jose; Khoudeir, Adel
1997-01-01
A massive gauge invariant formulation for scalar ($\\phi$) and antisymmetric ($C_{mnp}$) fields with a topological coupling, which provides a mass for the axion field, is considered. The dual and local equivalence with the non-gauge invariant proposal is established, but on manifolds with non-trivial topological structure both formulations are not globally equivalent.
77 FR 31894 - Portable Gauge Licenses
2012-05-30
... COMMISSION Portable Gauge Licenses AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for... guidance for portable gauge licensees. The NRC is requesting public comment on NUREG-1556, Volume 1...- 4737, or by email to pdr.resource@nrc.gov . The NUREG-1556, Volume 1, Revision 2, is under...
Superfield quantization of general gauge theories
Lavrov, P M
1995-01-01
A superfield version on superspace (x^\\mu,\\theta^a) is proposed for the Sp(2)-- covariant Lagrangian quantization of general gauge theories. The BRST- and antiBRST- transformations are realized on superfields as supertranslations in the \\theta^a-- directions. A new (geometric) interpretation of the Ward identities in the quantum gauge theory is given.
Gauged supergravities from Bianchi's group manifolds
Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D
2004-01-01
We construct maximal D = 8 gauged supergravities by the reduction of D = I I supergravity over three-dimensional group manifolds. Such manifolds are classified into two classes, A and B, and eleven types. This Bianchi classification carries over to the gauged supergravities. The class A theories hav
Motion in gauge theories of gravity
Tresguerres, Romualdo
2012-01-01
A description of motion is proposed, adapted to the composite bundle interpretation of Poincar\\'e Gauge Theory. Reference frames, relative positions and time evolution are characterized in gauge-theoretical terms. The approach is illustrated by an appropriate formulation of the familiar example of orbital motion induced by Schwarzschild spacetime.
Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet
Energy Technology Data Exchange (ETDEWEB)
Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)
2012-12-15
Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.
Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology
Sommerville, Jason D.
2009-12-01
Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field
Perturbative analysis of gauged matrix models
Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun
2003-08-01
We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that nonperturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model or gauge theory (even though in some of these cases an exact answer can also be obtained by summing up planar diagrams of matrix models).
Perturbative Analysis of Gauged Matrix Models
Dijkgraaf, R; Kazakov, V A; Vafa, C; Dijkgraaf, Robbert; Gukov, Sergei; Kazakov, Vladimir A.; Vafa, Cumrun
2003-01-01
We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that non-perturbative aspects of N=1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for N=2 gauge theory, the Montonen-Olive modular invariance for N=1*, and the superpotential for the Leigh-Strassler deformation of N=4 can be systematically computed in perturbation theory of the matrix model/gauge theory (even though in some of these cases the exact answer can also be obtained by summing up planar diagrams of matrix models).
Testing gauge-invariant perturbation theory
Törek, Pascal
2016-01-01
Gauge-invariant perturbation theory for theories with a Brout-Englert-Higgs effect, as developed by Fr\\"ohlich, Morchio and Strocchi, starts out from physical, exactly gauge-invariant quantities as initial and final states. These are composite operators, and can thus be considered as bound states. In case of the standard model, this reduces almost entirely to conventional perturbation theory. This explains the success of conventional perturbation theory for the standard model. However, this is due to the special structure of the standard model, and it is not guaranteed to be the case for other theories. Here, we review gauge-invariant perturbation theory. Especially, we show how it can be applied and that it is little more complicated than conventional perturbation theory, and that it is often possible to utilize existing results of conventional perturbation theory. Finally, we present tests of the predictions of gauge-invariant perturbation theory, using lattice gauge theory, in three different settings. In ...
Gauged/Massive Supergravities in Diverse Dimensions
Alonso-Alberca, N; Alonso-Alberca, Natxo; Ortin, Tomas
2003-01-01
We show how massive/gauged maximal supergravities in 11-n dimensions with SO(n-l,l) gauge groups (and other non-semisimple subgroups of Sl(n,R)) can be systematically obtained by dimensional reduction of ``massive 11-dimensional supergravity''. This series of massive/gauged supergravities includes, for instance, Romans' massive N=2A,d=10 supergravity for n=1, N=2,d=9 SO(2) and SO(1,1) gauged supergravities for n=2, and N=8,d=5 SO(6-l,l) gauged supergravity. In all cases, higher p-form fields get masses through the Stuckelberg mechanism which is an alternative to self-duality in odd dimensions.
Symplectic gauge fields and dark matter
Asorey, J; Garcia-Alvarez, D
2015-01-01
The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin three gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.
Symplectic gauge fields and dark matter
Asorey, J.; Asorey, M.; García-Álvarez, D.
2015-11-01
The dynamics of symplectic gauge fields provides a consistent framework for fundamental interactions based on spin-3 gauge fields. One remarkable property is that symplectic gauge fields only have minimal couplings with gravitational fields and not with any other field of the Standard Model. Interactions with ordinary matter and radiation can only arise from radiative corrections. In spite of the gauge nature of symplectic fields they acquire a mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms where the gravitational field is playing the role of a Higgs field. Massive symplectic gauge fields weakly interacting with ordinary matter are natural candidates for the dark matter component of the Universe.
GEANT simulation of the $\\gamma$ nuclear gauge
Ouardi, A; Benchekroun, D; Hoummada, A
2003-01-01
The gamma nuclear gauging technique used for monitoring the sediment load suspended in water, is based on the detection of gamma rays emitted by a radioactive source. The GEANT321 Monte Carlo simulation tool, originally developed at CERN for high energy physics experiments, is used for the evaluation and calibration of gamma nuclear gauges. A set of parameters, principally the source energy, the source-detector separation, the lead block thickness and the energy threshold below which the sediments elemental composition affects the measurement or the energy corresponding to the Compton and photoelectric windows separation, are discussed and evaluated in the case of the gamma scattering gauge. For the gamma transmission gauge, the GEANT321 code has been used to define the optimal source detector distance interval, particularly for the Moroccan sediment samplers, and to check the influence of the radionuclide existing in the suspension, on the gauge response accuracy. Experimental calibration was also carried ou...
Electrically tunable artificial gauge potential for polaritons
Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac
2017-01-01
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment.
On unification of gravity and gauge interactions
Energy Technology Data Exchange (ETDEWEB)
Chamseddine, Ali H. [Physics Department, American University of Beirut,Beirut (Lebanon); Institut des Hautes Études Scientifiques (I.H.E.S.),F-91440 Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Theoretical Physics, Ludwig Maxmillians University,Theresienstr. 37, 80333 Munich (Germany)
2016-03-04
Considering a higher dimensional Lorentz group as the symmetry of the tangent space, we unify gravity and gauge interactions in a natural way. The spin connection of the gauged Lorentz group is then responsible for both gravity and gauge fields, and the action for the gauged fields becomes part of the spin curvature squared. The realistic group which unifies all known particles and interactions is the SO(1,13) Lorentz group whose gauge part leads to SO(10) grand unified theory and contains double the number of required fermions in the fundamental spinor representation. We briefly discuss the Brout-Englert-Higgs mechanism which breaks the SO(1,13) symmetry first to SO(1,3)×SU(3)×SU(2)×U(1) and further to SO(1,3)×SU(3)×U(1) and gives very heavy masses to half of the fermions leaving the others with light masses.
Gauge Invariant Perturbations of the Schwarzschild Spacetime
Chen, Hector; Whiting, Bernard F
2016-01-01
Beginning with the pioneering work of Regge and Wheeler (Phys. Rev. 108, 1957), there have been many studies of perturbations away from the Schwarzschild spacetime background. In particular several authors (e.g. Moncrief, Ann. Phys 88, 1974) have investigated gauge invariant quantities of the Regge-Wheeler (RW) gauge. Steven Detweiler also investigated perturbations of Schwarzschild in his own gauge, which he denoted the "easy (EZ) gauge", and which he was in the process of adapting for use in the second-order self-force problem. We present here a compilation of some of his working results, arising from notes for which there seems to have been no manuscript in preparation. In particular, we list the gauge invariant quantities used by Detweiler, as well as explain the process by which he found them.
Cathode heating mechanisms in pseudospark plasma switches
Sommerer, Timothy J.; Pak, Hoyoung; Kushner, Mark J.
1992-10-01
Pseudosparks, and the back-lighted thyratron (BLT) in particular, are finding increasing application as pulse power switches. An attractive feature of BLTs is that high current densities (≥ tens of kA cm-2) can be sustained from metal cathodes without auxiliary heating. The source of this current is believed to be electric-field-enhanced thermionic emission resulting from heating of the cathode by ion bombardment during commutation which ultimately melts the surface of the cathode. It is proposed that a photon-driven ionization mechanism in the interelectrode gap of the BLT is responsible for initiating the observed patterns of cathode surface melting and electron emission. A 21/2-dimensional computer model is presented that incorporates a photo-induced ionization mechanism to spread the plasma into the interelectrode gap. It predicts a melting of the cathode in a pattern similar to that which is experimentally observed, and predicts a rate of field-enhanced thermionic electron emission that is sufficient to explain the high BLT conduction current density. In the absence of these mechanisms, the model does not predict the observed large-area melting of the face of the cathode. The cathode heating rate during the BLT switching phase is maximum for operating parameters that are very close to the limit for which the switch will close (that is, the smallest possible pressure-electrode spacing product and smallest possible electrode holes).
Institute of Scientific and Technical Information of China (English)
ZHANG Ying; WANG Qing
2008-01-01
@@ Gauge covariance for Green's functions of a gauge theory through a fermion propagator in the presence of arbitrary external gauge field is proven and a formalism of gauge and Lorentz covariant Schwinger-Dyson equation for the fermion propagator with external gauge field is built up within ladder approximation.
Streamflow simulation methods for ungauged and poorly gauged watersheds
Loukas, A.; Vasiliades, L.
2014-07-01
Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well-established hydrological model, the University of British Columbia (UBC) watershed model, is selected and applied in five different river basins located in Canada, Cyprus, and Pakistan. Catchments from cold, temperate, continental, and semiarid climate zones are included to demonstrate the procedures developed. Two methodologies for streamflow modelling are proposed and analysed. The first method uses the UBC watershed model with a universal set of parameters for water allocation and flow routing, and precipitation gradients estimated from the available annual precipitation data as well as from regional information on the distribution of orographic precipitation. This method is proposed for watersheds without streamflow gauge data and limited meteorological station data. The second hybrid method proposes the coupling of UBC watershed model with artificial neural networks (ANNs) and is intended for use in poorly gauged watersheds which have limited streamflow measurements. The two proposed methods have been applied to five mountainous watersheds with largely varying climatic, physiographic, and hydrological characteristics. The evaluation of the applied methods is based on the combination of graphical results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results show that the first method satisfactorily simulates the observed hydrograph assuming that the basins are ungauged. When limited streamflow measurements are available, the coupling of ANNs with the regional, non-calibrated UBC flow model components is considered a successful alternative method to the conventional calibration of a hydrological model based on the evaluation criteria employed for streamflow modelling and flood frequency estimation.
Batteries: Overview of Battery Cathodes
Energy Technology Data Exchange (ETDEWEB)
Doeff, Marca M
2010-07-12
The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as
Batteries: Overview of Battery Cathodes
Energy Technology Data Exchange (ETDEWEB)
Doeff, Marca M
2010-07-12
The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as
Huber, Markus Q; Schwenzer, Kai
2011-01-01
Functional equations like exact renormalization group and Dyson-Schwinger equations have contributed to a better understanding of non-perturbative phenomena in quantum field theories in terms of the underlying Green functions. In Yang-Mills theory especially the Landau gauge has been used, as it is the most accessible gauge for these methods. The growing understanding obtained in this gauge allows to proceed to other gauges in order to obtain more information about the relation of different realizations of the confinement mechanism. In the maximally Abelian gauge first results are very encouraging as a variant of Abelian infrared dominance is found: The Abelian part of the gauge field propagator is enhanced at low momenta and thereby dominates the dynamics in the infrared. Its role is therefore similar to that of the ghost propagator in the Landau gauge, where one denotes the corresponding phenomenon as ghost dominance. Also the ambiguity of two different types of solutions (decoupling and scaling) exists in ...
Gauge dependence of the fermion quasiparticle poles in hot gauge theories
Wang, Shang-Yung
2004-09-01
The gauge dependence of the complex fermion quasiparticle poles corresponding to soft collective excitations is studied in hot gauge theories at one-loop order and next-to-leading order in the high-temperature expansion, with a view towards going beyond the leading order hard thermal loops and resummations thereof. We find that for collective excitations of momenta k˜eT the dispersion relations are gauge independent, but the corresponding damping rates are gauge dependent. For k≪eT and in the k→0 limit, both the dispersion relations and the damping rates are found to be gauge dependent. The gauge dependence of the position of the complex quasiparticle poles signals the need for resummation. Possible cancellation of the leading gauge dependence at two-loop order in the case of QED is briefly discussed.
Electrochemical Impedance Studies of SOFC Cathodes
DEFF Research Database (Denmark)
Hjelm, Johan; Søgaard, Martin; Wandel, Marie
2007-01-01
impedance of the cathode at intermediate operating temperatures. The perovskite is of the La-Sr-Co-Fe type. The EIS response of symmetrical cells with a thick (similar to 200 mu m) gadolinia doped ceria electrolyte was compared with the impedance contribution of the cathode of a full anode supported cell....... The full cells had a Ni-YSZ anode and anode support, a thin YSZ electrolyte, and a CGO barrier layer. The symmetric and full cell cathode responses were compared at open-circuit voltage. Humidified hydrogen was used as the fuel in the full cell measurements. Differential analysis of the impedance data...
Plasma distribution of cathodic ARC deposition system
Energy Technology Data Exchange (ETDEWEB)
Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)
1996-08-01
The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.
49 CFR 230.42 - Location of gauges.
2010-10-01
..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which...
Gauge Fixing Invariance and Anti-BRST Symmetry
Varshovi, Amir Abbass
2016-01-01
It is shown that anti-BRST invariance in quantum gauge theories can be considered as the quantized version of the symmetry of classical gauge theories with respect to different gauge fixing mechanisms.
Advances in Thermionic Cathode of Tungsten and Molybdenum
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Several kinds of tungsten thermonic cathodes have been introduced. As a promising alternative for thoriated tungsten, rare earth doped molybdenum cathode has been studied. Compared with the traditional thoriated tungsten, La-Mo cathode has higher emission current density at lower temperature, but it has poor emission stability. In order to improve the emission stability, systematical study on the emission mechanism of La-Mo cathode has been carried out. The life of La-Mo cathode has been improved and has achieved 1400 h, which exceeds the minimum life for practical uses (1000 h). As another alternative for thoriated tungsten cathode, Y-Mo cathode has shown better performance. The thermionic emission capability of Y-Mo cathode is between that of La-Mo cathode and Th-W cathode.
New Mechanism for Mass Generation of Gauge Field
Institute of Scientific and Technical Information of China (English)
WUNing
2001-01-01
A new mechanism for mass generation of gauge field is discussed in this paper.By introducing two sets of gauge fields and making the variations of these two sets of gauge fields compensated each other under local gauge transformations,the mass term of gauge fields is introduced into the Lagrangian without violating the local gauge symmetry of the Lagrangian.This model is a renormalizable quantum model.
New Mechanism for Mass Generation of Gauge Field
Institute of Scientific and Technical Information of China (English)
WU Ning
2001-01-01
A new mechanism for mass generation of gauge field is discussed in this paper. By introducing two sets of gauge fields and making the variations of these two sets of gauge fields compensated each other under local gauge transformations, the mass term of gauge fields is introduced into the Lagrangian without violating the local gauge symmetry of the Lagrangian. This model is a renormalizable quantum model.
Lattice gauge theories and spin models
Mathur, Manu; Sreeraj, T. P.
2016-10-01
The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.
High current density cathode for electrorefining in molten electrolyte
Li, Shelly X.
2010-06-29
A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.
RF Electron Gun with Driven Plasma Cathode
Khodak, Igor
2005-01-01
It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.
Reservoir Scandate Cathode for Electric Propulsion Project
National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...
Gauge mediation with light stops
Delgado, Antonio; Quiros, Mariano
2015-01-01
The mechanism of gauge mediated supersymmetry breaking (GMSB) solves the supersymmetric flavor problem although it requires superheavy stops to reproduce the experimental value (125 GeV) of the Higgs mass. A possible way out is to extend the MSSM Higgs sector with triplets which provide extra tree-level corrections to the Higgs mass. Triplets with neutral components getting vacuum expectation values (VEV) have the problem of generating a tree-level correction to the \\rho parameter. We introduce supersymmetric triplets with hypercharges Y=(0,\\pm 1), with a tree-level custodial SU(2)_L\\otimes SU(2)_R global symmetry in the Higgs sector protecting the \\rho parameter: a supersymmetric generalization of the Georgi-Machacek model. The renormalization group running from the messenger to the electroweak scale mildly breaks the custodial symmetry. We will present realistic low-scale scenarios, their main features being a Bino-like neutralino or right-handed stau as the NLSP, light (1 TeV) stops, exotic couplings (H^\\p...
Scattering Amplitudes in Gauge Theories
Schubert, Ulrich
2014-01-01
This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...
Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges
Directory of Open Access Journals (Sweden)
Nanshu Lu
2013-07-01
Full Text Available Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed.
Overlap Quark Propagator in Coulomb Gauge QCD
Mercado, Ydalia Delgado; Schröck, Mario
2014-01-01
The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.
Softly Broken Supersymmetric Gauge Theories through Compactifications
Takenaga, K
1998-01-01
Effects of boundary conditions of fields for compactified space directions on the supersymmetric gauge theories are discussed. For general and possible boundary conditions the supersymmetry is explicitly broken to yield universal soft supersymmetry breaking terms, and the gauge symmetry of the theory can also be broken through the dynamics of non-integrable phases, depending on number and the representation under the gauge group of matters. The 4-dimensional supersymmetric QCD is studied as a toy model when one of the space coordinates is compactified on $S^1$.
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Domain wall solutions with Abelian gauge fields
Rozowsky, J S; Wali, K C
2004-01-01
We study kink (domain wall) solutions in a model consisting of two complex scalar fields coupled to two independent Abelian gauge fields in a Lagrangian that has $U(1)\\times U(1)$ gauge plus $\\mathbb{Z}_2$ discrete symmetry. We find consistent solutions such that while the U(1) symmetries of the fields are preserved while in their respective vacua, they are broken on the domain wall. The gauge field solutions show that the domain wall is sandwiched between domains with constant magnetic fields.
Singlet deflected anomaly/gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Blas, J. de, E-mail: jdeblasm@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Delgado, A., E-mail: antonio.delgado@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)
2012-02-28
We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the {mu}-b{sub {mu}} problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corresponding gauge-mediation scenario.
Gauge Field Optics with Anisotropic Media
Liu, Fu
2014-01-01
By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.
Thermal variational principle and gauge fields
Schröder, Y
1996-01-01
A Feynman--Jensen version of the thermal variational principle is applied to hot gauge fields, abelian as well as nonabelian\\,: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g^2 studied and for scalar ED) after a reformulation of the partition function such that it depends on only even powers of the gauge field. This way, however, the potential non-perturbative power of the calculus seems to be ruined.
Precision gauge unification in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Raby, Stuart, E-mail: raby@pacific.mps.ohio-state.ed [Department of Physics, Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210 (United States); Ratz, Michael, E-mail: mratz@ph.tum.d [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schmidt-Hoberg, Kai, E-mail: kai.schmidt-hoberg@ph.tum.d [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)
2010-04-19
We discuss the issue of precision gauge unification in the MSSM. We find that a comparably light gluino, as it emerges in certain patterns of soft supersymmetry breaking, can be a key ingredient for ensuring precision gauge unification without relying on the presence of extra particles around the scale of grand unification. In particular, the so-called mirage pattern for gaugino masses can naturally lead to precision gauge unification. There is also an interesting correlation with reduced fine-tuning, due to rather light gluinos.
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Metric Gauge Fields in Deformed Special Relativity
Cardone, F; Petrucci, A
2014-01-01
We show that, in the framework of Deformed Special Relativity (DSR), namely a (four-dimensional) generalization of the (local) space-time struc- ture based on an energy-dependent "deformation" of the usual Minkowski geometry, two kinds of gauge symmetries arise, whose spaces either coin- cide with the deformed Minkowski space or are just internal spaces to it. This is why we named them "metric gauge theories". In the case of the internal gauge ?elds, they are a consequence of the deformed Minkowski space (DMS) possessing the structure of a generalized Lagrange space. Such a geometrical structure allows one to de?ne curvature and torsion in the DMS.
Casimir Energy in Non-Covariant Gauges
Esposito, G; Kirsten, K; Esposito, Giampiero; Kamenshchik, Alexander Yu.; Kirsten, Klaus
2002-01-01
The zero-point energy of a conducting spherical shell is studied by imposing the axial gauge via path-integral methods, with boundary conditions on the electromagnetic potential and ghost fields. The coupled modes are then found to be the temporal and longitudinal modes for the Maxwell field. The resulting system can be decoupled by studying a fourth-order differential equation with boundary conditions on longitudinal modes and their second derivatives. Complete agreement is found with a previous path-integral analysis in the Lorenz gauge, and with Boyer's value. This investigation leads to a better understanding of how gauge independence is achieved in quantum field theory on backgrounds with boundary.
Lorentz gauge quantization in synchronous coordinates
Garner, Christopher
2016-01-01
It has been shown that the Gupta-Bleuler method of quantization can be used to impose the Lorentz gauge condition in static space-times but not in cosmological space-times. This implies that the Gupta-Bleuler approach fails in general in non-static space-times. More recently, however, the Dirac method of quantizing constrained dynamical systems has been successfully employed to impose the Lorentz gauge in conformally flat space-times. In this paper we generalize this result by using Dirac's method to impose the Lorentz gauge in a general space-time region where the metric is expressed in synchronous coordinates.
Gauge theory of phase and scale
PAW\\LOWSKI, Marek
1999-01-01
Old Weyl's the idea of scale recalibration freedom and Infeld's and van der Waerden's (IW) ideas concerning geometrical interpretation of natural spinor phase gauge symmetry are discussed in the context of modern models of fundamental particle interactions. It is argued that (IW) gauge symmetry can be naturaly identified with the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no serious reasons to reject Weyl's gauge theory from consid...
Modeling High Pressure Micro Hollow Cathode Discharges
2007-11-02
cathode discharge excimer lamps , Phys. Plasmas 7, 286 (2000). [3] RH Stark and KH Schoenbach, Direct high pressure glow discharges, J. Appl. Phys...temperature profiles in argon glow discharges, J. Appl. Phys. 88, 2234 (2000) [8] M. Moselhy, W. Shi, R. Stark, A flat glow discharge excimer radiation...MHCD acts as a plasma cathode for a third electrode (anode). Some experimental results in this geometry are available for argon and for air from the
Kim, Chungku
2015-01-01
We have investigated the gauge dependence of the vacuum expectation value(VEV) both in the $R_{\\xi }$ and the $\\overline{R_{\\xi }}$ gauge in the $\\overline{MS}$ scheme. We have found that, in case of the $R_{\\xi }$ gauge, the gauge dependence of the VEV should be modified due to the presence of the parameter in the gauge function that should be identified as a VEV in the broken symmetry phase. However the pole mass remains gauge independent.
Development of plasma cathode electron guns
Oks, Efim M.; Schanin, Peter M.
1999-05-01
The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.
Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry
2015-10-01
In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.
Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.
Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram
2015-01-01
In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.
Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun
Energy Technology Data Exchange (ETDEWEB)
McGuire, Gary; Martin, Allen; Noonan, John
2010-10-30
The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.
Linear b-Gauges for Open String Fields
Kiermaier, Michael; Zwiebach, Barton
2008-01-01
Motivated by Schnabl's gauge choice, we explore open string perturbation theory in gauges where a linear combination of antighost oscillators annihilates the string field. We find that in these linear b-gauges different gauge conditions are needed at different ghost numbers. We derive the full propagator and prove the formal properties which guarantee that the Feynman diagrams reproduce the correct on-shell amplitudes. We find that these properties can fail due to the need to regularize the propagator, and identify a large class of linear b-gauges for which they hold rigorously. In these gauges the propagator has a non-anomalous Schwinger representation and builds Riemann surfaces by adding strip-like domains. Projector-based gauges, like Schnabl's, are not in this class of gauges but we construct a family of regular linear b-gauges which interpolate between Siegel gauge and Schnabl gauge.
Linear b-gauges for open string fields
Kiermaier, Michael; Sen, Ashoke; Zwiebach, Barton
2008-03-01
Motivated by Schnabl's gauge choice, we explore open string perturbation theory in gauges where a linear combination of antighost oscillators annihilates the string field. We find that in these linear b-gauges different gauge conditions are needed at different ghost numbers. We derive the full propagator and prove the formal properties which guarantee that the Feynman diagrams reproduce the correct on-shell amplitudes. We find that these properties can fail due to the need to regularize the propagator, and identify a large class of linear b-gauges for which they hold rigorously. In these gauges the propagator has a non-anomalous Schwinger representation and builds Riemann surfaces by adding strip-like domains. Projector-based gauges, like Schnabl's, are not in this class of gauges but we construct a family of regular linear b-gauges which interpolate between Siegel gauge and Schnabl gauge.
Banerjee D.; Dalmonte M.; Muller M; Rico E.; Stebler P.; Wiese U.-J.; Zoller P.
2012-01-01
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in ...
Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry
Luo, Xi
2016-01-01
The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.
Topological gauge theories and group cohomology
Dijkgraaf, Robbert; Witten, Edward
1990-04-01
We show that three dimensional Chern-Simons gauge theories with a compact gauge group G (not necessarily connected or simply connected) can be classified by the integer cohomology group H 4( BG, Z). In a similar way, possible Wess-Zumino interactions of such a group G are classified by H 3( G, Z). The relation between three dimensional Chern-Simons gauge theory and two dimensional sigma models involves a certain natural map from H 4( BG, Z) to H 3( G, Z). We generalize this correspondence to topological “spin” theories, which are defined on three manifolds with spin structure, and are related to what might be called Z 2 graded chiral algebras (or chiral superalgebras) in two dimensions. Finally we discuss in some detail the formulation of these topological gauge theories for the special case of a finite group, establishing links with two dimensional (holomorphic) orbifold models.
Gauge-Higgs EW and Grand Unification
Hosotani, Yutaka
Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unifiation scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase θH in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for θH bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
Standard model with partial gauge invariance
Chkareuli, J. L.; Kepuladze, Z.
2012-03-01
We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.
Gauge theories of gravity: the nonlinear framework
Tiemblo, A
2004-01-01
Nonlinear realizations of spacetime groups are presented as a versatile mathematical tool providing a common foundation for quite different formulations of gauge theories of gravity. We apply nonlinear realizations in particular to both the Poincar\\'e and the affine group in order to develop Poincar\\'e gauge theory (PGT) and metric-affine gravity (MAG) respectively. Regarding PGT, two alternative nonlinear treatments of the Poincar\\'e group are developed, one of them being suitable to deal with the Lagrangian and the other one with the Hamiltonian version of the same gauge theory. We argue that our Hamiltonian approach to PGT is closely related to Ashtekar's approach to gravity. On the other hand, a brief survey on MAG clarifies the role played by the metric--affine metric tensor as a Goldsone field. All gravitational quantities in fact --the metric as much as the coframes and connections-- are shown to acquire a simple gauge--theoretical interpretation in the nonlinear framework.
Gauge Theories on the Light-Front
Brodsky, S J
2004-01-01
The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.
Elastic Gauge Fields in Weyl Semimetals
Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles
We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Quantum Critical Behaviour of Semisimple Gauge Theories
DEFF Research Database (Denmark)
Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...
Gauge-Higgs EW and Grand Unification
Hosotani, Yutaka
2016-01-01
4D Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. $SO(5) \\times U(1)$ gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase $\\theta_H$ in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for $\\theta_H < 0.1$, and predicts $Z'$ bosons around 6 - 10 TeV with very broad widths. The scenario is genelarized to $SO(11)$ gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of $SO(11)$. Proton decay is naturally forbidden.
Constraints on Gauge Field Production during Inflation
DEFF Research Database (Denmark)
Nurmi, Sami; Sloth, Martin Snoager
2014-01-01
of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton......In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation...
Constraints on gauge field production during inflation
Energy Technology Data Exchange (ETDEWEB)
Nurmi, Sami [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Sloth, Martin S., E-mail: sami.nurmi@helsinki.fi, E-mail: sloth@cp3.dias.sdu.dk [CP" 3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2014-07-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.
Constraints on Gauge Field Production during Inflation
Nurmi, Sami
2014-01-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored.
Gauging isometries in N=4 supersymmetric mechanics
Delduc, F
2008-01-01
This talk summarizes the study of superfield gaugings of isometries of extended supersymmetric mechanics in hep-th/0605211, hep-th/0611247 and arXiv:0706.0706. The gauging procedure provides a manifestly supersymmetric realization of d=1 automorphic dualities which interrelate various irreducible off-shell multiplets of d=1 extended supersymmetry featuring the same number of physical fermions but different divisions of bosonic fields into the physical and auxiliary subsets. We concentrate on the most interesting N=4 case and demonstrate that, with a suitable choice of the symmetry to be gauged, all such multiplets of N=4 supersymmetric mechanics and their generic superfield actions can be obtained from the "root" multiplet (4,4,0) and the appropriate gauged subclasses of the generic superfield action of the latter by a simple universal recipe.
Introduction to dualities in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Kneipp, Marco A.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: kneipp@cbpf.br
2000-12-01
These notes present a pedagogical introduction to magnetic monopoles, supersymmetry and dualities in gauge theories. They are based on lectures given at the X Jorge Andre Swieca Summer School on Particles and Fields. (author)
Gauge/string duality in confining theories
Energy Technology Data Exchange (ETDEWEB)
Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2006-07-03
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Gauge/String Duality in Confining Theories
Edelstein, J D; Edelstein, Jose D.; Portugues, Ruben
2006-01-01
This is the content of a set of lectures given at the XIII Jorge Andre Swieca Summer School on Particles and Fields, held in Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity.
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
2014-01-01
A generalization of the usual gauge symmetry leads to fourth-order gauge field equations, which imply a new constant force independent of distances. The force associated with the new $U_1$ gauge symmetry is repulsive among baryons. Such a constant force based on baryon charge conservation gives a field-theoretic understanding of the accelerated cosmic-expansion in the observable portion of the universe dominated by baryon galaxies. In consistent with all conservation laws and known forces, a ...
Topological Charge of Lattice Abelian Gauge Theory
Fujiwara, T; Wu, K
2001-01-01
Configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected by excising exceptional gauge field configurations. It is possible to define a U(1) bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of Chern character obtained by a cohomological technique based on the noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1) bundle.
Graph Zeta function and gauge theories
He, Yang-Hui
2011-03-01
Along the recently trodden path of studying certain number theoretic properties of gauge theories, especially supersymmetric theories whose vacuum manifolds are non-trivial, we investigate Ihara's Graph Zeta Function for large classes of quiver theories and periodic tilings by bi-partite graphs. In particular, we examine issues such as the spectra of the adjacency and whether the gauge theory satisfies the strong and weak versions of the graph theoretical analogue of the Riemann Hypothesis.
Gauge theory origins of supergravity causal structure
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
1999-01-01
We discuss the gauge theory mechanisms which are responsible for the causal structure of the dual supergravity. For D-brane probes we show that the light cone structure and Killing horizons of supergravity emerge dynamically. They are associated with the appearance of new light degrees of freedom in the gauge theory, which we explicitly identify. This provides a picture of physics at the horizon of a black hole as seen by a D-brane probe.
Phil Anderson and Gauge Symmetry Breaking
Witten, Edward
In this article, I describe the celebrated paper that Phil Anderson wrote in 1962 with early contributions to the idea of gauge symmetry breaking in particle physics. To set the stage, I describe the work of Julian Schwinger to which Anderson was responding, and also some of Anderson's own work on superconductivity that provided part of the context. After describing Anderson's work I describe the later work of others, leading to the modern understanding of gauge symmetry breaking in weak interactions...
Gauge field theories: various mathematical approaches
Jordan, François; Thierry, Masson
2014-01-01
This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common mathematical pattern on which the paper concludes.
Consistent formulation of the spacelike axial gauge
Energy Technology Data Exchange (ETDEWEB)
Burnel, A.; Van der Rest-Jaspers, M.
1983-12-15
The usual formulation of the spacelike axial gauge is afflicted with the difficulty that the metric is indefinite while no ghost is involved. We solve this difficulty by introducing a ghost whose elimination is such that the metric becomes positive for physical states. The technique consists in the replacement of the gauge condition nxA = 0 by the weaker one partial/sub 0/nxAroughly-equal0.
Gauge Identities and the Dirac Conjecture
Rothe, Heinz J.; Rothe, Klaus D.
2004-01-01
The gauge symmetries of a general dynamical system can be systematically obtained following either a Hamiltonean or a Lagrangean approach. In the former case, these symmetries are generated, according to Dirac's conjecture, by the first class constraints. In the latter approach such local symmetries are reflected in the existence of so called gauge identities. The connection between the two becomes apparent, if one works with a first order Lagrangean formulation. Our analysis applies to purel...
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R. S.; Sobreiro, Rodrigo F.
2016-12-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the Becchi-Rouet-Stora-Tyutin formalism within the algebraic renormalization approach, reducing our study to a cohomology problem. Since this approach is independent of the renormalization scheme, the results obtained here are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R S
2016-01-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the BRST formalism within of the algebraic renormalization approach, reducing our study to a cohomology problem. Since that this approach is independent of the renormalization scheme, the results here obtained are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Nonpertubative Solutions of Massless Gauged Thirring Model
Bufalo, R.; Casana, R.; Pimentel, B. M.
2010-11-01
We present a nonperturbative quantization of the two-dimensional massless gauged Thirring model by using the path-integral approach. First, we will study the constraint structure of model via the Dirac's formalism and by using the Faddeev-Senjanovic method we calculate the vacuum-vacuum transition amplitude in a Rξ-gauge, then we compute the Green's functions in a nonperturbative framework.
Semiconductor Laser Tracking Frequency Distance Gauge
Phillips, James D.; Reasenberg, Robert D.
2009-01-01
Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the...
Gauge models in modified triplectic quantization
Geyer, B; Moshin, P Y; Geyer, Bodo; Lavrov, Petr M.; Moshin, Pavel Yu.
2001-01-01
We apply the modified triplectic formalism for quantizing several popular gauge models - non-abelian antisymmetric tensor field model, W2-gravity and two-dimensional gravity with dynamical torsion. The explicit solutions are obtained for the generating equations of the quantum action and the gauge-fixing functional. Using these solutions we construct the vacuum functional and obtain the corresponding transformations of the extended BRST symmetry.
Non-self-dual static gauge fields
Oh, C. H.; Teh, Rosy
1980-01-01
We exhibit exact non-self-dual static solutions to the SU(2) Yang-Mills field equations by solving the equation ∇2V+λV3=0 using cylindrical and spherical coordinates. The resulting gauge fields are complex and have singularities. For the cylindrically symmetric solution, we convert it into a real gauge field coupled to the Higgs field in the limit in which the self-interaction potential of the Higgs field vanishes.
Higher-Spin Gauge Fields and Duality
Francia, D
2006-01-01
We review the construction of free gauge theories for gauge fields in arbitrary representations of the Lorentz group in $D$ dimensions. We describe the multi-form calculus which gives the natural geometric framework for these theories. We also discuss duality transformations that give different field theory representations of the same physical degrees of freedom, and discuss the example of gravity in $D$ dimensions and its dual realisations in detail.
Integrable Lattice Models From Gauge Theory
Witten, Edward
2016-01-01
These notes provide an introduction to recent work by Kevin Costello in which integrable lattice models of classical statistical mechanics in two dimensions are understood in terms of quantum gauge theory in four dimensions. This construction will be compared to the more familiar relationship between quantum knot invariants in three dimensions and Chern-Simons gauge theory. (Based on a Whittaker Colloquium at the University of Edinburgh and a lecture at Strings 2016 in Beijing.)
Optimizing step gauge measurements and uncertainties estimation
Hennebelle, F.; Coorevits, T.; Vincent, R.
2017-02-01
According to the standard ISO 10360-2 (2001 Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring machines (CMM)—part 2: CMMs used for measuring size (ISO 10360-2:2001)), we verify the coordinate measuring machine (CMM) performance against the manufacturer specification. There are many types of gauges used for the calibration and verification of CMMs. The step gauges with parallel faces (KOBA, MITUTOYO) are well known gauges to perform this test. Often with these gauges, only the unidirectional measurements are considered which avoids having to deal with a residual error that affects the tip radius compensation. However the ISO 10360-2 standard imposes the use of a bidirectional measurement. Thus, the bidirectional measures must be corrected by the residual constant offset probe. In this paper, we optimize the step gauge measurement and a method is given to mathematically avoid the problem of the constant offset of the tip radius. This method involves measuring the step gauge once and to measure it a second time with a shift of one slot in order to obtain a new set of equations. Uncertainties are also presented.
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Gauged supergravities in various spacetime dimensions
Energy Technology Data Exchange (ETDEWEB)
Weidner, M.
2006-12-15
In this thesis we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we work out all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor. (orig.)
Novel circuits for energizing manganin stress gauges
Tasker, Douglas G.
2017-01-01
This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819
Topologically Massive Gauge Theory: A Lorentzian Solution
Saygili, K
2006-01-01
We obtain a lorentzian solution for the topologically massive non-abelian gauge theory on AdS space by means of a SU(1, 1) gauge transformation of the previously found abelian solution. There exists a natural scale of length which is determined by the inverse topological mass. The topological mass is proportional to the square of the gauge coupling constant. In the topologically massive electrodynamics the field strength locally determines the gauge potential up to a closed 1-form via the (anti-)self-duality equation. We introduce a transformation of the gauge potential using the dual field strength which can be identified with an abelian gauge transformation. Then we present the map from the AdS space to the pseudo-sphere including the topological mass. This is the lorentzian analog of the Hopf map. This map yields a global decomposition of the AdS space as a trivial circle bundle over the upper portion of the pseudo-sphere which is the the Hyperboloid model for the Lobachevski geometry. This leads to a redu...
Singularities, boundary conditions and gauge link in the light cone gauge
Gao, Jian-Hua
2013-01-01
In this work, we first review the issues on the singularities and the boundary conditions in light cone gauge and how to regularize them properly. Then we will further review how these singularities and the boundary conditions can result in the gauge link at the infinity in the light cone direction in the Drell-Yan process. Except for reviewing, we also have verified that the gauge link at the light cone infinity has no dependence on the path not only for the Abelian field but also for non-Abelian gauge field.
Gauge-invariant dynamical quantities of QED with decomposed gauge potentials
Energy Technology Data Exchange (ETDEWEB)
Zhou Baohua [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100124 (China); Huang Yongchang [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100124 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100080 (China); CCAST (World Lab.), P.O. Box 8730, Beijing 100080 (China)
2011-09-15
We discover an inner structure of the QED system; i.e., by decomposing the gauge potential into two orthogonal components, we obtain a new expansion of the Lagrangian for the electron-photon system, from which, we realize the orthogonal decomposition of the canonical momentum conjugate to the gauge potential with the canonical momentum's two components conjugate to the gauge potential's two components, respectively. Using the new expansion of Lagrangian and by the general method of field theory, we naturally derive the gauge invariant separation of the angular momentum of the electron-photon system from Noether theorem, which is the rational one and has the simplest form in mathematics, compared with the other four versions of the angular momentum separation available in literature. We show that it is only the longitudinal component of the gauge potential that is contained in the orbital angular momentum of the electron, as Chen et al. have said. A similar gauge invariant separation of the momentum is given. The decomposed canonical Hamiltonian is derived, from which we construct the gauge invariant energy operator of the electron moving in the external field generated by a proton [Phys. Rev. A 82, 012107 (2010)], where we show that the form of the kinetic energy containing the longitudinal part of the gauge potential is due to the intrinsic requirement of the gauge invariance. Our method provides a new perspective to look on the nucleon spin crisis and indicates that this problem can be solved strictly and systematically.
Gauge fixing and BRST formalism in non-Abelian gauge theories
Ghiotti, Marco; Williams, A G
2007-01-01
In this Thesis we present a comprehensive study of perturbative and non-perturbative non-Abelian gauge theories in the light of gauge-fixing procedures, focusing our attention on the BRST formalism in Yang-Mills theory. We propose first a model to re-write the Faddeev-Popov quantisation method in terms of group-theoretical techniques and then we give a possible way to solve the no-go theorem of Neuberger for lattice Yang-Mills theory with double BRST symmetry. In the final part we present a study of the Batalin-Vilkovisky quantisation method for non-linear gauges in non-Abelian gauge theories.
Comparing the Rξ gauge and the unitary gauge for the standard model: An example
Wu, Tai Tsun; Wu, Sau Lan
2017-01-01
For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge - the Rξ gauge and the unitary gauge - are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang-Mills non-Abelian gauge theory in general and the standard model in particular.
Compact Rare Earth Emitter Hollow Cathode
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this
2013 Estorm - Invited Paper - Cathode Materials Review
Energy Technology Data Exchange (ETDEWEB)
Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL
2014-01-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.
Improved cathode materials for microbial electrosynthesis
Energy Technology Data Exchange (ETDEWEB)
Zhang, T; Nie, HR; Bain, TS; Lu, HY; Cui, MM; Snoeyenbos-West, OL; Franks, AE; Nevin, KP; Russell, TP; Lovley, DR
2013-01-01
Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-,4.7- or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were similar to 3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was similar to 80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions.
Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk
2014-10-01
In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results.
Spontaneous Electro-Weak Symmetry Breaking and Cold Dark Matter
Institute of Scientific and Technical Information of China (English)
ZHU Shou-Hua
2007-01-01
In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized by one fundamental scalar field, namely the Higgs field. We study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass by interaction with the weakdoublet Higgs field, in the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ uncertainty (0.093 ＜Ωdmh2 ＜ 0.129) and experimentally allowed Higgs boson mass (114.4 ≤ mh ≤ 208 GeV) constrain the scalar dark matter mass within 48 ≤ ms ≤ 78 GeV.This result is in excellent agreement with the result of de Boer et al. (50 ～ 100 GeV). Such a kind of dark matter annihilation can account for the observed gamma rays excess (10σ) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 48 ～ 64 GeV.
49 CFR 178.337-14 - Gauging devices.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices. 178.337-14 Section 178.337-14... Specifications for Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of...
Local Poincaré Symmetry in Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
MA Jian-Feng; MA Yong-Ge
2009-01-01
It is well known that the Poincaré gauge theories of gravity do not have the structure of a standard gauge theory. Nevertheless, we show that a general form of action for the gravitational gauge fields in the gauge theory does possess local Poincaré invariance.
A gauge theory of massive spin one particles
Vyas, Vivek M
2015-01-01
An Abelian gauge theory describing dynamics of massive spin one bosons is constructed. This is achieved by appending to the Maxwell action, a gauge invariant mass term. The theory is quantised in temporal as well as Lorentz gauge, and the corresponding Hilbert spaces are constructed. In both the gauges, it is found that, the theory respects Lorentz invariance, locality, causality and unitarity.
Gauge-invariance in one-loop quantum cosmology
Vasilevich, D V
1995-01-01
We study the problem of gauge-invariance and gauge-dependence in one-loop quantum cosmology. We formulate some requirements which should be satisfied by boundary conditions in order to give gauge-independent path integral. The case of QED is studied in some detail. We outline difficulties in gauge-invariant quantization of gravitational field in a bounded region.
Directory of Open Access Journals (Sweden)
N. M. Strizhak
2007-01-01
Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.
... A Week of Healthy Breakfasts Shyness Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) A A A What's in this article? ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't ...
Centers for Disease Control (CDC) Podcasts
2016-02-08
During the winter, many workers are outdoors, working in cold, wet, icy, or snowy conditions. Learn how to identify symptoms that tell you there may be a problem and protect yourself from cold stress. Created: 2/8/2016 by National Institute for Occupational Safety and Health (NIOSH). Date Released: 2/8/2016.
Energy Technology Data Exchange (ETDEWEB)
None
1989-11-01
I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.
... Surgery? A Week of Healthy Breakfasts Shyness Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports A A A What's in this article? ... Equipment Ahh, winter! Shorter days. Frigid temperatures. Foul weather. What better time to be outdoors? Winter sports ...
... have heard that chicken soup can cure a cold. There's no real proof of this, but sick people have been swearing by it for more than 800 years. When Should I Go to the Doctor? Teens who catch colds usually don't get very sick or need ...
Preparation of nanocomposite thoriated tungsten cathode by swaging technique
Institute of Scientific and Technical Information of China (English)
王发展; 诸葛飞; 张晖; 丁秉钧
2002-01-01
By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.
Absence of the Gribov ambiguity in a special algebraic gauge
Directory of Open Access Journals (Sweden)
Raval Haresh
2016-01-01
Full Text Available The Gribov ambiguity exists in various gauges except algebraic gauges. However in general, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We show that nontrivial copies can not occur in this gauge. We then provide an example of spherically symmetric gauge field configuration and prove that with a proper boundary condition on the configuration, this gauge removes the ambiguity on a compact manifold S3${{\\mathbb S}^3}$.
(1)-covariant gauge for the two-Higgs doublet model
Indian Academy of Sciences (India)
C G Honorato; J J Toscano
2009-12-01
A (1)-covariant gauge for the two-Higgs doublet model based on BRST (Becchi–Rouet–Stora–Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED-like Ward identities. The presence of four ghost interactions in these types of gauges and their connection with the BRST symmetry are stressed. The Feynman rules for those new vertices that arise in this gauge, as well as for those couplings already present in the linear gauge but that are modified by this gauge-fixing procedure, are presented.
Robust shape control in a sendzimir cold-rolling steel mill
Bates, D.G.; Ringwood, J.V.; Holohan, A.M.
1997-01-01
The shape control problem for a Sendzimir 20-roll cold rolling steel mill is characterised by operation over a wide range of conditions arising from roll changes, changes in rolling schedules and changes in material gauge, width and hardness. Previous approaches to the problem suggest storing a larg
Unmanned Evaluation of Mares Abyss 22 Navy Open Circuit Scuba Regulator for Cold Water Diving
2011-05-05
relief valve, a buoyancy inflation device, a submersible pressure gauge, or a dry suit inflation device), the cold water performance of regulators in...the sum of data values divided by the number of data values ark a vat housed within the pressurized testing chamber and used for
Armendariz-Picon, Cristian
2013-01-01
If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models, however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter. The latter imply that its velocity dispersion extrapolated to the present has to be smaller than 56 m/s. Cold dark matter has t...
Absence of the Gribov ambiguity in a quadratic gauge
Energy Technology Data Exchange (ETDEWEB)
Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)
2016-05-15
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)
Absence of the Gribov ambiguity in a quadratic gauge
Raval, Haresh
2016-01-01
The Gribov ambiguity exists in various gauges except algebraic gauges. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold $\\mathbb{S}^3$, when a proper boundary condition on the gauge configuration is taken into account. Thus, providing one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the \\tmem{BRST} invariance is preserved in this gauge.
Absence of the Gribov ambiguity in a quadratic gauge
Raval, Haresh
2016-05-01
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold {S}^3, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge.
A Search for Hidden Photon CDM in a Multi-Cathode Counter (MCC) data
Kopylov, A; Petukhov, V
2016-01-01
A search for hidden photon cold dark matter in a mass range from 5 to 500 eV in data collected during 60 days in November and December, 2015 by a Multi-Cathode Counter (MCC) is reported. From the analyses of this data we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter $\\chi$. This is the first result obtained by direct measurements in this mass range for hidden photon CDM using a single electron event in MCC as a signature.
Cold vacuum chamber for diagnostics: Instrumentation and first results
Gerstl, S.; Voutta, R.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; de Jauregui, D. Saez; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Sikler, G.; Migliorati, M.; Spataro, B.
2014-10-01
For a proper design of the cryogenic layout of superconducting insertion devices it is necessary to take into account the heat load from the beam to the cold beam tube. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is designed in a flexible way, to allow its installation in different light sources. In order to study the beam heat load and the influence of the cryosorbed gas layer, the instrumentation comprises temperature sensors, pressure gauges, and mass spectrometers as well as retarding field analyzers with which it is possible to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. In this paper we describe the experimental equipment, the installation of COLDDIAG in the Diamond Light Source and selected examples of the measurements performed to show the capabilities of this unique instrument.
Directory of Open Access Journals (Sweden)
D. V. Duhopel'nikov
2014-01-01
Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.
Parallel Operation of Microhollow Cathode Discharges
Stark, Robert H.; Shi, Wenhui; Schoenbach, Karl H.
1998-10-01
The dc current-voltage characteristics of microhollow cathode discharges has, in certain ranges of the discharge current, a positive slope [1]. In these current ranges it should be possible to operate multiple discharges in parallel without individual ballast, and be used as flat panel excimer lamps [2] or large area plasma cathodes. In order to verify this hypothesis we have studied the parallel operation of two microhollow cathode discharges of 100 micrometer hole diameter in argon at pressures from 100 Torr to 800 Torr. Stable dc operation of the two discharges, without individual ballast, was obtained if the voltage-current characteristics of the individual discharges had a positive slope greater than 10 V/mA over a voltage range of more than 5 to obtain parallel operation over the entire current range of the microhollow cathode discharges, which includes regions of negative differential conductivity, we have replaced the metal anode by a semi-insulating semiconductor, which serves as distributed resistive ballast. With this method, we were able to ignite and sustain an array of dc microhollow cathode discharges over a wide range of pressure and discharge current. [1] K.H.Schoenbach et al. Appl. Phys. Lett. 68, 13 (1996). [2] A.El-Habachi and K.H.Schoenbach, APL. 72, 1 (1998). This work was funded by the Department of Energy, Advanced Energy Division, and by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI Program.
Schwinger mechanism in linear covariant gauges
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2017-02-01
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansätze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansätze are compatible with the existence of nontrivial solutions. When such Ansätze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic "zero crossing," while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories
CERN. Geneva
2014-01-01
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...
Unification of Non-Abelian SU(N) Gauge Theory and Gravitational Gauge Theory
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.
Metrology in arc plasmas - A new cathode
Croche, R.
1980-02-01
A new radiating source consisting of an electric arc under argon pressure is described, with power varying between about 0.2 and 1.5 kW, and with the plasma furnishing a continuous spectrum between 115 and 350 nm. The arc functions from 5 to 50 A, with a voltage varying between 30 and 35 V. The cathode of the transfer arc is described in detail, including such advantages as easy igniting of the arc and the possibility of re-sharpening the tip of the cathode. Most important, the new 'knife-shaped' form of the tungsten cathode has improved the stability and reproducibility of the ultraviolet continuum emitted by the plasma of the arc, which is used at the French National Institute of Metrology as a transfer standard of spectral radiance in the vacuum ultraviolet.
Sheet Plasma Produced by Hollow Cathode Discharge
Institute of Scientific and Technical Information of China (English)
张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙
2003-01-01
A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.
Filtered cathodic arc deposition apparatus and method
Krauss, Alan R.
1999-01-01
A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.
Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View
Meurice, Yannick
2011-01-01
Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.
Family Gauge Boson Production at the LHC
Koide, Yoshio; Yokoya, Hiroshi
2015-01-01
Family gauge boson production at the LHC is investigated according to a $U(3)$ family gauge model with twisted family number assignment. In the model we study, a family gauge boson with the lowest mass, $A_1^{\\ 1}$, interacts only with the first generation leptons and the third generation quarks. (The family numbers are assigned, for example, as $(e_1, e_2, e_3)= (e^-, \\mu^-, \\tau^-)$ and $(d_1, d_2, d_3)=(b, d, s) $[or $(d_1, d_2, d_3)=(b, s, d)$]). In the model, the family gauge coupling constant is fixed by relating to the electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of $A_1^{\\ 1}$ clearly confirm or rule out the model. We calculate the cross sections of inclusive $A_1^{\\ 1}$ production and $b \\bar{b} \\, (t \\bar{t})$ associated $A_1^{\\ 1}$ production at $\\sqrt{s} = 14~\\text{TeV}$ and $100~\\text{TeV}$. With the dielectron production cross section, we discuss the determination of diagonalizing matrix of quark mass matrix, $U_{u}$ and $U_{d}$, respec...