Sample records for coke oven doors

  1. 40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.


    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Alternative standards for coke oven doors equipped with sheds. 63.305 Section 63.305 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for...

  2. Coke production in large coke ovens

    Zhuravskii, A.A.; Sytenko, I.V.; Zhupraner, Z.S.; Vasil' ev, Yu.S.; Karpukhin, E.A.; Pliner, G.E.; Rud' , A.I.; Bulyga, N.I. (NPO Koksokhimiya (USSR))


    Analyzes operation of the No 9 battery with coke ovens with a volume of 41.6 m{sup 3}. Factors that influence coke oven operation and coke quality are analyzed. The following problems are evaluated: composition of coal mixtures (G, Zh, K, OS, GZh coal types), methods for coal mixture preparation (crushing degree, selective crushing), temperature distribution in a coke oven and effects of heating system, coke shrinkage during coking and factors that influence shrinkage, optimizing pressure used for coke pushing, chemical, mechanical and physical properties of coke. Regression equations used for forecasting coke properties are derived: the M10 coke wear index, M25 coke strength index, ash content etc. Recommendations for optimum coking conditions are made. 6 refs.

  3. Regulatory impact analysis of national emissions standards for hazardous air pollutants for by-product coke oven charging, door leaks, and topside leaks. Draft report


    Under the authority of the 1990 Clean Air Act Amendments, a Natioal Emissions Standard for Hazardous Air Pollutants is proposed to control emissions from By-product Coke Oven Charging, door leaks, and topside leaks. Because the EPA considers the regulation for By-product Coke Oven batteries to be a major rule, the attached Regulatory Impact Analysis was prepared to fulfill the requirements of E012291. The document reviews the need for regulation, control techniques, regulatory options, costs of control, economic impacts, benefits of the regulation, and compares benefits and costs associated with the regulation

  4. Operation car for horizontal coke ovens. Bedienungswagen fuer waagrechte Verkokungsoefen

    Kwasnik, H J; Piduch, H G


    An operation car which is driveable on the coke side of a coke oven battery is described. The operation car is equipped with a door lifter, a door and frame cleaner, a coke guiding grid and a collection hood for emissions developed on coke pushing. The car has a portal construction and it is driveable on both sides of the path of the coke receiving car. The operation has a considerable lower weight than usual cars. (HGOE).

  5. Coking oven for continuous coke production

    Vabrousek, R


    The coking oven has a vertical rectangular chamber with lateral heating walls to which heat exchangers are attached. The roof from the face of the chamber is a hermetic chute, whose vertical walls are connected to the lateral walls of the chamber and which has the feed conveyor with an unloading and evening device; to the upper wall of which a hermetic loading funnel for coal is attached and a lead-off for gas. The bottom of the chamber consists of segmented locks that are taken up by the hermetic chute. The chute's vertical walls are connected to the vertical walls of the chamber and its horizontal wall has a hermetic unloading funnel with a conveyor for coke removal. Height and width of the chamber are similar to standard chambers; their length reaches 100 to 200 m and longer. Length depends on coke preparation time and speed with which the unloading device can transfer coal. For normal operation, the conveyor belt must function properly in conjunction with the unloading device and segmented locks that form the bottom of the chamber.

  6. Cancer mortality among coke oven workers.

    Redmond, C K


    The OSHA standard for coke oven emissions, which went into effect in January 1977, sets a permissible exposure limit to coke oven emissions of 150 micrograms/m3 benzene-soluble fraction of total particulate matter (BSFTPM). Review of the epidemiologic evidence for the standard indicates an excess relative risk for lung cancer as high as 16-fold in topside coke oven workers with 15 years of exposure or more. There is also evidence for a consistent dose-response relationship in lung cancer mort...

  7. Programmed heating of coke ovens for increased coke size

    Jenkins, D.R.; Mahoney, M.R. [University of Newcastle, Callaghan, NSW (Australia)


    Large, uniform sized coke is desirable for blast furnace use. It has previously been shown that the coke oven flue temperature in the first few hours of coking is a key determinant of coke size. In this paper, the authors present a new programmed heating approach, which is called pulsed heating, aiming to increase coke mean size at a given average flue temperature. The approach takes into account the charging sequence in coke oven batteries and the authors demonstrate how existing operating practice can be modified in batteries with suitable heating systems to achieve the desired heating programme. A mathematical model of fissure formation provides a prediction of the increase in coke mean size using pulsed heating, compared with standard heating. Pilot scale experiments have also been performed to validate the modelling approach. The results of the modelling indicate that the mean coke size can be increased by several millimetres in some cases, although results from the pilot scale show that pulsed heating increases coke size, but by a smaller amount than that predicted by the model. The potential advantages and limitations of pulsed heating are discussed, as well as opportunities for further investigation of the approach.

  8. South Bank Coke Ovens heating performance improvements

    Fraser, A.J. [South Bank Coke Ovens (United Kingdom)


    The coke oven batteries at South Bank Coke Ovens had a history of refractory failure, overheating, and poor environmental performance despite repeated attempts to solve the problem. The fundamental design was poor, but previous upgrade attempts had a history of short term improvements followed by renewed decline, suggesting that the problem may not merely with the equipment. An audit of the area showed multiple morale, equipment and communications problems, although a significant proportion of the workforce were interested in improving the situation. A group of those interested in performance improvements was called together and objectives agreed upon. Communications were upgraded and problem walls analysed for their particular weaknesses. A team approach was used for maintenance, leading to slowly improving pushing emission factors. Temperature control equipment ensured better environmental performance and lower electricity consumption. 5 refs., 3 figs.


    Rafał Bigda


    Full Text Available Coke oven battery is complex and multifaceted facility in terms of air pollutant emissions. As far as stack or quenching tower does not cause major difficulties of emission measurement, the fugitive emission measurement from sources such as battery top elements (charging holes, ascension pipes or oven doors is still complicated and not fully solved problem. This article presents the discussion concerning main problems and errors likely to be made in particular stages of procedure of fugitive emissions characterization from coke oven battery (selection of sampling points, sampling itself, measurement of air velocity over battery top and laboratory analyses. In addition, results of concentrations measurements of selected substances characteristic for the coking process (naphthalene, anthracene, 4 PAHs and TSP originating from fugitive sources of coke oven battery and subjected to reporting under the E-PRTR are presented. The measurements were carried out on coke oven battery top in points selected on the basis of the preceding detailed air convection velocity measurements over battery top. Results of the velocity measurements were compared with results of numerical modelling using CFD software. The presented material is an attempt to cross-sectional presentation of issues related to the quantitative evaluation of fugitive emission from coke oven battery, discussed on the example of PAHs emission as a group of substances characteristic for coking of coal.

  10. System for reducing emissions during coke oven charging

    Schuecker, Franz-Josef


    This article describes a process which reduces emissions from coke production in coke plants. The focus is on the charging process, which can be partly responsible for the fact that statutory emissions limits, which were originally met, are exceeded as coke plants get older. This article presents a solution in the form of a newly developed system that allows the oven charging system - the charging car - to respond to age-related changes in the geometry of a coke oven and thereby reduce the level of emissions.

  11. 40 CFR 63.302 - Standards for by-product coke oven batteries.


    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of the...

  12. Impact on surface water quality due to coke oven effluents

    Ghose, M.K.; Roy, S.


    Large quantities of water are used for the quenching of hot coke and also for washing the gas produced from the coke ovens. Liquid effluents thus generated are highly polluted and are being discharged into the river Damodar without proper treatment. Four coke plants of Bharat Coking Coal Ltd.(BCCL) have been surveyed for characterization and to assess the impact on surface water quality. About 175-200 kilolitres of waste water is being generated per day by each of the coke plants. The concentration of CO, BOD, COD, TSS, phenol and cyanide in each of the coke plants were found to exceed the limits specified by pollution control board. Ammonia, oil and grease and TDS were found to be 19.33 mg/l, 7.81 mg/l, 1027.75 mg/l respectively. Types of samples collected, sampling frequencies, sample preservation and the results obtained have been discussed. (author). 6 refs., 1 tab., 1 fig

  13. Optimization of the coke-oven activated sludge plants

    Raizer Neto, Ernesto [Santa Catarina Univ., Florianopolis, SC (Brazil); Colin, Francois [Institut de Recherches Hydrologiques, 54 - Nancy (France); Prost, Christian [Laboratoire de Sciences de Genie Chimique, Nancy (France)


    In the coke-oven activated sludge plants one of the greatest problems of malfunction is due to inffluent variability. The composition and, or, concentration variations of the inffluent substrate, which can cause an unstable system, are function of the pollutant load. Nevertheless, the knowledge of the kinetic biodegradation of the coke-oven effluent represents the limiting factor to develop an effective biological treatment. This work describes a computational model of the biological treatment which was elaborated and validated from continuous pilot scale experiments and calibrated by comparing its predictions to the pilot experiment`s results. 12 refs., 9 figs., 3 tabs.

  14. Optimization of the coke-oven activated sludge plants

    Raizer Neto, Ernesto [Santa Catarina Univ., Florianopolis, SC (Brazil); Colin, Francois [Institut de Recherches Hydrologiques, 54 - Nancy (France); Prost, Christian [Laboratoire de Sciences de Genie Chimique, Nancy (France)


    In the coke-oven activated sludge plants one of the greatest problems of malfunction is due to inffluent variability. The composition and, or, concentration variations of the inffluent substrate, which can cause an unstable system, are function of the pollutant load. Nevertheless, the knowledge of the kinetic biodegradation of the coke-oven effluent represents the limiting factor to develop an effective biological treatment. This work describes a computational model of the biological treatment which was elaborated and validated from continuous pilot scale experiments and calibrated by comparing its predictions to the pilot experiment`s results. 12 refs., 9 figs., 3 tabs.

  15. 40 CFR 63.303 - Standards for nonrecovery coke oven batteries.


    ... batteries. 63.303 Section 63.303 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.303 Standards for nonrecovery coke oven batteries... existing nonrecovery coke oven battery that exceed any of the following emission limitations or...

  16. Refractory compounds for repairing coke-oven brickwork

    Hanganu, M.; Dragomir, C. (and others)


    A number of refractory compounds are presented, based on aluminium phosphate, phosphoric acid, sodium silicate and fire-clay and mullitic zirconium mastic, including their composition, properties and application (by impregnation, spray application or pouring), which are suitable for repairing various types of coke-oven brickwork. The results obtained are given.

  17. Assessment of PAH-exposure among coke oven workers

    Vahakangas, K. [and others] [Oulu University, Oulu (Finland)


    Levels of BaP diol epoxide - DNA adducts in urine and blood were monitored for workers at the Raahe coking plant, Finland, and other relevant information was collected. All adduct values were low, but oven battery workers had slightly higher values than matched controls. Antibodies to these adducts increased somewhat after work at the plant started, no differences between smokers and non-smokers were found.

  18. Estimation of unit risk for coke oven emissions

    Moolgavkar, S.H.; Luebeck, E.G.; Anderson, E.L.


    In 1984, based on epidemiological data on cohorts of coke oven workers, USEPA estimated a unit risk for lung cancer associated with continuous exposure from birth to 1 microg/m 3 of coke oven emissions, of 6.2 x 10 -4 . This risk assessment was based on information on the cohorts available through 1966. Follow-up of these cohorts has now been extended to 1982 and, moreover, individual job histories, which were not available in 1984, have been constructed. In this study, lung cancer mortality in these cohorts of coke oven workers with extended follow-up was analyzed using standard techniques of survival analysis and a new approach based on the two stage clonal expansion model of carcinogenesis. The latter approach allows the explicit consideration of detailed patterns of exposure of each individual in the cohort. The analyses used the extended follow-up data through 1982 and the detailed job histories now available. Based on these analyses, the best estimate of unit risk is 1.5 x 10 -4 with 95% confidence interval = 1.2 x 10 -4 --1.8 x 10 -4

  19. Simplex coke ovens: their history (Part 2)

    Edwards, D.G.


    A number of other patents were taken out by Fabry or Baglin for oven heating systems. No evidence of their actual use in practice has yet been found, so the specifications are merely abstracted in Appendix 2, except for one which is significant enough to be dealt with here. In British Patent 105,047 of 1916, Rene Fabry appears to have anticipated Heinrich Koppers in the invention of the 'differential heating' (Kreisstrom) idea: lengthening the flame in the ascending flue of a pair by recirculating some waste gas from the descending flue through a port in the bottom of the dividing wall. Fabry's precedence in this respect was recognised by F.M. Ress over 40 years ago; previously, Koppers had considered only recycling waste gas from the foot of the battery chimney to the air inlet. However, in Fabry's specification the idea was applied to vertical flues arranged not in distinct pairs but in larger groups linked by top and bottom horizontal channels, with gas burners at the top, so that the recirculated combustion products encountered incoming air first, not the burner flame immediately. Another of Fabry's principal aims was to increase the rate of flow through the flues. Several years later, both Fabry and Baglin took out patents for heating systems more in line with that of Koppers. Part 1 of this article was published in the COMA Year-Book 2001, pp 226-236. See Abstract entry Sep 2003 00265. 105 refs., 9 figs., 2 tabs., 2 apps.

  20. New technological solutions in construction and operation of batteries with large coke ovens

    Volokita, G.I.; Bulyga, N.I.


    Describes design modifications to the No. 7 coke oven battery with 7.0 m high coke ovens in the Avdeevka coking plant. Temperature distribution in the large coke ovens was irregular due to the specific design of the heating system, distribution and dimensions of flue channels and thickness of flue channel walls. During coke battery reconstruction length of the peripheral flue channels was reduced by 70 mm, coke oven volume was reduced from 41.6 to 41.3 m/sup 3/. These design changes resulted in a more regular temperature distribution and reduced temperature difference between the coke oven center and zones close to the machine and pusher sides. Thickness of flue channel walls was reduced from 130 to 105 mm. Special reinforcing elements that guarantee more regular temperature distribution and increased wall service life were used.

  1. Benzole still reflux system - Dawes Lane Coke Ovens

    Hardwick, J.


    The paper describes a project carried out at Dawes Lane coking plant (in Scunthorpe, UK) to access current performance of the batch reflux system with respect to the operation of personnel and to recommend a solution to eliminate naphthalene blockage and problems previously caused by the use of hot debenzolised oil (DBO) as make-up. A successful solution was found and implemented. The benzole product now being produced is within specification and regularly achieves the composition produced by the previous hot reflux system (83% benzole, 7% naphthalene) with an addition reduction in wash oil usage of 20%. Problems of naphthalene blockages in reflux pipework have been cured. The expenses on the project were small. The paper was presented at a COMA meeting at Monckton Coke Ovens on 19 May 2005. 6 figs.

  2. Processing of coke oven gas. Primary gas cooling

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)


    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  3. Repair of walls of coke ovens with a volume of 41. 6 m/sup 3/

    Pyatnitsa, V.A.; Bulyga, N.I.


    Discusses repair of coke oven walls and the heating system of a battery with coke ovens 7.0 m high in the Avdeevka plant. The following problems are evaluated: types of wall deformation and wear, distribution of wear zones, zones with maximum wear, coke oven repair without cooling and with cooling, repair of cracks in oven walls, effects of wall temperature (in schemes without cooling) on repair, behavior of walls in zones of temperature differences, sequence of repair operations, repair of heating channels, specific problems of wall repair at the machine side and at the pusher side of a coke oven battery, methods for reducing repair time, materials used for coke oven repair.

  4. Hydrogen separation from coke oven gas using PSA

    Takeuchi, M.: Tanibashi, N.; Nishida, S


    Twin column apparatus was used to study the adsorption characteristics of various components of coke oven gas at an adsorption pressure of 5 kg/cm/SUP/2G. The following results were obtained. Over 99.99% Of the H/sub 2/ could be separated, and for this a 5 angstrom zeolite was optimal. Since the break-through order is H/sub 2/, O/sub 2/, N/sub 2/, CH/SUB/4, CO there is a tendency for the product H/sub 2/ to be adulterated with O/sub 2/ and N/sub 2/. Although there was a large adsorption of CO/sub 2/ and C/sub 2/H/sub 4/, desorption was difficult, even under reduced pressure and H/sub 2/ flushing. Hence, the industrial version of this apparatus will have to include activated carbon. 5 references.

  5. System for reducing emissions during coke oven charging; System zur Emissionsverringerung beim Fuellen von Koksoefen

    Schuecker, Franz-Josef [ThyssenKrupp Industrial Solutions AG, Dortmund (Germany). Head of Oven Machine Dept., Coke Plant Technologies


    This article describes a process which reduces emissions from coke production in coke plants. The focus is on the charging process, which can be partly responsible for the fact that statutory emissions limits, which were originally met, are exceeded as coke plants get older. This article presents a solution in the form of a newly developed system that allows the oven charging system - the charging car - to respond to age-related changes in the geometry of a coke oven and thereby reduce the level of emissions.

  6. 76 FR 52350 - Coke Oven Emissions Standard; Extension of the Office of Management and Budget's (OMB) Approval...


    ... Standard provide protection for workers from the adverse health effects associated with exposure to coke...' exposure to coke oven emissions, monitor worker health, and provide workers with information about their exposures and the health effects of exposure to coke oven emissions. II. Special Issues for Comment OSHA has...

  7. Automatic combustion control of the ArcelorMittal Tubarao coke oven batteries

    L. Barbosa de Oliveira Mello; C.-H. Sampaio Dandrea; G.-H. Marietto Goncalves; A. Estevao Torres; N.-L. Biccas


    The objective of the automatic combustion control is to guarantee the operational stability of the coke batteries based on the control of the coking time and consequently, minimize the reduction of useful life of the ovens. This control is guided by a mathematical model whose inputs are process variables and raw materials parameters and outputs are combustion parameters. Therefore, this paper will present the evolution of the performance of the burning process, providing a stability of the coking time.

  8. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Burmistrz Piotr


    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  9. The new coke oven battery heating control system at Rautaruukki Steel

    Palmu, P.; Swanljung, J. [Rautaruukki Steel, Raahe (Finland)


    The heating control system of the coke oven batteries has been developed strongly during the existence of the coke oven plant. The first step of the heating control was a statistical model which had a good monitoring system. This was enough in those days due to bigger problems elsewhere. The second generation heating control system is designed for irregular coke oven battery operation. Coke production in Rautaruukki Steel is based on one coke-oven plant consisting of two batteries and a by-product plant. The whole coke production is cooled by three dry quenching units. The first coke-oven battery was taken into operation in October 1987 and the second in November 1992. Originally the plant was mainly designed and equipped by Ukrainian Giprokoks except Finnish CDQ-boilers, German ammonia recovery process and electric and automation designed by Rautaruukki. Before building of the second coke oven battery, there was a huge amount of development and modification work to do, to ensure the proper function of the coke production. For example all electronic and hydraulic systems of the Russian supplier were replaced by systems designed by Rautaruukki's own personnel. When the coke production capacity was doubled, the only design by Gibrokoks related to the battery and one additional dry quenching chamber. The expansion project itself was managed and executed by Rautaruukki. The expansion project consisted of: the second battery, third CDQ-unit, Desulphurization and Benzol plants for the by-product plant and upgrading of automation system. Battery and CDQ chamber refractory materials were Russian origin and all other main equipment were purchased by Rautaruukki from western and domestic manufacturers based on the operation difficulties and experience of coke oven battery No. 1. These modification practices made a good basis for later development in the field of coke oven battery automation. The hierarchy of the coke oven battery automation at Rautaruukki Steel consist

  10. The Bricoke process for producing metallurgical coke in conventional ovens from blends containing a high percentage of non-coking coal

    Vidal, R; Munnix, K; Dellieu, J


    The article discusses the following aspects:- description of the BRICOKE process; trials in pilot plant, showing the influence of the different parameters on the coke quality and delimiting the range of the suitable non-coking coals; industrial scale trials of long term with 33% of non-coking coal briquettes in the charge; influence on the coking process as well as on the blast furnace working and increase of the output of usual coke-oven by the BRICOKE process. (11 refs.)

  11. Hysec Process: production of high-purity hydrogen from coke oven gas

    Nishida, S


    An account is given of the development of the Hysec Process by the Kansai Netsukagaku and Mitsubishi Kakoki companies. The process is outlined and its special features noted. The initial development aim was to obtain high-purity hydrogen from coke oven gas by means of PSA. To achieve this, ways had to be found for removing the impurities in the coke oven gas and the trace amounts of oxygen which are found in the product hydrogen. The resulting hydrogen is 99.9999% pure. 3 references.

  12. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992


    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Operating Coke Oven Batteries as of April 1, 1992 A Appendix A to Subpart L of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A...

  13. New formulae for the manufacture of formed coke of the ICEM type and carbonization of this type of coke in oblique ovens

    Barbu, I.; Georgescu, I.


    This paper presents the industrial experiences between 1971 and 1976 which led to the elaboration of new formulae for the manufacture of ICEM type coke briquettes, plus the results of coking the latter in a vertical oven. The possibility of using this type of coke in the chemical industry and in metallurgy instead of ordinary coke was simultaneously examined but this proved unsuccessful. Gives a detailed report of all the tests carried out by the State undertaking, Victoria-Galan.

  14. Coke oven gas to methanol process integrated with CO_2 recycle for high energy efficiency, economic benefits and low emissions

    Gong, Min-hui; Yi, Qun; Huang, Yi; Wu, Guo-sheng; Hao, Yan-hong; Feng, Jie; Li, Wen-ying


    Highlights: • CO_2 recycle assistance with COG to CH_3OH with dry reforming is proposed. • New process with dry reforming improves H_2 utilization and energy saving. • Process with H_2 separation (CWHS) is more preferable to CH_3OH output. • CWHS shows an excellent performance in energy, economy and CO_2 emission reduction. - Abstract: A process of CO_2 recycle to supply carbon for assisting with coke oven gas to methanol process is proposed to realize clean and efficient coke oven gas utilization. Two CO_2 recycle schemes with respect to coke oven gas, namely with and without H_2 separation before reforming, are developed. It is revealed that the process with H_2 separation is more beneficial to element and energy efficiency improvement, and it also presents a better techno-economic performance in comparison with the conventional coke oven gas to methanol process. The exergy efficiency, direct CO_2 emission, and internal rate of return of the process with H_2 separation are 73.9%, 0.69 t/t-methanol, and 35.1%, respectively. This excellent performance implies that reforming technology selection, H_2 utilization efficiency, and CO_2 recycle ways have important influences on the performance of the coke oven gas to methanol process. The findings of this study represent significant progress for future improvements of the coke oven gas to methanol process, especially CO_2 conversion integrated with coke oven gas utilization in the coking industry.

  15. Prediction of vertical expansion pressure stresses in coke oven heating walls

    Duerselen, H; Janicka, J


    The paper describes an accurate method developed by Krupp Koppers for calculating stresses in the central areas of coke oven heating walls. The results of this calculation model have provided the following conclusions for the design of coke ovens: 1) a rising pre-stressing of the heating walls caused by the weight of the top deck of the coke oven leads - compared with the stress limits of W. Ahlers - to lower permissible expansion pressures. 2) A given heating wall width has its corresponding maximum feasible oven height. Heating wall width and top deck weight are not interchangeable parameters. 3) The dependence of the permissible expansion pressure on the stretcher brick thickness should not be overlooked. Stretcher brick thicknesses of under 90 mm are not recomended for tall ovens and heavily swelling coal. 4) The capacity of mortar to absorb tensile stresses is ultimately an undesirable property, because the stresses at the points where the mortar is not holding are higher than in a straightforward stretch of brickwork.

  16. The year-book of the Coke Oven Managers' Association 2008



    The 89th volume of the Year Book outlines activities of the Coke Oven Managers' Association throughout 2008 and reproduces transactions presented to the industry through its various sections. It includes lists of Council and Committee members and representation on committees and past presidents, and a full list of members. Reports of Council 2006-7 and of the annual general meeting 2007 are included. The Presidential address by A. Moore is about his experiences at Redcar Coke Ovens. Carbonisation and briquetting works in the United Kingdom, Koppers carbon materials and chemical works in the UK and Europe, European coking plants, their addresses and managers are listed. Six transactions are abstracted separately on the Coal Abstracts database.

  17. The year-book of the Coke Oven Managers' Association 2007



    The 88th volume of the Year Book outlines activities of the Coke Oven Managers' Association throughout 2007 and reproduces transactions presented to the industry through its various sections. It includes lists of Council and committee members and representation on committees and past presidents, and a full list of members. Reports of Council 2005-6 and of the annual general meeting 2005 are included. The Presidential address by R.G.W. Sargent looks at the situation faced by coke oven managers through the decades with some predictions for the future. Carbonisation and briquetting works in the United Kingdom, Koppers carbon materials and chemical works in the UK and Europe, European coking plants, their addresses and managers are listed. Nine transactions are abstracted separately on the Coal Abstracts database.

  18. Heat input control in coke ovens battery using artificial intelligence

    Kumar, R.; Kannan, C.; Sistla, S.; Kumar, D. [Tata Steel, Jamshedpur (India)


    Controlled heating is very essential for producing coke with certain desired properties. Controlled heating involves controlling the heat input into the battery dynamically depending on the various process parameters like current battery temperature, the set point of battery temperature, moisture in coal, ambient temperature, coal fineness, cake breakage etc. An artificial intelligence (AI) based heat input control has been developed in which currently some of the above mentioned process parameters are considered and used for calculating the pause time which is applied between reversal during the heating process. The AI based model currently considers 3 input variables, temperature deviation history, current deviation of the battery temperature from the target temperature and the actual heat input into the battery. Work is in progress to control the standard deviation of coke end temperature using this model. The new system which has been developed in-house has replaced Hoogovens supplied model. 7 figs.

  19. Research and development of SCOPE21 (super coke oven for productivity and environment enhancement towards the 21st century)

    Oshima, H.; Otsuka, J.; Nishioka, K.; Kamijo, T. [Japan Iron and Steel Federation, Tokyo (Japan)


    Coke ovens in Japan have 28 years of service on the average and the supply of coke is foreseen to suffer a shortage at the early years of the 21st century. Furthermore, the existing cokemaking process entails a lot of issues such as an effective use of coal resources, an adverse effect on environment. Thus, the Japan Iron and Steel Federation has launched a 9 year research programme called SCOPE 21 in collaboration with the Center for Coal Utilization, Japan in 1994. The programme pursues the following targets. The use ratio of poor coking coal increases from 20-50% with the improvement of coking property of coal by rapid heating and the increase of bulk density by mixing the briquetted coal. The coking time is reduced by rapid heating to 350 to 400{degree}C at the preheater, coking up to 750-850{degree}C at oven chamber, and reheating up to 1000{degree}C at the upgrading chamber, thus trebling productivity. The environment of coke oven is improved by emission free system and by improving the heating system of coke oven to reduce NOx in oven exhaust gas. After two years of preliminary feasible study the programme has advanced to basic research and to a bench scale test. It is in a stage of the construction of a pilot plant. This report describes the outline of the programme and the results obtained through the basic research and the bench scale plant tests. 2 refs., 17 figs., 5 tabs.

  20. The Dawes Lane coke ovens by-products plant expert system

    P. Warren [Corus Research Development and Technology (United Kingdom). Teeside Technology Department


    A system has been developed to provide comprehensive monitoring of the washer/scrubber processes on the by-products plant at Dawes Lane coke ovens where faulty operation may cause blockage of the gas stream leading to opening of the battery bleeders to release gas to atmosphere. The system developed and the additional instrumentation and practices have met the requirements for improved monitoring to reduce the likelihood of uncontrolled gas emissions. It is planned to further develop the system so that it will contribute towards optimisation of plant operation, and so to generate a financial benefit from the investment made. The paper was presented to the Midland Section of the Coke Oven Managers' Association at Corus Centre, Scunthorpe, UK on 20 May 2001. 11 figs., 1 tab.

  1. Combustion reactivity of chars from copyrolysis of coal with coke-oven gas

    Liao Hongqiang; Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion


    The combustion reactivity of char from pyrolysis of Xianfeng lignite with coke-oven gas (COG) is related to the pyrolysis pressure and heating rate. Decreasing pressure and increasing heating rate enhance the char yields and combustion reactivity. The combustion reactivities of char from coal pyrolysis with COG nearly reach to that of char from hydropyrolysis, but lower than those of char from coal pyrolysis under N{sub 2}. (orig.)

  2. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Bernard, G; Vidal, J


    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  3. The year-book of the Coke Oven Managers' Association 2006



    The 87th volume of the Year Book outlines activities of the Coke Oven Managers' Association throughout 2006 and reproduces transactions presented to the industry through its various sections. It includes lists of Council and Committee members and representation on committees and past presidents, and a full list of members. Reports of Council 2004-5 and of the annual general meeting 2005 are included. The Presidential address by M. Gore is on the last five years of Monckton Coke and Chemical Company. Carbonisation and briquetting works in the United Kingdom, Koppers carbon materials and chemical works in the UK and Europe, European coking plants, their addresses and managers are listed. Seven transactions are abstracted separately on the Coal Abstracts database.

  4. Urine mutagenicity of steel workers exposed to coke oven emissions

    De Meo, M.P.; Dumenil, G.; Botta, A.H.; Laget, M.; Zabaloueff, V.; Mathias, A.


    Urine mutagenicity of 19 individuals was investigated at a steel mill. All the subjects worked on the coal processing unit. Urine samples were collected at the end of a working day. Urine samples of two exposed workers were collected at the end of two periods of rest and two periods of working. Mutagens were extracted on XAD-2 resin and tested by the Salmonella microsomal assay and the SOS spot test. Mutagenic potencies of exposed smokers and exposed non-smokers were 8.62 +/- 6.56 and 1.1 +/- 0.48 revertants/mg creatinine respectively with Salmonella typhimurium strain TA98 + S9. Both values were significantly higher than those of unexposed smokers and non-smokers (5.07 +/- 3.33 and 0.47 +/- 0.72 revertants/mg creatinine respectively). The urinary mutagenic potency of the two exposed individuals increased at the end of periods of working (15.97 +/- 2.57 revertants/mg creatinine) and decreased at the end of periods of rest (12.31 +/- 2.45 revertants/mg creatinine). Urinary mutagens were detected with S. typhimurium strain TA100 + S9 to a lesser extent. No direct-acting mutagens were detected by the SOS spot test. Atmospheric benzo(a)pyrene (BaP) were also measured by h.p.l.c. on the coke battery. BaP concentrations ranged between 0.01 and 0.6 microgram/m3 air at the different working sites. Biological monitoring with short-term tests is discussed.

  5. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.


    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths

  6. Association of urinary metals levels with type 2 diabetes risk in coke oven workers

    Liu, Bing; Feng, Wei; Wang, Jing; Li, Yaru; Han, Xu; Hu, Hua; Guo, Huan; Zhang, Xiaomin; He, Meian


    Background: Studies indicated that occupationally exposed to metals could result in oxidative damage and inflammation and increase cardiovascular diseases risk. However, epidemiological studies about the associations of metals exposure with diabetes risk among coke oven workers were limited. Objectives: This study aims to investigate the potential associations of 23 metals levels with the risk of diabetes among coke oven workers. Methods: The analysis was conducted in a cross-sectional study including 1493 participants. Urinary metals and urinary polycyclic aromatic hydrocarbons (PAHs) metabolites levels were determined by inductively coupled plasma mass spectrometer and gas chromatograph-mass spectrometer respectively. Multivariate logistic regression was used to investigate the associations of urinary metal levels with diabetes risk with adjustment for potential confounding factors including gender, age, BMI, education, smoking, drinking, physical activity, hypertension, hyperlipidemia and urinary PAHs metabolites levels. Results: Compared with the normoglycemia group, the levels of urinary copper, zinc, arsenic, selenium, molybdenum, and cadmium were significantly higher in the diabetes group (all p < 0.05). Participants with the highest tertile of urinary copper and zinc had 2.12 (95%CI: 1.12–4.01) and 5.43 (95%CI: 2.61–11.30) fold risk of diabetes. Similar results were found for hyperglycemia risk. Besides, participants with the highest tertile of manganese, barium, and lead had 1.65(1.22–2.23), 1.60(1.19–2.16) and 1.45(1.05–1.99) fold risk of hyperglycemia when compared with the lowest tertlie. Conclusion: The results indicated that the urinary copper and zinc levels were positively associated with the risk of diabetes and hyperglycemia among coke oven workers. Urinary manganese, barium and lead levels were also associated with increased risk of hyperglycemia independently of other traditional risk factors. These findings need further validation

  7. Purification of coke oven wastewater; Depuracion de aguas residuales de coqueria

    Rancano, A.; Gutierrez, A.; Diaz, J.M.


    Coke oven wastewater are one of the most problematic that are produced by the iron and steel industry. They must be purified to minimise their impact on the environment. In this work a general vision about the different treatments that the wastewater must subject before being poured is showed. The options and efficiencies of every step were studied, taking special attention to the organic removal, studying the different ways to carry out this removal, centring on the biological treatment, the most used in this kind of wastewaters. (Author) 35 refs.

  8. A temperature measurement system for coke-oven walls at the coke-oven plant Kaiserstuhl in Dortmund (Germany). Pomiar temperatury w scianach baterii koksowniczej w koksownii Kaisertuhl w Dortmund (Niemcy)

    Chojnacki, M.; Sitek, A. (Hanslik Laboratorium Oprgramowania, Katowice (Poland))


    In the article, the software and hardware solutions developed by Hanslik Software Laboratory for Ruhrkohle AG are presented. The system was installed at Kaiserstuhl in Dortmund (Germany), the most modern coke-oven plant in the world. The project covered a temperature measurement system for the coke-oven walls as well as monitoring of the protection sensors in real-time. The article describes also the testing methodology we adopted, using computer aided testing. For the testing purposes, a simulator of the coke-oven and a testing program running under Windows were developed at our laboratory. The article shows the advantages of using off the shelf programmable components for ruggedized industrial applications. (author). 4 refs.

  9. A comparative economic assessment of hydrogen production from coke oven gas, water electrolysis and steam reforming of natural gas

    Nguyen, Y.V.; Ngo, Y.A.; Tinkler, M.J.; Cowan, N.


    This paper presents the comparative economics of producing hydrogen for the hydrogen economy by recovering it from waste gases from the steel industry, by water electrolysis and by conventional steam reforming of natural gas. Steel makers produce coke for their blast furnace operation by baking coal at high temperature in a reduced environment in their coke ovens. These ovens produce a coke oven gas from the volatiles in the coal. The gas, containing up to 60% hydrogen, is commonly used for its heating value with some of it being flared. The feasibility of recovering this hydrogen from the gas will be presented. A comparison of this opportunity with that of hydrogen from water electrolysis using low cost off-peak electricity from nuclear energy will be made. The impact of higher daily average electricity rate in Ontario will be discussed. The benefits of these opportunities compared with those from conventional steam reforming of natural gas will be highlighted. (author)

  10. The chemical and biological characteristics of coke-oven wastewater by ozonation

    Chang, E.-E.; Hsing, H.-J.; Chiang, P.-C.; Chen, M.-Y.; Shyng, J.-Y.


    A bench-scale bubble column reactor was used to investigate the biological and chemical characteristics of coke-oven wastewater after ozonation treatment through the examination of selected parameters. Color and thiocyanate could be removed almost entirely; however, organic matter and cyanide could not, due to the inadequate oxidation ability of ozone to remove ozonated byproducts under given experimental conditions. The removal of cyanide and total organic carbon were pH-dependent and were found to be efficient under neutral to alkaline conditions. The removal rate for thiocyanate was about five times that of cyanide. The ozone consumption ratio approached to about 1 at the early stage of ozonation (time TOC ) increased to 30%, indicating that easily degraded pollutants were degraded almost entirely. The effect of ozonation on the subsequent biological treatment unit (i.e., activated sludge process) was determined by observing the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD 5 /COD) and the specific oxygen utilization rate (SOUR). The results indicated that the contribution of ozonation to inhibition reduction was very significant but limited to the enhancement of biodegradation. The operation for ozonation of coke-oven wastewater was feasible under neutral condition and short ozone contact time in order to achieve better performance and cost savings

  11. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering


    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  12. Use of a palladium catalyst in the purification of coke oven gas

    Gotoh, T; Nakamura, M; Hirooka, N


    In the production of hydrogen from coke oven gas (COG) by pressure swing adsorption (PSA), various impurities in the COG have to be removed prior to the PSA. The stages of this purification are as follows: 1) removal of polymerizable substances such as NO gum by compressing the COG and then feeding it through a hot bottle and cooler arrangement; 2) removal of BTX in a scrubber; 3) removal of naphthalene and mist by means of chillers and filters; 4) removal of oxygen in a special reactor using a Pd catalyst. These various purification treatments have enabled the PSA plant to operate smoothly for 3.5 years. The authors report the results of pilot plant tests, and compare the results obtained using alternative purification techniques. 4 figures, 5 tables.

  13. Specific long non-coding RNAs response to occupational PAHs exposure in coke oven workers.

    Gao, Chen; He, Zhini; Li, Jie; Li, Xiao; Bai, Qing; Zhang, Zhengbao; Zhang, Xiao; Wang, Shan; Xiao, Xinhua; Wang, Fangping; Yan, Yan; Li, Daochuan; Chen, Liping; Zeng, Xiaowen; Xiao, Yongmei; Dong, Guanghui; Zheng, Yuxin; Wang, Qing; Chen, Wen


    To explore whether the alteration of lncRNA expression is correlated with polycyclic aromatic hydrocarbons (PAHs) exposure and DNA damage, we examined PAHs external and internal exposure, DNA damage and lncRNAs (HOTAIR, MALAT1, TUG1 and GAS5) expression in peripheral blood lymphocytes (PBLCs) of 150 male coke oven workers and 60 non-PAHs exposure workers. We found the expression of HOTAIR, MALAT1, and TUG1 were enhanced in PBLCs of coke oven workers and positively correlated with the levels of external PAHs exposure (adjusted P trend  TUG1). However, only HOTAIR and MALAT1 were significantly associated with the level of internal PAHs exposure (urinary 1-hydroxypyrene) with adjusted β  = 0.298, P  = 0.024 for HOTAIR and β  = 0.090, P  = 0.034 for MALAT1. In addition, the degree of DNA damage was positively associated with MALAT1 and HOTAIR expression in PBLCs of all subjects (adjusted β  = 0.024, P  = 0.002 for HOTAIR and β  = 0.007, P  = 0.003 for MALAT1). Moreover, we revealed that the global histone 3 lysine 27 trimethylation (H3K27me3) modification was positively associated with the degree of genetic damage ( β  = 0.061, P  < 0.001) and the increase of HOTAIR expression ( β  = 0.385, P  = 0.018). Taken together, our findings suggest that altered HOTAIR and MALAT1 expression might be involved in response to PAHs-induced DNA damage.

  14. Specific long non-coding RNAs response to occupational PAHs exposure in coke oven workers

    Chen Gao

    Full Text Available To explore whether the alteration of lncRNA expression is correlated with polycyclic aromatic hydrocarbons (PAHs exposure and DNA damage, we examined PAHs external and internal exposure, DNA damage and lncRNAs (HOTAIR, MALAT1, TUG1 and GAS5 expression in peripheral blood lymphocytes (PBLCs of 150 male coke oven workers and 60 non-PAHs exposure workers. We found the expression of HOTAIR, MALAT1, and TUG1 were enhanced in PBLCs of coke oven workers and positively correlated with the levels of external PAHs exposure (adjusted Ptrend < 0.001 for HOTAIR and MALAT1, adjusted Ptrend = 0.006 for TUG1. However, only HOTAIR and MALAT1 were significantly associated with the level of internal PAHs exposure (urinary 1-hydroxypyrene with adjusted β = 0.298, P = 0.024 for HOTAIR and β = 0.090, P = 0.034 for MALAT1. In addition, the degree of DNA damage was positively associated with MALAT1 and HOTAIR expression in PBLCs of all subjects (adjusted β = 0.024, P = 0.002 for HOTAIR and β = 0.007, P = 0.003 for MALAT1. Moreover, we revealed that the global histone 3 lysine 27 trimethylation (H3K27me3 modification was positively associated with the degree of genetic damage (β = 0.061, P < 0.001 and the increase of HOTAIR expression (β = 0.385, P = 0.018. Taken together, our findings suggest that altered HOTAIR and MALAT1 expression might be involved in response to PAHs-induced DNA damage. Keywords: Polycyclic aromatic hydrocarbons, Long non-coding RNA, Peripheral blood lymphocytes, DNA damage response, HOTAIR, MALAT

  15. Blast-furnace coke production in high capacity coke oven batteries from the viewpoint of domestic raw material resources

    Krause, W


    The problem is treated in a complex manner taking into account such technological improvements as: oiling, drying, charge preheating, dry quenching of coke as well as mechanical processing of coke which taken together will give blast furnace coke of the highest quality from domestic coals.

  16. The use of a radioactive tracer for the determination of distillation end point in a coke oven

    Burgio, N.; Capannesi, G.; Ciavola, C.; Sedda, F.


    A novel high precision detection method for the determination of the distillation end point of the coking process (usually in the 950 deg C range) has been developed. The system is based on the use of a metallic capsule that melts at a fixed temperature and releases a radioactive gas tracer ( 133 Xe) in the stream of the distillation gas. A series of tests on a pilot oven confirmed the feasibility of the method on industrial scale. Application of the radioactive tracer method to the staging and monitoring in the coking process appears to be possible. (author). 6 refs., 5 figs., 3 tabs

  17. Concentration of carcinoembryonic antigen alpha-fetoprotein and beta-subunit of human chorionic gonadotropin in the serum of coke oven workers

    Snit, M. [Silesian Medical Academy, Zabrze (Poland)


    Increased levels of carcinoembryonic antigen and {alpha}-fetoprotein were found in blood serum of coke oven workers, and also to some extent in smokers and in residents of industrial cities. The {beta} subunit of chorionic gonadotropin was barely detectable.

  18. Development of a facility for the recovery of high-purity hydrogen from coke oven gas by pressure swing adsorption

    Nakamura, M; Saida, K; Uenoyama, K; Sugishita, M; Imokawa, K


    This paper reports 1) a pressure swing adsorption (PSA) system comprising three towers, each packed with three different adsorbents; and 2) studies of the application of this system to the recovery of high-purity hydrogen from coke oven gas. Running the adsorption plant at 35 C and 9.5 kg/cm/sup 2/ gives optimum operating stability and economy. In addition, an optimum time cycle for the three-tower system has been developed. Gas from the PSA equipment proper still contains traces of oxygen. This is removed in a further tower packed with Pd catalyst. The ultimate recovery of hydrogen is closely related to its concentration in the raw coke oven gas and to the degree of purity attained. 3 references.

  19. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers.

    Yang, Jin; Zhang, Hongjie; Zhang, Huitao; Wang, Wubin; Liu, Yanli; Fan, Yanfeng


    Coke oven emissions containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Numerous epidemiological studies have suggested that oxidative DNA damage may play a pivotal role in the carcinogenic mechanism of lung cancer. Little is known about the effect of interaction between PAHs exposure and lifestyle on DNA oxidative damage. The study population is composed by coke oven workers (365) and water treatment workers (144), and their urinary levels of four PAH metabolites and 8-hydroxydeoxyguanosine (8-OHdG) were determined. Airborne samples of exposed sites (4) and control sites (3) were collected, and eight carcinogenic PAHs were detected by high-performance liquid chromatography. The median values of the sum of eight carcinogenic PAHs and BaP in exposed sites were significantly higher than control sites (P < 0.01). The study found that the urinary PAH metabolites were significantly elevated in coke oven workers (P < 0.01). Multivariate logistic regression analysis revealed that the risk of high levels of urinary 8-OHdG will increase with increasing age, cigarette consumption, and levels of urinary 1-hydroxypyrene, and P for trend were all <0.05. Smoking can significantly modify the effects of urinary 1-hydroxypyrene on high concentrations urinary 8-OHdG, during co-exposure to both light or heavy smoking and high 1-hydroxypyrene levels (OR 4.28, 95% CI 1.32-13.86 and OR 5.05, 95% CI 1.63-15.67, respectively). Our findings quantitatively demonstrate that workers exposed to coke oven fumes and smoking will cause more serious DNA oxidative damage.

  20. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor

    Zhang, Yuwen; Li, Qian; Shen, Peijun; Liu, Yong; Yang, Zhibin; Ding, Weizhong; Lu, Xionggang [School of Material Science and Engineering, Shanghai University, No. 275 Mail Box, 149 Yanchang Road, Shanghai 200072 (China)


    To maximize hydrogen production from coke oven gas (COG), partial oxidation of methane in COG was studied thermodynamically and experimentally. Thermodynamic analysis indicates that an optimal hydrogen yield of 1.04-1.10 mole per mole of the consumed COG can be achieved when the initial ratio of O{sub 2} and CH{sub 4} is 0.57-0.46 in a temperature range of 800-900 C, and the corresponding amplification of original hydrogen in COG reaches 1.8-1.9 times. The amplification of original hydrogen was carried out in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} (BCFNO) membrane reactor, and the hydrogen yield in the lab scale was about 80% more than that of original H{sub 2} in model COG. In a large hydrogen content in COG, the ceramic membrane reactors made from perovskite mixed-conducting oxygen-permeable materials must have higher stability to withstand the harsh reduction condition. (author)

  1. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis

    J.M. Bermudez; B. Fidalgo; A. Arenillas; J.A. Menendez [Instituto Nacional del Carbn, Oviedo (Spain)


    The dry reforming of coke oven gases (COG) over an activated carbon used as catalyst has been studied in order to produce a syngas suitable for methanol synthesis. The primary aim of this work was to study the influence of the high amount of hydrogen present in the COG on the process of dry reforming, as well as the influence of other operation conditions, such us temperature and volumetric hourly space velocity (VHSV). It was found that the reverse water gas shift (RWGS) reaction takes place due to the hydrogen present in the COG, and that its influence on the process increases as the temperature decreases. This situation may give rise to the consumption of the hydrogen present in the COG, and the consequent formation of a syngas which is inappropriate for the synthesis of methanol. This reaction can be avoided by working at high temperatures (about 1000{sup o}C) in order to produce a syngas that is suitable for methanol synthesis. It was also found that the RWGS reaction is favoured by an increase in the VHSV. In addition, the active carbon FY5 was proven to be an adequate catalyst for the production of syngas from COG. 25 refs., 7 figs., 2 tabs.

  2. Copyrolysis of coal with coke-oven gas. III. Analysis of tar

    Liao, H.; Sun, C.; Li, B.; Liu, Z. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion, Institute of Coal Chemistry


    Tars from copyrolysis of Xianfeng lignite with coke-oven gas (COG) at different pressures (0.1-5 MPa) and heating rates (5-25{degree}C/min) to a final temperature of 650{degree}C were analyzed and compared with hydropyrolysis under the same H{sub 2} partial pressure. The results indicated that high contents of BTX, PCX and naphthalene were found in the tar from copyrolysis of Xianfeng lignite with COG. Pressure and heating rate have important effects on tar yields and the contents of BTX, PCX and naphthalene in oil. Increasing pressure and decreasing heating rate enhance the tar yields and result in high yields of BTX and PCX. When compared with hydropyrolysis under the same H{sub 2} partial pressure, the tar yield increases by 1.2 times and the yields of BTX, PCX and naphthalene by about 1.6, 1.3 and 1.6 times, respectively. At the same total pressure (3MPa), the yields of BTX and naphthalene from copyrolysis are equal to those from hydropyrolysis. The results reveal that other components in COG, such as methane, carbon monoxide etc., are of importance for pyrolysis behaviour of coal under COG and improvement of oil qualities. 5 refs., 5 figs., 2 tabs.

  3. Determination of polycyclic aromatic hydrocarbons in urine from coke-oven workers with a radioimmunoassay

    Herikstad, B.V.; Ovrebo, S.; Haugen, A.; Hagen, I. (Center for Industrial Research, Oslo (Norway))


    Considerable amounts of polycyclic aromatic hydrocarbons (PAH) are present in the workplace. In order to obtain a better understanding of the occupational hazards connected with PAH exposure various biomonitoring methods need to be applied. The level of PAH in urine collected from coke-oven workers has been measured by a recently developed radioimmunoassay. A significant correlation between estimated exposure levels for PAH and urinary levels of PAH was observed. During the winter period the control group was found to have an average concentration of 0.44 ng PAH/mmol creatinine, whereas the low, medium and high exposure groups contained 0.44, 0.71 and 0.85 ng PAH/mmol creatinine respectively. The urinary PAH level in the samples collected during the summer period was higher, i.e. 0.81, 0.94 and 1.10 ng PAH/mmol creatinine, for the low, medium and high exposure groups. Furthermore, a correlation was also observed between smoking and levels of urinary PAH. We conclude that this radioimmunoassay may be suitable as a simple and sensitive routine assay for monitoring individuals exposed to PAH.

  4. Effect of volume change of coal during plastic and resolidifying phase on the internal gas pressure in coke ovens; Sekitan nanka saikoka katei ni okeru taiseki henka ga cokes ro no nanka yoyu sonai gas atsu ni oyobosu eikyo

    Nomura, S; Arima, T [Nippon Steel Corp., Tokyo (Japan)


    The coking pressure in coke oven, which is caused by the internal gas pressure in the coal plastic layer, is determined by the gas permeability of the layer. The gas permeability of the plastic layer depends on its density as well as the physical property of the plastic coal itself The plastic layer is between the coke layer and the coal layer and the effect of the volume change of these outer layers, i.e. contraction and compression, on the density and the internal gas pressure of the plastic layer was studied. Sandwich carbonization test, where different coals were charged in the test coke oven, showed that the internal gas pressure in the plastic layer depends not only on the one kind of coal in plastic phase but also on the other kind of coal in resolidifying phase near the oven walls. The relative volume of coke transformed from the unit volume of coal was measured using X-ray CT scanner and it varied greatly across the coke oven width depending on the kinds of coals. The volume change of coal during plastic and resolidifying phase affects the density and the internal gas pressure of the plastic layer The relative volume of semicoke and coke transformed from the unit volume of coal near the oven walls is higher for a high coking pressure coal than that for a low coking pressure coal. This leads to the high density of the plastic layer and the generation of dangerously high internal gas pressure in the oven centre. (author)

  5. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking

    Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health


    1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

  6. Emission of Polychlorinated Dibenzo-p-Dioxins (PCDDs and Polychlorinated Dibenzofurans (PCDFs from Underfiring System of Coke Oven Battery

    Rafał Bigda


    Full Text Available A coke oven battery is not considered as a significant source of PCDDs/PCDFs emissions; however, due to small amounts of chlorine in coal dioxins, dibenzofurans may be formed. The paper presents the attempts to determine the level of emission of PCDDs/PCDFs from the COB underfiring system and to confront the obtained results with the calculations based on the mass balance of chlorine in the coking process and reactions of both chlorophenols formation and PCDDs and PCDFs formation from mono- and polychlorophenols. There were PCDDs/PCDFs concentrations measured in flue gases from the underfiring system of two COBs at a Polish coking plant. The measurements included both an old and a new battery. The obtained concentrations of PCDDs/PCDFs were lower than reported in the literature (0.5-1.7 ng I-TEQ/tcoke, while the results for old COB were on average 3 times higher than for the new one. It was found that PCDD/F emission from COB underfiring system is insignificant and that PCDDs/PCDFs formation during coal coking should consider the mechanisms of their formation from mono- and polychlorophenols, as well as the influence of process parameters on the synthesis.

  7. Occupational coke oven emissions exposure and risk of abnormal liver function: modifications of body mass index and hepatitis virus infection

    Y. Hu; B. Chen; J. Qian; L. Jin; T. Jin; D. Lu [Fudan University, Shanghai (China). Department of Occupational and Environmental Health


    Occupational coke oven emissions (COEs) have been considered an important health issue. However, there are no conclusive data on human hepatic injury due to COE exposure. The association of COE exposure with liver function was explored and the effects of modification of potential non-occupational factors were assessed. 705 coke oven workers and 247 referents were investigated. Individual cumulative COE exposure was quantitatively estimated. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), {gamma}-glutamyl transferase, alkaline phosphatase, hepatitis B surface antigen and anti-hepatitis C antibody were measured. Among those with high COE exposure, the adjusted ORs of abnormal ALT and AST were 5.23 (95% CI 2.66 to 10.27) and 1.95 (95% CI 1.18 to 3.52), respectively. Overweight individuals (body mass index (BMI) {>=}25 kg/m{sup 2}) with high COE exposure had elevated risks of abnormal ALT (adjusted OR 23.93, 95% CI 8.73 to 65.62) and AST (adjusted OR 5.18, 95% CI 2.32 to 11.58). Risk of liver damage in hepatitis B virus- or hepatitis C virus-positive individuals with COE exposure was also elevated. Long-term exposure to COE increases the risk of liver dysfunction, which is more prominent among those with higher BMI and hepatitis virus infection. The risk assessment of liver damage associated with COE exposure should take BMI and hepatitis virus infection into consideration.

  8. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    Man, Yi; Yang, Siyu; Qian, Yu


    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  9. Improvements in the construction and operation of coke and other ovens. [Patents

    Aitken, H


    Into a room above the coke, superheated steam is let in and collects the distillation products throughout the charge into a tube or channel driven into the wall of the retort. The retort walls can be made of a double iron jacket in which water circulates. For emptying the retort, a wedge-shaped plate is used, which is pushed under the coke, thereby the latter is lifted and in large measure moved out of the chamber.

  10. Investigation on treatment of cyanide in waste water of coke-oven plant with radiation-technique

    Qi Shengchu; He Yongke; Wu Jilan


    The treatment of cyanide in waste water of coke-oven plant with radiation-technique was investigated. The investigation indicated that toxic products under γ-ray irradiation were changed into less-toxic or non-toxic products. Organic pollutants will compete with cyanide for scavenging active intermediates of water (H, e aq - and OH radical). Therefore, it will inhibit cyanide radiolysis. The pretreatment with active carbon increases the radiolytic decomposition rate of cyanide and damage rate of organism in waste water. H 2 O 2 and N 2 O convert e aq - into OH radical. however they improve the efficiency decomposition of cyanide. OH radical plays an important role in reducing cyanide content and COD value

  11. Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance

    Yi, Qun; Gong, Min-Hui; Huang, Yi; Feng, Jie; Hao, Yan-Hong; Zhang, Ji-Long; Li, Wen-Ying


    A novel process designed for producing methanol from coke oven gas (COG) integrated with CO 2 recycle is proposed. In the new system, oxygen replacing air is blown to combustor for assisting combustion of COG and unreacted syngas from methanol synthesis process. The combustion process provides to the heat required in the coking process. The rest COG reacts with the recycled CO 2 separated from the exhaust gas to produce syngas for methanol synthesis. The unreacted syngas from methanol synthesis process with low grade energy level is recycled to the combustor. In the whole methanol production process, there is no additional process with respect to supplementary carbon, and the carbon resource only comes from the internal CO 2 recycle in the plant. With the aid of techno-economic analysis, the new system presents the energy or exergy saving by 5–10%, the CO 2 emission reduction by about 70% and the internal rate of return increase by 5–8%, respectively, in comparison with the traditional COG to methanol process. - Highlights: • A process for producing methanol from COG integrated with CO 2 recycle is first proposed. • CO 2 from the exhaust gas is recycled to supply carbon for producing syngas. • New integrated plant simplifies the production process with 5–8% IRR increase. • New system presents about 5–10% energy saving, about 70% CO 2 emission reduction.

  12. Mini-PROven. Reduced emissions from small and medium-size coke ovens thanks to single-chamber pressure control; Mini-PROven. Emissionsreduzierung an kleinen und mittleren Koksoefen mit einer Einzelkammerdruckregelung

    Huhn, Friedrich; Krebber, Frank; Kuehn-Gajdzik, Joanna; Ueberschaer, Kerstin [ThyssenKrupp Uhde GmbH, Dortmund (Germany). Coke Plant Technologies Div.


    For environment and occupational health reasons it is becoming increasingly important for coke plants to be operated with the lowest possible level of emissions. In the past, changing pressure conditions in each individual oven, with particularly high values at the beginning of the coking period, often resulted in considerable emissions at the oven closures. To prevent this happening on modern large-scale ovens, ThyssenKrupp Uhde developed the PROven trademark (Pressure Regulated Oven), a single-chamber pressure control system which regulates the pressure in the individual coke chambers down to a constantly low level. In the meantime, after many years of successful service, the system has been upgraded in both its design and process engineering. The result is Mini-PROven, which in future can also be retro-fitted to old small and medium-size coke oven batteries in the interest of better environmental protection. (orig.)

  13. Effluents of toxic and corrosion-active components at coke-oven gas combustion

    Mikhajlov, G.S.; Afanas'ev, Yu.O.; Plotnikov, V.A.; Iskhakov, Kh.A.; Tikhov, S.D.; Gaus, A.I.; Nagibin, P.D.


    Various modes of coke-coal gas combustion are studied and dependence of concentration of nitrogen sulfur oxides and carbon monoxides originating in smoke gases on the air excess delivered to the combustion chamber is determined. The lowest summary releases of hazardous substances are achieved by the excess air coefficients α > 1.2 relative to modes of coke-coal gas combustion with smoke gases recirculation. The quantity of sulfur does not depend on the mode of fuel combustion and is determined by the total sulfur content in the fuel. To prevent the corrosion of low-temperature heat exchange surfaces it is necessary to heat up the feed-water up to the temperature exceeding the temperature of the coal gases dew point by 10-15 deg C. 10 refs

  14. Coke

    Trumble, M J


    Coke is obtained from coal, lignite, peat, or wood by heating the material in a retort and distilling off the volatiles by the passage of superheated steam or hot vapors, the hot porous residue being treated with a liquid hydrocarbon and the temperature being so maintained the latter is cracked and carbon deposited on the coke. The vapors or light oils are condensed and the incondensable gases are used as fuel.

  15. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    Suidan, M.T.; Deady, M.A.; Gee, C.S.


    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  16. Young employees of the coking industry for technological progress

    Ladyzhinskii, V.M.; Shul' ga, I.V.


    A conference is reported on technology development in the Soviet coking industry held on December 9-10, 1985 at the Khar'kov Scientific-Research Coal-Chemistry Institute. Representatives of leading research institutes and coking plants delivered 25 papers on the following topics: increasing flotation efficiency by means of new flotation reagents, drum feeders for charging cars, new design of coke oven doors, mathematical models of coal transport to coke ovens, some characteristics of packing coal mixtures in coke ovens, heat treatments of coal mixtures at the Khar'kov experimental coking plant, investigating properties of long-flame and gas coal from the Donbaas used for manufacturing formed coke, modernization of the IGI-DMeTI method for determining properties of coal mixtures for formed coke processes, basic problems associated with environmental protection in formed coke processes, specific problems of coal gasification at 900-1050 C and its effects on coking, evaluating properties of formed coke produced from black coal from the Western Donbass for metallurgy, mixing hot briquets with coal slurries during partial briquetting of the coal charge.

  17. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)


    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  18. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion


    To improve the economics of the hydropyrolysis process, it has been suggested that cheaper hydrogen-rich gases (such as coke oven gas, synthesis gas) could be used instead of pure hydrogen. Pyrolysis of Chinese Xianfeng lignite was carried out with coke oven gas (COG) and synthesis gas (SG) as reactive gases at 0.1-5 MPa and at a final temperature up to 650{degree}C with a heating rate of 5-25{degree}C min{sup -1} in a 10 g fixed-bed reactor. The results indicate that it is possible to use COG and SG instead of pure hydrogen in hydropyrolysis, but that the experimental conditions must be adjusted to optimize the yields of the valuable chemicals. 14 refs., 3 figs., 6 tabs.

  19. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas

    Roy, M.M.; Tomita, E.; Kawahara, N.; Harada, Y.; Sakane, A. [Okayama University, Okayama (Japan). Dept. of Mechanical Engineering


    This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.

  20. Implementation of a system of recovery of by-products for a coke oven pilot

    Gutierrez Quintero, Wilder; Trivino Restrepo, Maria del Pilar


    In this work is to the design of a lab-scale system that was constructed and started up to recover primary by-products of the coke gas, which in his first stage presents displays a mechanism of cooling made up of heat exchanger of double shell to reverse flow, a tower of perforated trays and a closed circuit of water that condenses tars. The second phase contemplates the entrance of the gas in crosscurrent to a tank divided by perforated trays with a permanent water shower, where the ammoniac solutions are concentrated. In order to avoid that the gas remains catches in the pipe of conduction by its high density, it is necessary to suck it by means of an extractor type snail closed, that acts as well like centrifugal separator precipitating the heaviest compounds, and impelling the gas towards a tower where the chemical cleaning of sulfurous and hydrocyanic compounds when reacting with the Lamming mixture takes place, providing a clean and ready gas for consumption. An experimental procedure is developed to test coals samples

  1. Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission

    Man, Yi; Yang, Siyu; Zhang, Jun; Qian, Yu


    Highlights: • A novel coke-oven gas assisted coal to olefins (GaCTO) process is proposed. • GaCTO has higher energy efficiency and emits less CO 2 compared to coal-to-olefins process. • GaCTO proposes an idea of using redundant coke-oven gas for producing value added products. - Abstract: Olefins are one of the most important platform chemicals. Developing coal-to-olefins (CTO) processes is regarded as one of promising alternatives to oil-to-olefins process. However, CTO suffers from high CO 2 emission due to the high carbon contents of coal. In China, there is 7 × 10 10 m 3 coke-oven gas (COG) produced in coke plants annually. However, most of the hydrogen-rich COG is utilized as fuel or discharged directly into the air. Such situation is a waste of precious hydrogen resource and serious economic loss, which causes serious environmental pollution either. This paper proposes a novel co-feed process of COG assist CTO in which CH 4 of COG reacts with CO 2 in a Dry Methane Reforming unit to reduce emissions, while the Steam Methane Reforming unit produces H 2 -rich syngas. H 2 of COG can adjust the H/C ratio of syngas. The analysis shows that the energy efficiency of the co-feed process increases about 10%, while at the same time, life cycle carbon footprint is reduced by around 85% in comparison to the conventional CTO process. The economic sustainability of the co-feed process will be reached when the carbon tax would be higher than 150 CNY/t CO 2

  2. Development of the super coke oven for productivity and environment enhancement toward the 21st century (SCOPE 21); Sekitan kodo tenkan cokes seizo gijutsu no kaihatsu

    Sugiyama, T [Center for Coal Utilization, Japan, Tokyo (Japan); Nakashima, Y; Nishioka, K; Otsuka, J [The Japan Iron and Steel Federation, Tokyo (Japan)


    Serious shortage is predicted on cokes for blast furnaces in the first half of the 21st century. In order to deal flexibly with the fluid world market in the future, it is necessary to have a technology developed, by which coals from coking coal to non-coking dust coal can be used. The Japan Iron and Steel Federation and the Center for Coal Utilization, Japan are working on research and development of a new process with enhanced environmentality and economy (SCOPE 21) as a coke manufacturing process to respond to the requirements arisen from the above situation. The process is assessed basing on basic technological seeds such as rapid coal heating and high-speed carbonization and reformation of middle to low temperature cokes. The organizations are moving forward an eight-year development program which has started in fiscal 1994. This paper reports the summary of the development, and results of investigations and researches performed during fiscals 1994 and 1995. Rapid heating tests, middle to low temperature coke reformation tests, and tests for plug transportation of high-temperature coal have been performed. It has been verified, for example, that rapid coal heating can improve coke strength. The development work is being promoted toward grain size distribution and upscaling problems. 5 refs., 16 figs., 2 tabs.

  3. Cytochrome P450 1B1 mRNA levels in peripheral blood cells and exposure to polycyclic aromatic hydrocarbons in Chinese coke oven workers

    Hanaoka, Tomoyuki; Tsugane, Shoichiro [Epidemiology and Biostatistics Division, National Cancer Center Research Institute East, 6-5-1 Kashiwanoha, Kashiwa-shi, 277-8577 Chiba (Japan); Yamano, Yuko; Kagawa, Jun [Tokyo Womens' Medical University, 8-1 Kawadacho, Shinjuku-ku, 162-8666 Tokyo (Japan); Pan, Guowei; Zhang, Shujuan [Liaoning Provincial Center for Disease Prevention and Control, 42-1 Jixian Street, 110005 Shenyang (China); Hara, Kunio [Institute for Science of Labour, 2-8-14 Miyamae-ku, 216-8501 Kawasaki (Japan); Ichiba, Masayoshi; Zhang, Jiusong [Saga Medical School, 5-1 Nabeshima, Saga-shi, 849-8501 Saga (Japan); Liu, Tiefu; Li, Landi [Angang Public Health and Anti-epidemic Station Lishan District, 23 Shengoushi Yutian Street, 114034 Anshan (China); Takahashi, Ken [University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555 Kitakyushu (Japan)


    Cytochrome P450 1B1 (CYP1B1) is induced through the Ah receptor and is involved in the activation of polycyclic aromatic hydrocarbons (PAHs). To determine the validity of a quantitative analysis of CYP1B1 mRNA in peripheral human blood cells for the estimation of PAH exposure, a real-time quantitative polymerase chain reaction method was used to measure the relative levels of CYP1B1 mRNA in 37 Chinese coke oven workers and 13 control workers. A large inter-individual difference in the levels was observed. The average level of the CYP1B1 mRNA in workers at the top work site, where the PAH exposure level from the coke ovens was highest, was significantly higher than in workers at the middle site (P<0.01) or the controls (P=0.02). A non-significant positive correlation was found between the CYP1B1 mRNA levels and urinary 1-hydroxypyrene (R=0.22, P=0.13), and a significant correlation between these mRNA levels and urinary cotinine (R=0.33, P=0.02). It was interesting that a significant positive correlation between CYP1B1 mRNA and 1-hydroxypyrene was observed in subjects with the Leu/Leu type of CYP1B1 Leu432Val polymorphism (R=0.33, P=0.02, n=38) and a non-significant correlation in subjects with the Leu/Val and Val/Val types (R=-0.36, P=0.25, n=12), although the number of subjects in this strata analysis was small. Our preliminary study suggests that PAH exposure in coke ovens and smoking maybe associated with CYP1B1 mRNA levels in peripheral blood cells although mRNA is generally unstable and could be expressed following exposure to other agents.

  4. Development of an installation for the production of high-purity hydrogen using the pressure-swing-adsorption process with coke-oven gas as feedstock

    Nakamura, M; Sugishita, M


    This paper describes how Nippon Steel developed a process for producing high-purity hydrogen using the PSA method with coke-oven gas as a feedstock. The process comprises a gas-compression and gas-cooling stage, a pre-treatment stage, an adsorption stage, a de-oxygenation stage and various control and maintenance devices, etc. The triple-tower plant constructed is the equivalent of a four-tower conventional installation, with a maximum capacity of around 10,000 Nm/sup 3//h. 1 tab., 14 figs., 3 refs.

  5. The coke dilemma

    Champagne, P E; Lewis, J A


    Coke-making capacity reductions and the current status of coke oven batteries in the USA are surveyed, as well as prior forecasts of the steel and coke markets. The future position is then analysed and it is concluded that the US coke supply situation should improve up to 1995, but that there could be major domestic coke production deficits in the period 1996-2000; critical decisions will soon have to be made about replacement of coking capacity.

  6. 80. special meeting on coke


    There were 12 papers presented at the special meeting on coke. These have the following headings: relationship between coal properties and optical anisotropic textures of coke; development of optical texture of chemically modified low rank coal; relationship between fluid and swelling properties of Akabira coal; estimation of coal fluidity; present state and future of robotics; on the thermal stress during the carbonisation process of coals; development of estimation model for coke porosity distribution in the coke oven using X-ray CT; carbonization reaction of coke oven; relationship between qualities of coke and width of coke oven; development of carbonization model in coke ovens - estimation of growing clearance between heating wall and charge; development of automatic transparency analyzer for activated sludge process.

  7. Biological monitoring the exposure to polycyclic aromatic hydrocarbons of coke oven workers in relation to smoking and genetic polymorphisms for GSTM1 and GSTT1

    Joost H.M. van Delft; Marie-Jose S.T. Steenwinkel; Jeff G. van Asten; Nico de Vogel; Truus C.D.M. Bruijntjes-Rozier; Ton Schouten; Patricia Cramers; Lou Maas; Marcel H. van Herwijnen; Frederik-Jan van Schooten; Piet M.J. Hopmans [TNO Nutrition and Food Research Institute (Netherlands). Toxicology Division


    Occupational exposure to polycyclic aromatic hydrocarbons (PAH) increases the risk of developing lung cancer. Human exposure is often demonstrated by increased internal levels of PAH metabolites and of markers for early biological effects, like DNA adducts and cytogenetic aberrations. This study aimed to assess whether the current exposure to PAH of coke oven workers in a Dutch plant induced biological effects, and to determine if these effects are influenced by tobacco smoking and by genetic polymorphisms for the glutathione S-transferase genes GSTM1 and GSTT1. Urinary 1-hydroxypyrene (1-OHpyr) levels were used to monitor the internal dose, while the internal effective dose was assessed by monitoring PAH-DNA adducts, DNA strand breaks (Comet assay), sister-chromatid exchanges (SCE) and cells with a high frequency of SCE (HFC) in lymphocytes together with micronuclei (MN) in exfoliated urothelial cells. Occupational exposure to PAH resulted in statistically significant increased 1-OHpyr levels, but it did not cause a significant induction of SCE, HFC, MN, DNA strand breaks or DNA adducts. Smoking caused a significant increase of 1-OHpyr, SCE, HFC and DNA adducts, but not of MN or DNA strand breaks. Following correction for the smoking-related effects, no occupational induction of the effect biomarkers could be discerned. Multi-variate analysis did not show a significant influence of GSTM1 and GSTT1 polymorphisms on any biomarker. Also no significant interactions were observed between the various biomarkers.

  8. Conversion of hot coke oven gas into light fuel gas over Ni/Al{sub 2}O{sub 3} catalyst

    Li, L.Y.; Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan). Dept. of Biology & Chemical Engineering


    Conversion of hot coke oven gas (COG, containing tarry material) into light fuel gas over a Ni/Al{sub 2}O{sub 3} catalyst was studied. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. The nickel catalyst promoted the hydropyrolysis reaction of tarry materials. High yields of total product gas and methane were obtained at high hydrogen concentrations. If the hydrogen supply was adequate for hydropyrolysis of the tarry material, conversion of coal volatiles was high, at more than 95% on carbon balance, even with a gas residence time as short as 0.15 s in the catalyst bed. The product gas yield depended on catalytic temperature. At 923 K, the maximum conversion of coal volatiles into the light gas was achieved at 95.0% on carbon balance, with methane 86.7 vol% of the carbonaceous gas product. Although carbon deposits deactivated the catalyst after a long period of use, the catalyst could be regenerated by treatment with oxygen at 800 K, providing high activity in subsequent decomposition of tarry material. The influence of sulphide on the tarry material decomposition reaction was small even in a 2000 ppm H{sub 2}S atmosphere.

  9. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Zhang, Wangzhen [Institute of Industrial Health, Wuhan Iron & Steel (Group) Corporation, Wuhan 430070, China. (China); Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Guo, Huan, E-mail: [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)


    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P{sub interaction}≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8

  10. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan


    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P interaction ≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8-OHd

  11. Increasing efficiency of reconstruction and technological development of coking enterprises

    Rozenfel' d, M.S.; Martynenko, V.M.; Tytyuk, Yu.A.; Ivanov, V.V.; Svyatogorov, A.A.; Kolomiets, A.F. (NIISP, Voroshilovgrad (USSR))


    Discusses problems associated with reconstruction of coking plants in the USSR. Planning coking plant reconstruction is analyzed. Duration of individual stages of plant reconstruction is considered. A method developed by the Giprokoks research institute for calculating reconstruction time considering duration of individual stages of coke oven battery repair is analyzed: construction of storage facilities, transport of materials and equipment, safety requirements, coke oven cooling, dismantling, construction of coke oven walls, installation of machines and equipment. Advantages of using the methods for analysis of coke oven battery reconstruction and optimization of repair time are discussed.

  12. Ways of improving preparatory stage and reconstruction of coking plants

    Rozenfel' d, M.S.; Martynenko, V.M.; Svyatogorov, A.A.; Kvitkin, I.A.; Zhurba, A.I.; Gurtovnik, P.F.


    Discusses economic and technological aspects of coking plant reconstruction and modernization in the USSR. Effects of standardized technologies on plant reconstruction are analyzed. A standardized planning procedure jointly developed by research institutes in the USSR for plant modernization or reconstruction is discussed: selecting the optimum reconstruction and repair time, sequence of operations without stoppage of a coke oven battery, coke oven cooling, repair of coke oven liners, heating systems, coke oven equipment, drying, initial heating, testing battery equipment. The procedure is aimed at reducing coke losses and eliminating delays during reconstruction operations. A graphic method for modelling plant reconstruction is discussed.

  13. Optimising the flow characteristic of a coke-oven flue-gas valve by means of Computational Fluid Dynamics (CFD); Stroemungsoptimierung eines Abgasventils von Koksoefen durch Computational Fluid Dynamics (CFD)

    Hiller, R.; Cremer, I.; Bertling, J. [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany); Dittie, J.; Kim, R.; Reinke, M. [Krupp Uhde GmbH, Dortmund (Germany)


    In coke-oven operations flue-gas valves are used to switch the regenerator function from rich gas firing to lean gas firing. Compared with the simple geometry of the other parts of the flow path, which comprise flues and regenerators, the narrow and winding passages of the flue-gas valves give rise to relatively high losses in pressure. Without the construction of high (and therefore expensive) chimneys, this means that operating problems may well arise due the inadequate suction capacity. The project focused on the theoretical and experimental analysis of a coke-oven flue-gas valve. The primary aim was to reduce the pressure drop through the valve without modifying its external geomerty. The internal flow characteristics created by different valve geometries under a variety of operating conditions were simulated using the commercial CFD code Fluent/UNS, which provided velocity and pressure distributions. A half-scale model valve was constructed in order to characterise the internal flow behaviour by pressure measurement. (orig.) [Deutsch] In einem bei Fraunhofer UMSICHT durchgefuehrten Projekt wurde die Stroemung in einem Abgasventil eines Koksofens, das der Umschaltung der Regeneratorfunktion von Starkgasbeheizung auf Schwachgasbeheizung dient, theoretisch und experimentell untersucht, um die relativ hohen Druckverluste zu vermindern. Vorgeschlagen wurde eine Modifikation der Abgasventilkonstruktion, die den Druckverlust um mehr als das Zehnfache vermindert und zu einer baulichen Vereinfachung des Ventils fuehrt. (orig.)

  14. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Yao Weilin


    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  15. Microwave Ovens

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  16. Scientific Council of the State Committee for Science and Technology on the problem 'New processes in the coking industry', Coke-Chemistry Section of the Scientific-Technical Council of the Ministry of Ferrous Metallurgy of the USSR and of the Central Administration of the Scientific-Technical Branch of Ferrous Metallurgy

    Bukvareva, O.F.


    A report is presented on 3 conferences on the development of the Soviet coking industry held in February and April 1986. Papers delivered at the conferences and selected recommendations for development of equipment for coking, coking systems, optimization of coal mixtures for coking, environmental protection and research programs on coking are reviewed. The following problems were discussed: modernization of coke oven design, selecting the optimum size of coke ovens, prospects for dry coke quenching in the USSR, evaluation of operation of systems for dry coke quenching, utilization of waste heat from coke quenching for heat treatment of coal mixtures for coking, research programs on coking in the 12th five-year plan (1986-1990), partial briquetting of coal mixtures for coking and selecting optimum binders for partial briqetting, formed coke processes, economic analysis of formed coke processes, fire-resistant bricks and elements for coke oven construction, new coking technologies, pollution control in coking plants.

  17. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center


    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  18. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences


    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  19. FY 2000 report on the results of the leading research and development of the carburetion technology using sensible heat of coke oven gas; 2000 nendo seika hokokusho. Kokusuro gas kennetsu riyo zonetsu gijutsu sendo kenkyu kaihatsu



    For the purpose of recovering sensible heat of coke oven gas (COG), the paper conducted a potential study of 'the carburetion technology using COG sensible heat,' of which the basic design is to give the endothermic catalyst reforming hydrogen production reaction directly to the components mainly including methane, and the R and D for establishing it as an industrial technology. In the R and D, the optimum process was studied in terms mainly of the dry pretreatment technology and the catalyst reformation reaction of hydrocarbons such as methane. As a result, the inhibition of the progress of the reforming reaction, which was a difficult problem at first because of the catalyst poison of associated components, could be avoided by making conditions for development/reaction of solid solution appropriate. Further, as to the associated coal tar which was regarded as carbon deposition source, a possibility of the process for converting it into the light chemical energy was recognized. Further, in FY 2000, survey was made on the solid electrolyte oxygen separation technology to which attention was paid as a chemical energy conversion technology for heat energy and which is closely related also to the energy structure of iron making plant. (NEDO)

  20. Kress indirect dry cooling system, Bethlehem Steel's Coke Plant demonstration at Sparrows Point, Maryland. Volume 2. Appendices G-N. Final report, February 1990-February 1992

    Ossman, A.G.


    The report provides an evaluation of the Kress Indirect Dry Cooling (KIDC) process. The KIDC process is an innovative system for the handling and cooling of coke produced from a slot type by-product coke oven battery. The report is based on the test work and demonstration of the system at Bethlehem Steel Corporation's Sparrows Point facility in 1991. The report covers both environmental and operational impacts of the KIDC process. The report, Volume 2, contains appendices G-N. Volume 1, PB93-191302, contains the technical report as well as appendices A-F. Volume 2 contains appendixes on coke quality data, blast furnace balwax model report, KIDC operating cost and maintenance requirements, Kress box thickness readings, KIDC coke discharge temperature, QA/QC program, door leak data, and coal data

  1. High levels of medium-chain chlorinated paraffins and polybrominated diphenyl ethers on the inside of several household baking oven doors.

    Gallistl, Christoph; Sprengel, Jannik; Vetter, Walter


    Fat obtained by wipe tests on the inner surface of 21 baking ovens from Stuttgart (Germany) were analyzed for halogenated flame retardants (HFRs), namely polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), dechlorane plus (DP), short- and medium-chain chlorinated paraffins (SCCPs, MCCPs), as well as polychlorinated biphenyls (PCBs). In ~50% of the samples chlorinated paraffins (CPs) were present in the mg/g fat range, i.e. three to four orders of magnitude higher concentrated than the sum of all other target compounds. In contrast the remaining ~50% of the samples were free of CPs, while the other HFRs were comparable in CP-positive and CP-negative samples. The exceptionally high concentrations and exclusive presence of CPs in half of the samples produced strong evidence that these compounds were released from the baking oven itself. This hypothesis was supported by detection of MCCPs at even higher concentrations in the inner components of one dismantled baking oven. The release of substantial amounts of HFRs from the oven casing during its use may contribute to human exposure to these compounds, especially MCCPs and SCCPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Scientific and technical problems in the production of coke

    Glushchenko, I M


    This paper lists several scientific and technological problems facing the producers of coke in the future. The demand for coke on the world market is steadily increasing despite the efforts of metallurgists to find non-coke methods of ore smelting. The major problems are held to be the gap between very successful results of research and the lack of their application to industry, unsatisfactory coke oven construction, problems in quenching and imperfections in the formed coke process. (In Russian)

  3. Using helical compressors for coke gas condensation

    Privalov, V E; Rezunenko, Yu I; Lelyanov, N V; Zarnitzkii, G Eh; Gordienko, A A; Derebenko, I F; Venzhega, A G; Leonov, N P; Gorokhov, N N


    Coke oven gas compression is discussed. Presently used multilevel piston compressors are criticized. The paper recommends using helical machines which combine advantages of using volume condensing compressors and compact high-efficiency centrifugal machines. Two kinds of helical compressors are evaluated: dry and oil-filled; their productivities and coke oven gas chemical composition are analyzed. Experiments using helical compressors were undertaken at the Yasinovskii plant. Flowsheet of the installation is shown. Performance results are given in a table. For all operating conditions content of insolubles in oil compounds is found to be lower than the acceptable value (0.08%). Compressor productivity measurements with variable manifold pressure are evaluated. Figures obtained show that efficient condensation of raw coke oven gas is possible. Increasing oil-filled compressor productivity is recommended by decreasing amount of oil injected and simultaneously increasing rotation speed. The dry helical compressor with water seal is found to be most promising for raw coke oven gas condensation. (10 refs.)

  4. Dale Coke: Coke Farm

    Farmer, Ellen


    Dale Coke grew up on an apricot orchard in California’s Santa Clara Valley. In 1976 he bought ten acres of farmland near Watsonville in Santa Cruz County but continued to work repairing fuel injection systems rather than farming at his new home. In 1981, a struggle with cancer inspired him to rethink his life and become an organic farmer. His neighbor, who had grown strawberries using pesticides and chemical fertilizers, asserted that strawberries could not be grown organically. Coke set out ...

  5. The mechanism of coking pressure generation II: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and contraction

    Merrick Mahoney; Seiji Nomura; Koichi Fukuda; Kenji Kato; Anthony Le Bas; David R. Jenkins; Sid McGuire [BHP Billiton Technology, Shortland, NSW (Australia)


    One of the most important aspects of the cokemaking process is to control and limit the coking pressure since excessive coking pressure can lead to operational problems and oven wall damage. Following on from a previous paper on plastic layer permeability we have studied the effect of contraction of semi-coke on coking pressure and the effect of organic additives on contraction. A link between contraction (or simulated contraction) outside the plastic layer and coking pressure was demonstrated. The interaction between this contraction, local bulk density around the plastic layer and the dependence of the permeability of the plastic layer on bulk density was discussed as possible mechanisms for the generation of coking pressure. The effect of blending either a high volatile matter coal or one of two semi-anthracites with low volatile matter, high coking pressure coals on the coking pressure of the binary blends has been explained using this mechanism. 25 refs., 10 figs., 4 tabs.

  6. Developing new technology of coal coking

    Erkin, L.I.; Nefedov, P.Ya.


    This paper characterizes types of coke (grain size, compression strength, abrasion, porosity) used by: blast furnaces, shaft furnaces, ferroalloys and phosphorus production, and ore agglomeration. Development of formed metallurgical coke production on the basis of technologies worked out by the Eastern Research Scientific Institute for Coal Chemistry is analyzed. The following phases in the investigations are stressed: optimization of coal blends (increasing proportion of coals with poor caking properties, pressing briquets, carbonization, temperature distribution and temperature control, using heat emitted by hot coke for coal preheating (heat consumption of coking is reduced to 200 kcal/kg). On the basis of technology developed and tested by VUKhIN formed coke consisting of 60% G6 coal and 40% 2SS coal has been produced. Using the coke in blast furnaces increases furnace capacity by 5% and reduces coke consumption in a furnace by 2.6%. It is suggested that wide use of the proposed technology of formed metallurgical coke production in the Kuzbass (using coals with poor caking properties from surface mines) would increase coke production of the region to 50 Mt for a year. technology of producing formed foundry coke from: 80 to 86% anthracites, semianthracites and coals with poor caking properties, 5 to 10% coking coal, and 8% binder is evaluated. Formed foundry coke produced from the blend reduces coke consumption in a foundry by 25 to 30% and increases cast iron temperature by 20 to 50/sup 0/C. Technologies of producing coke for phosphorus industry by continuous coking of coals difficult to coke in vertical coke ovens and production of coke for ore agglomeration are also discussed. (In Russian)

  7. 21 CFR 1030.10 - Microwave ovens.


    ..., restaurants, food vending, or service establishments, on interstate carriers, and in similar facilities. (2... means the movable barrier which prevents access to the cavity during operation and whose function is to... not attempt to operate this oven with the door open since open-door operation can result in harmful...

  8. Advanced coking process control at Rautaruukki Steel

    Ritamaki, O.; Luhtaniemi, H. [Rautaruukki Engineering (Finland)


    The paper presents the latest development of the Coking Process Management System (CPMS) at Raahe Steel. The latest third generation system is based on the previous system with the addition of fuzzy logic controllers. (The previous second generation system was based simultaneous feed forward and feedback control.) The system development has resulted in balanced coke oven battery heating, decreased variation in process regulation between shifts and increase of process information for operators. The economic results are very satisfactory. 7 figs.

  9. Materials for making coke

    Kern, L


    In the preparation of carbonized fuel briquettes, material such as bituminous, lignitic, or anthracitic coal, slack, waste or shale is treated with an electropositive solution such as hydrochloric acid or an acidic chloride to bring ash-forming constituents into colloidal form. The mixture is pressed with a colloid precipitating electro-negative solution such as sodium hydroxide, and moulded, the product being heated in the absence of air and coked. In an example bituminous coal is ground and then masticated with dilute hydrochloric acid. Some dilute manganese chloride is added followed by a solution of sodium hydroxide which precipitates the metals and silica as colloidal gels while the mixture is thoroughly agitated. The plastic mass is briquetted and dried at about 125/sup 0/C and then coked in vertical ovens at 700/sup 0/C. Chlorides recovered with the distillate gases may be utilized as solvent instead of hydrochloric acid. If the coal contains a large amount of sulfur acidified manganese chloride including a large proportion of iron is used as colloid forming material, the oxides of manganese and iron subsequently precipitated forming stable compounds with the non-volatile sulfur on coking or combustion.

  10. Coke retorts

    Jones, S; MacDonald, J D


    To charge vertical coke retorts while preventing escape of gases the coal is fed by a revolving drum to an archimedean screw at the base of the retort, the coke being discharged at the top through a water seal. The feed pockets of the drum which revolves between plates, deliver coal from the hopper to the revolving screw. The coke is forced under the hood to the water seal and is removed by rake conveyor, the gases escaping through the pipe to the main.

  11. Radiofrequency radiation leakage from microwave ovens

    Lahham, A.; Sharabati, A.


    This work presents data on the amount of radiation leakage from 117 microwave ovens in domestic and restaurant use in the West Bank, Palestine. The study of leakage is based on the measurements of radiation emissions from the oven in real-life conditions by using a frequency selective field strength measuring system. The power density from individual ovens was measured at a distance of 1 m and at the height of centre of door screen. The tested ovens were of different types, models with operating powers between 1000 and 1600 W and ages ranging from 1 month to >20 y, including 16 ovens with unknown ages. The amount of radiation leakage at a distance of 1 m was found to vary from 0.43 to 16.4 μW cm -1 with an average value equalling 3.64 μW cm -2 . Leakages from all tested microwave ovens except for seven ovens (∼6 % of the total) were below 10 μW cm -2 . The highest radiation leakage from any tested oven was ∼16.4 μW cm -2 , and found in two cases only. In no case did the leakage exceed the limit of 1 μWcm -1 recommended by the ICNIRP for 2.45-GHz radiofrequency. This study confirms a linear correlation between the amount of leakage and both oven age and operating power, with a stronger dependence of leakage on age. (authors)

  12. Assessment of thermal efficiency of heat recovery coke making

    Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.


    The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.

  13. Prediction of coking dynamics for wet coal charge

    Kardaś Dariusz


    Full Text Available A one-dimensional transient mathematical model describing thermal and flow phenomena during coal coking in an oven chamber was studied in the paper. It also accounts for heat conduction in the ceramic oven wall when assuming a constant temperature at the heating channel side. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. The histories of temperature, gas evolution and internal pressure were presented and analysed. The theoretical predictions of temperature change in the centre plane of the coke oven were compared with industrialscale measurements. Both, the experimental data and obtained numerical results show that moisture content determines the coking process dynamics, lagging the temperature increase above the water steam evaporation temperature and in consequence the total coking time. The phenomenon of internal pressure generation in the context of overlapping effects of simultaneously occurring coal transitions - devolatilisation and coal permeability decrease under plastic stage - was also discussed.

  14. Making coke

    Wodehouse-Temple, C G


    Semi-coke is produced by mixing low-value absorbent solid carbonaceous material such as coal dust, slack, gas-works coke, lignite, torbanite, raphilite, cannel, or shale with not more than 20% of a carbonaceous binding material such as petroleum distillation residue, tarry residues, pitch bitumen, Trinidad asphalt, Manjak or the substance known under the registered Trade Mark Gilsonite and subjecting the mixture without briquetting to a temperature not exceeding 550/sup 0/C. According to the first Provisional Specification, the mixture may if desired be briquetted before being heated and the second constituent may be present to the extent of 30%.

  15. Production of fine coke in a hearth-type furnace (Report on ECSC contract 7720-EB/108)


    A balance was established for the hearth-type coking oven and waste heat boiler system. Tests concerning the operational safety showed that, in the case of breakdowns, the oven and waste heat boiler could be shut down without any danger. The quality of the brown coal fine coke produced, could be improved by optimizing the heights of the layer in the hearth-type, the degasification temperature of the oven, and the operation of the coke cooling system. Higher coking temperature caused a lower grain disintegration and lower abrasion rates. The range of size of coke production was enlarged to lump size by additional feeding of 2-inch briquettes to the coking oven.

  16. Prediction of operating parameters range for ammonia removal unit in coke making by-products

    Tiwari, Hari Prakash; Kumar, Rajesh; Bhattacharjee, Arunabh; Lingam, Ravi Kumar; Roy, Abhijit; Tiwary, Shambhu


    Coke oven gas treatment plants are well equipped with distributed control systems (DCS) and therefore recording the vast amount of operational data efficiently. Analyzing the stored information manually from historians is practically impossible. In this study, data mining technique was examined for lowering the ammonia concentration in clean coke oven gas. Results confirm that concentration of ammonia in clean coke oven gas depends on the average PCDC temperature; gas scrubber temperatures stripped liquor flow, stripped liquor concentration and stripped liquor temperature. The optimum operating ranges of the above dependent parameters using data mining technique for lowering the concentration of ammonia is described in this paper.

  17. Emission and source characterization of monoaromatic hydrocarbons from coke production

    He, Q.S.; Wang, X.M.; Sheng, G.Y.; Fu, J.M. [Chinese Academy of Sciences, Guangzhou (China). State Key Laboratory of Organic Geochemistry


    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  18. [Emission and source characterization of monoaromatic hydrocarbons from coke production].

    He, Qiu-Sheng; Wang, Xin-Ming; Sheng, Guo-Ying; Fu, Jia-Mo


    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  19. Achievements and research programs of the Institute for Chemical Coal Processing in the field of conventional coking

    Cieslar, R.; Kaziszyn, I.; Zawistowksi, J.


    This paper describes research programs of the Institute for Chemical Coal Processing in Zabrze on black coal coking and coke use in metallurgy from 1955 to 1990. In 1955-1970 the programs concentrated on coal mixture composition (selective crushing), optimization of coking conditions, mechanical coke treatment. In 1971-1980 research concentrated on coal preparation prior to coking and new coking systems for the Katowice steel plant (heat treatments, design of large coke ovens). The following research programs were implemented in 1981-1985: partial coal charge briquetting, production of foundry coke, coal charge preheating, production of blast furnace coke from black coal from Dobiensko, reducing coke consumption of blast furnaces. In 1986-1990 the Institute will concentrate on the following research programs: coal preparation schemes and coking schemes for coking low-quality weakly caking coals, optimization of coke oven design (e.g. use of packed charge), reducing coke consumption in metallurgy and heating systems, reducing air pollution from coking.

  20. Priorities in the design of chemical shops at coke plants

    V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

  1. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  2. Bio-coke as an alternative to petroleum coke and metallurgical coke; Bio-cokes als alternatief voor petroleumcokes en metallurgische cokes

    Croezen, H.J.; Van Lieshout, M. [CE Delft, Delft (Netherlands); Sevenster, M.N. [Sevenster Environmental Consultancy, Australian Capital Territory ACT (Australia)


    In the framework of elaborating the Dutch Roadmap Chemistry 2030), CE Delft has conducted an exploratory study for the Association of the Dutch Chemical Industry (VNCI) on the options of replacing (petroleum) coke in the chemical sector by biocokes. Coke is used as a reducing agent and/or raw material in four companies in the Dutch chemical industry (Tronox, ESD-SIC, Thermphos, Aluchemie). Replacing coke at these four companies can potentially yield a direct CO2 reduction of expectedly several hundreds of kilotons per year. For a first exploration of the options of bio-coke, CE Delft first conducted a desk study to get information on the quality and production costs for bio-coke. Subsequently, CE Delft had contact with the four chemical companies and a made a number of company visits. Moreover, the technical, economic and organizational capabilities, constraints and requirements with regard to a possible (partial) switch to biocokes have been explored. Based on the information available so far it can be concluded that biocokes seems to be a technically and economically interesting innovation. For implementation to finally take place, it is necessary to gain better insight in the technical and economic potential [Dutch] In verband met de uitwerking van de Routekaart Chemie 2030 heeft CE Delft voor VNCI een verkenning uitgevoerd naar de mogelijkheden voor vervanging van (petroleum)cokes in de chemische sector door biocokes. Cokes wordt gebruikt als reductiemiddel en/of grondstof bij een viertal bedrijven in de Nederlandse chemie (Tronox, ESD-SIC, Thermphos, Aluchemie). Het vervangen van cokes bij deze vier bedrijven kan in potentie een directe CO2-reductie van naar verwachting enkele honderden kilotonnen/jaar opleveren. Voor een eerste verkenning van de mogelijkheden van bio-cokes heeft CE Delft eerst een bureaustudie uitgevoerd naar informatie over kwaliteit van en productiekosten voor bio-cokes. Vervolgens heeft CE Delft contact gehad met de vier chemische

  3. Consumption of fuels and energy in the coking industry and ways of reducing consumption

    Vasil' ev, Yu.S.; Tsel' ik, M.P.; Belkina, T.V. (Khar' kovskii Nauchno-Issledovatel' skii Uglekhimicheski Institut (USSR))


    Coking plants in the USSR consume 4,000 million kWh electric energy, 100 million GJ heat energy and 35,000 million m{sup 3} gaseous fuels per year. Structure of energy consumption is the following: 68% gaseous fuels, 24% steam and 8% electric energy. Processes of coal preparation, crushing, mixing, coking and quenching are analyzed from the point of view of energy consumption. The following methods for reducing energy consumption are discussed: using the FM-25 flotation machines for flotation of coking coal slurries, briquetting the whole coal charge for coking, optimization of air supply rates for combustion of gases used for coke oven heating, use of control systems for coke oven heating considering coal charge density, waste heat utilization from quenching. 4 refs.

  4. Fissure formation in coke. 3: Coke size distribution and statistical analysis

    D.R. Jenkins; D.E. Shaw; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences


    A model of coke stabilization, based on a fundamental model of fissuring during carbonisation is used to demonstrate the applicability of the fissuring model to actual coke size distributions. The results indicate that the degree of stabilization is important in determining the size distribution. A modified form of the Weibull distribution is shown to provide a better representation of the whole coke size distribution compared to the Rosin-Rammler distribution, which is generally only fitted to the lump coke. A statistical analysis of a large number of experiments in a pilot scale coke oven shows reasonably good prediction of the coke mean size, based on parameters related to blend rank, amount of low rank coal, fluidity and ash. However, the prediction of measures of the spread of the size distribution is more problematic. The fissuring model, the size distribution representation and the statistical analysis together provide a comprehensive capability for understanding and predicting the mean size and distribution of coke lumps produced during carbonisation. 12 refs., 16 figs., 4 tabs.

  5. China's coke industry: Recent policies, technology shift, and implication for energy and the environment

    Huo, Hong; Lei, Yu; Zhang, Qiang; Zhao, Lijian; He, Kebin


    China is the largest coke producer in the world, accounting for over 60% of the world coke production, which makes the coke industry in China a significant coal consumer and air pollutant emitter. Recently, China has taken a series of measures to improve energy efficiency and reduce emissions from the coke industry, including eliminating old and low energy-efficiency coking technologies, promoting advanced technologies, and strengthening energy and environmental requirements on coking processes. As a consequence, China's coke industry is experiencing an unprecedented technology shift, which was characterized by the elimination of old, inefficient, and polluting indigenous ovens and small machinery ones within 10 years. This study examines the policies and the prompt technology shift in China's coke industry, as well as the associated energy and environmental effects, and discusses the implications with respect to the development of the coke industry in China towards a more efficient and clean future. As China sets stricter requirements on energy efficiency and the ambient environment, a more significant change focusing on technologies of energy saving and emission reduction is urgently needed at present. Those mature technologies, including coke dry quenching, coke oven gas recycle, fine particle removal, etc., should be enforced in the near future. - Highlights: ► With 60% of world coke output, China's coke making has big energy/pollution issues. ► Actions were taken to improve energy and environmental performance of coke plants. ► China's coke industry is experiencing an unprecedented technology shift. ► Another shift, focusing on technologies of energy and emission saving, is needed. ► More measurement studies on coking emissions are needed given the importance.

  6. Coking processes

    Rollason, A


    In the production of light hydrocarbon oils from coals, cannels, or shales which are high in oxygen, from 3 to 5% of limestone or other suitable carbonate is added to the coking-charge. The carbonate added is proportionate to the oxygen contained in the coal etc. The charge is slowly heated up to a temperature of about 500/sup 0/C., water is driven off between 85 and 105/sup 0/C., and carbon dioxide is evolved at a low temperature and retards the evolution of combustible gases until a temperature between 130 and 175/sup 0/C., is reached. Upon formation of the endothermic hydrocarbons, the temperature of the charge becomes lowered, a large volume of light oils of the benzol series is produced, and an increased yield of ammonia is obtained, leaving the carbon in graphitic form.

  7. Fine art of coking

    Dresner, S.


    The art and science of coking are discussed. Coke is the solid carbon made from the heavy, viscous residue left after the more useful products such as gasoline and diesel fuel have been refined out of the crude oil. Fuel grade coke can be a substitute for steam coal in many applications. Low-sulfur fuel coke is used in blast furnaces for steelmaking. The operations of Conoco's refineries for producing coke is described.

  8. Numerical analysis of macro-crack formation behavior within the lump coke; Cokes sonai kiretsu shinten kiko no kaiseki

    Aoki, H; Sato, H; Miura, T [Tohoku University, Sendai (Japan). Faculty of Engineering


    The thermal stress analysis within lump coke was studied in order to investigate macro-crack formation and deformation behavior which strongly influence heat and mass transfer in a coke oven chamber. The dilatation of plastic layer, heating rate dependence of thermophysical and mechanical properties of coal/coke, creep in the plastic and semi-coke layers, macro-crack propagation and radiative heat transfer within the macro-crack were considered in an analytical model. The macro-crack propagation was determined from the estimated crack tip stress intensity factor, K{sub I}, at the macro-crack tip compared with the plane strain fracture toughness, K{sub IC}, through the unsteady-state calculation. Calculated results on crack formation and deformation behavior of lump coke were in good agreement with experimental observations in a laboratory-scale oven chamber. The analytical model could predict micro-crack formation within the lump coke normal to the heated wall and the coke surface close to the heated wall. 12 refs., 13 figs.

  9. The Release of Trace Elements in the Process of Coal Coking

    Jan Konieczyński


    Full Text Available In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury.

  10. Cocaine (Coke, Crack) Facts

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." © Marjot Stacey is ...

  11. Fissure formation in coke. 1: The mechanism of fissuring

    D.R. Jenkins; M.R. Mahoney; J.C. Keating [CSIRO Mathematical and Information Sciences, North Ryde, NSW (Australia)


    Pilot scale coke oven experiments, in which carbonisation has been arrested after 2 and 4 h, have been used to identify key aspects of the initial formation and propagation of fissuring in coke. The experiments show that the primary fissure network is formed within the first few hours of coking and the fissures propagate towards the centre of the oven as coking progresses. They also show that some of the initially formed fissures stop propagating, thus increasing the effective fissure spacing as coking continues. A model for the propagation of regular crack arrays has been used to identify the cause of the initial formation of the fissure network, evaluate the fissure spacing and explain the fissure coarsening effect. The coarsening is shown to be due to an instability, in the form of every second fissure stopping. The formation of lateral fissures is shown to be due to tensile stress formation near the tips of stopped fissures and also to increased shrinkage due to a maximum in the coke contraction coefficient at around 700{sup o}C. 45 refs., 11 figs., 1 tab.

  12. Possibilities of using pulverized non coking coals in ironmaking

    Wijk, Olle; Mathiesen, Mihkel; Eketorp, Sven


    The use of pulverized coal in iron making suggests solutions to the mounting problems created by the increasing scarcity of coking coals, and other fossil fuels such as oil and natural gas. The unavailability of coke can be met with two principally different measures. Blast furnace coke rates can be decreased by substituting injected pulverized coal or other carbon containing fuels for part of the coke burden, and the coke itself may be substituted by formed coke. A more radical solution is to abandon the blast furnace process, and instead produce the raw iron in processes not requiring coke. Two such processes are discussed in the paper, the Inred process, developed by Boliden Kemi AB, Sweden, and the smelting reduction process by means of injection, currently being developed at the Royal Institute of Technology in Stockholm. Both processes have potential advantages over the coke oven/sintering plant/blast furnace-complex especially concerning energy requirements and structure, but also in economical terms. The injection process seems to present a further advantage in the possibility of gasifying coal in the process, thus yielding a synthesis gas for methanol production in addition to the raw iron.

  13. Problems of new processes in coking industry discussed at the Scientific Council of the GKNT and the Section of Coking Industry of the Scientific and Technological Council of the Ministry of Iron and Steel Industry of the USSR

    Ermolova, V.P.


    A report is given from the conference on new processes in the Soviet coking industry held in Moscow on 28-29 October 1982. The following papers were delivered: implementing research programs on new coking processes, new trends in coking plant design and construction in the 11th 5 year plan and in the time period until 1990, increasing efficiency of coking industry, research program of the Scientific Council in 1983. The report concentrates on new trends in coking plant design. Considering that the raw material basis of the Eastern regions of the USSR is poor in high quality coking coal the new coking processes and technologies should use weakly coking coal. The following schemes are discussed: heat treatments (especially useful in the case of black coal from the Kuzbass characterized by intensive fluctuations of petrology), selective crushing (schemes developed by the VUKhIN Institute), partial briquetting of coal mixtures (experiments carried out by the UKhIN in the Donbass in 1982). Other problems of coking such as development of new systems of smokeless fuel feeding to coke ovens, dry coke quenching, increasing capacity of coke chambers to 41.6 m/sup 3/, environmental protection in coking industry and production of special coke types from poor quality coal for metallurgy are also described.

  14. 29 CFR 1910.1029 - Coke oven emissions.


    ... examinations specified in paragraphs (j)(3) (i)-(iii) of this section with the six (6) months preceding the... six months; under these conditions, you are to be given an x-ray exam at least once a year. The...) preceded by Gelman glass fiber type A-E filters encased in three-piece plastic (polystyrene) field monitor...

  15. Thermal expansion of coking coals

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))


    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  16. Alternative method for assessing coking coal plasticity

    Dzuy Nguyen; Susan Woodhouse; Merrick Mahoney [University of Adelaide (Australia). BHP Billiton Newcastle Technology Centre


    Traditional plasticity measurements for coal have a number of limitations associated with the reproducibility of the tests and their use in predicting coking behaviour. This report reviews alternative rheological methods for characterising the plastic behaviour of coking coals. It reviews the application of more fundamental rheological measurements to the coal system as well as reviewing applications of rheology to other physical systems. These systems may act as potential models for the application of fundamental rheological measurements to cokemaking. The systems considered were polymer melts, coal ash melts, lava, bread making and ice cream. These systems were chosen because they exhibit some physically equivalent processes to the processes occurring during cokemaking, eg, the generation of bubbles within a softened system that then resolidifies. A number of recommendations were made; the steady and oscillatory shear squeeze flow techniques be further investigated to determine if the measured rheology characteristics are related to transformations within the coke oven and the characteristics of resultant coke; modification of Gieseler plastometers for more fundamental rheology measurements not be attempted.

  17. Scientific Council on problems on new processes in the coking industry. [Effect on coke consumption of moisture, sulfur and ash; substitution possibility

    Filippov, B.S.


    This paper presents a report on the Coking Section of the Scientific Council held on November 20, 1980 in Moscow. The following problems were discussed: indexes characterizing blast furnace coke (for furnaces with a volume of 5580 M/sup 3/); replacing metallurgical coke with other types of fuels; use of brown coal; liners of coke ovens. Papers delivered during the session are summarized. Reducing moisture content in blast furnace coke permits its consumption to be reduced by 2%. Reducing sulfur content in blast furnace coke by 0.1% permits its consumption to be reduced from 10 to 15 kg for 1 t of pig iron. Increase in ash content of coke by 1% causes coke consumption increase ranging from 1.5 to 2.0%. About 10 Mmt of coke class with grains above 25 mm in USSR is used for purposes other than blast furnaces. Possibilities of substituting coke with lean coal are evaluated (particularly from Kuzbass). A method for briquetting a mixture of black and brown coal is proposed. Briquets are a suitable fuel in metallurgy. A new type of liner, which consists of at least 92% silicon dioxide, is described. Physical and mechanical properties of the liners are discussed.

  18. Japanese coke plant follows US lead


    Nippon Steel has acquired the first licence for a US Steel/Firma Carl Still process for cleaning coke oven flushing liquor. The process is installed at 3 US Steel preheated coal batteries and is now being used at Nippon Steel's Muroran works. The process is important to the re-use of the water for quenching and is a vital first step in making the liquor harmless to the environment. It is particularly useful in plants using preheated coal where there is likely to be carry over of fine coal particles.

  19. Hot testing of coke

    Balon, I D


    Earlier investigations failed to take full account of the factors affecting coke behavior within the blast furnace. An apparatus was accordingly developed for testing coke, based on a cyclone furnace where the sample could be held in a flow of hot oxidizing gases, simulating conditions in the blast furnace hearth. The results are said to be suitable for comprehensive assessment of the coke, including abrasive strength and its rate of gasification in a flow of carbon dioxide. Coke of size 6-10 mm tested at 1,100/sup 0/C in an atmosphere of oxidizing gases close to those obtaining in the blast furnace hearth, indicated that destruction and total gasification of the coke occurs after 5 minutes for a weak coke and 8 minutes for strong coke, depending on the physico-chemical and physico-mechanical properties of the particular coke. When samples were treated for a fixed period (3 minutes), the amount of coke remaining, and the percentage over 6 mm varied between 22 and 40 and between 4 and 7 percent respectively.

  20. Leakage of Microwave Ovens

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.


    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  1. Factors affecting coke size and fissuring during cokemaking part 2

    Merrick Mahoney; Jeff Keating; Susan Woodhouse [BHP Billiton Newcastle Technology Centre (Australia)


    This work addressed the mechanism of fissuring during metallurgical cokemaking and extends on a previous ACARP project. Considerable progress has been made in understanding the mechanism by an integrated modelling work; experimental program. The work points to opportunities for controlling the carbonisation process to achieve required outcomes in terms of coke lump size and distribution. Key outcomes of the work included: A methodology for determination of the minimum spacing between fissures, and the time at which period doublings (i.e. every second fissure stopping) occur, has been developed and implemented. Implementation of the methodology allows the determination of the complete fissure pattern (at least those perpendicular to the oven walls) for a given coke oven/charge configuration. A plausible mechanistic explanation of the formation of lateral fissures (those that are parallel to the oven walls) has been developed. Knowledge of the fissure pattern, combined with the lateral fissuring explanation, enables the determination of typical size and shape of lumps after stabilisation of the coke.

  2. Practical aspects of coking in Cundinamarca y Boyacá

    Segundo Manuel Romero-Balaguera


    Full Text Available Taking advantage of the excellent qualities of the studied coals from the coalfields in Cundinamarca and terms of the types of coking ovens, for excellent performance and quality that allows them to be very competitive.The international market is very demanding in terms of the quality of coke and CRI and CSR indexes, that is why coals laboratories were implemented and improved the system of sampling and analysis of laboratories for more agile and modern. Mixtures were made with the test methodology and empirical methods combining swelling index and rank cals were the theree main types: high, medium and low volatile. But with studies and techological change and enviromental control, process is managed, allowing the coke industry to serve as a development center for the promotion of industries in the central area of this country. In the study the whole process is presented beginning with the explotaitation of coking coals, the care that must be taken into account to mainttain good quality, transport and enviromental measures, the process of crushing and grinding to prepare the optimal mix and laboratory tests necessary to maintain quality control, the types of ovens in Boyacá Colombia, yields and advances in the se technologies, and finally, the system shutdown process. All of the above was addressed in order to add value to the product with the fulfillment of the international market standards.

  3. Mineral matter reactions in cokes

    D. French; R. Sakurovs; M. Grigore [CSIRO Energy Technology (Australia)


    Some cokes appear to be particularly susceptible to weakening in the blast furnace. A mechanism which has been postulated to explain this is silica reduction by coke. Thus this project was initiated to ascertain the behaviour of quartz and silicates in coke with an emphasis on the role of the clay minerals. It is now possible to obtain quantitative mineralogical data and, the case of coal, to also obtain quantitative data on mineral grain size, shape and association through the use of automated electron beam image analysis techniques. This new ability can allow relationships between the amount of minerals in a coke and its reactivity to be established for the first time. Samples of five Australian coking coals were selected based upon quartz and clay mineral contents, mineral grain size and association. Samples were also provided by BlueScope Steel of coal, feed coke, and tuyere coke samples from the bosh, deadman and raceway regions of the blast furnace. The analytical work program conducted was as follows: Preparation of cokes by CSIRO; Petrography of starting coals and cokes; QEMSCAN of coals; LTA and XRD of starting coals and cokes; Coke reactivity tests (NSC and small scale); Petrography, LTA and XRD of reacted cokes; Petrographic and XRD examination of heat treated cokes. This study indicates that the NSC reactivity test does not adequately reflect the behaviour of coke in the lower part of the blast furnace. Further investigation of the behaviour of coke in the lower part of the blast furnace is required.

  4. Producing metallurgic coke

    Abe, T.; Isida, K.; Vada, Y.


    A mixture of power producing coals with coal briquets of varying composition is proposed for coking in horizontal chamber furnaces. The briquets are produced from petroleum coke, coal fines or semicoke, which make up less than 27 percent of the mixture to be briquetted and coals with a standard coking output of volatile substances and coals with high maximal Gizeler fluidity. The ratio of these coals in the mixture is 0.6 to 2.1 or 18 to 32 percent, respectively. Noncaking or poorly caking coals are used as the power producing coals. The hardness of the obtained coke is DJ15-30 = 90.5 to 92.7 percent.

  5. Crack coke in layer heat transfer analysis; Kiretsu no shinten wo tomonau kokusu sonai dennetsu kaiseki

    Aoki, Hideyuki [Tohoku University, Miyagi (Japan)


    The research method heat transfer process by physical change of the coke by heat transfer from furnace wall in the retorting of coal seam filled in coke oven and flow of the gas is very complicated chamber oven style, and it does not become clear. For the purpose of the elucidation of in layer crack generation and progress mechanism, he is (1) The expansion of the softening cohesive layer. (2) Programming rate dependence of the heat. Mechanical property value on coal seam and semi- coke layer in the retorting. (3) The creep property of softening cohesive layer and semi- coke layer. (4) The setting of crack growth condition of stress intensity factor in crack tip and fracture property value of the coke by the comparison. (5) By considering the radiative heat transfer in the crack, coke in layer thermal stress analysis was carried out. The validity of these analytical result it was confirmed by the comparison with the experimental result of crack growth. Deformation behavior in the small dry distillation furnace, and crack growth mechanism in the coke layer became clear, and the prediction of the stress as micro-crack cause of generation of heating surface side coke surface and inside became possible. The numerical analysis method of the above crack growth mechanism greatly contributes to the prediction of dry distillation heating requirement and grain size of coke lump which is an index to the coke quality. Heat on material process which is accompanied by the solidification. Contraction from the softening and material migration phenomenon have been clarified by the creative research method, while this research is directly useful for energy saving of pig ironmaking process of becoming one of the ringleaders of the CO{sub 2} generation. (translated by NEDO)

  6. Pace studying worldwide coke production



    Pace Consultants Inc., Houston, has started a multiclient study of world-wide petroleum coke production, examining environmental initiatives and eventually forecasting prices of fuel grade coke. Pace expects coker expansions, increased operating severity, and reduced cycle times to boost coke supply to more than 50 million metric tons/year in 2000, compared with 39.7 million metric tons in 1992. Increased supply and tightened environmental rules in countries consuming large amounts of petroleum coke will be the main factors affecting coke markets. The paper discusses coke quality and the Japanese market

  7. Fine coke production from brown coal (Report on ECSC contract 6220-72/1/102)


    The possibility of producing a dry brown coal suitable for the production of fine coke and the development of a suitable carbonization process were studied. To prepare the coal it should be screened at 1 mm with the oversize going to fine coke production and the undersize going to briquette production. To increase fine coke production it is necessary to screen the raw smalls less than 2 mm and to pelletize, dry and carbonize them with the coarser constituents. The planning and construction of a hearth oven furnace plant was begun and this is now in operation. A fluidized bed can be used to preheat the coal to improve the oven performance. (In German)

  8. Substitutes for metallurgical coke in pyrometallurgical processes

    Koshkarov, V.Ya.


    A briquetting process using sulphurous petroleum coke and a bituminous binder is described. The characteristics of briquettes made of petroleum coke, blends of coal and petroleum coke, and coal and metallurgical coke are compared. The prospect of replacing 25 to 50% of the metallurgical coke used in lime kilns with non-calcined petroleum coke briquettes is described. (4 refs.)

  9. Coke quality requirements in POSCO

    Song, J.; Yi, J.; Wang, H. [POSCO (Republic of Korea). Cokemaking Dept.


    The 26 overheads describes coke quality requirements in POSCO, Republic of Korea. It is concluded that it is necessary to develop new coal and to prompt technical development in order to produce high quality coke. To improve coke quality. Posco had applied DMAIC (define, measurement, analysis, improvement, control) technique which is part of Six-Sigma activity.

  10. Cooperation with COMECON members in coke chemistry

    Medricky. Z


    Discusses activities of the coking industry division of the standing committee for iron metallurgy of the COMECON. The following cooperation fields are analyzed: raw material basis for coking industry, coal charge preparation and methods for reducing proportion of coking coal in a coal charge (heat treatments, formed coke processes, partial briquetting, pelletizing, increasing coking temperature, packing etc.), coking technology, coke quenching, screening, chemical processing of coal gas, environmental protection in the coking industry, environmental effects of coking, pitch coke production, methods for increasing labor productivity. Research programs coordinated by member countries are reviewed. Programs in which Czechoslovakia participates are discussed.

  11. Record coking coal settlements

    Macdonald, C.


    The US$100/tonne psychological barrier in coking coal prices has been well and truly smashed. The article examines developments in coal pricing. It includes quotes from many senior executives in the coal industry as collected at McCloskey's Australian Coal.04 conference held in Sydney, 18-19 November 2004. 2 photos.

  12. High coking value pitch

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.


    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  13. ENERGY STAR Certified Commercial Ovens

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.2 ENERGY STAR Program Requirements for Commercial Ovens that are effective as of...

  14. Bread's oven and baking bread

    Kastelic, Katja


    This thesis researches the connection between baker's oven and baking bread. Furthermore, it presents the history and development of the above issue in the Slovenian territory, its significance and preservation over time. The thesis deals with the building of bread’s over, its function and usability. Moreover, it focuses on baking bread in bread’s oven, presenting the entire baking process from ingredients to the baked loaf of bread and various tools and techniques, which can be used during t...

  15. Dust emission from wet, low-emission coke quenching process

    Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina


    Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.

  16. Non-Ionizing Radiation Used in Microwave Ovens

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  17. Design and construction of coke battery 1A at Radlin coke plant, Poland

    A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos' kova; N.I. Shkol' naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

  18. World coking coal markets

    McCloskey, G.


    This article discussed conditions in world coking coal markets. There is increased demand from Asia for metallurgical coal imports. World iron production was up 22 percent in first 7 months of 2010. Supply is up in Australia, the United States, Canada, New Zealand, Russia, and Mongolia, but the unexpected surge in supply caused prices to drop following a robust start to the year. Coking coal exports are up for the United States and Australia, but a delay in expanded production is expected until 2014. There is increased demand from Brazil, India, Taiwan, South Korea, and Japan as well as new plants in Thailand, Indonesia, and Brazil. Unexpectedly, Australia is backing out of the Chinese market but increasing exports to Japan and South Korea. India is seeing flat performance in iron production and imports, and the United States has surged back into Asia. A considerable increase is expected in the seaborne import requirement by 2020. Prices are expected to fall and then rise. This presentation also discussed whether coking coal index pricing is impossible or inevitable. 3 tabs., 5 figs.

  19. Production of rubbly culm coke from lignite

    Koenigs, H B [Rheinische Braunkohlenwerke A.G., Koeln (Germany, F.R.). Hauptabteilung Kohleverarbeitung; Kurtz, R [Rheinische Braunkohlenwerke A.G., Frechen (Germany, F.R.). Abt. Verkokung und Chemie


    The article deals with the coke supply of the iron and steel industry, the design, function, and special features of the open-hearth, and describes the coking properties and applications of the culm coke produced from lignite.

  20. Production of fine coke from brown coal

    Koenigs, H B


    The coke supply of the iron and steel industry, the design, function, and special features of the open-hearth are described, including coking properties and applications of the culm coke produced from brown coal. (In German)

  1. Windows and doors


    A complete manual is presented on windows and doors for the housing contractor. In order to understand the role of windows and doors in a house's energy performance, an introduction explains the house as a system of components that can have effects on each other. Further chapters explain in detail the parts of a window, window types and RSI values; window servicing and repair; window replacement; parts of a door, door types and RSI values; door service and repair, including weatherstripping; door replacement; and how to ensure quality, service, and customer satisfaction. A glossary of terms is included. 61 figs., 3 tabs.

  2. Microwave Oven Repair. Teacher Edition.

    Smreker, Eugene

    This competency-based curriculum guide for teachers addresses the skills a technician will need to service microwave ovens and to provide customer relations to help retain the customer's confidence in the product and trust in the service company that performs the repair. The guide begins with a task analysis, listing 20 cognitive tasks and 5…

  3. Coking of residue hydroprocessing catalysts

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)


    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  4. Development of small-size baking oven

    Tabata, Akihisa; Kuwabara, Shigeru; Yamazawa, Yoshitaka; Shigeta, Eiji


    In the bakery business, oven fresh bakeries selling fresh bread by installing their own baking ovens at their shops have become popular recently. This article reports the development of a small-size gas baking oven for oven fresh bakaries. The gas convection oven developed recently is based on the structure of the conventional electric convection oven, and uses low pressure gas. The gas oven has an advantage that the combustion gas contains moisture. The convection oven bakes bread normally at the baking density approximately 2.5 times as much as that of the radiation oven, thereby the size of the oven may become smaller. This oven can bake many kinds of bread ranging from croissants to bean-jam buns by gas combnstion heat as well as radiation heat from the radiation plates installed at the top of each compartment in the oven. An ultra small air heat type burner was developed to provide stable short flames in order to make the size of the combustion chamber smaller. (20 figs, 2 tabs)

  5. Petroleum coke as energy source: an update

    Pinelli, G.


    A previous review presented a critical evaluation of the use of petroleum coke as energy source. After some years, with reference to increased petroleum coke production, that paper is revised. In particular, the attention is now focused on world petroleum coke market trends and, in regard to petroleum coke used as fuel, on new Italian environment laws. [it

  6. New processes in iron metallurgy discussed by the Coking Section of the Scientific Council of the Main Committee of Science and Technology of the USSR

    Bukvareva, O.F.


    Discusses problems evaluated in October 1990 by the Section during the meeting devoted to research programs in the twelfth five-year plan, research and development of continuous coking methods, prospects for new coke quenching processes. Selected research programs, coordinated research programs and development programs as well as recommendations for future research programs are evaluated. The following research programs aimed at use of weakly caking and noncaking coals in the coking plants are evaluated: coal preheating and charging preheated mixtures to coke ovens, partial coal charge briquetting and equipment for coal briquetting, development of commercial systems for packing coal charges in coke ovens, production of formed coke for metallurgy, processes for coal gas cleaning (especially ammonia separation), development of systems for utilization of waste heat from dry coke quenching for coal charge preheating. Participation of individual research institutes in the programs is discussed. The most significant projects of individual institutes are discussed. Recommendations for research programs for the period 1991 to 1995 are made.


    D. N. Mihnovets


    Full Text Available Researches give grounds to believe in the possibility of receiving briquettes from coke waste mixed with peat dry coal and their use for smelting iron in the cupola or as a household fuel.

  8. Health Effects of Petroleum Coke

    Significant quantities of fugitive dust from pet coke storage and handling operations present a health risk. EPA’s research suggests that petcoke does not pose a different health risk than similar-sized particulate matter (PM10).

  9. Understanding the mechanisms behind coking pressure: Relationship to pore structure

    John J. Duffy; M. Castro Diaz; Colin E. Snape; Karen M. Steel; Merrick R. Mahoney [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering


    Three low volatile coals A, B and C with oven wall pressures of 100 kPa, 60 kPa and 20 kPa respectively were investigated using high-temperature rheometry, {sup 1}H NMR, thermogravimetric analysis and SEM, with the primary aim to better understand the mechanisms behind the coking pressure phenomenon. Rheometer plate displacement measurements ({Delta}L) have shown differences in the expansion and contraction behaviour of the three coals, which seem to correlate with changes in rheological properties; while SEM images have shown that the expansion process coincides with development of pore structure. It is considered that the point of maximum plate height ({Delta}L{sub max}) prior to contraction may be indicative of a cell opening or pore network forming process, based on analogies with other foam systems. Such a process may be considered important for coking pressure since it provides a potential mechanism for volatile escape, relieving internal gas pressure and inducing charge contraction. For coal C, which has the highest fluidity {delta}L{sub max} occurs quite early in the softening process and consequently a large degree of contraction is observed; while for the lower fluidity coal B, the process is delayed since pore development and consequently wall thinning progress at a slower rate. When {Delta}L{sub max} is attained, a lower degree of contraction is observed because the event occurs closer to resolidification where the increasing viscosity/elasticity can stabilise the expanded pore structure. For coal A which is relatively high fluidity, but also high coking pressure, a greater degree of swelling is observed prior to cell rupture, which may be due to greater fluid elasticity during the expansion process. This excessive expansion is considered to be a potential reason for its high coking pressure. 58 refs., 15 figs., 1 tab.

  10. Estimation of Radiofrequency Power Leakage from Microwave Ovens for Dosimetric Assessment at Nonionizing Radiation Exposure Levels

    Peio Lopez-Iturri


    Full Text Available The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. This method can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied.

  11. Solar oven for intertropical zones: Optogeometrical design

    Jaramillo, O.A.; Huelsz, G.; Hernandez-Luna, G.; del Rio, J.A. [Centro de Investigacion en Energia. Universidad Nacional Autonoma de Mexico. Priv. Xochicalco S/N. Col. Centro. Temixco, Morelos 62580 (Mexico); Acosta, R. [Universidad de Quintana Roo, Boulevard Bahia s/n Esq. I. Comonfort, Chetumal Quintana Roo 77019 (Mexico); Arriaga, L.G. [Instituto de Investigaciones Electricas, Av. Reforma 113, Col. Palmira, Cuernavaca, Morelos 62490 (Mexico)


    In this paper, a novel design of a solar oven for the intertropical zones is presented. The oven box has seven faces instead of the six faces of most common designs reported in the literature, two of them are alternatively used as bases. This oven has four fixed mirrors to concentrate solar energy.The main advantage of this novel design is that the oven needs only four simple movements in order to obtain an adequate solar concentration throughout the year. This feature has been possible due to the optogeometrical design that is presented. A simple theoretical model of the oven concentration is developed. According to the model, the concentration achieved by the oven at noon is greater than 1.95 for all days of the year. In order to analyze the optical performance of the solar cooker, an experimental evaluation was conducted by using a scale model of the solar cooker and a heliodon. (author)

  12. Solar oven for intertropical zones: Optogeometrical design

    Jaramillo, O.A.; Huelsz, G.; Hernandez-Luna, G.; Rio, J.A. del; Acosta, R.; Arriaga, L.G.


    In this paper, a novel design of a solar oven for the intertropical zones is presented. The oven box has seven faces instead of the six faces of most common designs reported in the literature, two of them are alternatively used as bases. This oven has four fixed mirrors to concentrate solar energy.The main advantage of this novel design is that the oven needs only four simple movements in order to obtain an adequate solar concentration throughout the year. This feature has been possible due to the optogeometrical design that is presented. A simple theoretical model of the oven concentration is developed. According to the model, the concentration achieved by the oven at noon is greater than 1.95 for all days of the year. In order to analyze the optical performance of the solar cooker, an experimental evaluation was conducted by using a scale model of the solar cooker and a heliodon

  13. Behavior of coke in large blast furnaces

    Nakamura, N


    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  14. Coke gasification costs, economics, and commercial applications

    Jahnke, F.C.; Falsetti, J.S.; Wilson, R.F.


    The disposition of petroleum coke remains a problem for modern high conversion refineries. Market uncertainty and the price for coke can prevent the implementation of otherwise attractive projects. The commercially proven Texaco Gasification Process remains an excellent option for clean, cost effective coke disposition as demonstrated by the new coke gasification units coming on-line and under design. Previous papers, have discussed the coke market and general economics of coke gasification. This paper updates the current market situation and economics, and provide more details on cost and performance based on recent studies for commercial plants

  15. "Zolotoi Oven" ishtshet svojego obladatelja / Valeri Kuznetsov

    Kuznetsov, Valeri


    Parima filmi auhinnale "Zolotoi Oven" võistlevad Andrei Zvjagintsevi "Tagasitulek" ("Vozvrashtshenije"), Vadim Abdrashitovi "Magnettormid" ("Magnitnõje buri"), Gennadi Sidorovi "Vanaeided" ("Staruhhi") ja Pjotr Buslovi "Bumer"

  16. Science Opens Doors

    Smyth, Steve; Smyth, Jen


    Science Opens Doors is the creation of Clive Thompson of the Horners' Livery Company. The Science Opens Doors project philosophy is strongly based upon the King's College London ASPIRES project, which established that children like doing science in junior school (ages 7-11), but that by the age of 12-14 they are firmly against becoming scientists.…

  17. Relationship between coal and coke microstructure and the high temperature properties of coke. [Temperature dependence

    Tsuyuguchi, K; Yamaji, M; Sugimoto, Y


    This paper considers the relationship of the properties of coke and parent coal with the high temperature properties, including reactivity, of coke. Aspects considered include coke texture and grade, and the optical reflectivity of coal and coke. (8 refs.) (In Japanese)

  18. 46 CFR 148.04-15 - Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture).


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, uncalcined; petroleum coke, uncalcined and calcined (mixture). 148.04-15 Section 148.04-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Certain Material § 148.04-15 Petroleum coke, uncalcined; petroleum coke, uncalcined and...

  19. Trends in the automation of coke production

    R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

  20. Major growth in coke production takes place

    Swain, E.J.


    U.S. petroleum coke production has increased 64% during the 10-year period from 1980 to 1990. This dramatic rise makes it timely to discuss the history and future of U.S. coking capacity, production, and processing. The article covers the properties and uses of the various grades of petroleum coke, as well as pricing and market trends

  1. Power, cement industries shape coke future

    Swain, E.J.


    The production of petroleum coke by U.S. refineries is expected to continue to increase in the coming years. Process and market trends also indicate the likelihood of further increases in fuel-grade coke production. In this article, the properties and uses of the various grades of petroleum coke, as well as pricing and market trends, will be discussed

  2. Obtainment of metallurgic coke from hydrolytic lignin of eucalyptus; Obtencao de coque metalurgico a partir de lignina hidrolitica de eucalipto

    Nascimento, E.A. do [Escola Federal de Uberlandia, MG (Brazil). Dept. de Quimica; Schuchardt, U. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica


    Eucalyptus lignin, obtained from COALBRA S.A., was briquetted under different humidities and pressures. The briquettes were heated to 900 Celsius at 1 C/min in a cylindric bench-scale oven. The cokification was accompanied by carbon-13 nuclear magnetic resonance measurements. The coke obtained was submitted to approximate and elementary analysis and its abrasion and compression strengths were determined. The distribution and total pore volume were investigated by high-pressure mercury porosimetry and the surface texture analyzed by scanning electron microscopy. The best coke was obtained in 48% yield from the briquettes with 10% humidity and 100 MPa pressure. This showed a high structural resistance, a smooth surface with continuous metallic brilliance and well defined pore volume and distribution. The coke obtained is a high-quality metallurgic reductant whose properties surpass by far the specifications required. (author). 12 refs., 1 fig., 2 tabs

  3. Coke from partially briquetted preheated coal mixtures

    Belitskii, A.N.; Sklyar, M.G.; Toryanik, Eh.I.; Bronshtein, A.P.


    Analyzes effects of partial coal charge briquetting on coking and on quality of coke for metallurgy. Effects of mixing hot coal briquets on temperature and moisture of coal were investigated on an experimental scale in a coking plant. Coal with a moisture content of 12% was used. Coking mixture consisted of 30% briquets and 70% crushed coal. Fifteen minutes after briquet mixing with coal, the mean coal charge temperature increased to 100-105 C and moisture content was lower than 2-5%. Results of laboratory investigations were verified by tests on a commercial scale. Experiments showed briquetting of weakly caking or non-caking coal charge components to be an efficient way of preventing coke quality decline. Adding 15-20% briquets consisting of weakly caking coal did not influence coke quality. Mixing hot coal briquets reduced moisture content in crushed coal, increased its temperature and reduced coking time.

  4. Combination microwave ovens: an innovative design strategy.

    Tinga, Wayne R; Eke, Ken


    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  5. Baking oven improvement by performance modelling


    The first phase of the project included both the derivation of an oven model and the development of a portable, rapid-response heat-flux sensor. Heat flux (defined as the instantaneous rate of heat flow per unit at the surface of the baking biscuit and expressed in W/cm[sup 2]) has been shown to be a more useful measure of oven performance than temperature alone. Fixed-point heat-flux sensors have already been developed and marketed, but a need was expressed at the start of this project for a travelling sensor which could be used to construct a more detailed picture of heat-flux variation in an oven. The travelling monitor developed can be used to measure variations in the heat flux experienced at the surface of products being baked in a travelling oven, both when oven conditions are fixed and when they are varied. It can also be used to identify the optimum locations within an oven for fixed heat-flux probes. It has been used effectively throughout the project for both purposes. Fuel savings of 18% and 21%, respectively, were achieved with two ovens. (author)

  6. Sterilization of instruments in solar ovens

    Fjendbo Joergensen, A. [Odense Univ. Hospital, Dept. of Infectious Diseases, Odense (Denmark); Noehr, K. [Odense Technical College, Dept. of Metal, Odense (Denmark); Boisen, F. [The Danish Veterinary and Food Administration Funen, Dept. of Microbiology, Odense (Denmark)


    The sterilization of instruments in rural health clinics in less developed countries is an increasing problem because chemical methods can no longer be recommended and wood fuel is becoming more and more scarce. Thus, it seemed obvious to try to utilize solar energy for sterilization purposes. A solar oven was designed and manufactured using local materials and simple tools. The solar oven was tested by physical, chemical, and microbiological methods. A mathematical model for the sterilization effect was developed and programmed into a microprocessor that was connected to a thermocouple. The microprocessor switches on a green light when the sterilization is completed. After successful testing, the oven was built into the west-facing wall of a rural health clinic and used daily for sterilization. The oven was able to generate temperatures above 180 deg. C. On all days with direct sunlight the oven fulfilled the international recommendations for hot air sterilization because no growth could be detected from any of the test bacteria spores. The chemical indicators Brownes tubes types 3 and 5 also changed colours. The solar oven was easy to use for the clinic staff, but during the seasons with low sun position (in Tanzania, December and June) it was difficult to achieve a high enough temperature for sterilization. Therefore, if the method is to be used throughout the year the oven must be moved to collect the sun's rays from several directions, or the clinic must have more than one solar oven facing in different directions. We conclude that the solar oven is a realistic method for sterilization of instruments. (au)

  7. Scientific principles underlying the production of metallurgy-grade formed coke from weakly baking coals. Nauchnye osnovy proizvodstva formovannogo metallurgicheskogo koksa iz slabospekayushchikhsya uglei

    Speranskaya, G.V.; Tyutyunnikov, Yu.B.; Erkin, L.I.; Nefedov, P.Ya.; Sheptovitskii, M.S.; Toryanik, E.I.


    Coking coal resources of the USSR are nonuniformly distributed among major coal basins (Donetsk 26%, Pechora 7%, Kizelovsk and L'vov-Volyn' 0.5% each, Kuznetsk 48.2%, Karaganda 7%, South Yakutiya 4.4%, others 7.4%). Only one-third of the resources are available in the European area of the USSR where the demand for blast-furnace coke is greater. The use of weakly baking and nonbaking coals for the production of metallurgy-grade formed coke has been found to be the simplest way to avoid transportation of fat components of coking blends and to cut the cost of pig iron production under Soviet circumstances. Commercial production of the formed coke should enable the blast-furnace coke production to be raised by 15 Mio t/a now and by 20-22 Mio t/a in the nearest future without the structure of the Soviet coal production being significantly affected. The book describes technical properties of the gas, weakly baking and long-flame coals (G, SS and D types, respectively) from Donetsk, Kuznetsk, Irkutsk and Karaganda coal basins used as coking blend components, discusses many scientific and technological aspects of the industrial-scale process (i.e. thermal pretreatment of coal with a gaseous heat-carrier, effect of pressure on the plastic layer formation in weakly baking coal blends, coke oven construction), and reviews technical properties of formed coke (shape and size of coke lumps, drum strength, macro- and microstructure, thermal stability, reactivity) used in the blast-furnace process. 122 refs., 118 figs., 87 tabs.

  8. The world coke market. Problems and outlook



    Outlooks to the world coke market are considered with regard to supply and demand as well as the current state of capacities for its production in some countries of Asia, Western and Eastern Europe, USA. In experts opinion increase of coke import from China, increase in service life of currently operating coke furnaces, as well as more extensive use of PCI coal mixture are among the most feasible opportunities for its Western consumers [ru

  9. Briquetting of Coke-Brown Coal Mixture

    Ïurove Juraj


    Full Text Available The paper presents the results of the research of briquetting a coke-brown coal composite The operation consists of the feeding crushed coal and coke to moulds and pressing into briquettes which have been made in the Laboratories at the Mining Faculty of Technical University of Košice (Slovakia. In this research, all demands will be analyzed including the different aspects of the mechanical quality of briquettes, the proportion of fine pulverulent coal and coke in bricks, the requirements for briquetting the coke-brown coal materials.

  10. Research and development in production of special coke types

    Nefedov, P.Ya.; Unterberger, O.G.; Strakhov, V.M. (Vostochnyi Nauchno-Issledovatel' skii Uglekhimicheskii Institut (USSR))


    Discusses methods for increasing quality of foundry coke and quality of special coke types used in non-ferrous metallurgy. Types of coal from various coal basins for production of foundry coke, types of petroleum and coal-derived additives improving caking and coking properties of the standard coal mixtures and effects of partial coal charge briquetting are discussed. Three types of partial coal charge briquetting are comparatively evaluated: continuous coking of the briquetted mixtures of weakly caking lean coal types, anthracites and coking coal mixed with thermosoftening binders; continuous coking of identical mixtures briquetted with non-thermosoftening binders; coking coke dust mixed with thermoreactive binders and briquetted at 200-300 C. Coking conditions, the final coking temperature, binder consumption rates, dimensions of coal briquets, ash content, sulfur content and coke mechanical properties (compression strength and wear) are comparatively evaluated.

  11. Production of blast furnace coke from soft brown coal

    Scholz, G.; Wundes, H.; Schkommodau, F.; Zinke, H.-G. (VEB Gaskombinat Schwarze Pumpe (German Democratic Republic))


    Reviews experimental production and utilization of high quality brown coal coke in the GDR during 1985 and 1986. The technology of briquetting and coking brown coal dust is described; the superior parameters of produced coke quality are listed in comparison to those of regular industrial coke made from brown and black coal. Dust emission from high quality brown coal coke was suppressed by coke surface treatment with dispersion foam. About 4,200 t of this coke were employed in black coal coke substitution tests in a blast furnace. Substitution rate was 11%, blast furnace operation was positive, a substitution factor of 0.7 t black coal coke per 1 t of brown coal coke was calculated. Technology development of high quality brown coal coke production is regarded as complete; blast furnace coke utilization, however, requires further study. 8 refs.

  12. Coal and coke applied to metallurgy. Vol. 2. Carvao e coque aplicados a metalurgia

    Masuda, H.


    Papers include: coking; control of pollution from coking plants; handling and storage of coal; preparation of coal for coking; politics of the supply of coal; coke for blast furnaces; selective preparation and briquetting of coal for coking; cooling and drying of coke; preheating of coal for coking; formed coke.

  13. Diplopie door monovisie

    Jorien Schouten; Louise Helmer


    Doelstelling: In kaart brengen van de risicofactoren voor het ontwikkelen van binoculaire diplopie na conventionele monovisie door middel van contactlenzen of refractiechirurgie bij presbyopen. Methode: Voor deze literatuurstudie is in maart 2017 gezocht in databanken Pubmed, ScienceDirect en Google

  14. New designs in the reconstruction of coke-sorting systems

    A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

  15. Process and apparatus to dry and to preheat coal or coal mixtures and the subsequent coking by the use of non- or weakly baking bituminous coals and/or carbon sources. Verfahren und Vorrichtung zur Trocknung bzw. Vorerhitzung von Kohle oder Kohlemischungen und anschliessender Verkokung unter Verwendung nicht oder nur schwachbackender Steinkohlen und/oder Kohlenstofftraegern

    Echterhoff, J.; Frick, H.; Schaper, A.; Mohmeyer, H.


    A process and an apparatus for the drying and the subsequent coking of non- or weakly baking bituminous coals is described. The coal is compressed by stamping. For preventing the oxidation of the coal grain the coal is kept in contact with an inert medium on the entire path to the coke oven. Water vapor from the coal drying is used as the inert medium.

  16. Door Locking Options in Schools

    National Clearinghouse for Educational Facilities, 2009


    Doors serve a variety of needs and purposes in schools: (1) Exterior doors provide building security and protection from the elements; and (2) Interior doors control the movement of people among school spaces, help control noise and air flow, and act as flame and smoke barriers during a fire. In a lockdown, they serve as safety barriers. From a…

  17. Production of conductive coke for cathodic protection

    Mogollon, E.G.; Henao, L.E.; Pacheco, L.A.; Ortiz, J.L.; Diaz, J.J. [Universidad Nacional de Colombia, Bogota (Colombia). Departamento de Quimica


    The reduction of resistivity of coke by means of the cocarbonization of mixtures of coking coals was studied using coal tar as an additive. Optimum temperature and blending conditions for decreased resistivity were investigated. The effect of particle size on the dependency of coal rank was investigated. 2 refs., 4 figs., 2 tabs.

  18. Scientific Committee of the Institute for the Study of Combustible Minerals discusses 'New processes in the coking by-product industry'

    Lisitskaya, R.K.


    This paper summarizes reports presented at the Moscow Institute for the Study of Combustible Minerals on Nov. 18, 1981. Introduction of high power unit aggregates in metallurgy is one characteristic of the new trend. Dinas refractory materials were used for brickwork because of their assumed higher thermal conductivity; comparative evaluations, however, proved that oven wall thermal conductivity for Dinas and other brick is approximately the same. Further Dinas research is planned. Considering coke battery operating conditions the expediency of increasing average coke oven size to 450-460 mm in width is discussed. This is expectd to increase efficiency and overall productivity. Partial and complete briquetting with and without binder was discussed including its positive effects and drawbacks when used on an industrial scale in the USSR. Lack of domestic, highly efficient presses and scarcity of binders, mixers and loaders present particular hindrances. Preference is given to partial briquetting without binder due to shortages or lack of domestic equipment.

  19. Microwave-assisted grinding of metallurgical coke

    Ruisanchez, E.; Juarez-Perez, E. J.; Arenillas, A.; Bermudez, J. M.; Menendez, J. A.


    Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grind ability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving. (Author)

  20. Alternative coke production from unconventional feedstocks

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)


    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  1. Effect of oven cooking method on formation of heterocyclic amines and quality characteristics of chicken patties: steam-assisted hybrid oven versus convection ovens.

    Isleroglu, Hilal; Kemerli, Tansel; Özdestan, Özgül; Uren, Ali; Kaymak-Ertekin, Figen


    The aim of this study was to evaluate effect of steam-assisted hybrid oven cooking method in comparison with convection ovens (natural and forced) on quality characteristics (color, hardness, cooking loss, soluble protein content, fat retention, and formation of heterocyclic aromatic amines) of chicken patties. The cooking experiments of chicken patties (n = 648) were conducted at oven temperatures of 180, 210, and 240°C until 3 different end point temperatures (75, 90, and 100°C) were reached. Steam-assisted hybrid oven cooking enabled faster cooking than convection ovens and resulted in chicken patties having lower a* and higher L* value, lower hardness, lower fat, and soluble protein content (P cooking loss than convection ovens. Steam-assisted hybrid oven could reduce the formation of heterocyclic aromatic amines that have mutagenic and carcinogenic effects on humans. © 2014 Poultry Science Association Inc.

  2. Solar thermochemical production of syngas from petroleum coke: feasibility study for injection of coke slurries

    Vidal, A.; Romero, M.; Kritter F; Steinfeld A


    The steam-gasification of pet-coke using concentrated solar radiation is proposed as a viable alternative to solar hydrogen production. Pet-coke is major solid byproduct from the processing of heavy and extra-heavy oils using delay-coking technology. This report summarizes the major accomplishments to develop a cheap and efficient feeding of petroleum coke by coke water slurries without the need of a carrier gas. The samples were Delayed coke of different grain sizes, in particular from 1,8 to 200 mm (as received). In order to analyse the flow properties of the slurries, some tests were conducted to measure the viscosity of the samples. Then, the pet-coke water slurries were injected into the reactor to study the gasification process. In these experiments, some operational parameters were: molar ratio from 2 to 3 (water/coke), temperature up to 1000 C, residence times from 5 to 9 s. In those conditions, the coke is converted primarily to CO, H 2 , CO 2 and small amounts of methane. Concentration of outlet gases of about 30-50 of H 2 ; 15-20 of CO, 10-15 CO 2 , 1-2% CH 4 were obtained with X coke ∼ 65 to 85%. (authors)

  3. Coking

    Simpson, D; Simpson, A


    Oil is obtained from bituminous shales and the like by downward distillation at such restricted temperature that the volatile products only are obtained without liberation of the so-called fixed carbon, the distilled vapors being treated in a de-sulfurizing reaction chamber subsequent to being condensed into oil.

  4. Determination of electrical resistivity of dry coke beds

    Eidem, P.A.; Tangstad, M.; Bakken, J.A. [NTNU, Trondheim (Norway)


    The electrical resistivity of the coke bed is of great importance when producing FeMn, SiMn, and FeCr in a submerged arc furnace. In these processes, a coke bed is situated below and around the electrode tip and consists of metallurgical coke, slag, gas, and metal droplets. Since the basic mechanisms determining the electrical resistivity of a coke bed is not yet fully understood, this investigation is focused on the resistivity of dry coke beds consisting of different carbonaceous materials, i.e., coke beds containing no slag or metal. A method that reliably compares the electrical bulk resistivity of different metallurgical cokes at 1500{sup o} C to 1600{sup o}C is developed. The apparatus is dimensioned for industrial sized materials, and the electrical resistivity of anthracite, charcoal, petroleum coke, and metallurgical coke has been measured. The resistivity at high temperatures of the Magnitogorsk coke, which has the highest resistivity of the metallurgical cokes investigated, is twice the resistivity of the Corus coke, which has the lowest electrical resistivity. Zdzieszowice and SSAB coke sort in between with decreasing resistivities in the respective order. The electrical resistivity of anthracite, charcoal, and petroleum coke is generally higher than the resistivity of the metallurgical cokes, ranging from about two to about eight times the resistivity of the Corus coke at 1450{sup o}C. The general trend is that the bulk resistivity of carbon materials decreases with increasing temperature and increasing particle size.

  5. Genesis of natural cokes: Some Indian examples

    Singh, Ashok K.; Sharma, Mamta [Central Institute of Mining and Fuel Research, Dhanbad, PIN-828108 (India); Singh, Mahendra P. [Banaras Hindu University, Varanasi, PIN-221005 (India)


    In Indian coalfields huge amounts of natural coke have been produced due to magmatic intrusions. Jharia Coalfield in eastern part of India alone contains approximately 2000 Mt of baked coking coal as a consequence of these intrusions in the form of discordant and concordant bodies. This paper is an effort to investigate the effect of carbonization in two intrusion affected coal seams of Ena (seam XIII) and Alkusa (seam XIV) collieries of Jharia Coalfield. Natural coke is derived from coking coal under in-situ conditions due to intense magmatic induced heat and overburden pressure. Natural coke is characterized by the presence of low volatile matter and high ash contents and organic constituents showing isotropy and anisotropy. Through physical, petrographic and chemical properties of natural coke or 'jhama' as determined by various methods it has been established that the reactives in the unaltered coals (vitrinite, liptinite, pseudovitrinite, reactive semifusinite, etc.) are < 25.0 vol.%, moisture < 2.5%, volatile matter < 15.0% and hydrogen < 4.0%. The temperatures attained in the coal seams have been deciphered using some standard models, which indicate that a temperature {proportional_to} 1000 C was attained. This produced huge amount of anisotropic and deposited carbons. An attempt has been made to understand the factors that influence the genesis of natural coke and heat altered maceral products in coals in Indian coalfields. (author)

  6. The influence of microporosity on resistance and carboxyreactivity of cokes

    Medek, J.; Weishauptova, Z. [Academy of Sciences, Prague (Czech Republic). Inst. of Rock Structure and Mechanics


    Large sample collection of metallurgical cokes from Ostrava-Karvina coking plants, were used for correlation of the resistivity of the coke matter (carbon solid phase plus micropores) and carboxyreactivity of cokes with the value of microporosity. It results, from this correlation, that the characteristic values of the two mentioned quantities appartain to the solid phase of all metallurgical cokes studied, while the individual values of these quantities are caused by the different microporosity of the coke matter. The microporosity as a structure characteristic is a consequence of the discontinuity of the coke solid phase and can be quantitatively expressed as the degree of solid phase dispersion. (orig.)

  7. Experimental and numerical investigations of coke descending behavior in a coke dry quenching cooling shaft

    Feng Yanhui; Zhang Xinxin; Yu Quan; Shi Zhongyin; Liu Zhicheng; Zhang Hu; Liu Huafei


    A viscous flow model based on the Navier-Stokes equation is developed to describe coke descending behavior in the 1/7-scaled-down experimental setup of an actual 75 t/h cooling shaft. It is found that the internal friction due to cokes viscosity significantly influences the descending behavior of cokes in the lower part of the shaft, while the external wall friction dominates the sluggish flow of the cokes in the shaft. An asymptotic friction coefficient expression is proposed for granular mixtures flowing along the shaft wall modified from normal wall tress, and the concept of bulk solid viscosity is introduced to describe the internal friction between coke particles. The results simulated by the present model are compared with those by the potential flow and the kinematic model without friction. The viscous flow model is quite good to simulate the bulk coke flow as the physically important frictions are engaged

  8. The coke drum thermal kinetic effects

    Aldescu, Maria M.; Romero, Sim; Larson, Mel [KBC Advanced Technologies plc, Surrey (United Kingdom)


    The coke drum thermal kinetic dynamics fundamentally affect the coker unit yields as well as the coke product properties and unit reliability. In the drum the thermal cracking and polymerization or condensation reactions take place in a semi-batch environment. Understanding the fundamentals of the foaming kinetics that occur in the coke drums is key to avoiding a foam-over that could result in a unit shutdown for several months. Although the most dynamic changes with time occur during drum filling, other dynamics of the coker process will be discussed as well. KBC has contributed towards uncovering and modelling the complexities of heavy oil thermal dynamics. (author)

  9. A hydraulic device for unloading coke

    Kretinin, M.V.; Abizgildin, U.M.; Kirillov, T.S.; Makarov, M.I.; Prokopov, O.I.; Solov' ev, A.M.


    A hydraulic device for unloading petroleum coke from slow carbonization chambers is characterized by an arrangement whereby in order to increase the output of large size coke by controlling the increment of the cutting line of the coke, the mechanism used to move the rod in the hydraulic cutter is built in the form of a rod rotation rotor; a gear wheel is mounted on the immobile section of this rotor, and on the mobile section a multi-stage regulator is installed. The drive gear of the regulator is engaged with the gear wheel, while the driven gear is connected to the rack, which is fastened to the rod.

  10. Influence of thermoplastic properties on coking pressure generation: Part 1 - A study of single coals of various rank

    John J. Duffy; Merrick R. Mahoney; Karen M. Steel [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre


    In this study a number of high coking pressure coals with different fluidities were evaluated alongside a number of low pressure coals also with differing fluidities. This was to establish rheological parameters within which a coal may be considered potentially dangerous with regards to coking pressure. The results have confirmed and elaborated on previous findings which show that parallel plate displacement ({Delta}L) and axial force profiles can be used to distinguish between high and low pressure coals, with peak values indicating cell rupture and subsequent pore network formation. This is thought to correspond with plastic layer compaction in the coke oven. For low pressure coals pore coalescence occurs quite early in the softening process when viscosity/elasticity are decreasing and consequently a large degree of contraction/collapse is observed. For higher pressure coals the process is delayed since pore development and consequently wall thinning progress at a slower rate. If or when a pore network is established, a lower degree of contraction/collapse is observed because the event occurs closer to resolidification, where viscosity and elasticity are increasing. For the higher fluidity, high coking pressure coals, a greater degree of swelling is observed prior to cell rupture, and this is considered to be the primary reason for the high coking pressure observed with these coals. An additional consequence of these events is that high pressure coals are likely to contain a higher proportion of closed cells both at and during resolidification, reducing permeability in both the semi-coke and high temperature plastic layers, respectively. Using a rheological mapping approach to follow viscoelastic changes during carbonisation it has been possible to identify specific regions associated with dangerous coals. 76 refs., 11 figs., 3 tabs.

  11. Proceedings of the Joint Meeting of The Fuel Society of Japan (1991). 28th Coal Science Conference/91st Coke Meeting; (Sha) nenryo kyokai godo taikai happyo ronbunshu (1991). Dai 28 kai sekitan kagaku kaigi dai 91 kai cokes tokubetsukai


    Relating to coke, studies are made on the rapid coke production method, oven investigation during carbonization, and operational management/control. As to coal science, studies are mainly on the brown coal two-stage liquefaction (BCL) method, and data on the pilot plant and PSU are reported. Concerning bituminous coal liquefaction, PSU data mostly including the NEDOL process, and characteristics of liquefaction residue and its effective utilization by thermal decomposition are reported. Regarding the liquefaction mechanism, an experimentally extensive study on catalyst, solvent and reaction conditions is made using model materials and coal itself on the bench scale and also in the pilot plant. Engineering subjects on residue, solvent deashing, scale attachment and coprocessing are also reported. Relations of decomposition process to coal chemical structure changes and reaction conditions are investigated. As to coal gasification, studies, which are not many, are conducted on material balance, heat balance, and image characteristics of char for gasification and factors controlling reactivity.

  12. Upgrading inflatable door seals

    Sykes, T.M.; Metcalfe, R.; Welch, L.A.; Josefowich, J.M.


    Inflatable door seals are used for airlocks in CANDU stations. They have been a significant source of unreliability and maintenance cost. A program is underway to improve their performance and reliability, backed by environmental qualification testing. Only commercial products and suppliers existed in 1993. For historical reasons, these 'existing products' did not use the most durable material then available. In hindsight, neither had they been adapted nor optimized to combat conditions often experienced in the plants-sagging doors, damaged sealing surfaces, and many thousands of openings and closings per year. Initial attempts to involve the two existing suppliers in efforts to upgrade these seals were unsuccessful. Another suitable supplier had therefore to be found, and a 'new,' COG-owned seal developed; this was completed in 1997. This paper summarizes its testing, along with that of the two existing products. Resistance to aging has been improved significantly. Testing has shown that an accident can be safely withstood after 10 years of service or 40,000 openings-closings, whichever comes first. AECL's Fluid Sealing Technology Unit (FSTU) has invested in the special moulds, test fixtures and other necessary tooling and documentation required to begin commercial manufacture of this new quality product. Accordingly, as with FSTU's other nuclear products such as pump seals, the long-term supply of door seals to CANDU plants is now protected from many external uncertainties-e.g., commercial products being discontinued, materials being changed, companies going out of business. Manufacturing to AECL's detailed specifications is being subcontracted to the new supplier. FSTU is performing the quality surveillance, inspection, testing, and customer service activities concomitant with direct responsibility for supply to the plants. (author)

  13. Fundamentals of Delayed Coking Joint Industry Project

    Michael Volk; Keith Wisecarver


    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world

  14. New and revised standards for coke production

    G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

  15. Gasification of oil sand coke: review

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)


    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  16. Polish scenery of coking industry activity

    Zielinski, H.


    The cooking industry in Poland and the world depends on conditions of iron and steel industry. Nowadays it is observed depression of this industry. On the other hand it is occurred a strong public pressure to reduce pollution by coking works. It is known that modernizing enterprises need a great deal of funds, but they are necessary, in order to keep coking industry on market. (author). 2 tabs

  17. Method of determining coking temperature of coke. [Experimental method of determining final coking temperature using a small sample and calibration graph

    Mel' nichuk, A.Yu.; Bondarenko, A.K.; Fialkov, B.S.; Khegay, L.U.; Khvan, L.A.; Muzyzhuk, V.D.; Zakharov, A.G.; Zelenskiy, V.P.


    The coking temperature of coke should be determined from the magnitude of the ionization current of the medium during heating (3/sup 0//min) of a coke sample (2 g, fraction < 0.2 mm) in an oxidation medium with air supply (1 1/min). The coking temperature is determined from the maximum magnitude of current using a graduated graph constructed during analysis of coke samples obtained with different final coking temperatures. The discrepancy between the established coking temperature and that defined from the proposed method is 8-19/sup 0/, and that defined from electrical resistance of coke is 26-43/sup 0/. In addition to high accuracy, this method reduces the time outlays for making the analysis.

  18. Special analyses reveal coke-deposit structure

    Albright, L.F.


    A scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX) have been used to obtain information that clarifies the three mechanisms of coke formation in ethylene furnaces, and to analyze the metal condition at the exit of furnace. The results can be used to examine furnace operations and develop improved ethylene plant practices. In this first of four articles on the analyses of coke and metal samples, the coking mechanisms and coke deposits in a section of tube from an actual ethylene furnace (Furnace A) from a plant on the Texas Gulf Coast are discussed. The second articles in the series will analyze the condition of the tube metal in the same furnace. To show how coke deposition and metal condition dependent on the operating parameters of an ethylene furnace, the third article in the series will show the coke deposition in a Texas Gulf Coast furnace tube (Furnace B) that operated at shorter residence time. The fourth article discusses the metal condition in that furnace. Some recommendations, based on the analyses and findings, are offered in the fourth article that could help extend the life of ethylene furnace tubes, and also improve overall ethylene plant operations

  19. Door Hardware and Installations; Carpentry: 901894.

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in the selection, preparation, and installation of hardware for door assemblies. The course is divided into five blocks of instruction (introduction to doors and hardware, door hardware, exterior doors and jambs, interior doors and jambs, and a quinmester post-test) totaling…

  20. Hydrotreating catalyst deactivation by coke from SRC-II oil

    Yamamoto, Y.; Kumata, F.; Massoth, F.E.


    Samples of a CoMo/Al/sub 2/O/sub 3/ catalyst were partially deactivated with SRC-II feed in an autoclave reactor to give coked samples of 5 to 18% C. The coked catalysts were analyzed for surface area, pore volume, coronene adsorption and diffusivity, and their catalytic activity determined for hydrodesulfurization (HDS), hydrodeoxygenation (HDO) and C-N hydrogenolysis (CNH) using model compounds. All of the above measurements decreased with increase in coke content. Property data indicate that some pores are blocked by coke and diffusivity results show narrowing of pore mouths with increasing coke content. Catalyst deactivation versus coke level was identical for HDS and HDO, but less for CNH. A simple model of coke deactivation was developed to relate activity to coke content. Coke is envisioned as forming wedge-like deposits in the catalyst pores. 11 refs., 5 figs., 3 tabs.

  1. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  2. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR for a blast furnace

    Shiau J-S.


    Full Text Available Raising pulverized coal injection (PCI will decrease coke rate, but increase the residence time of coke and abrasion in the blast furnace (BF. Thus, insufficient coke strength will generate more coke fines in the lower BF and result in lower permeability and production of hot metal (HM. For understanding the behavior of coke at various HM productivities, a tuyere coke sampler was used to collect the coke samples for measuring the coke strength. Firstly, the difference of sampled coke under the conditions of various HM productivities was explored. Secondly, the BF operating conditions and causes of generating more coke fines was correlated by testing the coke reaction rate after reaction. Finally, according to the above analysis results, the relative regression equations had been obtained for sampling coke properties, BF operation conditions and BF permeability. Furthermore, the coke strength after reaction (CSR quantitative target and its online system at various blast conditions were set to provide some reference for coke and HM production.

  3. Coking coal consumption of POSCO

    Yoo, B.C.


    Pohang Iron and Steel Company Limited (POSCO) was established in 1968. Molten iron was first produced in July 1973 after a 3 year construction period. The long awaited start up of Korea's first integrated steel works provided the momentum for the fast growth of our steel industry. In 1973, the first year of operation, POSCO purchased 770,000 tons of coal from the United States and Australia. The import tonnage was more than doubled in 1976 when we completed the second stage of Pohang Works and has continued to increase reaching 13.1 million tons last year. POSCO's coal consumption will increase one more time next year as the fourth stage of Kwangyang works starts to operate a new blast furnace with an annual molten iron production capacity of 2.8 million tons. Even though the new blast furnace will have the same capacity as the other 3 in Kwangyang, the additional coking coal requirement will be much smaller than the tonnages we needed for the other stages of the works. This paper reports that this is due to the increased use of pulverized coal

  4. 77 FR 15123 - Foundry Coke From China; Scheduling of an Expedited Five-Year Review


    ... submitted by ABC Coke, Erie Coke, Tonawanda Coke Corporation, and Walter Coke Co. to be individually... Analyst... Cynthia Foreso (205-3348). Attorney Charles St. Charles (205-2782). Supervisory Investigator...

  5. Ecological situation at the coke plant of the Nizhnii Tagil Integrated Iron and Steel Works (according to data from an expert commission of Gosstroi USSR)

    Filippov, B.S.


    A main source of pollution is the Nizhnii Tagil Integrated Iron and Steel Works (NTMK), whose share in the total emissions of harmful substances is very significant. Thus, in 1987 the mean annual dust content in the atmosphere of the city surpassed the maximum admissible concentrations 1.3 times, phenol 2 times, ammonia 2.5 times, benzopyrene 6 times. In 1988 an even higher content of harmful substances was noted. Reconstruction of the coke plant now underway has been called upon to ensure a significant improvement in the ecological conditions together with an overall increase in its technical level. Restoration of the existing capacity of the coke batteries at domestic coke plants is being accomplished according to two variants: first - relining of the batteries with retention of the existing dimensions or with a slight very limited increase, with modernization of the designs of the ovens and chemical departments, and also machines and equipment (technical refitting); second - withdrawal from operation of the existing batteries and construction of new higher capacity coke batteries in the plant area (reconstruction). From the standpoint of ecology and economy of capital investment it would be more expedient to restore capacity at NTMK according to the first variant. However, restoration here is being carried out according to the second variant with construction of coke batteries 9 and 10 in a new area with dry coke quenching. There are plans to decommission batteries 1-4. An analysis is given of the sources of pollution from the coke plant and measures are defined to reduce pollutants

  6. Retrofit curtain for overhead doors

    Leckie, R E


    A heat insulating curtain has been developed for reducing heat losses through overhead doors of the type commonly found in industrial warehouses. The curtain consists of a reinforced polyester fabric attached to the outside top of the overhead door and moves with the door as it opens and closes. A T-shaped edge track seals the edges of the curtain to the door frame; the edge of the curtain is also T-shaped and runs up and down the track as the curtain is raised and lowered. The curtain fabric is ultraviolet resistant, durable, flexible, and transparent, and transforms the door into a solar collector which provides solar heated air to the building interior. Two curtains have been satisfactorily installed and tested at a warehouse in Calgary, Alberta. A market evaluation study was conducted to determine the possible buyers for such a door curtain. A target market consisting of those wishing to fix old, leaky doors was selected and a marketing strategy developed. The described strategy includes product development, pricing, distribution, promotion, and advertising. 2 figs., 1 tab.

  7. Coke fouling monitoring by electrical resistivity

    Bombardelli, Clovis; Mari, Livia Assis; Kalinowski, Hypolito Jose [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)


    An experimental method to simulate the growth of the coke fouling that occurs in the oil processing is proposed relating the thickness of the encrusted coke to its electrical resistivity. The authors suggest the use of the fouling electrical resistivity as a transducer element for determining its thickness. The sensor is basically two electrodes in an electrically isolated device where the inlay can happen in order to compose a purely resistive transducer. Such devices can be easily constructed in a simple and robust form with features capable to face the high temperatures and pressures found in relevant industrial processes. For validation, however, it is needed a relationship between the electrical resistivity and the fouling thickness, information not yet found in the literature. The present work experimentally simulates the growth of a layer of coke on an electrically insulating surface, equipped with electrodes at two extremities to measure the electrical resistivity during thermal cracking essays. The method is realized with a series of consecutive runs. The results correlate the mass of coke deposited and its electrical resistivity, and it can be used to validate the coke depositions monitoring employing the resistivity as a control parameter. (author)

  8. Laureatõ premii "Zolotoi Oven"


    Parima filmi auhinna "Zolotoi Oven" võitis Andrei Zvjagintsevi "Tagasitulek" ("Vozvrashtshenije"), Vadim Abdrashitovi "Magnettormid" ("Magnitnõje buri") sai parima režissööri ja parima stsenaristi auhinna (Aleksandr Mindadze), Pjotr Buslovi "Bumer" sai vaid muusikaauhinna (Sergei Shnurov). Parim meesnäitleja oli Viktor Suhhorukov ("Vaene, vaene Paul") ja naisnäitleja Maria Zvonarjeva A. Proshkini "Trios". A. Sokurovi "Isa ja poeg" sai vaid kunstnikuauhinna (Natalja Kotshergina). Inna Tshurikova sai kõrvalosa auhinna ("S: Govoruhhini "Blagoslovite zhenshtshinu")

  9. Evaluation of coke microstructure and its effects on graphite fabrication

    Fotourehchian, S.; Ahmadi, S.


    A variety of applications for cokes (metallurgy, petroleum, etc.) have been defined in parallel to the new industrial technology growth. Coke is rich in carbon and has the main role in manufacturing carbonaceous materials such as graphite, steel, silicon carbide, titanium carbide, etc. Among the most important applications of different variety of cokes is their usage for different graphite fabrications. The crystalline structure of graphite (hexagonal with sp 2 hybrid) is based upon the microstructure of coke and it causes anisotropy in properties of produced graphite. Thus, the study of macrostructure and anisotropy degree of cokes is of importance. There are several theoretical and experimental methods to determine the Coke's microstructure and anisotropy. Numerous tests have been conducted on different variety of cokes based on the used method. Here, it is attempted to introduce an applied method to determine the microstructure and anisotropy degree of cokes based upon the kind of application

  10. China opens the door

    Starke, K.


    The door to China`s vast market for power generation was opened a bit further for foreign firms in November. That is when power ministry head Shi Dazhen said the country would rely on overseas investors for 20 percent of the funding needed to boost output--double the amount foreigners were previously allowed to contribute. Through 1995, foreigners invested $12.2 billion in China`s electricity industry, accounting for 10 percent of total investment. According to Shi, foreign investors will be asked to provide about $17 billion of the $84 billion China plans to invest in the sector over the next five years. Under China`s Ninth Five-Year Plan (1996-2000), the government aims to boost the country`s power generation capacity at the rate of 15,000 MW to 20,000 MW annually by the year 2000. Since China`s public external debt balance already exceeds $80 billion, however, the government would seem to have little choice but to allow foreigners a greater role. Shi also said that foreigners would be allowed 100 percent ownership of PRC power projects. This is discouraged under China`s current industry guidelines. It is, however, expected to be permitted under China`s first build-operate-transfer (BOT) law, which was anticipated by the end of 1996, says Susan Urkevich, director of project finance at HSBC Investment Bank Asia in Hong Kong. Indeed, China`s first BOT is already happening.

  11. Closed-cycle process of coke-cooling water in delayed coking unit

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.


    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  12. Calcinating petroleum coke in a furnace with a rotating hearth

    Akhmetov, M M; Ezhov, B M; Galeeva, Z G; Goriunov, V S; Karpinskaia, N N; Zaitseva, S A


    A scheme is described for an industrial device with a bottom furnace for calcinating coke from slow coking. The consumption and operational indicators of the process during the calcination of standard and needle cokes are given, together with data on the quality of dry and calcinated cokes under different conditions. The basic drawbacks in the operation of the device are described, and measures are proposed for increasing its operational effectiveness.

  13. Mean-term forecast of coke production in the world

    Ukhmylova, G.S.


    The causes of decrease in consumption of metallurgical coke in the world in the ninetieth and at the present time are analyzed. Reduction of reliable coke supply sources to the world market is noted. The data on the coke import and export in the world in 1990-1994 are presented and corresponding forecasts for 2000 and 2005 are given

  14. Fundamentals of Delayed Coking Joint Industry Project

    Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.


    The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

  15. Sweet Spots and Door Stops

    Thompson, Michael; Tsui, Stella; Leung, Chi Fan


    A sweet spot is referred to in sport as the perfect place to strike a ball with a racquet or bat. It is the point of contact between bat and ball where maximum results can be produced with minimal effort from the hand of the player. Similar physics can be applied to the less inspiring examples of door stops; the perfect position of a door stop is…

  16. Basic characteristics of new shape formed coke in burden distribution; Shingata seikei cokes no sonyu bunpu tokusei

    Ichida, M; Yamamoto, T; Komaki, I; Oda, H; Matsunaga, S; Matsuzaki, S; Deno, T; Konno, N [Nippon Steel Corp., Tokyo (Japan)


    Basic characteristics in burden distribution and charging pattern of new shape formed coke developed in order to improve the properties of small size and low void fraction that pillow-type formed coke h s were conducted by 1/3 scale charging model and mathematical model of blast furnace. Basic characteristics, those are, inclination angle, coke-collapse and trajectory of new shape formed coke are almost the same as those of conventional coke. In the case of wall charging of new shape formed coke, until 60% of total charged coke, new shape formed coke is able to be charged without it`s rolling to the center. It is possible to apply RABIT model to new shape formed coke charging without it`s major modification. In the case of new shape formed coke wall charging, the fluctuation in furnace is supposed to be smaller than that in the case of pillow-type formed coke wall charging. Moreover, it`s center charging is supposed to be applied to actual blast furnace. More accurate estimation of in-furnace phenomena by mathematical model considering coke reactivity, is a subject to be worked out in future. 11 refs., 9 figs., 5 tabs.

  17. Fundamentals of Delayed Coking Joint Industry Project

    Michael Volk Jr; Keith Wisecarver


    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world

  18. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  19. Petroleum Coke in the Urban Environment: A Review of Potential Health Effects

    Joseph A. Caruso


    Full Text Available Petroleum coke, or petcoke, is a granular coal-like industrial by-product that is separated during the refinement of heavy crude oil. Recently, the processing of material from Canadian oil sands in U.S. refineries has led to the appearance of large petcoke piles adjacent to urban communities in Detroit and Chicago. The purpose of this literature review is to assess what is known about the effects of petcoke exposure on human health. Toxicological studies in animals indicate that dermal or inhalation petcoke exposure does not lead to a significant risk for cancer development or reproductive and developmental effects. However, pulmonary inflammation was observed in long-term inhalation exposure studies. Epidemiological studies in coke oven workers have shown increased risk for cancer and chronic obstructive pulmonary diseases, but these studies are confounded by multiple industrial exposures, most notably to polycyclic aromatic hydrocarbons that are generated during petcoke production. The main threat to urban populations in the vicinity of petcoke piles is most likely fugitive dust emissions in the form of fine particulate matter. More research is required to determine whether petcoke fine particulate matter causes or exacerbates disease, either alone or in conjunction with other environmental contaminants.

  20. 77 FR 32998 - Foundry Coke From China


    ... China Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... China would be likely to lead to continuation or recurrence of material injury to an industry in the... Publication 4326 (May 2012), entitled Foundry Coke from China: Investigation No. 731-TA-891 (Second Review...

  1. Water protection in coke-plant design

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  2. The impact of liquid-liquid-vapour phase behaviour on coke formation from model coke precusors

    Minicucci, D.; Shaw, J.M. [Univ. of Toronto, Dept. of Chemical Engineering and Applied Chemistry, Toronto, ON (Canada)


    Catalysts used in the hydroprocessing of heavy feedstocks deactivate due to coke deposition. Although the mechanism for coke formation is not fully understood, condensation reactions of polynuclear aromatic compounds present in the feeds are a key aspect. The effect of coke deposition on catalyst performance is typically modelled using accelerated aging agents comprising model coke precursors. Mixtures employed in such studies polynuclear aromatic compounds such as anthracene as the coke precursor, and long chain alkanes such as hexadecane as a diluent. We show in this paper that binary and pseudo binary mixtures of polynuclear aromatic compounds and n-alkanes present TYPE II, TYPE IV, or TYPE III phase behaviour according to the van Konynenburg and Scott (1980) phase projection nomenclature, Incubation periods and the apparent autocatalytic effects associated with coke deposition in such systems are explained through a combination of high temperature phase equilibrium experiments and computations with the model systems n-alkane + anthracene + hydrogen, n-alkane + pyrene + hydrogen, and n-alkane + dibenzo[a,k]chrysene + hydrogen. (au)

  3. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui


    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  4. Estimation of the thermal stress in the coke layer. Kanryu katei ni okeru kokusu sonai netsuoryoku no suisan

    Miura, Takatsoshi; Yoshino, Hiroyuki; Saito, Shozaburo; Otani, Shigemori [Tohoku Univ., Sendai (Japan). Faculty of Engineering


    Fissures which are formed in coke ovens are an important factor which exerts influences not only on the quality of coke but also on consumed energy such as thermal transfer. An estimation method of thermal stress distribution in the coke layer which is important to determine these fissures was, therefore, proposed, and the propriety of the method was demonstrated in comparison with the experiment results by X-ray computerized tomography. In the analysis model, heat fluxes from the upper part of the carbonization room and from the heating wall were regarded the same, and the temperature field was obtained by formulating the non-steady heat conduction equation to the finite element method by Galerkin scheme. The stress field was presumed to be an elastic flat field, and it was formulated to the finite element method by the incremental theory. Following investigation results were obtained and thus the propriety of this method was demonstrated. The formation position of principal tensile stress calculated and the formation position of fissures observed by X-ray computerized tomography had a corresponding relation. According to the calculation, with the increase of heating rate, principal tensile stress was increased; and that accounted for experiment results. Estimated results of thermal stress in the layer varied depending on the coal's value of property of the matter. 8 refs., 15 figs., 2 tabs.

  5. Accelerated staining technique using kitchen microwave oven

    Archana Mukunda


    Full Text Available Introduction: Histopathological diagnosis of specimens is greatly dependent on good sample preparation and staining. Both of these processes is governed by diffusion of fluids and dyes in and out of the tissue, which is the key to staining. Diffusion of fluids can be accelerated by the application of heat that reduces the time of staining from hours to the minute. We modified an inexpensive model of kitchen microwave oven for staining. This study is an attempt to compare the reliability of this modified technique against the tested technique of routine staining so as to establish the kitchen microwave oven as a valuable diagnostic tool. Materials and Methods: Sixty different tissue blocks were used to prepare 20 pairs of slides for 4 different stains namely hematoxylin and eosin, Van Gieson′s, 0.1% toluidine blue and periodic acid-Schiff. From each tissue block, two bits of tissues were mounted on two different slides. One slide was stained routinely, and the other stained inside a microwave. A pathologist evaluated the stained slides and the results so obtained were analyzed statistically. Results: Microwave staining considerably cut down the staining time from hours to seconds. Microwave staining showed no loss of cellular and nuclear details, uniform-staining characteristics and was of excellent quality. Interpretation and Conclusion: The cellular details, nuclear details and staining characteristics of microwave stained tissues were better than or equal to the routine stained tissue. The overall quality of microwave-stained sections was found to be better than the routine stained tissue in majority of cases.

  6. Upgrading oil sands bitumen with FLUID COKING and FLEXICOKING technologies

    Kamienski, P.; Phillips, G. [ExxonMobil Research and Engineering Co., Fairfax, VA (United States); McKnight, C.; Rumball, B. [Syncrude Canada Ltd., Calgary, AB (Canada)


    This presentation described EMRE's Fluid Coking and Flexicoking technologies that are well suited for upgrading Alberta's heavy crudes and oil sands bitumen into pipelineable crudes or synthetic crudes, which can be further processed into transportation fuels. The Fluid Coking technology uses a fluidized bed reactor that thermally converts the heavy oils into light gases, liquids and coke. The metals and much of the sulphur are concentrated in the coke. Combustion of the coke provides process heat and the remaining coke is sold or stored on site for later recovery. Syncrude Canada currently operates 3 Fluid Coking units in northern Alberta. Flexicoking extends fluid coking by integrating air gasification to produce a carbon monoxide/hydrogen rich fuel gas that helps meet fuel and energy requirements of bitumen recovery and upgrading. The yields of light gas and liquids are similar to those of the Fluid Coking process. The partial combustion of coke provides the process heat for the thermal conversion and gasification steps. The remaining coke is gasified and desulphurized using Flexsorb technology. At present, there are 5 Flexicoking units in operation around the world. Interest in the technology is growing, particularly in locations with large demand for clean fuel or electricity. It is also suitable for steam assisted gravity drainage (SAGD) operations in Alberta. This presentation outlined the operating principles of the Flexicoking integrated gasification system and compared it with more expensive oxygen gasification processes. tabs., figs.

  7. Gasification reactivities of cokes derived from Athabasca bitumen

    Furimsky, E.


    Gasification reactivities of cokes obtained from Athabasca bitumen by delayed coking and fluid coking were compared in fixed and fluidized bed systems. In both systems the C + O/sub 2/ reaction accounted for the most of converted carbon. The C + H/sub 2/O reaction proceeded to a smaller extent. The bulk reactivity of the fluid coke was higher than that of delayed coke, when comparing -20 to +60 mesh particles in fluidized bed and -14 to +20 mesh particles in fixed bed, respectively. However, the reactivity of the delayed coke expressed per unit of surface area was markedly higher than that of the fluid coke. 9 figs., 7 tabs., 6 refs. (A.V.)

  8. Analysis of industrial coke samples by activation with cyclotron protons

    Chaudhri, M.A.; Lee, M.M.; Spicer, B.M.


    A Melbourne Petrochemical Company was experiencing excessive coke formation in its ''cracking furnaces'', which was causing unnecessary stoppage of production and wastage of energy due to additional insulation. In order to investigate the possible causes of this excessive coke formation, we analyzed various coke samples and other coke-like materials obtained from these furnaces by activation with cyclotron-protons. Our results showed that, out of the two suspected coke promoters As and Sb whose small concentration in feed would produce greatly accelerated coke formation, As could not be detected in any of the eight samples investigated, while Sb was present in only one sample. However, we did observe Ca, Cr and Fe in all the samples, with surprisingly high concentrations in some of them. It has, therefore, been suggested that Ca, and perhaps Cr and Fe, but not As or Sb, could have been responsible for the excessive coke formation in the ''cracking furnaces''

  9. Fluid coking : a competitive option for heavy feed processing

    Hammond, D.G.; Feinberg, A.S.; McCaffrey, D.S.


    Fluid coking is a proven thermal conversion process for converting heavy hydrocarbon feeds to lighter products. Fluid coking was commercialized by Exxon over 40 years ago. A total of 13 units have been built with over 330 years of cumulative operating experience. Fluid coking can process many different feeds at once and is usually insensitive to feed contaminants such as sulfur, nitrogen and metals. New developments in coke utilization and flue gas desulfurization/departiculation have prompted new economic studies. Fluid coking is competitive and is the most attractive option compared to delayed coking, particularly for very heavy feed stocks such as deasphalter bottoms. Viewgraphs describe the fluid coking process, its advantages, utilization, and commercial viability. 7 tabs., 3 figs


    Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke


    Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and

  11. A Door-to-Door Combined Transport Planner

    Aastrup, Jesper; Jespersen, Per Homann; Pedersen, Michael B.


    Establishing a web-based portal functioning as a one-stop-shop for transport buyers is a radical idea of a consumer oriented intermodal freight system. This utopian vision will be materialized in a system description and a prototype of a Door-to-Door Combined Trans-port Planner (COTRAP), developed......- and inter-organizational barriers to the establishment of a competitive and effective combined transport system with rail freight operators as the intermodal integrator. In this paper we describes the ideas and methodology behind the project, as well as some preliminary results....

  12. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading

    Wang, Wen; Xie, Li; Luo, Gang


    (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema...

  13. A heat exchanger analogy of automotive paint ovens

    Rao, Preetham P.


    Computational prediction of vehicle temperatures in an automotive paint oven is essential to predict paint quality and manufacturability. The complex geometry of vehicles, varying scales in the flow, transient nature of the process, and the tightly coupled conjugate heat transfer render the numerical models computationally very expensive. Here, a novel, simplified model of the oven is developed using an analogy to a three-stream cross flow heat exchanger that transfers heat from air to a series of moving bodies and supporting carriers. The analogous heat exchanger equations are developed and solved numerically. Steady state Computational Fluid Dynamics (CFD) simulations are carried out to model the flow field and to extract the heat transfer coefficients around the body and carriers. The air temperature distribution from the CFD models is used as a boundary condition in the analogous model. Correction coefficients are used in the analogy to take care of various assumptions. These are determined from existing test data. The same corrections are used to predict air temperatures for a modified configuration of the oven and a different vehicle. The method can be used to conduct control volume analysis of ovens to determine energy efficiency, and to study new vehicle or oven designs. -- Highlights: • Analogy of an automotive paint oven as a three stream cross flow heat exchanger. • The three streams are vehicle bodies, carriers and hot air. • Convection coefficients and inlet air stream temperatures from steady CFD simulations. • Analogy useful for overall energy efficiency analysis of conveyor ovens in general

  14. consideration of can drying ovens using ahp tecnique

    Hüseyin Pehlivan


    Full Text Available In this study, the selection of drying ovens for can gaskets is made at a production plant of tin cans. Among the available three drying oven types, i.e. horizontal, vertical and induction, the optimum type is determined for purchase with the objective of the best suiting the needs of the can production plant. Analytic Hierarchy Process (AHP is employed, and the importance of the critical and dominant criteria is determined. In this way, the optimum type of the drying oven is identified. Results are discussed and summarized based on the current practices used in the tin can production industry.

  15. Coking coal of Checua Lenguazaque area

    Arboleda Otalora, Carlos Ariel


    In this report a summary of the main characteristics of the coal of the area of Checua-Samaca is presented. Using the main works carried out on this area, the most important geologic, physical-chemical, technological and petrographic aspects are compiled that are considered essential to carry out a technical evaluation of these coal and all the analyses they take to conclude that in this area, bituminous coal are presented with very good coking properties, on the other hand, it is demonstrated by the use that is given to the coal extracted by the small existent mining. However, keeping in mind the demands of the international market of the coking coal, it becomes necessary to improve the existent geologic information to be able to make reliable stratigraphic correlations

  16. Opening Doors, Hearts and Minds

    Foster, Andrea


    A panel discussion, "Opening Doors, Hearts and Minds," was hosted at the 2006 annual COEO conference. Four dedicated Torontonians shared how they interpret outdoor environmental education and environmental education in what they do and offered suggestions as to how their work might be integrated in diverse urban communities. Tafari…

  17. Design proposal for door thresholds

    Smolka Radim


    Full Text Available Panels for openings in structures have always been an essential and integral part of buildings. Their importance in terms of a building´s functionality was not recognised. However, the general view on this issue has changed from focusing on big planar segments and critical details to sub-elements of these structures. This does not only focus on the forms of connecting joints but also on the supporting systems that keep the panels in the right position and ensure they function properly. One of the most strained segments is the threshold structure, especially the entrance door threshold structure. It is the part where substantial defects in construction occur in terms of waterproofing, as well as in the static, thermal and technical functions thereof. In conventional buildings, this problem is solved by pulling the floor structure under the entrance door structure and subsequently covering it with waterproofing material. This system cannot work effectively over the long term so local defects occur. A proposal is put forward to solve this problem by installing a sub-threshold door coupler made of composite materials. The coupler is designed so that its variability complies with the required parameters for most door structures on the European market.

  18. Koperemissies door drinkwaterleidingen (herziene editie)

    Verweij W; Mons MN; Aalbers JEM; Cruchten RGH van; LWD


    Ge-inventariseerd werd wat er bekend is over de fluxen van koper door (corrosie van) waterleidingen naar rioolwaterzuiveringsinstallaties (rwzi's), rwzi-slib en het oppervlaktewater. Gebleken is dat in 1993 (landelijk gemiddeld) 57% van de koperbelasting van rwzi's afkomstig is van

  19. Characterisation of coking activity during supercritical hydrocarbon pyrolysis

    Gascoin, Nicolas; Gillard, Philippe; Bernard, Stephane [Laboratoire Energetique, Explosion, Structure, UPRES-EA 1205, 63, avenue de Lattre de Tassigny, 18020 Bourges Cedex (France); Bouchez, Marc [MBDA France, 8, rue Le Brix, 18000 Bourges (France)


    The active cooling of the Supersonic Combustion Ramjet engine, for hypersonic flight purpose, is ensured thanks to fuel, n-dodecane for the present study. The endothermic fuel pyrolysis, starting above 800 K, could generate an unwanted coke formation. Experimental tests up to 1125 K and between 1 MPa and 6 MPa have been performed on the hydrocarbon fuel pyrolysis to evaluate the coking activity. 316L stainless steel, low carbon steel and titanium reactors have been considered. A witness of the coke formation, based on its thermal insulation and pressure loss effects, has been found. A correlation between methane production and coke deposit was found. The coke has been studied with Scanning Electron Microscope (SEM), Energy Dispersion Spectroscopy (EDS), X-ray diffractometer and Fourier Transform Infrared (FTIR) spectroscopy. The porosity, the density and the permeability of the coke have been estimated. (author)

  20. Dependence of microhardness of coke on carbon content and final coking temperature

    Kaloc, M.; Dvorak, P.


    At present time is important the coke-quality, tested by various methods again. The new methods of evaluation of coke quality as e.g. CSR, CRI, ACRI etc. demonstrate, that the mechanical stability parameters are in connection of microstructure of coke mass. The purpose of present paper is to investigate the dependence of microhardness on the carbon content and the final carbonisation temperature in the coal-coke series. The samples prepared experimentally in more series from different coal blends from 20{degrees}C to 1100{degrees}C were investigated both mega- and microscopically. The tests of microhardness are based on the use of the Hanemann microhardness tester. Principally this method consists in impressing the diamond pyramid into the surface of the sample. The data on the pressure applied are subtracted on the scale of load. An important factor influencing the results is the choice of the points from which the sample is to be withdrawn. The choice is dependent on the aim to be achieved. For the determination of an average microhardness it is sufficient to take sample from the middle part of the coke block representing the half width of the coking chamber. The choice of the point is also of great importance. In strong and homogeneous walls, sharply bounded, impressions can be found with a distinct diagonal cross. In thin walls the impressions are distinguished by distinct boundaries, the middle part, however, not being distinct as the pyramidal point did not penetrate the wall. Impressions providing accurate values are those distinctly bounded by a distinct diagonal cross. The walls not having been chosen correctly, the errors reveal themselves as the scattering of the points in the diagrams of microhardness.

  1. No-Oven, No-Autoclave, Composite Processing, Phase II

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to continue the efforts from the 2010 NASA SBIR Phase I topic X5.03, "No-Oven, No-Autoclave (NONA) Composite...

  2. Coke breakage behaviour in relation to its structure

    Peirce, T J; Horton, A E; Tucker, J


    The relationship between coke macrostructure and volumetric (coarse) breakage behaviour, and the manner in which both features are affected by the coal charge composition are discussed. Coke pieces which are extensively fissured fail spontaneously after only a few revolutions in the drum; coke pieces which are less fissured require an extended treatment in the drum and finally fail in a manner consistent with that of fatigue crack growth induced by repeated impact. This heterogeneity in breakage behaviour was demonstrated in terms of an abrupt change in gradient of the Weibull distribution function for the coke. Heterogeneity may be removed by fully stabilising the coke or by the use of a more energetic test method. The role of fatigue crack growth in coke breakage was studied by cutting fissures of defined depth in full stabilised coke and assessing the rate of crack growth as a function of fissure depth and fracture toughness. The form of the results was consistent with that given by the Paris-Erdogan law and the rate of crack growth (for a given stress intensity level) was shown to increase with reducing coke toughness. Explanations are suggested to account for the role of blend additives in modifying the fissured properties and fracture toughness of coke made from high-volatile coal.

  3. Briquetting and coking behavior of Bobov-Dol coal

    Naundorf, W.


    Hard Bulgarian glance brown coal (23.2% ash content, 16% coal moisture 2.39% sulfur) was studied for its general suitability for partial black coal coke substitution in coking plants and for the possibility of producing pyrolysis briquets for coking purposes. Laboratory briquetting variants include coal briquetting without binders, with sulfite lye as binder, briquetting after partial demineralization by wet classification, briquetting of different screening fractions (0 to 4 mm), briquetting as a mixture with type 35 caking black coal as well as mixed with type 34 less caking black coal under addition of black coal tar, pitch or bitumen. Coking of the briquets produced was carried at with and without charge compacting. Graphs and tables provide briquetting and coking results. It is concluded that high strength coke can be produced from this brown coal, but it can only be used commercially as heating coke due to its high ash and sulfur content. Briquetting and coking of partially demineralized brown coal in a mixture with black coal and binders resulted in suitable metallurgical coke. Maximum percentage of brown coal in the briquetting mixture was 30%. 4 refs.

  4. Process for the preparation of isotropic petroleum coke

    Kegler, W.H.; Huyser, M.E.


    A description is given of a process for preparing isotropic coke from oil residue charge. It includes blowing air into the residue until it reaches a softening temperature of around 49 to 116 deg C, the deferred coking of the residue having undergone blowing at a temperature of around 247 to 640 deg C, at a pressure between around 1.38x10 5 and 1.72x10 6 Pa, and the recovery of isotropic coke with a thermal expansion coefficient ratio under 1.5 approximately. The isotropic coke is used for preparing hexagonal graphite bars for nuclear reactor moderators [fr

  5. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)


    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  6. Full scale treatment of phenolic coke coking waste water under unsteady conditions

    Suschka, Jan [Institute for Ecology of Industrial Areas, Katowice (Poland); Morel, Jacek; Mierzwinski, Stanislaw; Januszek, Ryszard [Coke Plant Przyjazn, Dabrowa Gornicza (Poland)


    Phenolic waste water from the largest coke coking plant in Poland is treated at a full technical scale. From the very beginning it became evident that very high qualitative variations in short and long periods were to be expected. For this purpose, the biological treatment plant based on activated sludge is protected through preliminary physical-chemical treatment and the results are secured by a final chemical stage of treatment. Nevertheless, improvements in the performance of the treatment plant have been found necessary to introduce. In this work, the experience gained over the last five years is described and developed improvements were presented. 3 refs., 9 figs., 1 tab.

  7. Temperature distribution in a cigarette oven during baking

    Zhang Qing


    Full Text Available Baking treatment is one of the most important processes of cigarette production, which can significantly enhance quality of tobacco. Theoretical and numerical investigation on temperature distribution in a cigarette oven during baking was carried out. The finite volume method was used to simulate the flow field. The relationship between the uniformity of temperature field and impeller’s speed was given finally, which is helpful to optimize cigarette oven with better quality and less energy consumption.

  8. EPA Administrative Order on Consent (AOC) with ERP Compliant Coke, LLC

    This Administrative Order on Consent with ERP Compliant Coke was effective August 2016. The Walter Coke facility located in North Birmingham was purchased by ERP Compliant Coke, LLC in February 2016 out of bankruptcy proceedings.

  9. Statistical assessment of coal charge effect on metallurgical coke quality

    Pavlína Pustějovská


    Full Text Available The paper studies coke quality. Blast furnace technique has been interested in iron ore charge; meanwhile coke was not studied because, in previous conditions, it seemed to be good enough. Nowadays, requirements for blast furnace coke has risen, especially, requirements for coke reactivity. The level of reactivity parameter is determined primarily by the composition and properties of coal mixtures for coking. The paper deals with a statistical analysis of the tightness and characteristics of the relationship between selected properties of coal mixture and coke reactivity. Software Statgraphic using both simple linear regression and multiple linear regressions was used for the calculations. Obtained regression equations provide a statistically significant prediction of the reactivity of coke, or its strength after reduction of CO2, and, thus, their subsequent management by change in composition and properties of coal mixture. There were determined indexes CSR/CRI for coke. Fifty – four results were acquired in the experimental parts where correlation between index CRI and coal components were studied. For linear regression the determinant was 55.0204%, between parameters CRI – Inertinit 21.5873%. For regression between CRI and coal components it was 31.03%. For multiple linear regression between CRI and 3 feedstock components determinant was 34.0691%. The final correlation has shown the decrease in final coke reactivity for higher ash, higher content of volatile combustible in coal increases the total coke reactivity and higher amount of inertinit in coal increases the reactivity. Generally, coke quality is significantly affected by coal processing, carbonization and maceral content of coal mixture.

  10. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  11. [When doors slam, fingers jam!].

    Claudet, I; Toubal, K; Carnet, C; Rekhroukh, H; Zelmat, B; Debuisson, C; Cahuzac, J-P


    Epidemiological analysis in a universitary paediatric emergency unit of children admitted after accidental injuries resulting from fingers crushed in a door. Prospective, descriptive cohort study from September 6th, 2004 to July 1st, 2005 included all children admitted for finger injuries crushed in a non-automatic door. included accidents due to automatic doors, toy's or refrigerator doors, families who refused to participate to the study or families who had left the waiting area before medical examination. Collected data were patient and family characteristics, accident characteristics and its management. Three hundred and forty children affected by 427 digital lesions were included. The mean age was 5.5+/-3.8 years (range 4 months - 15.5 years). Male/female ratio was equal to 1.2: 1. Fifty-eight percent of patients belonged to families composed of 3 or more siblings. Ninety-three per cent of families came to hospital within the first 2 hours after the accident (mean delay 99+/-162 min, median range 54 minutes). Location of the accident was: domestic (62%, at home (64%)), at school (17%). Locations within the home were: the bedroom (33%), bathroom and toilets (21%). An adult was present in 75% of cases and responsible for the trauma in 25% of accidents, another child in 44%. The finger or fingers were trapped on the hinge side in 57% of patients. No specific safeguard devices were used by 94% of families. Among victims, 20% had several crushed digits; left and right hand were injured with an equal frequency. The commonest involved digits were: the middle finger (29%), the ring finger (23%). The nail plate was damaged in 60% of digital lesions, associated with a wound (50%), a distal phalanx fracture (P3) (12%). Six children had a partial or complete amputation of P3, 2 children a lesion of the extensor tendon, 1 child had a rupture of the external lateral ligament. Three percent of children required an admission to the paediatric orthopaedic surgery unit. Post

  12. Fluid coking of heavy hydrocarbons and apparatus therefor


    A process for the conversion of hydrocarbon oils comprises injecting a plurality of streams of oil into an enlarged coking vessel containing a mass of finely divided solids, thereby, preventing agglutination of the solids, circulating the solids through an external heating zone and back to the coking vessel to maintain the vessel at a coking temperature between 850 and 1,200/sup 0/F, passing gaseous material upwardly through the coking vessel at a superficial velocity of between 0.1 and 5.0 feet per second, controlled to maintain the body of solids in a dense turbulent fluidized state, maintaining the oil within coking the vessel for a period sufficient to convert into vapors and coke, withdrawing vapors from the top of the vessel through an outlet, separating high-boiling ends from vapors, returning at least a portion of the high-boiling ends to the coking vessel for further cracking and withdrawing excess of coke formed in the process.

  13. Coke degradation by surface breakage in a modified tumble drum

    Litster, J D


    The surface breakage rate constant for three Australian battery cokes was measured in a specially modified tumble drum using a previously developed technique. The effect of experimental test parameters - coke size, sample mass, drum speed, lifter height and lifter number - on the surface breakage rate constant was examined. The motion of coke particles within a tumble drum was filmed in a simulation experiment with a 0.31 m diameter drum. Particles were raised on the lifters, fell and collided with the bottom of the drum. These collisions were the main source of fines (minus 1 mm) production rather than true abrasion as depicted by a rubbing, rolling action. Hence the term 'surface breakage' is more appropriate than 'abrasion' to describe the breakage process. By measuring the volume of coke carried by each lifter and the height of fall of the coke, the effect of drum speed, sample mass, lifter height and number on the rate of surface breakage was successfully explained. The surface breakage rate constant was found to be proportional to particle size to the power 0.33 for the three cokes studied. A normalized surface breakage rate constant was derived which allowed comparison of cokes with different size distributions. This parameter characterises the coke surface breakage resistance.

  14. Combustion kinetics of the coke on deactivated dehydrogenation catalysts

    Luo, Sha; He, Songbo; Li, XianRu; Li, Jingqiu; Bi, Wenjun; Sun, Chenglin


    The coke combustion kinetics on the deactivated catalysts for long chain paraffin dehydrogenation was studied by the thermogravimetry and differential thermogravimetry (TG–DTG) technique. The amount and H/C mole ratio of the coke were determined by the TG and elemental analysis. And the

  15. Study on the Inference Factors of Huangling Coking Coal Pyrolysis

    Du, Meili; Yang, Zongyi; Fan, Jinwen


    In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.

  16. Physical fitness examination in a selected group of the North-Moravian industrial population. I: Results in coke plant workers

    Jirac, Z


    Basic spirographic and spiroergometric examinations, according to Hollman, were performed on 269 men, aged 20-60 years, who had been working at coke-oven batteries for 1, 16 and more years. There were no significant differences in the spirographic and spiroergometric indicators of cardiopulmonary efficiency in relation to the length of exposure within the age groups. Maximum oxygen uptake in younger men (20-29 years) was identical, in older age groups it was below average according to Hollmann. This phenomenon can be explained by a combined effect of a low physical load and the heat load on the cardiovascular system. Values were compared with those of Shepard. The working and sanitary conditions and investigation methods are described in detail.

  17. Coke formation on hydrodesulphurization catalysts. [Including effects of different promoters

    Ternan, M.; Furimsky, E.; Parsons, B.I.


    The extent of coke formation was measured on a number of different hydrodesulfurization catalysts, primarily as a function of the catalyst chemical composition. Variations in the concentration of MoO/sub 3/ on the alumina, the type of catalyst promoter, the promoter/MoO/sub 3/ ratio, the presulfiding material and the reaction temperature were made. Increases in the reaction rate caused by either changes in the catalyst composition or by moderate changes in the reaction temperature were compared to the catalyst coke content. It was suggested that two types of coke were present on the catalyst, a reactive coke which is subsequently converted to reaction products and an unreactive coke which blocks catalytic sites.

  18. Development and Evaluation of Charcoal-Powered Bread Baking Oven

    Alimasunya E


    Full Text Available Charcoal-powered bread baking oven was developed and evaluated with functional efficiencies of 91.2% and 92.1% for baking dough of mass 0.5kg and 1.5 kg to bread at BP of 27.7minutes, 35.9 minutes with the baking temperature (BT of 153.8 oC and 165.9 oC respectively. Baking temperature-heating interval of the oven as computed at 100 oC at 20 minutes at charcoal emitted heat of 861000 KJ. The oven has the capacity of generating 455.9 oC at 270 minutes time interval. The oven has bread baking capacities of 56, 36, 28, 22 and 18 pieces of bread per batch operation using dough mass of 0.5kg, 0.75kg, 1.00kg, 1.250kg and 1.500kg respectively. It is sensitive to the baking time and temperature in relation to dough mass with resolution value of 0.22. Charcoal-powered oven, is cheap and efficient and can be used both in the rural and urban settlement for domestic consumption and smallscale business.

  19. A new method for manufacturing ICEM form coke and its coking in slanted furnaces. Part II. Obtaining ICEM form coke in slanted furnaces

    Barbu, I; Coposescu, V; Kost, J; Manolescu, A; Michailidis, N; Solceriu, R; Stoicoi, A


    An engineering scheme of the process is given, together with the characteristics of the chamber furnaces with an inclined hearth and the quality of the coke obtained in the industrial assembly at a gas factory. The assembly consists of 56 chamber furnaces with a volume up to 10 cubic meters. The height of the chambers is 4000 mm on one side and 4295 mm on the other with a length of 7500 mm and a width of 360-480 mm. The heating temperature is 1200/sup 0/, and the coking time is 22-24 hours. The annual production of the batteries for metallurgical coke is 90 thousand tons, and the average strength of the coke is M40-66.0; M10-15.51.

  20. Utilization of HSC-ROSE residue as coking aid for the production of high quality coke from brown coal

    Bohlmann, D.; Limmer, H.; Naundorf, W.; Hood, R.L.; Washimi, K. (VEB Petrolchemisches Kombinat, Schwedt (German Democratic Republic))


    Evaluates suitability of HSC-ROSE petroleum pitch as binder for production of brown coal coke. This pitch has been available in the GDR since installation in 1988 of a 750 kt/a HSC (high conversion soaker cracking) plant, which processes 360 C visbreaker residue from Soviet crude oil, and the building of a ROSE (residue oil supercritical reaction) plant. Laboratory as well as semi-industrial experiments were carried out at the Freiberg Academy, GDR on pulverizing, briquetting and coking various brown coal types with HSC-ROSE pitch. Briquetting and coking results are shown in tables. Experiments showed that the resulting coke has 124% higher compression strength and 100% higher abrasion strength than regular brown coal coke without HSC-ROSE binder. The high quality coke is adequate for use as metallurgical blast furnace coke. An economic assessment of modifying an existing brown coal coking plant to process 2 Mt/a brown coal with 10% pitch binder is made. Required investment amounts to 54 million US dollars, estimated annual profits based on 1987 prices are 19.5 million US dollars. 4 refs.

  1. Furnace coking simulations in a laboratory apparatus

    Eaton, Paul [Champion Technologies Inc (United States)], email:; Newman, Bruce [ConocoPhillips (United States)], email:; Gray, Murray; Kubis, Alan; Derakhshesh, Marzie; Holt, Chris; Mitlin, David [Department of Chemical and Materials Engineering, University of Alberta (Canada)


    This work deals with simulating fouling behavior of crude oil in a delayed coker furnace. Fouling on different heated metal probes was investigated; these were mainly stainless steel, iron, or mild steel probes. Heat transfer theory was used to calculate the system fouling factor, and this parameter was recorded as a function of time to model in-situ fouling intensity. Physical and chemical properties such as buildup thickness and composition were investigated using different measuring techniques, most important of which were extractive-iron-nickel ion chromatography, optical and scanning electron microscopy (SEM), and electron dispersion spectroscopy (EDS). Changes in surface layers of the metallic probe during coke formation along with microstructures of the coke were examined using a focused-ion beam (FIB). It was shown that the iron probe exhibited more buildups on its surface than stainless steels, and fouling of mild steel came in between. As for oils with different concentrations, fouling of diluted atmospheric tower bottom (ATB) was greater than that of undiluted ATP.

  2. Determination of optimum oven cooking procedures for lean beef products.

    Rodas-González, Argenis; Larsen, Ivy L; Uttaro, Bethany; Juárez, Manuel; Parslow, Joyce; Aalhus, Jennifer L


    In order to determine optimum oven cooking procedures for lean beef, the effects of searing at 232 or 260°C for 0, 10, 20 or 30 min, and roasting at 160 or 135°C on semimembranosus (SM) and longissimus lumborum (LL) muscles were evaluated. In addition, the optimum determined cooking method (oven-seared for 10 min at 232°C and roasted at 135°C) was applied to SM roasts varying in weight from 0.5 to 2.5 kg. Mainly, SM muscles seared for 0 or 10 min at 232°C followed by roast at 135°C had lower cooking loss, higher external browning color, more uniform internal color, and were more tender and flavorful (P searing is the recommended oven cooking procedure; with best response from muscle roast weight ≥1 kg.

  3. Alternative control technology document for bakery oven emissions. Final report

    Sanford, C.W.


    The document was produced in response to a request by the baking industry for Federal guidance to assist in providing a more uniform information base for State decision-making with regard to control of bakery oven emissions. The information in the document pertains to bakeries that produce yeast-leavened bread, rolls, buns, and similar products but not crackers, sweet goods, or baked foodstuffs that are not yeast leavened. Information on the baking processes, equipment, operating parameters, potential emissions from baking, and potential emission control options are presented. Catalytic and regenerative oxidation are identified as the most appropriate existing control technologies applicable to VOC emissions from bakery ovens. Cost analyses for catalytic and regenerative oxidation are included. A predictive formula for use in estimating oven emissions has been derived from source tests done in junction with the development of the document. Its use and applicability are described.

  4. Measurements of nonionizing radiation emitted from microwave oven

    Elnour, Yassir Elnour Osman


    There is an increase in the usage of microwave oven which is used electromagnetic radiation in the microwave range, which believed to be harmful to human health. The measurements were taken at distance of range(0-100) cm from the microwave oven. The study concluded that the risk possibility of the radiation increases at high mode. We measured the power density, magnetic field and signal strength of microwave oven using the SPECTRAN high frequency (HF-6080) detector. The experimental results of power density were found to be (3.78-208000) nW/m 2 and magnetic field is (0.001-0.744) mA/m. These values are less than the exposure limits recommended. (author)

  5. Evaluation method of economic efficiency of industrial scale research based on an example of coking blend pre-drying technology

    Żarczyński Piotr


    Full Text Available The research on new and innovative solutions, technologies and products carried out on an industrial scale is the most reliable method of verifying the validity of their implementation. The results obtained in this research method give almost one hundred percent certainty although, at the same time, the research on an industrial scale requires the expenditure of the highest amount of money. Therefore, this method is not commonly applied in the industrial practices. In the case of the decision to implement new and innovative technologies, it is reasonable to carry out industrial research, both because of the cognitive values and its economic efficiency. Research on an industrial scale may prevent investment failure as well as lead to an improvement of technologies, which is the source of economic efficiency. In this paper, an evaluation model of economic efficiency of the industrial scale research has been presented. This model is based on the discount method and the decision tree model. A practical application of this proposed evaluation model has been presented based on an example of the coal charge pre-drying technology before coke making in a coke oven battery, which may be preceded by industrial scale research on a new type of coal charge dryer.

  6. Determination of optimum oven cooking procedures for lean beef products

    Rodas?Gonz?lez, Argenis; Larsen, Ivy L.; Uttaro, Bethany; Ju?rez, Manuel; Parslow, Joyce; Aalhus, Jennifer L.


    Abstract In order to determine optimum oven cooking procedures for lean beef, the effects of searing at 232 or 260?C for 0, 10, 20 or 30?min, and roasting at 160 or 135?C on semimembranosus (SM) and longissimus lumborum (LL) muscles were evaluated. In addition, the optimum determined cooking method (oven?seared for 10?min at 232?C and roasted at 135?C) was applied to SM roasts varying in weight from 0.5 to 2.5?kg. Mainly, SM muscles seared for 0 or 10?min at 232?C followed by roast at 135?C h...

  7. Synthesis of Carbon Nanomaterials from Rice Husk via Microwave Oven

    Muhammad Asnawi


    Full Text Available Microwave oven was utilized to fabricate carbon nanostructure, specifically CNTs, from waste RH powders. It has been shown that the use of carbon source, catalyst, and commercial microwave oven to induce plasma is necessary to carry on this synthesis. The plasma enhances and speeds up the catalytic decomposition of RH in presence of ferrocene. FESEM, TGA, and Raman spectroscopy were utilized to confirm the presence and quality of produced carbon nanomaterials. In addition, these results suggest the conversion of ferrocene to iron(II, III oxide with notable conversion rate.

  8. A microwave powered sensor assembly for microwave ovens


    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  9. Influence of rubber granulate in the coal blend on important process parameters of the coking plant

    A. Winter; K. Pilz; A. Gahleitner; G. Woisetschlaeger; Monika Friedl [Voestalpine Stahl GmbH (Germany)


    The talk is outlined in a series of 14 slides/overheads. It discusses the use of scrapped tires in coking plant and traces the amount of zinc present in every product of the coking plant, blast furnaces and sintering plant - coke, coke breeze, sinter and waste water produced.

  10. Effect of nut coke on the performance of the ironmaking blast furnace

    Song, Q.


    The blast furnace consumes a large amount of high quality metallurgy coke (size 35-80 mm) in addition to ore in the form of pellets and sinter. This coke is the coarse fraction, derived from the coke plant. The fine fraction (8 -35 mm), arise after sieving, named nut coke, can’t be directly used in

  11. Scott Brothers Windows and Doors Information Sheet

    Scott Brothers Windows and Doors (the Company) is located in Bridgeville, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Pittsburgh, Pennsylvania.

  12. Holiday Door Decorating Contest Brings Cheer | Poster

    By Carolynne Keenan, Contributing Writer Other than the time of year, what do the following have in common: the leg lamp from the movie “A Christmas Story,” a compilation of silly holiday jokes, a gingerbread house, and Santa on a motorcycle? All four were among the individual door winners for the Holiday Door Decorating Contest, held at NCI at Frederick in December. Employees dressed up their office doors, hallways, and even stairwells to participate. Entries for the contest included individual office doors as well as groups. Some employees even “decked the halls” of whole office buildings to participate.

  13. The reaction of Polish market to last year's changes on international coke and steel market

    Czornik, G.; Gabriel, D. [Polski Koks S.A. (Poland)


    The presentation, outlined in 16 slides/overheads, discussed the following: Poland's position in the world market; the Polish coking industry and the world coke and steel industry; the reaction of Polish coke plants; the effect of the increase in coke prices; ownership changes in Poland's coking industry scenarios for the future; the role of Polski Koks in Poland's coking industry; and sales and exports of coke by Polski Koks.

  14. Coking industry of China (conclusion of visit to People's Republic of China)

    Sklyar, M.G. (NPO Koksokhimiya (USSR))


    Presents a report on the coking industry in China, in particular, research programs on coking. The report was prepared by Soviet specialists who visited China in March 1990 within the framework of an exchange program. The following aspects are discussed: characteristics of iron metallurgy and the coking industry in China, research institutes that specialize in problems of iron metallurgy and coking, main research programs of Chinese research institutes (development of a 12-category classification of black coal from China, coal preparation prior to coking including selective crushing, formed coke processes, quality of the products of bituminous coal coking, coal gasification and hydrogenation), installations used for research programs in China (delayed coking of black coal, hydrogenation of long-flame coal, coal briquetting), characteristics of selected coking plants in China, training for specialists in the coking industry in China.

  15. Surface structure and oxidation reactivity of oil sand coke particles

    Fairbridge, C.; Palmer, A.D.; Ng, S.H.; Furimsky, E.


    Fractions of particles of varying mean diameter were isolated from coke obtained from the fluid coking of Athabasca bitumen. Correlations were established between the rate of oxygen sorption and the apparent surface area as measured by carbon dioxide adsorption. The rate of oxygen sorption, r/sub o/, could be related to particle radius, R, by r/sub o/ varying with R/sup D/ T over a range of particle size where D is the fractal dimension of the coke. The existence of such correlations may be related to the iterative processes which form the particles. 14 refs., 5 figs., 2 tabs.

  16. Numerical and experimental characterization of a batch bread baking oven

    Ploteau, J.P.; Nicolas, V.; Glouannec, P.


    This study deals with the thermal characterization of an electrical static oven used for bread baking. The heating is provided by natural convection, infrared radiation and conduction with a cement slab. The paper describes a methodology to apprehend the heat flux which is applied to the products during baking. The oven was experimentally investigated and a finite element numerical model is established. The monitoring of temperatures at various points in the installation and of electrical power is carried out. Then, to characterize thermal exchanges around the bread during curing, thermal responses of a cylindrical sample is also measured. The numerical model made it possible to calculate the heat flux exchanges with the product, while separating the contributions of convection and radiation. The comparison of simulated responses with experimental data shows the relevance of the model. - Highlights: ► This study concerns the thermal characterization of an electric static oven used for bread baking. ► An original, experimental and numerical approach of thermal problem is proposed. ► Contributions by radiation and convection are separated. ► The goal is to provide boundary conditions for numerical models of bread baking. ► Results are encouraging to optimize energy consumption in industrial oven.

  17. Converting a Microwave Oven into a Plasma Reactor: A Review

    Victor J. Law


    Full Text Available This paper reviews the use of domestic microwave ovens as plasma reactors for applications ranging from surface cleaning to pyrolysis and chemical synthesis. This review traces the developments from initial reports in the 1980s to today’s converted ovens that are used in proof-of-principle manufacture of carbon nanostructures and batch cleaning of ion implant ceramics. Information sources include the US and Korean patent office, peer-reviewed papers, and web references. It is shown that the microwave oven plasma can induce rapid heterogeneous reaction (solid to gas and liquid to gas/solid plus the much slower plasma-induced solid state reaction (metal oxide to metal nitride. A particular focus of this review is the passive and active nature of wire aerial electrodes, igniters, and thermal/chemical plasma catalyst in the generation of atmospheric plasma. In addition to the development of the microwave oven plasma, a further aspect evaluated is the development of methodologies for calibrating the plasma reactors with respect to microwave leakage, calorimetry, surface temperature, DUV-UV content, and plasma ion densities.

  18. Comparative study of oven and traditionally roasted suya : an ...

    Comparative study of oven and traditionally roasted suya: an indigenous Nigerian meat. M C Okafor, H U Nwanjo, G O Oze. Abstract. No Abstract. Animal Production Research Avancees Vol. 3 (2) 2007: pp. 131-136. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  19. Exploring Oven-drying Technique in Producing Pineapple Powder

    Cyril John A. Domingo


    Full Text Available Pineapple puree and juice of 11 to 12 °Brix were used to obtain pineapple powder using oven-drying technique. Addition of maltodextrin in treatments 2 and 4 yielded good quality powder, however addition of sugar and maltodextrin in treatments 1 and 3 resulted to sticky product which was processed to pineapple leather. Treatment 2 composed of pineapple puree and maltodextrin resulted to significantly higher powder recovery compared with treatment 4 which composed of pineapple juice and maltodextrin. The solubility of pineapple powder improved as maltodextrin concentration is increased from 40.00 % to 60.00 %.Addition of maltodextrin also reduced stickiness of the final product. An instant pineapple powder of 5.47 and 5.33 % moisture content could be produced by oven-drying.This level of moisture content will prohibit bacterial growth in the pineapple powder but may have mold or yeast growth with increase storage period at environments with high humidity. Molds were observed on the 17th day at 89.00 % relative humidity as exhibited by the moisture sorption isotherm data. This suggests that appropriate packaging with moisture barrier is recommended for pineapple powder. This study showedthat by using appropriate ratio of juice, puree, and maltodextrin and appropriate oven drying conditions, a good oven-dried pineapple powder could be obtained.

  20. Effects of heat treatments of coal on coke destruction under blast furnace conditions

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.


    This paper discusses results of investigations on effects of chemical reactions in a blast furnace on coke disintegration and destruction. The investigations were carried out by the VUKhIN Institute branch in Kuznetsk. Effects of silicates and carbonates of sodium, potassium and zinc on mechanical coke properties were investigated under laboratory conditions. Coke samples were placed in a reactor and were treated by vapors of metal compounds. Coke produced from a coal mixture with conventional moisture content and from preheated coal mixture was used. Coal properties are given in a table. Design of laboratory equipment used for tests is shown in 2 schemes. Heat treatments influenced coke porosity and its structural strength. Proportion of large pores accessible to sodium and potassium in coke from preheated coal was 4.5 times lower than in coke from a conventional mixture. Adsorption of sodium and potassium on coke from preheated charge was lower (from 0.22% to 0.24%) than on coke from a conventional mixture (from 2.5% to 2.9%). Adsorption of alkali metals on coke reduced its structural strength and increased coke oxidation rate by carbon dioxide. Use of heat treatments of coal for coking reduced adsorption of alkali metals on coke in a blast furnace, increased coke structural strength and reduced coke oxidation rate by carbon dioxide. (16 refs.) (In Russian)

  1. 29 CFR 1917.114 - Cargo doors.


    ... counterweights shall be guarded. (2) Lift trucks and cranes shall not be used to move mechanically operated doors.... (1) The door shall be connected to its lifting tackle with shackles or equally secure means. (2) Lifting bridles and tackles shall have a safety factor of five, based upon maximum anticipated static...

  2. The Ins and Outs of Modern Doors.

    College Planning & Management, 1999


    Discusses the qualities and trends in modern metal doors for educational facilities that include fire protection and sound-control attributes. Important differences in door manufacturing methods and materials are addressed and sound-transmission class values, ratings, and rating descriptions are listed. (GR)


    N.T. Raczka


    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  4. A Foot Operated Timeout Room Door Latch.

    Foxx, R. M.; And Others


    This report describes the design and implementation of a foot operated timeout room door latch that permits staff members to maintain a misbehaving retarded individual in timeout without locking the door. Use of the latch also frees the staff member involved to record behavioral observations or reinforce appropriate behavior. (Author)

  5. Taksterfte in Buxus, veroorzaakt door Cylindrocladium buxicola

    Kuik, van A.J.; Dalfsen, van P.


    De laatste jaren wordt de Buxusteelt geplaagd door een ziekte die veroorzaakt wordt door de schimmel Cylindrocladium buxicola. Gezien de snelle uitbreiding van de ziekte is het voor kwekers en afnemers van Buxus van groot belang dat deze problematiek wordt aangepakt. Daar om is begin 2006 in

  6. Scientific research in the area of coking and coking by-products (based on material from the All-Union Coordinating Conference)

    Rydkevich, M.I.; Tselik, M.P.; Belkina, T.V.


    Subjects covered in the all-union coordinating conference on coking and chemical by-products of coking, which took place on 13-15 July 1984, are discussed. One hundred forty eight on-going and new research themes accepted as research projects for 1985-86 were discussed. Areas of research include coals from the eastern deposits and Pechora basin as raw materials for coking; coals from the southern deposits as coking raw materials; technology of coal preparation for coking; technology for producing blast furnace coke and methods of assessing its quality; technology for producing other kinds of coke and carbon graphite materials; methods for extraction processing and producing chemical products from coking.

  7. Baking and coking properties of hard coal under high pressure

    Beyer, H.D.


    For a better assessment of the baking and coking properties of hard coal under high pressure as in modern coal beneficiation processes, the determination of the swelling index and the dilatation curve are investigated.

  8. KCBX Petroleum Coke Storage Pile Sampling Logbook and Photos

    This documentation of KCBX's petcoke sampling locations and methods demonstrates adherence to the pet coke sampling plan previously submitted and approved by EPA, at both North Terminal and South Terminal stockpiles.

  9. Coke briquets for metallurgy based on a thermoreactive binder

    Tjutjunnikov, J.B.; Florinskij, V.N.; Orechov, V.N.; Nefedov, P.J.; Sasmurin, V.I.; Kirenskij, V.N. (Khar' kovskii Inzhenerno-Ehkonomicheskii Institut (USSR))


    Describes a process for production of briquets for metallurgy with binder and coke fines or anthracite. The suggested binder is waste phenol resin from the production of phenol (cumene method). Resin properties are given. Possible reaction mechanisms yielding solidified matter are discussed. The production process requires 10-15% binder and applies charge heating up to 200 C over 30 min. Catalytic amounts of sodium hydroxide or sulfuric acid were also employed. The production process is shown in a flowsheet. Properties of produced briquets are tabulated. The briquets were used in a 8 t/h cupola furnace and their performance was compared to that of KL-1 coke. Performance was found to be comparable; the cost of coke briquets was less than that of heating coke. 2 refs.

  10. Variation in mineral composition of coal during enrichment and coking

    M.L. Ulanovskii; A.N. Likhenko [Ukrkoks Coke Producers' Association, Dnepropetrovsk (Ukraine)


    The parameters I{sub b} and B{sub b} used in developing an optimal coking-batch composition are determined from data on the chemical composition of the ash in Donetsk Basin and other coal. It is found that, when the ash content is reduced in deeper enrichment of coal with an increased content of fine pyrite, there will be accompanying increase in the Fe{sub 2}O{sub 3} content and decrease in the SiO{sub 2} content of the ash in lighter fractions. This increases I{sub b}. In other words, reducing the ash content of the coal is an unpromising means of increasing CRI and CSR of the coke produced. Three ash-containing elements (silicon, aluminum, and iron) are experimentally proven to transfer from coal to coke. Specific behavior of calcium, magnesium, alkali metals, and sulfur during coking.

  11. Crystallinity and shape of crushed calcined coke particles

    Fecioru, M.; Petrescu, M.; Georgeoni, P.


    The particle eccentricity is a very important property of the petroleum coke in determining the anisotropy of the properties of the final graphite and it affects the manner in which its properties change in the specific applications. (orig.)

  12. Crystallinity and shape of crushed calcined coke particles

    Fecioru, M. (DACIA Synthetic Diamonds Factory, Bucharest (Romania)); Petrescu, M. (DACIA Synthetic Diamonds Factory, Bucharest (Romania) Polytechnic Inst., Bucharest (Romania)); Georgeoni, P. (DACIA Synthetic Diamonds Factory, Bucharest (Romania))


    The particle eccentricity is a very important property of the petroleum coke in determining the anisotropy of the properties of the final graphite and it affects the manner in which its properties change in the specific applications. (orig.).

  13. Remediation and demolition of coke by-products plants

    Stiffler, M A; Gould, W C


    The programme undertaken by ICF Kaiser Engineers and LTV Steel Co. to clean up and demolish four closed coking plants is described, including PCB removal, asbestos abatement, pipe removal and cleaning, tank cleaning, demolition and soil bioremediation. Costs are discussed.

  14. A solar oven for intertropical zones: Evaluation of the cooking process

    Hernandez-Luna, G.; Huelsz, G.


    The construction and the evaluation of the cooking process of a solar oven prototype are presented, the optogeometrical design of this oven was optimized for the intertropical zone. The cooking tests demonstrated that the oven prototype, which needs only four simple movements throughout the year, is suitable to cook three basic Mexican meals: beans, nixtamal, and corncobs. The potential quantity of wood savings per year if this oven would be used to cook meals in a rural zone of Mexico is estimated

  15. Demand outlook for sulfur and high-sulfur petroleum coke

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.


    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  16. Coking coal outlook from a coal producer's perspective

    Thrasher, E.


    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  17. Effectiveness of modified 1-hour air-oven moisture methods for determining popcorn moisture

    Two of the most commonly used approved grain moisture air-oven reference methods are the air oven method ASAE S352.2, which requires long heating time (72-h) for unground samples, and the AACC 44-15.02 air-oven method, which dries a ground sample for 1 hr, but there is specific moisture measurement ...

  18. 77 FR 28805 - Energy Conservation Program: Test Procedures for Microwave Ovens


    ... Energy Conservation Program: Test Procedures for Microwave Ovens AGENCY: Office of Energy Efficiency and... (SNOPR) to amend the test procedures for microwave ovens. That SNOPR proposed amendments to the DOE test... mode energy use of products that combine a microwave oven with other appliance functionality, as well...

  19. 75 FR 42612 - Energy Conservation Program for Consumer Products: Test Procedure for Microwave Ovens


    ... Conservation Program for Consumer Products: Test Procedure for Microwave Ovens AGENCY: Office of Energy... (NOPR) in which DOE proposed test procedures for microwave ovens under the Energy Policy and Conservation Act (EPCA) to measure standby mode and off mode power use by microwave ovens. To address issues...

  20. 78 FR 4015 - Energy Conservation Program: Test Procedures for Microwave Ovens


    ... Conservation Program: Test Procedures for Microwave Ovens AGENCY: Office of Energy Efficiency and Renewable... microwave ovens. That SNOPR proposed amendments to the DOE test procedure to incorporate provisions from the... energy use of products that combine a microwave oven with other appliance functionality, as well as minor...

  1. 75 FR 42611 - Energy Conservation Program for Consumer Products: Test Procedure for Microwave Ovens


    ... for Microwave Ovens AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... current active mode provisions in its test procedure for microwave ovens do not produce accurate and... concerns with the DOE microwave oven cooking efficiency test procedure. Elsewhere in today's Federal...

  2. 76 FR 65631 - Energy Conservation Program: Test Procedures for Microwave Ovens


    ... Conservation Program: Test Procedures for Microwave Ovens AGENCY: Office of Energy Efficiency and Renewable... residential microwave ovens. DOE specifically is seeking information, data, and comments regarding representative and repeatable methods for measuring the energy use of microwave-only ovens and combination...

  3. Fatigue behaviour of coke drum materials under thermal-mechanical cyclic loading

    Jie Chen


    Full Text Available Coke drums are vertical pressure vessels used in the delayed coking process in petroleum refineries. Significant temperature variation during the delayed coking process causes damage in coke drums in the form of bulging and cracking. There were some studies on the fatigue life estimation for the coke drums, but most of them were based on strain-fatigue life curves at constant temperatures, which do not consider simultaneous cyclic temperature and mechanical loading conditions. In this study, a fatigue testing system is successfully developed to allow performing thermal-mechanical fatigue (TMF test similar to the coke drum loading condition. Two commonly used base and one clad materials of coke drums are then experimentally investigated. In addition, a comparative study between isothermal and TMF lives of these materials is conducted. The experimental findings lead to better understanding of the damage mechanisms occurring in coke drums and more accurate prediction of fatigue life of coke drum materials.

  4. Investigating combined influence of petrology and technological parameters on strength of porous coke body

    Dinel' t, V.M.; Shkoller, M.B.; Stankevich, A.S.; Korchuganova, G.S.


    The VUKhIN branch in Kuznetsk investigated effects of coal petrology and coking conditions on structural strength of coke in blast furnaces. Structural strength of coke produced from black coal from the Kuzbass as well as structural strength of coke partially gasified by carbon dioxide under conditions similar to those in blast furnaces was investigated. Fourteen samples of coal mixtures from the Kuzbass were used. Regression analysis was applied. Equations for forecasting coke properties on the basis of coal petrology and selected parameters characterizing coking were derived. Analyses showed that coke structural strength was decisively influenced by coefficients which characterized the average reflectivity of vitrinite in a coal mixture and its average density. After partial coke gasification by carbon dioxide effects of coefficients which characterized coal mixture nonhomogeneity (fluctuations of vitrinite reflectivity) and coal mixture density increased. Increasing coal density partially compensated negative effects of fluctuations of vitrinite reflectivity on coke structural strength. (10 refs.) (In Russian)

  5. An unexpected knock on Corrigan's secret door.

    Woywodt, Alexander


    Corrigan's secret door describes a metaphorical escape route for busy physicians. The term was derived from the successful and exceptionally busy professional life of Irish physician Dominic John Corrigan (1802-80). It is claimed that Corrigan's outpatient clinic was so busy that he required a secret door in his consulting rooms to escape from the ever-growing queue of eager patients. The origins of this charming story are unknown, and the door may have never existed. However, at present, Corrigan's secret door is often quoted when busy physicians have their own little ways in surviving a stressful professional life. Generations of British-trained doctors have grown up with Corrigan's secret door, as it was featured in the introduction of the Oxford Handbook of Clinical Medicine. Accordingly, trainees as well as more senior doctors are often reminded that having a 'secret door' is vital in surviving in the medical profession. My own escape is through classical music and the violoncello, in particular. As the name implies, my own secret door is normally invisible to colleagues and patients. This little article is about a patient who found me out, and a reflection on the role of classical music and the cello in my professional life.

  6. Bulkhead Door – Critical Evacuation States

    Flizikowski Józef


    Full Text Available The article is a preliminary to a modification concept of the sliding watertight bulkhead door used on ships and vessels. Hydraulic or electro-hydraulic drives used to move these doors require complicated and extended pressure installations with large amounts of hydraulic fluid. Well-known operational drawbacks of these installations include high level of noise and possibility of various leaks in the hydraulic system. Being the first in a series, the present article describes and analyses critical states which can take place during evacuation of people through openings in the watertight bulkhead doors on seagoing ships and vessels.

  7. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.


    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  8. September 2013: the doors open

    Antonella Del Rosso


    Three special days and one public open day: at the end of September our Laboratory will open its doors to visitors from CERN, the local region and all over the world. With over 150,000 visitors expected in total, the organisation of the OpenDays is a challenge that a core team of eleven people have taken up with enthusiasm.   They come from several departments but share one goal: making the last four days of September an unforgettable experience for all the visitors who will come to discover the Laboratory and its scientists. The core team in charge of the organisation of the events is co-ordinated by Hermann Schmickler. “The events are an opportunity for us to celebrate  the discoveries, the excellent performance of the technical installations and the vital contribution of all the CERN personnel, the thousands of users and those working under support contracts,” says Hermann Schmickler. The four-day programme will start on Friday 27 September with an “...

  9. The Globe reopens its doors

    CERN Bulletin


    After a year of work, the newly renovated Globe of Science and Innovation will open its doors again at 10 a.m. on Tuesday, 19 April. The “Universe of Particles” exhibition has been updated and will be open to the public, free of charge, from 10 a.m. to 5 p.m., Monday to Saturday (except during official CERN closures). The Globe’s programme of lectures and events for the general public will restart at the end of April. What’s on at the Globe in April and May: - 28 April at 6.30 p.m.: Theatre – “Curie_Meitner_Lamarr_indivisible”, a play that pays tribute to the lives of three exceptional women in the field of science and technology (in English). Reservations: - 10 May at 8.30 p.m.: Lecture – “Le modèle du CERN et les grands défis mondiaux” (“The CERN model and the key global challenges”) by Michel Spiro (in French with simultaneous ...

  10. Characterization of sponge cake baking in an instrumented pilot oven

    Alain Sommier; Elisabeth Dumoulin; Imen Douiri; Christophe Chipeau


    The quality of baked products is the complex, multidimensional result of a recipe, and a controlled heating process to produce the desired final properties such as taste, colour, shape, structure and density. The process of baking a sponge cake in a convective oven at different air temperatures (160-180-220 °C) leading to the same loss of mass was considered in this study. A special mould was used which allowed unidirectional heat transfer in the batter. Instrumentation was developed specific...

  11. Exploring Oven-drying Technique in Producing Pineapple Powder

    Cyril John A. Domingo; Wilma M. De Vera; Raquel C. Pambid


    Pineapple puree and juice of 11 to 12 °Brix were used to obtain pineapple powder using oven-drying technique. Addition of maltodextrin in treatments 2 and 4 yielded good quality powder, however addition of sugar and maltodextrin in treatments 1 and 3 resulted to sticky product which was processed to pineapple leather. Treatment 2 composed of pineapple puree and maltodextrin resulted to significantly higher powder recovery compared with treatment 4 which composed of pineapple juice...

  12. Design of a hybrid emissivity domestic electric oven

    Isik, Ozgur; Onbasioglu, Seyhan Uygur


    In this study, the radiative properties of the surfaces of an electric oven were investigated. Using experimental data related to an oven-like enclosure, a novel combination of surface properties was developed. Three different surface emissivity combinations were analysed experimentally: low-emissivity, high emissivity (black-coated), and hybrid emissivity. The term "hybrid emissivity design" here corresponds to an enclosure with some high emissive and some low-emissive surfaces. The experiments were carried out according to the EN 50304 standard. When a brick (load) was placed in the enclosure, the view factors between its surfaces were calculated with the Monte Carlo method. These and the measured surface temperatures were then used to calculate the radiative heat fluxes on the surfaces of the load. The three different models were compared with respect to energy consumption and baking time. The hybrid model performed best, with the highest radiative heat transfer between the surfaces of the enclosure and the load and minimum heat loss from the cavity. Thus, it was the most efficient model with the lowest energy consumption and the shortest baking time. The recent European Union regulation regarding the energy labelling of domestic ovens was used.

  13. Pyrolisator Coal to be Cokes (Coal Cokes Casting Metal Industry Standard



    Full Text Available Pyrolisis of coal is partial combustion to reduce total moisture, volatile matter and sulfur contens and increase the calorific value of coal. The results of pyrolysis of coal is coke. At the laboratory level studies, pyrolisis done in batch using different calorie, namely 5800, 6000, 6300 kcal/kg and a time of 15-60 minutes and the temperature 400-800°C. Maximum results obtained total moisture (0.44%, fixed carbon (89%, volatile matter (2.4%, sulfur content (undetected and ash (7.2%. Then applied to the scale miniplant with continuous processes using multitube pyrolisator which are designed to operate in the temperature range 400-800°C and a flow rate of 240-730 kg/h, obtained coal cokes that meets industry quality standards, namely TM (0.42%, FC (90.40%, VM (2.16%, S (not detected, Ash (6.8% incalori 6300 kcal/h, a flow rate of 240 kg / h and temperatures between 600-700°C

  14. Development of inverter for elevator door control

    Kim, J.K.; Choi, U.D.; Jung, M.K.; Choi, S.K. [HHI R and D Center (Korea, Republic of); Yun, J.H.; Han, S.B. [HELCO R and D Center (Korea, Republic of)


    Most of the elevator door controllers have been controlled by DC Motors as an actuator. Recently, The control system using AC induction motor and general purpose inverter has been applied to control of elevator door. But there are some difficulties in making use of this system, such as adjustment of door speed pattern, door open-close time, and security of passenger safety. In order to solve these problems, a special inverter has been developed with an encoder feedback. From the result of field-test, we proved that a special inverter with encoder feedback device has come to considerable effect. Until now about 1,200 sets of these inverters are operated in Korea and about 100 sets are operated in South-east Asia. (author). 3 refs., 10 figs., 3 tabs.

  15. Vraaggericht werken door narratief onderzoek

    Joos Meesters


    Full Text Available Narrative research as a means for demand-driven policy and interventions This article reports on the advantages of performing narrative research discovering need patterns of families, children, local residents regarding quality of the pedagogical climate in their neighbourhood. A need pattern is a constructed set of related questions and needs that people express in response to life events, concrete experiences or within their current habitat. A method for narrative analysis was developed for two applications: use as a research tool and use as a change management tool. In this method professionals assume the role of narrative researchers and simultaneously learn to listen to the demands and needs of their potential clients from a more objective perspective. The method has been developed while performing transdisciplinary narrative research in the town-area of Hatert in Nijmegen, which will be presented as an example case throughout the text. Vraaggericht werken door narratief onderzoek Dit artikel gaat in op de mogelijkheden van narratief onderzoek in het opsporen van vraagpatronen van gezinnen, kinderen, wijkbewoners met betrekking tot de kwaliteit van het opgroeiklimaat in hun wijk. Een vraagpatroon is een set van samenhangende vragen en behoeften die burgers uiten naar aanleiding van een levensgebeurtenis, een concrete ervaring of binnen de actuele context waar zij in leven. Voor deze vorm van onderzoek is een vraaganalyse-instrument ontwikkeld om deze vraagpatronen te identificeren. Dit instrument heeft een dubbel perspectief. Het is een onderzoeksinstrument en een veranderkundig instrument. De professional kruipt in de rol van onderzoeker en leert hiermee te luisteren naar de vragen en behoeften van burgers. Het instrument is ontwikkeld in en voor een transdisciplinair, narratief onderzoek in de wijk Hatert in Nijmegen, dat we als casus zullen presenteren.

  16. Utilization coke dust as fuel in the cement industry

    Nawaz, S.


    Utilization of coke dust available from coal carbonization plants, as a fuel in the cement industry has been undertaken and discussed in this research paper. The parameters studied include physical and chemical evaluation of the coke dust and its economic feasibility/ suitability as fuel for the cement plants. Detailed studies have been carried out on the above referred parameters. In addition a comparative study has been done to access its suitability in comparison to other fuels especially imported coal. It has been found that the coke dust contained about 66% fixed carbon, 29% ash, 4% volatile matter, 1% moisture and 0.48% sulphur. It gross calorific value was found to be 5292 Kcal/kg. The detailed analysis of coke dust ash was also performed to determine as to how its constituents will compare with the cement constituents. Keeping in view the experimental results/ data generated on the coke dust, it has been concluded that it can be quite a good substitute for imported coal. In doing so a substantial financial saving can be achieved which ranges 40-45%. (author)

  17. Fatigue life estimation on coke drum due to cycle optimization

    Siahaan, Andrey Stephan; Ambarita, Himsar; Kawai, Hideki; Daimaruya, Masashi


    In the last decade, due to the increasing demand of petroleum product, the necessity for converting the heavy oil are increasing. Thus, demand for installing coke drum in whole world will be increase. The coke drum undergoes the cyclic high temperature and suddenly cooling but in fact is not designed to withstand that kind of cycle, thus the operational life of coke drum is much shorter in comparison to other equipment in oil refinery. Various factors determine in order to improve reliability and minimize the down time, and it is found that the cycle optimization due to cycle, temperature, and pressure have an important role. From this research it is found that the fatigue life of the short cycle is decrease by a half compare to the normal cycle. It also found that in the preheating stage, the stress peak is far exceed the yield strength of coke drum material and fall into plastic deformation. This is happened because of the temperature leap in the preheating stage that cause thermal shock in the upper part of the skirt of the coke drum.

  18. Utilization of formed coke from HBNPC in the Dunkerque blast furnaces

    Le Scour, C; Capelani, R


    Recalls the aspects involved in the manufacture of formed coke together with the coke characteristics. Describes the features of blast-furnaces No. 1 and No. 2 at Dunkerque. The blend used for producing the ovoids is composed of 70 to 80% non-coking coal and the ovoids are carbonized at 900 C. The first stage of the tests was carried out with 25% formed coke and the second stage with 22%. The formed coke was charged separately. The results were as follows: the coke rate was comparable and the permeability identical; there was no change in the behaviour of the furnace chamber and no problems were experienced at the hearth stage. The replacement of 30% of the conventional coke by HBNPC formed coke seemed a practical proposition.

  19. Microstructures and microtextures of natural cokes: A case study of heat-affected coking coals from the Jharia coalfield, India

    Singh, Ashok K. [Central Fuel Research Institute, CSIR, Dhanbad-828108 (India); Singh, Mahendra P. [Department of Geology, Banaras Hindu University, Varanasi-221005 (India); Sharma, Mamta; Srivastava, Sunil K.


    In Jharia coalfield, nearly 1250 Mt of coking coal has been devolatilized due to igneous intrusives and {proportional_to} 1900 Mt due to mine fires. This paper is an effort to investigate the effect of carbonization in two intrusive affected coal seams of Ena (seam XIII) and Alkusa (seam XIV) collieries of this coalfield. Through petrographic studies by microscopy, characterization of normal and heat-affected coals was carried out. The microstructures and microtextures produced due to extraneous heat have been related to nature and extent of heat, location of heating source, and quality and quantity of natural coke produced. Based on the results of this study and earlier studies, an effort has been made to study the classification scheme for microtextures of natural cokes generated through in-situ carbonization of the coal seams. It has been observed that in case of such heat effects under overburden pressure, the anisotropy is much more pronounced as compared to laboratory-carbonized cokes. In the mildly carbonized coals (pre-plastic phase, < 300 C) the vitrinite attained higher reflectance than normal vitrinite, liptinite started disappearing, and inertinite remained unaffected. In the moderately affected coals (plastic phase, 300-500 C), mesophase spheres and fused natural cokes were generated from the reactives (vitrinite and liptinite maceral groups), the liptinites disappeared, and structurally, the inertinites remained almost unchanged with slight increase in the reflectance value. In the severely heat-affected coals (post plastic phase, > 500 C) the identified microtextures were mesophase spheres, different shapes and sizes of natural cokes, graphitic sphaeroliths, pyrolytic carbons, inerts with morpho-structural changes and slightly higher reflectance values, and altered and unaltered mineral matters. A gradual change in the heat-affected coals with increasing temperature was observed with respect to location of intrusive body. It has been concluded that

  20. Microporous Cokes Formed in Zeolite Catalysts Enable Efficient Solar Evaporation

    Wang, Jianjian


    Cokes are inevitably generated during zeolite-catalyzed reactions as deleterious side products that deactivate the catalyst. In this study, we in-situ converted cokes into carbons within the confined microporous zeolite structures and evaluated their performances as absorbing materials for solar-driven water evaporation. With a properly chosen zeolite, the cokederived carbons possessed ordered interconnected pores and tunable compositions. We found that the porous structure and the oxygen content in as-prepared carbons had important influences on their energy conversion efficiencies. Among various investigated carbon materials, the carbon derived from the methanol-to-olefins reaction over zeolite Beta gave the highest conversion efficiency of 72% under simulated sunlight with equivalent solar intensity of 2 suns. This study not only demonstrates the great potential of traditionally useless cokes for solar thermal applications but also provides new insights into the design of carbon-based absorbing materials for efficient solar evaporation.

  1. Steam versus coking coal and the acid rain program

    Lange, Ian


    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. One effect of this policy was a large increase in the consumption of low-sulfur bituminous coal by coal-fired power plants. However, low-sulfur bituminous coal is also the ideal coking coal for steel production. The analysis presented here will attempt to determine how the market responded to the increased consumption of low-sulfur bituminous coal by the electricity generation sector. Was there a decrease in the quality and/or quantity of coking coal consumption or did extraction increase? Most evidence suggests that the market for coking coal was unaffected, even as the extraction and consumption of low-sulfur bituminous coal for electricity generation increased substantially.

  2. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.


    Reactions of coke in the blast furnace are determined mainly by the nature of the coke itself which depends on the coal properties, its preparation and the coking conditions. In the blast furnace the coke reacts with alkali and alkaline earth metals in the burden. Preheated coal charges were found to absorb far less sodium and potassium carbonates than a conventional moist charge over an equivalent period, due to the smaller pore volume available.

  3. The coke formation during the pyrolysis of 1,2-dichloroethane - results of radiotracer experiments

    Kopinke, F.D.; Zychlinski, W.; Rodewald, D.


    The formation of coke-like deposits during the pyrolysis of dichloroethane has been investigated by means of 14 C-labelled compounds. Starting from industrial feedstocks coke is formed from dichloroethane and its primary reaction products as well as from trace impurities with comparable rates. Chloroprene has been revealed as an effective coke precursor. The coke formation from industrial feedstocks can be reduced significantly by suitable purification methods. (author)

  4. Validation of a combi oven cooking method for preparation of chicken breast meat for quality assessment.

    Zhuang, H; Savage, E M


    Quality assessment results of cooked meat can be significantly affected by sample preparation with different cooking techniques. A combi oven is a relatively new cooking technique in the U.S. market. However, there was a lack of published data about its effect on quality measurements of chicken meat. Broiler breast fillets deboned at 24-h postmortem were cooked with one of the 3 methods to the core temperature of 80 degrees C. Cooking methods were evaluated based on cooking operation requirements, sensory profiles, Warner-Bratzler (WB) shear and cooking loss. Our results show that the average cooking time for the combi oven was 17 min compared with 31 min for the commercial oven method and 16 min for the hot water method. The combi oven did not result in a significant difference in the WB shear force values, although the cooking loss of the combi oven samples was significantly lower than the commercial oven and hot water samples. Sensory profiles of the combi oven samples did not significantly differ from those of the commercial oven and hot water samples. These results demonstrate that combi oven cooking did not significantly affect sensory profiles and WB shear force measurements of chicken breast muscle compared to the other 2 cooking methods. The combi oven method appears to be an acceptable alternative for preparing chicken breast fillets in a quality assessment.

  5. The influence of calcination on the physical and chemical properties of petroleum and mixed cokes

    Sikora, K; Syrek, H


    Freshly prepared petroleum and coal-petroleum cokes, before utilization for the production of various materials, are subjected to calcining--thermal treatment in a neutral or reducing atmosphere without the admission of air at less than or equal to 1400/sup 0/. During calcining, stabilization of the physical and chemical properties of the cokes takes place. The properties of the obtained coke depend chiefly on the calcining time and temperature. During calcining, volatile substances are removed almost completely from the coke; the coke density is increased, and its structure is put in order; the electrical conductivity is improved; the mechanical strength is increased; and the reactivity of the coke is decreased. Laboratory studies were conducted on calcining mixed coal-petroleum cokes of two grades at 1200, 1250, and 1300/sup 0/ for 2-6 h. In the calcining products the content of volatile substances, the ash content, S content, and density were determined. It was ascertained that calcining of mixed coal-petroleum cokes goes analogously to calcining of pure petroleum cokes. Raising the temperature and increasing the time of calcining has a substantial effect on improvement of coke physical and chemical properties. For high-quality coke, calcining is to be carried out at greater than or equal to 1300/sup 0/ for 4-6 h, for ordinary coke at > 1200/sup 0/ and greater than or equal to 4 h. The results are regarded as starting data for an industrial study of the calcining process.

  6. Electric two wheelers, zero emission solution for urban door to door transportation

    Fasil, Muhammed; Jensen, Bogi Bech

    The noise and exhaust pollution coupled with increasing congestion faced by urban centres demands new personal mobility solution for faster door to door connectivity. The advancement in electric power train and lowering cost of Li-ion battery is made it possible to develop light weight fully...

  7. Comparing energy use and environmental emissions of reinforced wood doors and steel doors

    Lynn Knight; Melissa Huff; Janet I. Stockhausen; Robert J. Ross


    The USDA Forest Service Forest Products Laboratory has patented a technology that incorporates fiberglass-reinforced wood into the structure of wood doors and other wood building products. The process of reinforcing wood doors with epoxy and fiberglass increases the strength and durability of the product. Also, it allows the use of low-value, small-diameter wood which...

  8. Coke detection in furnaces tubes by radiographic examination

    Santos, I.S. dos


    The coke detection technique by radiographic examinations allows to quantify the coke in furnace coils of Petroleum refineries and petrochemical industries. The paper describes how was determined the radiographic parameters, the wall apparent thickness calculation, the distance source-film, the position of the source and films, the chosen of films and the calculation of exposure time, aiming to obtain high producticity and good quality image. This technique is being used and improved for more than two years with good results. (E.G.) [pt

  9. Study of phenol extraction from coke-chemical sources

    Catana, E.; Mateescu, I.; Giurcaneanu, V.; Bota, T.


    The paper presents an experimental study of the phase equilibrium in the coke-chemical tarphenols-solvent system (NaOH) solution and (phenolate solution) implied in the extraction of the phenols from coke-chemical sources. The possibility of using the phenolate solution as an extraction agent, thus making possible the improvement of the specific consumption and also simplifying the problem of the corrosion and of the waste water at the same time is presented. The influence of the solvent tar mass ratio on the selectivity of the process is discussed, this criterion being considered for establishing the conditions of the extraction. 2 figs., 7 tabs., 13 refs.

  10. Application of flotational reagents obtained from coke-industry byproducts

    N.I. Nikitin; I.N. Nikitin; N.I. Toporkova [Khar' kov Polytechnic Institute (Ukraine)


    Today, the operational efficiency of coal-preparation shops at coke plants largely depends on the flotation process, since flotation is the basic method of regenerating the slurry water in the water-slurry systems and the basic enrichment process for small-grain coal slurries. At The Coal-Chemistry Institute, attempts have been made to address the growing demand for readily available and relatively inexpensive flotational reagents. In particular, a list of promising coke-industry byproducts for use as flotational reagents has been compiled, and the possibility of reducing their toxicity has been established. In addition, various industrial byproducts and wastes have been investigated in terms of flotational activity.

  11. Surveys of Microwave Ovens in U.S. Homes

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Hung-Chia Dominique [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beraki, Bereket [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Desroches, Louis-Benoit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Young, ScottJ. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Whitehead, Camilla Dunham [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Donovan, Sally M. [Consultant, Melbourne (Australia)


    The U.S. Department of Energy (DOE) is conducting test procedure and energy conservation standard rulemakings for microwave ovens. These units generally offer a “convection,” “bake,” or “combo” cooking mode on the user interface. DOE divides products under analysis into classes by the type of energy used, capacity, or other performance-related features that affect consumer utility and efficiency. Installation types are grouped as (1) countertop and (2) built-in and over-the-range. The following sub-sections summarize the existing data as well as the specific data LBNL obtained with surveys.

  12. Gas dynamic laser having shutter doors

    Olinger, J.B. Jr.; Wahl, R.L.


    A gas dynamic laser is shown wherein gases containing constituents necessary to obtain a lasing action are passed through a nozzle array and directed into a lasing cavity and through a diffuser to an exit. An opening is located on each side of said lasing cavity with a shutter box outside of said cavity having a shutter door for opening or closing said opening. A mirror box is located behind each shutter box and contains a mirror. These mirrors are aligned with the openings in the lasing cavity with each door positioned between an opening and a mirror. Another outlet opening is positioned downstream of the first opening which provides an outlet opening for a laser beam. A shutter box is located around this opening and also houses a shutter door for opening and closing said opening. The mirror box which extends behind this shutter box includes opening means for permitting the output beam to pass through an aerodynamic window to atmosphere. Actuating means are provided for rapidly opening and closing said shutter doors. Bearing means including recirculating balls are located on the top and bottom of each shutter door to ride in tracks at an angle to the sealing surface on the laser device. Vacuum means are provided to reduce the pressure in the shutter box and mirror box independently of the pressure in the lasing cavity

  13. Investigation of different wall profiles on energy consumption and baking time in domestic ovens

    Onbasioglu S. U.


    Full Text Available This present study, has aimed to examine and improve the momentum and heat transport mechanism in a domestic oven. At the beginning, the experimental study has been carried out in the oven that analyzing heat transfer behavior of the oven. During the preparation and procedure of the energy consumption experiments, standards determined in EN 50304 had been used. In addition to experimental results, the numerical simulation has showed that increasing diffusion over the walls and advection in the center, the performance of the oven can be improved. Using this idea, two different models have been set up in the oven walls and have been experimentally and numerically studied. Finally, the results have been compared with the original case that validates the initial idea by improving the performance of the oven.

  14. Design and Construction of a Batch Oven for Investigation of Industrial Continuous

    Stenby, Mette; Nielsen, Brian; Risum, Jørgen


    A new batch oven has been designed and build to model baking processes as seen in large scale tunnel ovens. In order to simulate the conditions found in tunnel ovens a number of critical parameters are controllable: The temperature, the humidity and the air velocity. The band movement is simulated...... by moving the two air ducts above and below the products; in this way it is possible to keep the baking tray steady for continuous measurements of the product weight. During baking the shape and colour of the product can be monitored visually through a window. The simultaneous measuring of mass and visual...... aspects is a unique feature of this batch oven. Initial experiments of reproducing tunnel oven baking in the batch oven have shown good results, based on comparisons of weight loss, dry matter content and surface colour. The measured quality parameters did not differ significantly. Even though a few...

  15. Design and construction of a batch oven for investigation of industrial continuous baking processes

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens


    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... and adjustable over a wide range of settings. It is possible to monitor the product weight and temperature continuously during baking. The simultaneous measuring of mass and a window allowing for visual (e.g., by video recording) control is unique for this experimental batch oven. Two validation steps have been...... carried out. The uniformity of heating in the oven was assessed by measurements of local heat transfer coefficients and confirmed by baking tests. The methods showed that the oven is able to heat and bake uniformly across the baking area. Hereafter, the oven was validated against a commercial 10-m tunnel...

  16. Finite element modelling and simulation of free convection heat transfer in solar oven

    Sobamowo, M.G.; Ogunmola, B.Y.; Ayerin A.M. [Department of Mechanical Engineering, University of Lagos, Akoka, Lagos (Nigeria)


    The use of solar energy for baking, heating or drying represents a sustainable way of solar energy applications with negligible negative effects. Solar oven is an alternative to conventional oven that rely heavily on coal and wood or Electric oven that uses the power from the National grid of which the end users have little or no control. Since the Solar oven uses no fuel and it costs nothing to run, it uses are widely promoted especially in situations where minimum fuel consumption or fire risks are considered highly important. As useful as the Solar Oven proved, it major setback in the area of applications has been its future sustainability. For the use of Solar Oven/Cookers to be sustained in the future, the design and development of solar oven must rely on sound analytical tools. Therefore, this work focused on the design and development of the solar oven. To test the performance of the Small Solar Oven a 5000cm3 beaker of water was put into the Oven and the temperature of the water was found to reach 810C after about 3hrs under an average ambient temperature of 300C. On no load test, the oven reached a maximum temperature of 112oC in 6hrs. In order to carry out the parametric studies and improve the performance of the Solar Oven, Mathematical models were developed and solved by using Characteristics-Based Split (CBS) Finite Element Method. The Model results were compared with the Experimental results and a good agreement was found between the two results.

  17. Design and Construction of Pool Door for Research Reactor

    Jung, Kwangsub; Lee, Sangjin; Choi, Jinbok; Oh, Jinho; Lee, Jongmin [KAERI, Daejeon (Korea, Republic of)


    The pool door is a structure to isolate the reactor pool from the service pool for maintenance. The pool door is installed before the reactor pool is drained. The pool door consists of structural component and sealing component. The main structures of the pool door are stainless steel plates and side frames. The plates and frames are assembled by welded joints. Lug is welded at the top of the plate. The pool door is submerged in the pool water when it is used. Materials of the pool door should be resistive to corrosion and radiation. Stainless steel is used in structural components and air nozzle assemblies. Features of design and construction of the pool door for the research reactor are introduced. The pool door is designed to isolate the reactor pool for maintenance. Structural analysis is performed to evaluate the structural integrity during earthquake. Tests and inspections are also carried out during construction to identify the safety and function of the pool door.

  18. Design and Construction of Pool Door for Research Reactor

    Jung, Kwangsub; Lee, Sangjin; Choi, Jinbok; Oh, Jinho; Lee, Jongmin


    The pool door is a structure to isolate the reactor pool from the service pool for maintenance. The pool door is installed before the reactor pool is drained. The pool door consists of structural component and sealing component. The main structures of the pool door are stainless steel plates and side frames. The plates and frames are assembled by welded joints. Lug is welded at the top of the plate. The pool door is submerged in the pool water when it is used. Materials of the pool door should be resistive to corrosion and radiation. Stainless steel is used in structural components and air nozzle assemblies. Features of design and construction of the pool door for the research reactor are introduced. The pool door is designed to isolate the reactor pool for maintenance. Structural analysis is performed to evaluate the structural integrity during earthquake. Tests and inspections are also carried out during construction to identify the safety and function of the pool door

  19. New process of co-coking of waste plastics and blend coal

    Liao, H.; Yu, G.; Zhao, P. (and others) [Shougang Technical Research Institute, Beijing (China)


    To recycle and reuse waste plastics, as well as to get a new resource of coking, co-coking process of waste plastics and blend coal has been developed by Nippon Steel. However, the ratio of waste plastics in blend coal should be limited in the range of 1% to maintain the coke strength. This paper suggested a new process of co-coking of waste plastics and blend coal. The new process can add the waste plastics ratio up to 2-4%; when the waste plastics ratio is 2%, the coke strength after reaction with CO{sub 2} (CSR) increased 8%. 8 refs., 2 figs., 3 tabs.

  20. Evaluation of usage and fuel savings of solar ovens in Nicaragua

    Bauer, Gordon


    Solar cooking technology has been promoted as a solution to both global poverty and environmental degradation, but relatively little research exists on the impact of solar oven usage on biomass fuel consumption. This study evaluates solar oven usage and wood consumption in northern Nicaragua during both the rainy and dry seasons, using surveys, temperature dataloggers, and direct measurements of fuelwood use. Solar oven owners reported usage on 79% of days during the dry season, and 41% of days during the rainy season. Comparison with oven temperature records confirmed usage on 50% of days during the dry season, and 16% of days during the rainy season. However, wood consumption measurements showed no statistically significant difference between days with solar oven usage and days without, suggesting that frequency of usage alone is not an appropriate proxy for fuel savings. Survey results suggest that a large part of solar oven usage came in addition to biomass cooking, as opposed to replacing it. These results suggest a need for further study of wood consumption in situ and more focus on the specific kinds of foods prepared in solar cookers, as well as local cultural and climatic conditions. - Highlights: • Solar oven usage reported on most days during dry season. • No statistically significant fuelwood savings can be attributed to solar oven use. • Usage reported on surveys differs substantially from solar oven temperature data. • Possible causes of lack of wood savings range from weather to diet and gender norms.

  1. Investigation about the thermal features of the ovens used for thermoluminescence

    Scarpa, G.; Caporali, C.; Moscati, M.


    The present paper reports the results of an investigation carried out by the PAS-FIBI-DOSIBIO laboratory (ENEA, Casaccia, Roma) about the thermal features of the ovens used for annealing treatments of TL dosemeters. A total number of 45 commercial ovens and muffle furnaces were studied. belonging to 24 Italian Health Physics laboratories. The investigation has shown that the majority of the ovens do not possess a degree of accuracy, stability, uniformity and reproducibility suitable for their use in the field of thermoluminescence dosimetry. Practical suggestions are also given in order to reduce the effects of some of the negative characteristics found in most ovens. (author)

  2. The development of coke smelting and the industrial revolution

    Macfarlane, Alan


    Abraham Darby and the origins of the industrial revolution in Britain. Alan Macfarlane talks to John about the reasons for the area near Birmingham becoming the epi-centre of the industrial development, and the development of coke furnaces and iron smelting.

  3. Retort for coking peat, brown coal, bituminous shale, etc


    The retort leads the gases and vapors into the coking chamber, between the inside heater and the outer heating shaft-wall. Over-lapping, double-faced acting rings are arranged, over which the charge in two or more separate vertical layers is transported.

  4. Continuous moisture measurement in metallurgical coke with automatic charge correction

    Watzke, H.; Mehlhose, D.


    A process control system has been developed for automatic batching of the coke amount necessary for metallurgical processes taking into account the moisture content. The measurement is performed with a neutron moisture gage consisting of an Am-Be neutron source and a BF 3 counter. The output information of the counter is used for computer-controlled batching

  5. Process for converting coal into liquid fuel and metallurgical coke

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.


    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  6. modelling and modelling and simulation of coking in the riser


    into the modeling of FCC riser by predicting catalyst coke content as a function of reaction by predicting ... understanding of the process, hence restricting scale up to within the ... MATLAB (R2009a) on a Compaq HP CQ61 laptop. The following ...

  7. On-line determination of moisture in coke on conveyor belts

    Millen, M.J.; Rafter, P.T.; Sowerby, B.D.


    A fast neutron and γ-ray transmission technique is being developed for the on-line determination of moisture in coke on conveyor belts. Calculations show that the technique is capable of determining coke moisture to within 0.3 wt% for coke thicknesses down to 50 mm provided that count rates are measured to within 0.1% relative. Laboratory measurements on static and moving coke samples showed that coke moisture can be determined to within 0.25 and 0.45 wt% for crushed and lump coke, respectively. It is planned to carry out a long-term plant trial of the technique on lump coke feed to the No. 3 blast furnace at BHP, Newcastle, NSW, Australia. (author)

  8. Study of variation grain size in desulfurization process of calcined petroleum coke

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza


    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  9. De fietsstraat : Onderzoek naar fietsverbindingen door verblijfsgebieden

    Andriesse, H.C.; Hansen, J.A.


    De bestaande fietsverbindingen in de stad lopen meestal langs doorgaande wegen met druk autoverkeer. Door de toename van het autoverkeer zijn deze verbindingen niet altijd meer de meest geschikte fietsvoorzieningen. Ook de maatregelen die in het kader van duurzaam veilig wegverkeer worden

  10. Maillard-reactie door model beheersbaar

    Roost, van M.


    Gewenste en ongewenste bruinkleuring van levensmiddelen door een Maillard-reactie is vaak lastig te beheersen. Wageningse onderzoekers ontwikkelden een simulatiemodel, waarmee producentenmeer inzicht krijgen in de Maillard-reactie, en zo ook de kleur van het eindproduct beter kunnen beheersen

  11. Gaffkemia van kreeften door Aerococcus viridans

    Engelsma, M.Y.; Haenen, O.L.M.


    Artikel over een bacteriële ziekte van onder andere kreeften, de zogenaamde Gaffkemia, veroorzaakt door de bacterie Aerococcus viridans. Deze ziekte is in Nederland nog niet eerder gevonden bij kreeften, maar zou met importen van kreeftachtigen mee kunnen komen.

  12. Gezondheidsschade door calamiteiten met gevaarlijke stoffen

    Weger, D. de; Feron, V.J.; Zwart, A.; Vrijer, F. de


    Door de Afdeling Industriële Veiligheid van IMET-TNO (Instituut voor Milieu- en Energietechnologie, Hoofdgroep Milieu en Energie te Apeldoorn) en de Afdeling Biologische Toxicologie van ITV-TNO (Instituur voor Toxicologie en voeding, Hoofdgroep Voeding te Zeist) is het project 'Gezondheidsschade

  13. 14 CFR 25.783 - Fuselage doors.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuselage doors. 25.783 Section 25.783 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... operated manually; (ii) The powered latch actuators, if installed; and (iii) The relative motion between...

  14. Doors for memory: A searchable database.

    Baddeley, Alan D; Hitch, Graham J; Quinlan, Philip T; Bowes, Lindsey; Stone, Rob


    The study of human long-term memory has for over 50 years been dominated by research on words. This is partly due to lack of suitable nonverbal materials. Experience in developing a clinical test suggested that door scenes can provide an ecologically relevant and sensitive alternative to the faces and geometrical figures traditionally used to study visual memory. In pursuing this line of research, we have accumulated over 2000 door scenes providing a database that is categorized on a range of variables including building type, colour, age, condition, glazing, and a range of other physical characteristics. We describe an illustrative study of recognition memory for 100 doors tested by yes/no, two-alternative, or four-alternative forced-choice paradigms. These stimuli, together with the full categorized database, are available through a dedicated website. We suggest that door scenes provide an ecologically relevant and participant-friendly source of material for studying the comparatively neglected field of visual long-term memory.

  15. Door valve for fuel handling path

    Makishima, Katsuhiko.


    A door valve is provided which seals cover gas from a liquid metal cooled reactor without leakage therefrom. A threaded shaft is screwed into a heavy box press which is packed with lead. The shaft is adapted to be rotated by an electric motor or a manually operated wheel which is disposed outside of the door valve. From the box press a valve plate is suspended by four linkage bars, one for each corner. Each linkage bar is provided with two wheels which are respectively mounted at the connections with the box press and the valve plate. The wheels are carried on the horizontal grooves formed in a door valve casing. In operation the shaft rotates and travels to permit the box press and the valve plate to move into the door valve casing while the valve plate does not contact the casing. When the box press reaches the home position, the wheels drop into the recesses which are disposed at the ends of the grooves, the valve plate is carried on the valve opening, and the box press presses the valve plate to increase the tightness. The valve plate does not suffer wear as it does not over other parts. (Yamaguchi, T.)

  16. Electrical conductivity of the screening residuals of coke production in context of ferrochromium production in a submerged arc furnace

    Rousu, Arto; Mattila, Olli [Lab. of Process Metallurgy, Univ. of Oulu (Finland)


    Coke is used as a reducing agent in the production of ferrochromium in a submerged arc furnace (SAF). Its good electrical conductivity compared to other input materials makes it a dominant current conductivity substance in the burden. The resistance of the coke has to be high enough to ensure the proper functionality of the furnace. Used cokes for submerged arc furnace production are relatively small in size compared to e.g. blast furnace (BF) cokes. A common practice is to use screening residual coke, which is too small for the BF, in SAF. The goal of this study was to show differences in the electrical properties of screening residual cokes compared to coke formed in different parts of the coke battery, in dependence of particle size. The resistances of different cokes were measured and XRD measurements were performed to define the crystallographic structure of the selected cokes. The results indicate that small coke particles have higher overall resistance, which is due to their internal properties. This small weakly carbonized coke is formed in the middle of the coking battery and is subject to changes in varying coking practices. Continuous quality control of screening residual coke is needed to use it in the SAF. (orig.)

  17. Development of a tornado safe room door from wood Products: door design and impact testing

    Robert H. Falk; James J. Bridwell


    In this study, a tornado safe room door built from wood products and steel sheeting was developed and impact-tested according to tornado safe room standards. Results indicate that an door constructed from as few as two sheets of 23/32-in. (18.26-mm) construction-grade plywood and overlaid with 18-gauge (0.05-in.- (1.27- mm-) thick) steel can pass the required impact...

  18. Fuzzy Logic Applied to an Oven Temperature Control System

    Nagabhushana KATTE


    Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.

  19. Polycyclic aromatic hydrocarbon contamination of American lobster, Homarus americanus, in the proximity of a coal-coking plant

    Uthe, J F; Musial, C J


    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental contaminants resulting predominantly from anthropogenic pyrolytic and combustion processes. In addition to the usual methods of aerial and aqueous transport to the coastal marine environment substantial amounts of PAH are added through the use of products such as creosote, coal tar and coal tar pitch as preservative and antifouling agents in the marine environment. Many PAH compounds are known carcinogenic agents and are rapidly taken up by fish and shellfish from water. Therefore as human foodstuffs many of these shellfish species warrant monitoring for PAH. A study of PAH in lobster tissues has been carried out using lobsters captured in Sydney harbour, Nova Scotia, Canada. Two coal-coking ovens on the shore have discharged their liquid effluents into the harbour. Lobsters from this area were sampled in 1982 and 1984. This paper presents the materials and methods used in the sampling, the results and discussion of them. The results confirmed the ability of lobsters to accumulate extremely high amounts of PAH in their tissues. 14 references.

  20. Application of extrusion technology to prepare bread crumb, a comparison with oven method

    Pasha, I.; Asim, M.


    The current research project was designed to conclude the upshot of extrusion cooking temperature on the properties and acceptability of bread crumb. Bread crumbs were obtained by drying the bread, maintaining moisture up to 3-8% and then broken down using hammer mill or crusher which breaks the bread into bread crumbs. Significantly highest moisture contents 7.26% was observed in oven baked bread crumb as compared to 6.25% in bread crumb prepared by extrusion cooking method. The highest bulk density (28.13 g/100 L) was observed in extruded bread crumb whereas, the oven baked bread crumbs showed lower bulk density (7.03 g/100 L). The fat uptake of extruded and oven baked bread crumbs were found 0.516 mg/g and 0.493 mg/g, respectively. The extruded bread crumb showed higher water binding capacity as 34.76 g H/sub 2/O/kg as compared to oven baked bread crumb which showed 27.92 g H/sub 2/O/kg. Sensory evaluation of extruded and oven baked bread crumbs depicted that bread crumbs prepared from extrusion cooking methods got significantly higher scores for taste, flavour and over all acceptability as compared to those prepared by oven baked method. As far as crispiness is concerned oven baked bread crumbs got comparatively higher scores. Moreover, it was concluded that the treatment T2 of extruded bread crumbs got more sensory scores than oven baked bread crumbs. (author)

  1. 75 FR 42579 - Energy Conservation Program for Consumer Products: Test Procedure for Microwave Ovens; Repeal of...


    ... provided in paragraph (i)(2) of this section, for each basic model of conventional cooking tops, and... the cooking efficiency test procedure for microwave ovens under the Energy Policy and Conservation Act (EPCA). DOE has determined that the microwave oven test procedure to measure the cooking efficiency does...

  2. 76 FR 12825 - Energy Conservation Program for Consumer Products: Test Procedure for Microwave Ovens


    ... Conservation Program for Consumer Products: Test Procedure for Microwave Ovens AGENCY: Office of Energy.... Department of Energy (DOE) is amending its test procedures for microwave ovens under the Energy Policy and Conservation Act (EPCA) to provide for the measurement of standby mode and off mode power use by microwave...

  3. Geochemical characteristics of oil sands fluid petroleum coke

    Nesbitt, Jake A.; Lindsay, Matthew B.J.; Chen, Ning


    The geochemical characteristics of fluid petroleum coke from the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada were investigated. Continuous core samples were collected to 8 m below surface at several locations (n = 12) from three coke deposits at an active oil sands mine. Bulk elemental analyses revealed the coke composition was dominated by C (84.2 ± 2.3 wt%) and S (6.99 ± 0.26 wt%). Silicon (9210 ± 3000 mg kg"−"1), Al (5980 ± 1200 mg kg"−"1), Fe (4760 ± 1200 mg kg"−"1), and Ti (1380 ± 430 mg kg"−"1) were present in lesser amounts. Vanadium (1280 ± 120 mg kg"−"1) and Ni (230 ± 80 mg kg"−"1) exhibited the highest concentrations among potentially-hazardous minor and trace elements. Sequential extractions revealed potential for release of these metals under field-relevant conditions. Synchrotron powder X-ray diffraction revealed the presence of Si and Ti oxides, organically-complexed V and hydrated Ni sulfate, and provided information about the asphaltenic carbon matrix. X-ray absorption near edge structure (XANES) spectroscopy at the V and Ni K-edges revealed that these metals were largely hosted in porphyrins and similar organic complexes throughout coke grains. Minor differences among measured V and Ni K-edge spectra were largely attributed to slight variations in local coordination of V(IV) and Ni(II) within these organic compounds. However, linear combination fits were improved by including reference spectra for inorganic phases with octahedrally-coordinated V(III) and Ni(II). Sulfur and Fe K-edge XANES confirmed that thiophenic coordination and pyritic-ilmenitic coordination are predominant, respectively. These results provide new information on the geochemical and mineralogical composition of oil sands fluid petroleum coke and improve understanding of potential controls on associated water chemistry. - Highlights: • Oil sands fluid petroleum coke contains wide range of major, minor and

  4. Characterization of norm sources in petroleum coke calcining processes - 16314

    Hamilton, Ian S.; Halter, Donald A.; Fruchtnicht, Erich H.; Arno, Matthew G.; Haumann, Donald F


    Petroleum coke, or 'petcoke', is a waste by-product of the oil refining industry. The majority of petcoke consumption is in energy applications; catalyst coke is used as refinery fuel, anode coke for electricity conduction, and marketable coke for heating cement kilns. Roskill has predicted that long-term growth in petroleum coke production will be maintained, and may continue to increase slightly through 2012. Petcoke must first be calcined to drive off any undesirable petroleum by-products that would shorten the coke product life cycle. As an example, the calcining process can take place in large, rotary kilns heated to maximum temperatures as high as approximately 1400-1540 deg. C. The kilns and combustion/settling chambers, as well as some cooler units, are insulated with refractory bricks and other, interstitial materials, e.g., castable refractory materials, to improve the efficiency of the calcining process. The bricks are typically made of 70-85-percent bauxite, and are slowly worn away by the calcining process; bricks used to line the combustion chambers wear away, as well, but at a slower rate. It has been recognized that the refractory materials contain slight amounts of naturally occurring radioactive materials (NORM) from the uranium- and thorium-decay series. Similarly, low levels of NORM could be present in the petcoke feed stock given the nature of its origin. Neither the petcoke nor the refractory bricks represent appreciable sources of radiation or radioactive waste. However, some of the demolished bricks that have been removed from service because of the aforementioned wearing process have caused portal alarms to activate at municipal disposal facilities. This has lead to the current investigation into whether there is a NORM concentrating mechanism facilitated by the presence of the slightly radioactive feed stock in the presence of the slightly radioactive refractory materials, at calcining-zone temperatures. Research conducted to date has been

  5. Granulation of coke breeze fine for using in the sintering process

    Mohamed F.M.


    Full Text Available Coke breeze is the main fuel used in the sintering process. The value of -3+1 mm. represents the most favorable particle size for coke breeze in the sintering process. About 20% of total coke fines (-0.5 mm are produced during different steps of preparation. Introducing these fines during the sintering process proves to be very harmful for different operating parameters. Thus ,this study aims at investigating the production of granules resulting from these fines using molasses as organic binder and its application in sintering of an iron ore. The results showed that the granules having the highest mechanical properties were obtained with 14.5 wt % molasses addition. The sintering experiments were performed by using coke breeze in different shapes (-3+1 mm in size, coke breeze without sieving and coke breeze granules -3+1 mm. The reduction experiments, microscopic structure and X-ray analysis for the produced sinter were carried out. The results revealed that, all sinter properties (such as shatter test, productivity of sinter machine and blast furnace, reduction time and chemical composition for produced sinter by using coke breeze with size -3+1 mm and coke breeze granules were almost the same. The iron ore sinter which was produced by using coke breeze without sieving yielded low productivity for both sinter machine and blast furnace. Furthermore, using coke breeze without sieving in sintering of an iron ore decreases the vertical velocity of sinter machine and increases the reduction time.

  6. Quantification of mineral matter in commercial cokes and their parent coals

    Sakurovs, Richard; French, David; Grigore, Mihaela [CRC for Coal in Sustainable Development, CSIRO Energy Technology, PO Box 330 Newcastle 2300 (Australia)


    The nature of mineral matter in coke is an important factor in determining the behaviour of coke in the blast furnace. However, there have been few quantitative determinations of the types of mineral matter in coke and the feed coal. Here we use a technique of quantitative X-ray diffraction - SIROQUANT trademark - to determine the nature and quantity of mineral matter in eleven cokes and their parent materials, using samples of coals and their cokes utilised commercially in blast furnaces around the world. In some of these coals a considerable proportion of the phosphorus was present as goyazite, an aluminium phosphate. In the cokes, most of the iron was incorporated into amorphous aluminosilicate material; metallic iron accounted for about 15% of the iron present, and a similar amount was present as sulfides. Potassium and sodium were largely present as amorphous aluminosilicate material. Most of the quartz in the coal was unaffected by the coking, but a small fraction was transformed into other minerals. Quartz is not completely inert during coking. The amount of the catalytic forms of iron in the coke - iron, iron oxides and iron sulfides - was not related to the amount of pyrite and siderite in the starting coal, indicating that estimation of catalytic iron requires investigation of the mineral matter in coke directly and cannot be estimated from the minerals in the coal. (author)

  7. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Narita, Yoichi; Mio, Hiroshi; Orimoto, Takashi; Nomura, Seiji


    A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke) to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM) was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke's collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  8. Effect of Oven Types on the Characteristics of Biscuits Made from Refrigerated and Frozen Doughs

    Ismail Sait Dogan


    Full Text Available Characteristics of sugar snap and chocolate chip cookies, and hazelnut biscuits made from refrigerated and frozen dough were studied. Doughs were stored at 4 °C for 6 weeks and at –18 °C for 6 months, respectively. Physical characteristics of the biscuit samples such as spread, baking loss, surface colour and density were determined. Dough colour was not affected by storage time and temperatures. Biscuit characteristics did not change significantly during storage. Spread ratio was significantly lower for the biscuits baked in the gas oven than for the biscuits baked in the electric oven. Biscuit dough can be refrigerated for 6 weeks, and frozen for 6 months. Results also suggest that unique quality differences exist between the two ovens. For sugar snap cookies and hazelnut biscuits the electric oven without air circulation was better, while for chocolate chip cookies gas oven with air circulation was more suitable.

  9. Products cooked in preheated versus non-preheated ovens. Baking times, calculated energy consumption, and product quality compared.

    Odland, D; Davis, C


    Plain muffins, yellow cake, baked custard, apple pie, tuna casserole, frozen tuna casserole, cheese soufflé, and meat loaf were baked in preheated and non-preheated standard gas, continuous-clean gas, standard electric, and self-cleaning electric ovens. Products generally required 5 min. or less extra baking time when cooked in non-preheated rather than in preheated ovens. The variability in baking times often was less between preheated and non-preheated ovens than among oven types. Calculated energy consumption values showed that usually less energy was required to bake products in non-preheated than in preheated ovens; savings averaged about 10 percent. Few significant differences were found in physical measurements or eating quality either between preheated and non-preheated ovens or among oven types. Overall, for the products tested, findings confirmed that preheating the oven is not essential for good product quality and, therefore, is an unnecessary use of energy.

  10. Urgent reconstruction and re-equipping of coking plants

    Kvitkin, I.A.; Martynenko, V.M.; Rozenfel' d, M.S.; Svyatogorov, A.A.; Shvartsman, I.G.


    This paper discusses the various options involved: complete or partial reconstruction of existing buildings and equipment or new construction with new equipment and new underground and surface communications. It explains that reconstruction work is divided into three phases: initial phase (clearance, dismantling, closing down coking batteries); basic phase (fitting heat-resistant materials, prestart-up assembly work); final phase (drying out, heating up, adjustments, start-up). A structured scheme for a typical initial phase is described and a method of calculating the durations of the various phases is discussed. Conclusion is that there is an urgent requirement for a document to be produced for the control of reconstruction work; it should contain standard durations and could serve as a standard for coking plant reconstruction work.

  11. Biological monitoring the exposure to polycyclic aromatic hydrocarbons of coke oven workers in relation to smoking and genetic polymorphisms for GSTM1 GSTT1

    Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Asten, J.G. van; Vogel, N. de; Bruijntjes-Rozier, T.C.D.M.; Schouten, T.; Cramers, P.; Maas, L.; Herwijnen, M.H. van; Schooten, F.-J. van; Hopmans, P.M.J.


    Occupational exposure to polycyclic aromatic hydrocarbons (PAH) increases the risk of developing lung cancer. Human exposure is often demonstrated by increased internal levels of PAH metabolites and of markers for early biological effects, like DNA adducts and cytogenetic aberrations. Objective:

  12. Composition and method for coke retardant during hydrocarbon processing

    Reid, D.K.


    A process is described for inhibiting the formation and deposition of filamentous coke on metallic surfaces in contact with a hydrocarbon having a temperature of 600 0 -1300 0 F which comprises adding to the hydrocarbon a sufficient amount for the purpose of a boron compound selected from the group of boron oxide compounds, boric acid and metal borides, with the proviso that when boric acid is used, it is substantially free of water

  13. Combined XRD and Raman studies of coke types found in SAPO-34 after methanol and propene conversion

    Wragg, David S.; Grønvold, Arne; Voronov, Alexey


    oligomerisation (PO) reactions. The coke caused by MTO leads to two distinct sets of HRPD peaks which can be indexed by two SAPO-34 unit cells with different lattice parameters and coke contents. We believe that these unit cells represent different zones of the catalyst filled with different coke types. PO coking...... does not lead to splitting of the diffraction peaks. Raman spectra show differences between the coke types produced by MTO and PO with the same overall trend of increasingly polyaromatic coke with increasing coke mass. The intensity of the monocyclic and polyaromatic peaks in the MTO Raman spectra...... correspond to the phase fractions of the two cell types used in the Rietveld refinement, suggesting a link between the two phases and the two coke types. The PO Raman spectra have a stronger polyaromatic band at low coke, suggesting that polyaromatics form faster. In situ powder XRD studies suggest...

  14. Nuclear Storage Overpack Door Actuator and Alignment Apparatus

    Andreyko, Gregory M.


    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage

  15. Nickel and vanadium extraction from the Syrian petroleum coke

    Shlewit, H.; Alibrahim, M.


    Syrian petroleum coke samples were characterized and submitted for salt-roasting treatment in electric furnace to evaluate the convenience of this procedure for the extraction of the vanadium, nickel and sulfur from coke. Both solution and solid residue remaining after salt roasting were separated by filtration and were analyzed for vanadium, nickel and sulfur. The solution was analyzed by UV-Visible spectroscopy for vanadium and nickel and gravimetrically for sulfur. The solid residue and the untreated samples of petroleum coke were analyzed by XRF spectrometry. Results showed that more than 90% of sulfur and 60% of vanadium could be extracted by salt roasting treatment. An alternative procedure has been suggested, in which, more than 80% of sulfur and small percentage of vanadium can be leached by 0.75 M of Na 2 CO 3 solution at 70-80 Co. Vanadium was selectively extracted by DEHPA/TBP from the loaded leached solution. The extraction procedure flowsheet was also suggested. (authors)

  16. Denitrification of coking wastewater with micro-electrolysis.

    Lv, Yanli; Wang, Yanqiu; Shan, Mingjun; Shen, Xue; Su, Ying


    The denitrification for the coking wastewater was conducted by means of original battery principle with Fe-C micro-electrolysis. Fe-C serves as positive and negative electrodes, by which N02(-)-N and TN were reduced to nitrogen, and then the purpose of denitrifieation for coking wastewater was realized. The influences of pH value, carbon particle size, Fe/C ratio (mass ratio), reaction time and coagulation pH value on removal rate of N02(-)-N and TN were investigated. Coking wastewater originated from Jiamusi Coal Chemistry Engineering Company. The optimum conditions of treatment were as follows: the initial pH was 3.0, the dosage of Fe 73.5 g/L, reaction time 70 min, mass ratio of Fe/C ratio 1.0:1.3, coagulation pH 9.0 and sedimentation time 40 min. Under those conditions, nitrogen removal efficiencies of N02(-)-N and TN were beyond 50% and 45%, respectively. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. An additive for a petroleum coke and water suspension

    Khiguti, K.; Igarasi, T.; Isimura, Y.; Kharaguti, S.; Tsudzina, T.


    The patent covers an additive for a petroleum coke and watersuspension which contains soap of an aliphatic acid (AM) and or a salt of a maleic acid copolymer (SMK). The aliphatic acid soap is a salt of an alkaline earth metal of C6 to C22 aliphatic acid, an ammonium salt or a salt of a lower amine. The maleic acid copolymer is a salt (sodium, NH4) of a lower amine of a maleic anhydride copolymer with a copolymerizing vinyl additive. Capric acid, lauric acid, palmatic acid, aleic and other acids may be used as the aliphatic acid, while methylamine, trimethylamine, diethanolamine, morpholine and so on may be used as the lower amine salt. Ethylene, vinylchloride, methyl(meta)acrylate and so on are used as the polymerizing vinyl compound. The molar ratio of the maleic anhydride to the polymerizing vinyl compound is in a range from 1 to 1 to 1 to 10 (preferably 1 to 1 to 1 to 3). The maleic acid copolymer has a mean molecular mass within 1,000 to 5,000. The additive with the optimal composition contains a solvent, a thickener, an anticorrosion substance, anticoagulants, surfacants (PAV) and so on. A highly concentrated suspension of oil coke and water with a 50 to 75 percent concentration of powder form petroleum coke may be produced using the patented additive. Such a suspension is characterized by low viscosity, high stability and forms no foam during processing.

  18. Identification of causes of oil sands coke leachate toxicity

    Puttaswamy, N.; Liber, K.


    The potential causes of oil sands coke leachate toxicity were investigated. Chronic 7-day toxicity tests were conducted to demonstrate that oil sands coke leachates (CL) are acutely toxic to Ceriodaphnia dubia (C. dubia). CLs were generated in a laboratory to perform toxicity identification evaluation (TIE) tests in order to investigate the causes of the CL toxicity. The coke was subjected to a 15-day batch leaching process at 5.5 and 9.5 pH values. The leachates were then filtered and used for chemical and toxicological characterization. The 7-day estimates for the C. dubia survival were 6.3 for a pH of 5.5 and 28.7 per cent for the 9.5 CLs. The addition of EDTA significantly improved survival and reproduction in a pH of 5.5 CL, but not in a pH of 9.5 CL. The toxicity of the pH 5.5 CL was removed with a cationic resin treatment. The toxicity of the 9.5 pH LC was removed using an anion resin treatment. Toxicity re-appeared when nickel (Ni) and vanadium (V) were added back to the resin-treated CLs. Results of the study suggested that Ni and V were acting as primary toxicants in the pH 5.5 CL, while V was the primary cause of toxicity in the pH 9.5 CL.

  19. Complete physico-chemical treatment for coke plant effluents.

    Ghose, M K


    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  20. The combustion characteristics of refuse derived fuels using coke/waste tire

    Park, M.H. [Dep. of Mechanical Eng., Samcheok Nat' l Univ., Samcheok (Korea); Shin, D.Y. [Research Center for Advanced Mineral Aggregate Composite Products, Kangwon Nat' l Univ., Chuncheon (Korea)


    Today every nation faces serious problems of energy supply. Reasonable technologies to make use of coal (including coke) can not only help the mining-related economy which is showing a downward trend but also may fit in with the governmental energy policy. In this research, we aim to supply heating systems in factories, homes, and farms with a substitute fuel by developing coke/waste tire compound fuel with high efficiency for rational use of energy and for recycling of industrial products. A coke/waste boiler was used for this experiment, and different kinds of fuel were experimented including coke, waste tire, coke/waste A and coke/waste B. Four kinds of exhaust gas were also sampled by a gas analyzer, including CO, CO{sub 2}, NO and NO{sub 2} at different temperatures. (orig.)

  1. Door valve for fuel handling path

    Makishima, Katsuhiko.


    A door valve is provided which seals cover gas from a liquid metal cooled reactor without leakage therefrom. A threaded shaft is screwed into a heavy box press which is packed with lead. The shaft is adapted to be rotated by an electric motor or a manually operated wheel which is disposed outside of the door valve. A valve plate is suspended from the box press by four guide wheels mounted thereon. The guide wheels are fitted into inclined guide grooves formed at the valve plate and into grooved formed in the inner wall of a valve casing. A locking ball is provided at each side of the valve plate. In operation the shaft rotates and travels to permit the box press and the valve plate to move into the door valve casing, thus releasing the locking balls. The valve plate does not contact the bottom of the casing. When the box press reaches the home position, the valve plate is carried on the valve opening, and the box press presses the valve plate to increase the tightness. The valve plate does not suffer wear as it does not slide over other parts. (Yamaguchi, T.)

  2. 46 CFR 148.04-17 - Petroleum coke, calcined, at 130 °F or above.


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Petroleum coke, calcined, at 130 °F or above. 148.04-17...-17 Petroleum coke, calcined, at 130 °F or above. (a) The requirements of this part do not apply to bulk shipments of petroleum coke, calcined, on any vessel when the material is less than 130 °F. (b...

  3. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun


    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  4. Properties and potential of formed cokes derived from two Turkish lignites by carbonization of binderless briquettes

    Bayraktur, K.N.; Lawson, G.J.


    Two high-sulphur Turkish lignites were briquetted at room temperature under pressures of 113 or 212 MPa and the briquettes were carbonized to 1158-1173 K over special heating cycles. The lowerrank lignite gave a formed coke of superior mechanical strength, lower porosity and higher sulphur content than typical blast furnace cokes. The formed coke produced from the higher-rank lignite briquettes had slightly poorer mechanical strength, lower porosity and much higher ash and sulphur content than conventional cokes. The products were considered attractive for use in non-ferrous metallurgy.

  5. Raising lump coke formation capacity of semicoking briquets in the Deuben briquetting plant

    Naundorf, W.; Trommer, D.; Schroeder, H.-W.; Dressler, H.


    Describes brown coal briquetting and coking experiments aimed at producing high quality lumpy coke suitable for heating, metallurgy and other industrial processes. The Deuben coking and gas plant produces low temperature carbonization briquets from coal with 13.2% ash content, 54.8% volatiles, 13.5% semicoking tar with the effect that coke produced from these briquets disintegrates completely into fines (0/15 mm grain size). The study centered on effects of briquetting and coking parameters including coal grain size, coal moisture, briquetting pressure, coking temperature, heating rate and application of sulfite liquor as binder. Graphs of briquetting and coking results are provided. The Deuben coal was shown to be suitable for producing lumpy coke (11.5 to over 20 MPa compression strength) from coal under the optimum briquetting parameters of 0/1 mm grain size, 11% coal moisture, briquetting temperature of 70 to 80 C and briquetting pressure over 120 MPa. Use of a binder was found to be advantageous but not necessary. The produced coke showed favorable combustion properties. 6 refs.

  6. Properties and potential of formed cokes derived from two Turkish lignites by carbonization of binderless briquettes

    Bayraktar, K.N.; Lawson, G.J.


    Two high-sulphur Turkish lignites were briquetted at room temperature under pressures of 113 or 212 MPa and the briquettes were carbonized to 1158-1173 K over special heating cycles. The lower-rank lignite gave a formed coke of superior mechanical strength, lower porosity and higher sulphur content than typical blast furnace cokes. The formed coke produced from the higher-rank lignite briquettes had slightly poorer mechanical strength, lower porosity and much higher ash yield and sulphur content than conventional cokes. The products were considered attractive for use in non-ferrous metallurgy. 38 references.

  7. Combined effects of petrographic and technological parameters on strength of porous coke substance

    Dinel' t, V.M.; Shkoller, M.B.; Stankevich, A.S.; Korchuganova, G.S.


    The proportion of coke in modern blast furnaces has been reduced and at the same time ore burdens have increased. The coke itself now derives from a much wider range of coals. Laboratory tests related to the structural strength of cokes were carried out with charges composed of 14 representative coals. Results showed that vitrinite reflectance and bulk density were the critical parameters, followed by petrographic composition. Increasing bulk density of the charge from 0.6 to 0.9 g/cm/sup 3/ produces coke with a structural strength which counteracts the effects of increasing diversity in both petrography and reflectance in any one charge.

  8. A study of the performance of a reclamation soil cover placed over an oilsands coke deposit

    Fenske, D.S.; Barbour, S.L. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil Engineering; Qualizza, C. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)


    Coke is a solid, carbonaceous residue that forms during the cracking of high-boiling point distillates and is one of the by-products of petroleum extraction from oilsands. Coke is known as a possible future energy source and therefore, must be stored within the reclaimed landscape in a form that allows it to be recovered. In addition, it also could be used as a low-density capping material over soft tailings. This paper presented the results of a study that examined the effects of coke in the environment. The study involved construction of two small instrumented watersheds at Syncrude Canada's Mildred Lake Settling Basin. Preliminary field data, highlighting the moisture dynamics within the covers and the underlying coke were discussed. Sand tailings underlie the hydraulically placed coke deposit. Overlying the coke were two different reclamation soil covers constructed of a peat/mineral mix over glacial or glacial lacustrine soils. Placing the finer textured soil cover over coarser grained coke produced a textural or capillary break which enhanced moisture storage for plant use while minimizing deep percolation of infiltrating water. The site has been instrumented with a meteorological station; automated soil stations to monitor suction, water content and temperature through the cover profile; lysimeters to collect net percolation; access tubes for water content monitoring; gas sampling points at depth in the coke; and standpipe piezometers to monitor water chemistry and total head in the coke at depth. 10 refs., 2 tabs., 16 figs.

  9. On-Line Fuel Deoxygenation for Coke Suppression ASME GT-2002-30071

    Spadaccini, Louis


    Fuel deoxygenation is being developed as a means for suppressing autoxidative coke formation in aircraft fuel systems, thereby increasing the exploitable cooling capacity of the fuel, enabling major...

  10. Investigations on high temperature coking of lignite with the help of radionuclide techniques

    Koennecke, H.G.; Luther, D.; Abendroth, H.C.


    The time characteristics and the varying flow characteristics of fine-grained briquettes during the high temperature coking of lignite according to Rammler and Bilkenroth were studied with the help of radionuclide technique. The process parameters (tsub(V), zsub(R), etc.) refer to the different zones of the coke furnace (bunker/dryer, coker/cooler). The different time charakteristics of the coke-grain fractions formed during the BHT-process enables a correlation of the retention time and the quality factors of the coke. The results obtained would enable a better operation of the individual furnaces in the plant and offer the basis for further process developments. (orig.) [de

  11. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Mustafa MUTLU


    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  12. Development and optimization of operational parameters of a gas-fired baking oven

    Afolabi Tunde MORAKINYO; Babatunde OMIDIJI; Hakeem OWOLABI


    This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The ph...

  13. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)


    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  14. Rapid production of metallurgical coke by a pressurized hot-briquetting method. Netsukan kaatsu seikei ni yoru cokes no jinsoku seizo no kokoromi

    Miura, K.; Hayashi, J.; Noguchi, N. (Kyoto University, Kyoto (Japan). Research Laboratory of Carbonaceous Resources Conversion Technology); Hashimoto, K. (Kyoto University, Kyoto (Japan). Faculty of Engineering)


    Rapid production of metallurgical coke from non- and slightly coking coals was studied by pressurized hot-briquetting method. Coal specimens were filled into the mold after pulverizing, and heated at a constant temperature rise rate up to caking temperature under loading pressure to obtain caked coal specimens. Such specimens were then carbonized in nitrogen gas at 800[degree]C. As a result, the coke obtained was superior in compressive strength as compared with commercial cokes, however, its CO2 reactivity was very high requiring heating up to 1,000[degree]C to decrease it, while the reactivity was strongly dependent on coal kind. The optimum processing conditions for slightly coking coal were as follows; loading pressure: 10 [times] 10[sup 5] Pa or more, temperature range under loading pressure: 300-450[degree]C, temperature rise rate: 2-100[degree]C/min, and caking temperature: nearly 500[degree]C. No coke could be produced from coking coals because no volatile matter could be removed from it in a short time under pressure. 13 refs., 8 figs., 1 tab.

  15. Characterization of sponge cake baking in an instrumented pilot oven

    Alain Sommier


    Full Text Available The quality of baked products is the complex, multidimensional result of a recipe, and a controlled heating process to produce the desired final properties such as taste, colour, shape, structure and density. The process of baking a sponge cake in a convective oven at different air temperatures (160-180-220 °C leading to the same loss of mass was considered in this study. A special mould was used which allowed unidirectional heat transfer in the batter. Instrumentation was developed specifically for online measurement of weight loss, height variation and transient temperature profile and pressure in the product. This method was based on measuring heat fluxes (commercial sensors to account for differences in product expansion and colour. In addition, measurement of height with a camera was coupled to the product mass to calculate changes in density over time. Finally, combining this information with more traditional measurements gave a better understanding of heat and mass transfer phenomena occurring during baking.

  16. Real-time door detection for indoor autonomous vehicle

    He, Zhihao; Zhu, Ming


    Indoor Autonomous Vehicle(IAV) is used in many indoor scenes. Such as hotels and hospitals. Door detection is a key issue to guide the IAV into rooms. In this paper, we consider door detection in the use of indoor navigation of IAV. Since real-time properties are important for real-world IAV, the detection algorithm must be fast enough. Most monocular-camera based door detection model need a perfect detection of the four line segments of the door or the four corners. But in many situations, line segments could be extended or cut off. And there could be many false detected corners. And few of them can distinguish doors from door-like objects with door-like shape effectively. We proposed a 2-D vision model of the door that is made up of line segments. The number of parts detected is used to determine the possibility of a door. Our algorithm is tested on a database of doors.1 The robustness and real-time are verified. The precision is 89.4%. Average time consumed for processing a 640x320 figure is 44.73ms.

  17. Traumatic asphyxia--fatal accident in an automatic revolving door.

    Cortis, J; Falk, J; Rothschild, M A


    Due to continuing modernisation, the number of automatic doors in routine use, including powered revolving doors, has increased in recent years. Automatic revolving doors are found mostly in department stores, airports, railway stations and hospitals. Although safety arrangements and guidelines concerning the installation of automatic doors are in existence, their disregard in conjunction with obsolete or incorrect installation can lead to fatal accidents. In this report, a 19-month-old boy is described whose right arm was caught between the elements of an automatic revolving door. As a direct result of rescue attempts, the child's body was drawn further into the narrow gap between elements of the door. To get the boy's body out of the 4-cm-wide gap between the fixed outer wall of the revolving door and the revolving inner, back-up batteries had to be disconnected so as to stop the electrical motor powering the door. Cardiopulmonary resuscitation was begun immediately after the rescue but was unsuccessful; the child was declared dead at the hospital he was taken to. The cause of death was a combination of compression-related skull and brain injury together with thoracic compression. This case shows an outstanding example of the preventive aspect as a special task of forensic medicine. Additionally, it serves as a warning for the correct installation and use of automatic revolving doors. Even so, small children should not use these doors on their own, but only with an alert companion, so as to prevent further fatal accidents of this sort.

  18. Critical element development of double seal door for tritium containment

    Kanamori, Naokazu; Kakudate, Satoshi; Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Obara, Kenjiro; Tada, Eisuke; Shibanuma, Kiyoshi; Seki, Masahiro


    In fusion experimental reactors, the in-vessel components such as blanket are activated due to D-T operation and they have to be assembled and replaced by remote operation through port penetration of plasma vacuum vessel. A double seal door is inevitably required at an interface between vacuum vessel port and maintenance cask in order to avoid the dispersion of tritium and activated dust during in-vessel component handling. The double seal door should have two open/close doors with four seal surfaces so as to keep leak tightness both of the vacuum vessel and the maintenance cask when doors closed, and to provide access space for handling in-vessel components when doors opened. A prototype compact double seal door with an attractive kinematics of parabolic trajectory has been proposed so as to minimize dead space for the door open/close operation, compared with ordinary slide or hinge type door. Based on this design concept, a sub-scaled model of double seal door with trapezoidal cross-section of around 0.2 m 2 has been fabricated. Through the preliminary experiments such as open/close performance, the double seal door mechanism with parabolic trajectory has been successfully demonstrated. As for leak tightness, seal characteristics of a polyimide ring irradiated up to 10 MGy have been measured. (author)

  19. Effects of Coke Calcination Level on Pore Structure in Carbon Anodes

    Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei


    Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.

  20. Coke Formation During Hydrocarbons Pyrolysis. Part One: Steam Cracking Formation de coke pendant la pyrolise des hydrocarbures. Première partie : vapocraquage

    Weill J.


    Full Text Available Thermal cracking is always accompanied by coke formation, which becomes deposited on the wall and limits heat transfers in the reactor while increasing pressure drops and possibly even plugging up the reactor. This review article covers undesirable coking operations in steam craking reactors. These coking reactions may take place in the gas phase and/or on the surface of the reactor, with coke being produced during pyrolysis by a complex mechanism that breaks down into a catalytic sequence and a noncatalytic sequence. After a brief description of different experimental set-ups used to measure the coke deposition, on the basis of research described in the literature, the different factors and their importance for coke formation are listed. In particular, we describe the effects of surface properties of stainless-steel and quartz reactors as well as the influence of the cracked feedstock, of temperature, of dilution, of residence time and of the conversion on coke deposition. Some findings about the morphology of coke are described and linked to formation mechanisms. To illustrate this review, some particularly interesting research is referred to concerning models developed to assess coke formation during propane steam cracking. Le craquage thermique est toujours accompagné de la formation de coke qui, en se déposant à la paroi, limite les transferts de chaleur au réacteur, augmente les pertes de charges et même peut boucher celui-ci. Cet article fait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage. Ces réactions de cokage peuvent avoir lieu en phase gazeuse et/ou sur la surface du réacteur, le coke étant produit pendant la pyrolyse par un mécanisme complexe qui se décompose en une séquence catalytique et une séquence non catalytique. Après une brève présentation des différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir de travaux de la

  1. Computational fluid dynamics modeling of bun baking process under different oven load conditions.

    Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C


    A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.

  2. 76 FR 72332 - Energy Conservation Program: Test Procedure for Microwave Ovens


    ... refrigerator electrical management, the microwave oven LED clock display and microcontroller consume 2 watts (W... microcontroller, Intirion noted that the Microfridge consumes 0.2W for 2 front green LED lamps, 0.5W each for two...

  3. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan


    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  4. Opening the doors: building brand awareness.

    John, Judith; McCartney, Rob


    In search of a credible and cost-effective way to promote Mount Sinai Hospital (Mount Sinai) and educate a broad public, Mount Sinai opened its doors wide to The Globe and Mail (The Globe). The result was a three-part national feature series that told Mount Sinai's compelling story, provided third-party credibility and confirmed the value of proactive media relations. The series engaged our staff, energized our volunteers and reached both stakeholders and the general public on an emotional level. It also generated the more than dollars 6 million worth of equivalent advertising space it would have required for Mount Sinai to reach this national audience.

  5. Design Report for ACP Hot Cell Rear Door

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W


    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation.

  6. Modal analysis of pool door in water tank

    Kim, Kang Soo; Jeong, Kyeong Hoon; Park, Chan Gook; Koo, In Soo [KAERI, Daejeon (Korea, Republic of)


    A pool door is installed at the chase of the pool gate by means of an overhead crane in the building of a research reactor. The principal function of the pool door, which is located between the reactor pool and service pool, is to separate the reactor pool from the service pool for the maintenance and/or the removal of the equipment either in the reactor pool or service pool. The pool door consists of stainless steel plates supported by structural steel frames and sealing components. The pool door is equipped with double inflatable gaskets. The configuration of the pool door is shown in Figure 1. The FEM analysis and theoretical calculation by the formula were performed to evaluate the natural frequency for the pool door in the water. The results from the two methods were compared.

  7. Design Report for ACP Hot Cell Rear Door

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W.


    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation


    Golubev Stanislav Sergeevich


    Full Text Available Results of thermal tests of balcony doors are presented in the article. In the course of the research project, two types of doors were tested. The first type represents a PVC frame door (width 82 mm; it has a triple glazing (4K-16Ar-4-16Ar-K4; its blank part represents a polystyrene sandwich panel (width 40 mm. The second type represents a PVC frame door (width 82 mm, that has a triple glazing (4K-16Ar-4-16Ar-K4 and composite PVC panels. The testing procedure and processing results are described in the article. The test has demonstrated that the thermal resistance value of the balcony door of the first type exceeds the thermal resistance value of the balcony door of the second type.


    Guenthner, Joseph F.; Lin, Biing-Hwan; Levi, Annette E.


    Growth in the number of homes with microwave ovens has changed food preferences and preparation methods. The objective of this study was to determine the impact that microwave oven ownership has had on the demand for fresh and frozen potatoes. Using data from the 1970-88 period, demand equations were estimated for fresh potatoes, frozen potatoes in the retail market and frozen potatoes in the food service market. Results indicate that increases in the percentage of homes that own microwave ov...

  10. Pulsed corona discharge for improving treatability of coking wastewater.

    Liu, Ming; Preis, Sergei; Kornev, Iakov; Hu, Yun; Wei, Chao-Hai


    Coking wastewater (CW) contains toxic and macromolecular substances that inhibit biological treatment. The refractory compounds remaining in biologically treated coking wastewater (BTCW) provide chemical oxygen demand (COD) and color levels that make it unacceptable for reuse or disposal. Gas-phase pulsed corona discharge (PCD) utilizing mostly hydroxyl radicals and ozone as oxidants was applied to both raw coking wastewater (RCW) and BTCW wastewater as a supplemental treatment. The energy efficiency of COD, phenol, thiocyanate and cyanide degradation by PCD was the subject of the research. The cost-effective removal of intermediate oxidation products with addition of lime was also studied. The energy efficiency of oxidation was inversely proportional to the pulse repetition frequency: lower frequency allows more effective utilization of ozone at longer treatment times. Oxidative treatment of RCW showed the removal of phenol and thiocyanate at 800 pulses per second from 611 to 227mg/L and from 348 to 86mg/L, respectively, at 42kWh/m 3 delivered energy, with substantial improvement in the BOD 5 /COD ratio (from 0.14 to 0.43). The COD and color of BTCW were removed by 30% and 93%, respectively, at 20kWh/m 3 , showing energy efficiency for the PCD treatment exceeding that of conventional ozonation by a factor of 3-4. Application of lime appeared to be an effective supplement to the PCD treatment of RCW, degrading COD by about 28% at an energy input of 28kWh/m 3 and the lime dose of 3.0kg/m 3 . The improvement of RCW treatability is attributed to the degradation of toxic substances and fragmentation of macromolecular compounds. Copyright © 2017. Published by Elsevier B.V.

  11. No-Oven, No-Autoclave Composite Processing

    Rauscher, Michael D.


    Very large composite structures, such as those used in NASA's Space Launch System, push the boundaries imposed by current autoclaves. New technology is needed to maintain composite performance and free manufacturing engineers from the restraints of curing equipment size limitations. Recent efforts on a Phase II project by Cornerstone Research Group, Inc. (CRG), have advanced the technology and manufacturing readiness levels of a unique two-part epoxy resin system. Designed for room-temperature infusion of a dry carbon preform, the system includes a no-heat-added cure that delivers 350 F composite performance in a matter of hours. This no-oven, no-autoclave (NONA) composite processing eliminates part-size constraints imposed by infrastructure and lowers costs by increasing throughput and reducing capital-specific, process-flow bottlenecks. As a result of the Phase II activity, NONA materials and processes were used to make high-temperature composite tooling suitable for further production of carbon-epoxy laminates and honeycomb/ sandwich-structure composites with an aluminum core. The technology platform involves tooling design, resin infusion processing, composite part design, and resin chemistry. The various technology elements are combined to achieve a fully cured part. The individual elements are not unusual, but they are combined in such a way that enables proper management of the heat generated by the epoxy resin during cure. The result is a self-cured carbon/ epoxy composite part that is mechanically and chemically stable at temperatures up to 350 F. As a result of the successful SBIR effort, CRG has launched NONA Composites as a spinoff subsidiary. The company sells resin to end users, fabricates finished goods for customers, and sells composite tooling made with NONA materials and processes to composite manufacturers.

  12. Synthesis of carbon nanotubes by gasification of petroleum coke

    Abdullayeva, S.H.; Musayeva, N.N.; Jabbarov, R.B.; Abdullayeva, S.H.; Musayeva, N.N.; Jabbarov, R.B.; Matsuda, T.


    Carbon nanotubes have been synthesized by using petroleum coke (PC) as carbon source. Different positions of the PC in the reactor chamber and some other factors markedly increase quantity of the synthesized CNTs and lead to changing of their characteristics such as crystallinity, diameter, straight and etc. confirmed by scanning electron microscope (SEM), transmission electron microscope (TEM) studies.The thickness of the Fe catalyst deposited on Si and SiO 2 substrates strongly influence to the quality, quantity and uniformity of the grown CNTs. Wet-coated thin films of FeCl 2 works well as catalyst, which can be profitable for mass production of CNTs

  13. Coke properties in relation to charge preparation techniques. [Selective crushing

    Morozov, O S


    Selective crushing is essential to obtain the required coke properties, so that in the coarse fractions there is a considerable reduction in the middlings and dirt normally difficult to crush. These are at the same time enriched with vitrinite so that there is an increase in the coal substance as such, reflected in improved caking capacity in the coarse size range. Various methods of selective crushing are employed, including air entrainment mills, fluidised bed systems. Other advantages claimed for selective crushing are the uniform pore distribution and air permeability and also the diminished breakage stress.

  14. Dependence of coke properties on the method of charge preparation

    Morozov, O S


    Selective crushing is essential to obtain the required coke properties, so that in the coarse fractions there is a considerable reduction in the middlings and dirt normally difficult to crush. These are at the same time enriched with vitrinite so that there is an increase in the coal substance as such, reflected in improved caking capacity in the coarse size range. Various methods of selective crushing are employed, including air entrainment mills, fluidised bed systems. Other advantages claimed for selective crushing are the uniform pore distribution and air permeability and also the diminished breakage stress.

  15. Acidulant and oven type affect total anthocyanin content of blue corn cookies.

    Li, Jian; Walker, Chuck E; Faubion, Jon M


    Anthocyanins, pink to purple water-soluble flavonoids, are naturally occurring pigments with claimed health benefits. However, they are sensitive to degradation by high pH, light and temperature. Blue corn (maize) contains high levels of anthocyanins. Cookies are popular snacks and might serve as a vehicle to deliver antioxidants. A cookie formula with a high level of blue corn was developed with added acidulents and baked in ovens with different heat transfer coefficients. The best whole-grain blue corn flour/wheat pastry flour ratio (80:20 w/w), guar gum level (10 g kg(-1), flour weight basis) and water level (215 g kg(-1), flour weight basis) were determined based on response surface methodology analysis. The interactions of citric and lactic acids and glucono-δ-lactone with three oven types having different heat transfer coefficients (impingement oven 179 °C/4 min, reel oven 204 °C/10 min and convection oven 182 °C/4 min) influenced the total anthocyanin content (TAC) remaining in blue corn-containing cookies after baking. Cookies baked with citric acid in the convection oven retained the maximum TAC (227 ± 3 mg kg(-1)). By baking rapidly at lower temperatures and adding acidulents, it may be possible to increase residual natural source antioxidants in baked foods. Copyright © 2010 Society of Chemical Industry.

  16. Modelling and Simulation of Coking in the Riser of an Industrial ...

    Modelling and Simulation of Coking in the Riser of an Industrial Fluid Catalytic Cracking (FCC) Unit. ... Log in or Register to get access to full text downloads. ... The yields of LCO, gasoline, gas and coke that were predicted by the model for industrial risers were ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  17. Binderless briquetting of some selected South African prime coking, blend coking and weathered bituminous coals and the effect of coal properties on binderless briquetting

    Mangena, S.J. [Division of Mining Technology, CSIR, PO Box 395, Pretoria, 0001 (South Africa); du Cann, V.M. [Coal and Mineral Technologies (Pty) Ltd, SABS, PO Box 73656, Lynnwood Ridge, Pretoria, 0040 (South Africa)


    The binderless briquetting of some selected South African prime coking and blend coking coals, as well as the effects of weathering on the binderless briquetting of some inertinite-rich bituminous coals, were investigated in the laboratory. Selected properties of these coals were determined and the coals were briquetted at various moisture contents and pressures. Based on the results obtained in this study, binderless briquetting was found to be most successful in the cases of the fresh, vitrinite-rich coking and blend coking coals and satisfactory in the fresh inertinite-rich Witbank coals. However, the bonding process seemed to be adversely affected by weathering. The negative impact on bonding could be ameliorated to some extent by the presence of a significant kaolinite content when the percentage ash reports in the order of more than 15% (air-dry basis). It should, however, be noted that kaolinite may reduce the water resistance of the briquettes. (author)

  18. Golden Jubilee Photos: Doors wide open

    2004-01-01 The reception area and visits desk (formerly PIO - Public Information Office) in 1972. Régine Chareyron (on the right), who has worked for the Visits Service for 35 years, is pictured here with Chantal Montuel and Cora Roth. CERN inaugurated its permanent visitor centre "Microcosm" in 1989. This brand new outreach facility added a crowning touch to CERN's tradition of openness in conducting its research activities. In keeping with Article II of the Convention, which stipulates that "the results of its (...) work shall be published or otherwise made available," CERN was already organising visits for the general public in the late 1950s, with members of the personnel doubling up as voluntary tour guides. By 1959, the Laboratory was opening its doors to almost 2 500 visitors a year. Ten years down the line, that number had risen to 12 700, and today CERN welcomes some 30 000 visitors through its doors every year. In addition, the Visits Service has developed teaching packs for sc...

  19. Ombuds’ corner: Open door and confidentiality

    Vincent Vuillemin


    For the Open Days, CERN will be transparent for all visitors. It's also the occasion to remember that the Ombuds' door is fully open every day of the year for all persons working for or on behalf of CERN.   The door is open, but as soon as it's closed for a discussion, the office becomes a place where total confidentiality is preserved. This may appear as a contradiction, no? The Ombuds is available to help everyone in all circumstances, but his clause of confidentiality prevents him from acting without the consent of his “visitors”. How can he possibly resolve the in-house conflicts in groups, or units, if all the parties do not voluntarily participate in its resolution? The answer is clear: the job of the Ombuds is to help the parties resolve their conflict by themselves. He will provide a few rules of communication, a process of mutual respect, suggest some possibilities that the parties may want to follow, and mediate the dispute so that people...

  20. Enhanced specific capacitance of modified needle cokes by controlling oxidation treatment

    Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Soo Kim, Hyun; Tack Kim, Yu


    The electric double-layer performance of needle cokes can be affected by the morphology of structures. Hence, we introduce modified needle cokes by using simple oxidation treatment. The degree of graphitization with high specific capacitance is controlled by acid and heat treatment. The active sites of cokes are increased with increasing oxidation time. Dilute nitric acid (HNO 3 ) and sodium chlorate (NaClO 3 ) are used for the activation of cokes. In this case, the interlayer distance is dramatically increased from 3.5 to 8.9 A. The specific capacitances are 33 F g -1 and 30 F ml -1 , respectively, on a two-electrode system with a potential range of 0-2.5 V. The behaviors of double-layer capacitance are demonstrated by the charge-discharge process and the morphologies of modified needle cokes are analyzed by XRD, FE-SEM, BET and elemental analysis.

  1. Microwave-assisted grinding of metallurgical coke; Molienda asistida con microondas de un coque metalurgico

    Ruisanchez, E.; Juarez-Perez, E. J.; Arenillas, A.; Bermudez, J. M.; Menendez, J. A.


    Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grind ability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving. (Author)

  2. Delayed coking studies on Athabasca bitumen and Cold Lake heavy oil

    Govindhakannan, J.; Khulbe, C. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY


    This poster highlighted the results of a study that quantified the delayed coking product yields of Athabasca bitumen and Cold Lake heavy oil. It also investigated the effect of operating pressure and feed rates on product yield and quality. The effect of pressure on conversion of sulphur and nitrogen was also examined. Experimental results revealed that the yield of liquid products decreases and the yields of coke and gases increase as the operating pressure increases. Sulphur and nitrogen conversions increase with increasing pressure. In this study, the yield and quality of delayed coking products were not influenced by the variation in feed rates. It was concluded that feed rate changes do not significantly affect the yield and quality of delayed coking products because the residual liquid and coke trapped in the coker drum reside there for a duration that approaches infinity, compared to much smaller average residence time for vapor-phase compounds. tabs., figs.

  3. Significance and development of the utilization of brown coal high temperature coke in the economy of the GDR for the period 1964 to 1974

    Klose, E.; Heschel, W.


    Brown coal high temperature coke production in GDR in the years since 1964 is described. In 1969 the second large brown coal high temperature coking plant, Schwarze Pumpe, went into operation, increasing the total brown coal high temperature coke production to 2 million tons annually. Utilization of the coke size classes in mm from 0-3.15, 3.15-20, 20-31.5, 31.5-45 and greater than 45 mm in the metallurgical, chemical, and energy industries as well as for household heating is shown with figures from 1964, 1970 and 1974. The increasing use of coke in households partly as briquet substitution is also shown (in 1970 42% of the coke was used in households). The substitution of black coal coke by brown coal coke in additional fields of industrial production was also further advanced. Coke production at the Schwarze Pumpe plant is scheduled to increase to 1.6 million tons by 1985 by means of the application of improved coking technologies. Investigations for future industrial solutions to the following coking problems are being conducted: processing coke fines (which make up 10 to 12% of the total produced coke) by briquetting with binders into formed coke, firing coke fines in blast furnaces and power plants, mixed briquetting of coke fines with limestone for carbide production and mixed briquetting of coke and ore fines for metallurgical purposes. (8 refs.) (In German)

  4. The chatter door, designing for in-between spaces

    Duel, T.; Levy, P.


    The project presented in this paper is part of a broader research addressing in-between spaces and the designing of experiences taking place there. The project focuses on door frames, and inquires the way to improve social interactions taking place 'at the door'. To do so, the approach is structured

  5. Beoordeling RWA-installatie Atrium Vertigo: Rookverspreiding door het gebouw

    Neuhaus, E.


    Het atrium van het Vertigo-gebouw is bouwkundig bedoeld als één groot brandcompartiment. De schuifdeuren en ramen naar aanliggende vertrekken staan echter vaak open. Hierdoor kan de rook zich in het geval van een brand in het atrium gemakkelijk door het gebouw verspreiden door een overdruk in het

  6. Close-fitting shield doors with sculptured edges

    Goodman, L.


    The US Department of Energy has contracted with Fluor Technology, Inc. for design and engineering of a facility to begin reprocessing fuel from the reactors at Hanford, Washington. Within the facility, a 15-cm (6-in.)-thick, steel shield door is needed to close an opening 4.3 m (14 ft) high x 8.2 m (27 ft) wide. Two cranes and a centrally located monorail hoist must pass through the opening. The door weighs about 41,000 kg (45 ton), and passage of the hoist will be the most frequent cause for opening the door. These two factors essentially mandated a three-piece door, which allows for using commercially available chain hoists to raise and lower the individual door sections. Normally, there is a 187-Pa (0.75-in. water gauge) pressure differential across the door, and minimal air leakage is essential. Stepped, mating edges between sections and along the adjacent concrete structures are typical with such doors, but so are significant gaps (and air leaks) around the edges. Gaps are needed to preclude frictional jamming between edges as a section is lowered. The challenge was to conceive a method to produce near-zero gaps and preclude jamming without involving impractically tight tolerances. The chosen method was to place trapezoidally shaped, steel gaskets on the door-section edges and on the mating concrete surfaces. The concept is described

  7. Revolving Classroom Door: Management Strategies To Eliminate the Quick Spin.

    Rancifer, Jesse L.

    This paper presents classroom management practices that can be used to avoid the "revolving classroom door." In the revolving classroom door, misbehaving students are sent to the principal, and eventually returned to the classroom with no gains in student behavior or opportunity for learning. The paper begins by discussing the meaning of classroom…

  8. Development, Control, and Evaluation of an Actuated Car Door.

    Strolz, M; Mortl, A; Graf, M; Buss, M


    Actuated car doors are a promising way to increase the convenience of access to cars. We propose an advanced actuation and control concept which can easily be integrated into conventional car doors. By utilizing a linear, nonbackdrivable actuator and various sensors, both automatic and manual door operations are enabled. A discrete state controller ensures a safe operation of the door, including automatic opening and closing. The realization of a supportive, high-quality haptic interaction with the car door for the manual operation is the principal part of our work. Due to the impracticality of a direct measurement of the user interaction force at a car door, we chose impedance control to render the desired dynamics. The impedance was designed to provide a convenient, intuitive, and safe manual handling of the door. We implemented and tested four different impedance control schemes, of which impedance control with actuator force feedback performed best. Two experimental evaluations with 16 and 27 participants revealed a predominant approval of the actuated car door.

  9. Looking for the WIMP next door

    Evans, Jared A.; Gori, Stefania; Shelton, Jessie


    We comprehensively study experimental constraints and prospects for a class of minimal hidden sector dark matter (DM) models, highlighting how the cosmological history of these models informs the experimental signals. We study simple `secluded' models, where the DM freezes out into unstable dark mediator states, and consider the minimal cosmic history of this dark sector, where coupling of the dark mediator to the SM was sufficient to keep the two sectors in thermal equilibrium at early times. In the well-motivated case where the dark mediators couple to the Standard Model (SM) via renormalizable interactions, the requirement of thermal equilibrium provides a minimal, UV-insensitive, and predictive cosmology for hidden sector dark matter. We call DM that freezes out of a dark radiation bath in thermal equilibrium with the SM a WIMP next door, and demonstrate that the parameter space for such WIMPs next door is sharply defined, bounded, and in large part potentially accessible. This parameter space, and the corresponding signals, depend on the leading interaction between the SM and the dark mediator; we establish it for both Higgs and vector portal interactions. In particular, there is a cosmological lower bound on the portal coupling strength necessary to thermalize the two sectors in the early universe. We determine this thermalization floor as a function of equilibration temperature for the first time. We demonstrate that direct detection experiments are currently probing this cosmological lower bound in some regions of parameter space, while indirect detection signals and terrestrial searches for the mediator cut further into the viable parameter space. We present regions of interest for both direct detection and dark mediator searches, including motivated parameter space for the direct detection of sub-GeV DM.

  10. Detecting Signage and Doors for Blind Navigation and Wayfinding.

    Wang, Shuihua; Yang, Xiaodong; Tian, Yingli


    Signage plays a very important role to find destinations in applications of navigation and wayfinding. In this paper, we propose a novel framework to detect doors and signage to help blind people accessing unfamiliar indoor environments. In order to eliminate the interference information and improve the accuracy of signage detection, we first extract the attended areas by using a saliency map. Then the signage is detected in the attended areas by using a bipartite graph matching. The proposed method can handle multiple signage detection. Furthermore, in order to provide more information for blind users to access the area associated with the detected signage, we develop a robust method to detect doors based on a geometric door frame model which is independent to door appearances. Experimental results on our collected datasets of indoor signage and doors demonstrate the effectiveness and efficiency of our proposed method.

  11. Nature of nitrogen specie in coke and their role in NOx formation during FCC catalyst regeneration

    Babich, I.V.; Seshan, K.; Lefferts, L.


    NO x emission during the regeneration of coked fluid catalytic cracking (FCC) catalysts is an environmental problem. In order to follow the route to NO x formation and try to find ways to suppress it, a coked industrial FCC catalyst has been prepared using model N-containing compounds, e.g., pyridine, pyrrole, aniline and hexadecane-pyridine mixture. Nitrogen present in the FCC feed is incorporated as polyaromatic compounds in the coke deposited on the catalyst during cracking. Its functionality has been characterized using XPS. Nitrogen specie of different types, namely, pyridine, pyrrolic or quaternary-nitrogen (Q-N) have been discriminated. Decomposition of the coke during the catalyst regeneration (temperature programmed oxidation (TPO) and isothermal oxidation) has been monitored by GC and MS measurements of the gaseous products formed. The pyrrolic- and pyridinic-type N specie, present more in the outer coke layers, are oxidized under conditions when still large amount of C or CO is available from coke to reduced NO x formed to N 2 . ''Q-N'' type species are present in the inner layer, strongly adsorbed on the acid sites on the catalyst. They are combusted last during regeneration. As most of the coke is already combusted at this point, lack of reductants (C, CO, etc.) results in the presence of NO x in the tail gas

  12. Feasibility study analysis for multi-function dual energy oven (case study: tapioca crackers small medium enterprise)

    Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.


    Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.

  13. Distillation of tar and tar fractions in the presence of surface-active coke

    Jaeppelt, A; Klaus, J


    The tar obtained by low-temperature carbonization of Upper Silesian gas coke and fractions from this tar were distilled in the presence of different grades of coke dust with varying surface activity; the coke had been activated by steam in the course of its production by low-temperature carbonization. The surface activity of the coke dusts was measured by determining the heat of wetting with C/sub 6/H/sub 6/. Tar and coke dust, both anhydrous, were mixed in a kneading machine in such proportions that the capillaries of the dust were saturated and enough ''externally'' bound tar was present to permit briquetting. The briquets were distilled without cracking and with steam as heating medium. The yield and quality of the distillate depended on the magnitude of the internal surface of the coke dust used; a mixture of a very active coke from brown coal and tar yielded a distillate with Conradson carbon residue of 1.34 percent, asphalt content 6.1 percent and eta/sub 20/ 5.4/sup 0/ E. as compared with C residue of 10.95 percent, asphalt content 33.5 percent and eta/sub 20/ 123.6/sup 0/ E. of the distillate obtained in the absence of surface-active coke. Even higher-boiling fractions can be improved by this treatment, although it is preferable to use oils with an initial boiling point below 300/sup 0/. The ratio of oil to adsorbent is not critical, but better results were obtained with higher percentages of added coke dust. The process in its present form is not suited for the conversion of crude creosote to useful phenols.

  14. Effect of oxide film of heat resistant alloy on coke formation during naphtha pyrolysis

    Shiratori, Nobuo; Hosoya, Keizo


    The coking of cracking furnace tubes has been an important subject of ethylene plants. The coke formations rate on the heat resistant alloys of 20Cr-4.5Al-0.5Y 2 O 3 covered with Al 2 O 3 oxide film and 25Cr-35Ni covered with Cr 2 O 3 oxide film during the thermal cracking of naphtha was quantitatively evaluated at temperatures ranging from 810 to 930 .deg. C. The experimental results showed that the coke formation rate on 20Cr-4.5Al-0.5Y 2 O 3 was lower than that on 25Cr-35Ni because of the difference of a catalytic activity to coke formation, especially in the case of a pre-carburized condition. Namely, the Al 2 O 3 formed on 20Cr-4.5Al-0.5Y 2 O 3 was stable even after carburization treatment and inert for catalytic coke formation, while coke formation on 25Cr-35Ni was under the control of catalytic coke formation, and carburization of 25Cr-35Ni accelerated catalytic coke formation. The stability of Al 2 O 3 and Cr 2 O 3 in a hydrocarbon with steam environment was thermodynamically calculated in 0.1mol of steam, 0.2mol of ethylene and 0.1mol of methane at 1,100 .deg. C. The simulation result shows that Al 2 O 3 is exceedingly stable while Cr 2 O 3 could be decomposed partially into chromium carbide. Therefore, it is concluded that Al 2 O 3 on 20Cr-4.5Al-0.5Y 2 O 3 is more stable than Cr 2 O 3 on 25Cr-35Ni, and 20Cr-4.5Al-0.5Y 2 O 3 is more resistant to coke formation and carburization than 25Cr-35Ni in a hydrocarbon with steam environment at high temperature

  15. The effect of ash elements in petroleum coke on hearth furnace heat recovery system performance

    Akhmetov, M M


    Difficulties encountered in the operation of the heat recovery system of a calcination plant at Krasnovodsk Refinery caused by ash element deposits blocking the fire box are described. Deposits and coke ash composition are given. The main cause of blocking was found to be the removal of sea water salt elements which get on the coke surface when the retarded coking plant is discharged with a water-jet borer. Switching over to fresh water and air-blasting of heat recovery pipes decreased blocking considerably.

  16. The effect of calcination conditions on the graphitizability of novel synthetic and coal-derived cokes

    Bennett, Barbara Ellen

    The effects of calcination heating rate and ultimate calcination temperature upon calcined coke and subsequent graphitic material microstructures were studied for materials prepared from three different precursors. The pitch precursors used were Mitsubishi AR pitch (a synthetic, 100% mesophase pitch), the NMP-extracted portion of a raw coal, and the NMP-extracted fraction of a coal liquefaction residue obtained from an HTI pilot plant. These materials were all green-coked under identical conditions. Optical microscopy confirmed that the Mitsubishi coke was very anisotropic and the HTI coke was nearly as anisotropic. The coke produced from the direct coal extract was very isotropic. Crystalline development during calcination heating was verified by high-temperature x-ray diffraction. Experiments were performed to ascertain the effects of varying calcination heating rate and ultimate temperature. It was determined that calcined coke crystallite size increased with increasing temperature for all three materials but was found to be independent of heating rate. The graphene interplanar spacing decreased with increasing temperature for the isotropic NMP-extract material but increased with increasing temperature for the anisotropic materials---Mitsubishi and HTI cokes. Graphene interplanar spacing was also found to be independent of heating rate. Calcined coke real densities were, likewise, found to be independent of heating rate. The anisotropic cokes (Mitsubishi and HTI) exhibited increasing real density with increasing calcination temperature. The NMP-extract coke increased in density up to 1050°C and then suffered a dramatic reduction in real density when heated to 1250°C. This is indicative of puffing. Since there was no corresponding disruption in the crystalline structure, the puffing phenomena was determined to be intercrystalline rather than intracrystalline. After the calcined cokes were graphitized (under identical conditions), the microstructures were re

  17. On-line determination of moisture in coal and coke

    Cutmore, N.G.; Sowerby, B.D.


    The CSIRO Division of Mineral Engineering is developing various techniques for the on-line determination of moisture in coal and coke, and some instruments are now commercially available. These techniques permit accurate and rapid determination of moisture in materials directly on conveyor belts or in bins. The most promising techniques for direct on-belt measurement of moisture in coal are capacitance and microwave transmission. A non-contacting under-belt capacitance and gamma-ray backscatter technique has determined moisture in coal to better than 0.5 wt% in field tests. CSIRO is developing a fast neutron and gamma-ray transmission technique, which is proving very accurate in laboratory tests. This technique overcomes many of the limitations of thermal neutrons moisture gauges

  18. Technology for beneficiation of non-coking coals

    Bose, S.K.


    This article outlines the need for efficient non-coking coal beneficiation plants in India to cope with mass production from opencast coal mines. The existing use of magnetite in heavy medium separation processes is expensive and not very efficient in respect to removing shales from opencast lump coals. Instead a new technique is proposed using a ROMJIG washing plant developed in the Federal Republic of Germany. This provides a very efficient, low cost washing system for the coals and allows the continued integration with the coal blending plants. This simplified technology allows for flexible working hours to meet demand and will allow new developments to continue including fuel slurry pipelines, automated testing of coals and new pulverized boiler fuels.

  19. Structural variations and physical properties of lignin coke

    Otani, C.


    The studied lignin is a by-product of the process of ethanol production from eucaliptus. It was heat-treated under inert atmosphere conditions at increasing temperatures from 300 0 C up to 2600 0 C. This material has about 35 weight % of carbon yield and low ash content (0.70 w %). The structural variations were studied by wide-angle X-ray diffraction, small-angle X-ray scattering and infra-red spectroscopy. The bulk and the ''real'' density of the samples have also been determined as a function of the heat treatment temperatures. These experimental results enabled us to establish a mechanism of structure variation based on the formation of a graphite-like and porous structure within the initially amorphous lignin matrix. It has been possible to specify the adequate heat treatment temperature based upon the lignin coke applications. (author) [pt

  20. 40 CFR 61.131 - Definitions.


    ... phenol recovery. Exhauster means a fan located between the inlet gas flange and outlet gas flange of the coke oven gas line that provides motive power for coke oven gases. Foundry coke means coke that is... coking cycle. Foundry coke by-product recovery plant means a coke by-product recovery plant connected to...

  1. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus


    , if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. The accelerated stability studies performed in the microwave oven using...... a design of experiments (DoE) approach in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric......, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating...

  2. A methodology to model flow-thermals inside a domestic gas oven

    Mistry, Hiteshkumar; Ganapathisubbu, S.; Dey, Subhrajit; Bishnoi, Peeush; Castillo, Jose Luis


    In this paper, the authors describe development of a CFD based methodology to evaluate performance of a domestic gas oven. This involves modeling three-dimensional, unsteady, forced convective flow field coupled with radiative participating media. Various strategies for capturing transient heat transfer coupled with mixed convection flow field are evaluated considering the trade-off between computational time and accuracy of predictions. A new technique of modeling gas oven that does not require detailed modeling of flow-thermals through the burner is highlighted. Experiments carried out to support this modeling development shows that heat transfer from burners can be represented as non-dimensional false bottom temperature profiles. Transient validation of this model with experiments show less than 6% discrepancy in thermal field during preheating of bake cycle of gas oven.

  3. Design, construction and experimental study of Electric Cum Solar Oven-II

    Nandwani, S.S.


    As in many developing countries, 35-40% of the population of Costa Rica still use firewood for domestic cooking. Considering the fact that Costa Rica is blessed with good sunshine, good hydroelectric potential, and a good electric network, a hybrid solar oven was thought to be useful. In the present paper the construction and working of a new type of Electric Cum Solar Oven (ECSO) has been described. This oven can be used for cooking and baking any type of meal at any time during the year employing solar and/or electric energy but consuming the minimum quantity of electric energy in case it is required. (author). 9 refs, 6 figs, 1 tab

  4. Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven.

    Ozkahraman, Betul Canan; Sumnu, Gulum; Sahin, Serpil


    The objective of this study was to compare the quality of legume cakes baked in microwave-infrared combination (MW-IR) oven with conventional oven. Legume cake formulations were developed by replacing 10 % wheat flour by lentil, chickpea and pea flour. As a control, wheat flour containing cakes were used. Weight loss, specific volume, texture, color, gelatinization degree, macro and micro-structure of cakes were investigated. MW-IR baked cakes had higher specific volume, weight loss and crust color change and lower hardness values than conventionally baked cakes. Larger pores were observed in MW-IR baked cakes according to scanning electron microscope (SEM) images. Pea flour giving the hardest structure, lowest specific volume and gelatinization degree was determined to be the least acceptable legume flour. On the other hand, lentil and chickpea flour containing cakes had the softest structure and highest specific volume showing that lentil and chickpea flour can be used to produce functional cakes.

  5. Blower door method in radon diagnostics

    Fronka, A.; Moucka, L.


    The idea of the radon transfer factor is commonly presented as the ratio of the building indoor radon concentration to the subsoil radon concentration. Ventilation and the pressure field over the whole building envelope, which varies in a time over a very wide range even in the same building, poses a major problem. Therefore a new approach based on the controlled conditions determining the soil air infiltration was developed. Radon in soil gas infiltrates into the building indoor environment particularly through cracks and other leakages in the structure providing the building contact with its subsoil. The infiltration is driven by the air pressure difference on the two sides of the structure. The pressure difference is caused by the stack effect and its value ranges from 1-2 Pa in family houses to some tens of Pa in higher buildings. Unfortunately, the pressure difference is very unstable under normal conditions, being affected by a host of parameters such as the height of the building, distribution and geometry of leakages, outdoor-indoor temperature difference, etc. Wind direction and velocity of the wind plays a major role. In our research the blower door method was applied in combination with a monitoring of the indoor radon concentration. The indoor-outdoor pressure difference and the pressure difference at the two sides of the screen shutter of the blower door fan are also measured. The blower door ensures a constant, evaluable air exchange rate. The fan power is regulated to provide a stable pressure difference within the range of roughly 5-100 Pa. This approach provides very well defined conditions allowing us to apply a constant ventilation-constant radon supply model. In such circumstances the dynamical changes of radon concentrations are very fast, and therefore a unique continual radon monitor was applied. The radon supply rate is evaluated from the radon steady state of the time course of radon concentration. The dependence of the radon supply rate on

  6. Temperature variations in sintering ovens for metal ceramic dental prostheses: non-destructive assessment using OCT

    Sinescu, C.; Bradu, A.; Duma, V.-F.; Topala, F. I.; Negrutiu, M. L.; Podoleanu, A. G.


    We present a recent investigation regarding the use of optical coherence tomography (OCT) in the monitoring of the calibration loss of sintering ovens for the manufacturing of metal ceramic dental prostheses. Differences in the temperatures of such ovens with regard to their specifications lead to stress and even cracks in the prostheses material, therefore to the failure of the dental treatment. Evaluation methods of the ovens calibration consist nowadays of firing supplemental samples; this is subjective, expensive, and time consuming. Using an in-house developed swept source (SS) OCT system, we have demonstrated that a quantitative assessment of the internal structure of the prostheses, therefore of the temperature settings of the ovens can be made. Using en-face OCT images acquired at similar depths inside the samples, the differences in reflectivity allow for the evaluation of the differences in granulation (i.e., in number and size of ceramic grains) of the prostheses material. Fifty samples, divided in five groups, each sintered at different temperatures (lower, higher, or equal to the prescribed one) have been analyzed. The consequences of the temperature variations with regard to the one prescribed were determined. Rules-of-thumb were extracted to monitor objectively, using only OCT images of currently manufactured samples, the settings of the oven. The method proposed allows for avoiding producing prostheses with defects. While such rules-of-thumb achieve a qualitative assessment, an insight in our on-going work on the quantitative assessment of such losses of calibration on dental ovens using OCT is also made.

  7. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus; Hansen, Steen Honoré


    Microwave ovens have been used extensively in organic synthesis in order to accelerate reaction rates. Here, a set up comprising a microwave oven combined with silicon carbide (SiC) plates for the controlled microwave heating of model formulations has been applied in order to investigate, if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. In the accelerated stability studies, a design of experiments (DoE) approach was applied in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after storage at 40°C and 80°C. It was possible to reduce the time needed for drug-excipient compatibility testing of the three model formulations from weeks to less than an hour in the three case studies. The microwave oven is therefore considered to be an interesting alternative to conventional thermal techniques for the investigation of drug-excipient interactions during preformulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Motor actuated vacuum door. [for photography from sounding rockets

    Hanagud, A. V.


    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  9. Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven

    Levine, Zachary H.


    An attempt to calibrate a conventional oven led to making a measurement of a thermophysical property of water using items found in the author's home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the standard value of 5.5. The close agreement is not representative of the actual uncertainties in this simple experiment (Fig. 1). Heating water in a microwave oven can let a student apply the techniques of quantitative science based on questions generated by his or her scientific curiosity.

  10. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    Liu, Zhaohui; Dong, Xinglong; Liu, Xin; Han, Yu


    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences

  11. Analysis of gas-phase mercury sorption with coke and lignite dust

    Marczak Marta


    Full Text Available In recent years the problem of mercury emission became a widely discussed topic. Its high impact is caused by its toxicity and ability to accumulate in living organisms, properties that justified the United States Environmental Protection Agency (US EPA to classify mercury as hazardous pollutant. The problem of mercury emission is crucial for countries like Poland, where the most of the emission is caused by coaldepended energy sector. Current technology of mercury removal utilizes adsorption of mercury on the surface of activated carbon. Due to high price of activated carbon, this technological approach seems to be uneconomical and calls for cheaper alternative. One possible solution can be usage of other sorptive materials obtained from thermal processes like coke production. Example of such material is coke dust obtained from dry quenching of coke. The aim of this work was to analyse the sorption potential of lignite and coke dust and determine parameters influencing mercury behaviour during combustion.

  12. Combined effects of petrographic and technological parameters on strength of porous coke substance

    Dinel' t, V.M.; Shkoller, M.B.; Stankevich, A.S.; Korchuganova, G.S.


    A laboratory study was undertaken to study the combined effects of the basic petrographic characteristics of Kuzbas coal blends and the technological carbonization parameters on the structural strength of the porous coke. Strength tests were carried out on the original coke and the products of partial gasification with carbon dioxide under conditions simulating those inside blast furnaces. Properties of the 14 samples of Kuzbas coals and composition of the four coal blends made from them are listed. It was concluded that the structural strength of coke was most strongly influenced by the average reflectance index and bulk density of the charge. Also, charge compaction can largely offset the adverse influence of petrographic heterogeneity on the strength of the coke. 10 references, 3 tables.

  13. Current developments at Giprokoks for coke-battery construction and reconstruction

    V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos' kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)


    Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

  14. Selective coke combustion by oxygen pulsing during Mo/ZSM‐5‐catalyzed methane dehydroaromatization

    Kosinov, N.; Coumans, F.J.A.G.; Uslamin, E.A.; Kapteijn, F.; Hensen, E.J.M.


    Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation

  15. A small-angle neutron scattering investigation of coke deposits on catalysts

    Acharya, D.R.; Hughes, R.; Allen, A.J.


    Small-angle neutron scattering (SANS) has been used to characterize a silica-alumina catalyst before and after coke deposition. The reaction used to deactivate the catalyst was the isomerization of xylenes. The results showed that, while most of the surface area in this type of catalyst resides in the ultrafine pores of diameters less than 1 nm occupying about 7% of the sample volume, there appears to be no coke deposition in these pores. The coke seems to coat the solid structures of 3.3-nm diameter which are of capillary shape. Such structures occupy about 6% of the sample volume. The coke was found to correspond to amonolayer of composition CH 0.3 with a density of 1660 kg/m 3

  16. Microsoft PowerPoint - Walter Coke Comm May 19 Karen correction presentation [Compatibility Mode

    Contains slides from a presentation to Collegeville, Harriman Park, and Fairmont neighborhoods in North Birmingham, Alabama updating the community on the environmental sampling and next steps on the Walter Coke cleanup site.

  17. Morphological classification of coke formed from the Castilla and Jazmin crude oils

    Picon Hernandez, Hector Julio; Centeno Hurtado, Aristobulo; Pantoja Agreda, Edgar Francisco


    A morphological classification of cokes from the Castilla and Jazmin Colombian crude oils was completed. These heavy-nature crude oils, after being fractioned during the refining stages, were physicochemical characterized and submitted to the coking process. The conclusions of this work are based on the characterization of the feedstock chemical composition according to the type of aromatic carbon. UV visible spectrophotometry and the corresponding micrographs obtained by a Scan Electron Microscope (SEM), in amplification intervals from 100X to 5000X for the samples of formed cokes, were analyzed. Results of this work allowed the determination of the morphological classification intervals in function of the polyaromatic compound concentration ratio (tetraromatic/triaromatic, and diaromatic/triaromatic) of the different coked feedstock. Furthermore, high content of calcium and sulfur in the feedstock promotes morphologies of the associated - shot type

  18. Structural transformations in thermal treatment of carbon material based on Slantsy coke

    Tyumentsev, V.A.; Semenov, P.V.; Podkopaev, S.A.; Noneshneva, N.P.; Golovin, A.V. [Chelyabinsk State University, Chelyabinsk (Russian Federation)


    Structural transformations occurring in a carbon material based on high-sulfur Slantsy coke during isothermal treatment (1200-2400{degree}C) under normal pressure in a nitrogen atmosphere were studied.

  19. The impact of multiphase behaviour on coke deposition in heavy oil hydroprocessing catalysts

    Zhang, Xiaohui

    Coke deposition in heavy oil catalytic hydroprocessing remains a serious problem. The influence of multiphase behaviour on coke deposition is an important but unresolved question. A model heavy oil system (Athabasca vacuum bottoms (ABVB) + decane) and a commercial heavy oil hydrotreating catalyst (NiMo/gamma-Al 2O3) were employed to study the impact of multiphase behaviour on coke deposition. The model heavy oil mixture exhibits low-density liquid + vapour (L1V), high-density liquid + vapour (L2V), as well as low-density liquid + high-density liquid + vapour (L1L2V) phase behaviour at a typical hydroprocessing temperature (380°C). The L2 phase only arises for the ABVB composition range from 10 to 50 wt %. The phase behaviour undergoes transitions from V to L2V, to L1L2V, to L1V with increasing ABVB compositions at the pressure examined. The addition of hydrogen into the model heavy oil mixtures at a fixed mass ratio (0.0057:1) does not change the phase behaviour significantly, but shifts the phase regions and boundaries vertically from low pressure to high pressure. In the absence of hydrogen, the carbon content, surface area and pore volume losses for catalyst exposed to the L1 phase are greater than for the corresponding L2 phase despite a higher coke precursor concentration in L2 than in L1. By contrast, in the presence of hydrogen, the carbon content, surface area and pore volume losses for the catalyst exposed to the L2 phase are greater than for the corresponding L1 phase. The higher hydrogen concentration in L1 appears to reverse the observed results. In the presence of hydrogen, L2 was most closely associated with coke deposition, L1 less associated with coke deposition, and V least associated with coke deposition. Coke deposition is maximized in the phase regions where the L2 phase arises. This key result is inconsistent with expectation and coke deposition models where the extent of coke deposition, at otherwise fixed reaction conditions, is asserted to

  20. [Evaluating work intensity in major and auxiliary occupations of by-product coke industry].

    Smagulov, N K; Alpysbayeva, Zh T


    The article covers evaluation of work strain in major and auxiliary occupations of by-product coke industry. The study results conclude that occupational activity of by-product coke industry workers, under exposure to occupational hazards, affects the workers' performance. Major occupations workers demonstrate higher level of functional strain of CNS, poor concentration of attention and lower ability to switch over, decreased general performance, vs. the auxiliary occupations workers who demonstrated increased cardiovascular and neuro-muscular strain due to occupational activity.

  1. Catalytic effect of lignite ash on steam gasification of oil sand coke

    Furimsky, E.; Palmer, A.


    Steam gasification of Suncor and Syncrude cokes was carried out in the presence of ash obtained after burning Onakawana lignite. Catalytic effects of the ash were evident at 930 C whereas at 830 C little effect was observed. These observations were attributed to the combined actions of Ca- and Fe-containing species in the ash, in which the former neutralized the sulfur in the cokes to prevent poisoning of Fe oxides. 5 tabs., 5 figs., 15 refs.

  2. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability.

    Yu, Xubiao; Xu, Ronghua; Wei, Chaohai; Wu, Haizhen


    The effect of ferrous sulfate (FeSO4) treatment on the removal of cyanide compounds and the improvement of biodegradability of coking wastewater were investigated by varying Fe:TCN molar ratios. Results suggested that the reaction between FeSO4 and coking wastewater was a two-step process. At the first step, i.e., 0≤Fe:TCN≤1.0, the reaction mechanisms were dominated by the precipitation of FeS, the complexation of CN(-), and the coagulation of organic compounds. The COD of coking wastewater decreased from 3748.1 mg/L to 3450.2 mg/L, but BOD5:COD (B/C) was improved from 0.30 to 0.51. At the second step, i.e., 1.0cyanide compounds by ferrous ions was the dominating mechanism. The COD showed a continuous increase to 3542.2 mg/L (Fe:TCN=3.2) due to the accumulated ferrous ions in coking wastewater. Moreover, B/C decreased progressively to 0.35, which was attributed to the negative effects of excess ferrous ions on biodegradability. To improve coking wastewater's biodegradability, a minimum ferrous dosage is required to complete the first step reaction. However, the optimum ferrous dosage should be determined to control a safe residual TCN in coking wastewater for the further biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Precautionary measures in determining volatile matter in natural coke washability fractions

    Ashok K. Singh; N.K. Shukla; S.K. Srivastava; D.D. Haldar; B.N. Roy; Mamta Sharma [Central Institute of Mining and Fuel Research, Dhanbad (India)


    Industrial utilization of heat-altered coal, especially natural coke derived from coking coal, has become a challenge. As such approximately 3,500 million tones (Mt) reserves of baked coals are available in different coalfields of India. In the present investigation, a natural coke sample (03 tone) was collected from a huge dump of seam XIV of Burragarh colliery under leasehold of Bharat Coking Coal Ltd., a subsidiary of Coal India Ltd., situated in Dhanbad district of Jharkhand state. It was observed that the volatile matter in the washability fractions of different size ranges (50 to 0.5 mm) at specific gravity 1.40 to 1.80 showed erratic distribution with respect to ash. To check the abnormality, the subsamples were subjected to microscopic (petrographic) study and chemical analysis including CO{sub 2} determination. The high concentration of CO{sub 2} is related to high concentration of carbonate minerals generated due to igneous intrusions in coal seams. Based on above observations, it was concluded that the volatile matter can be corrected through determined CO{sub 2} content in each fraction. Since efforts are being made to use natural coke in different industries such as steel, power, cement, carbon artifacts, etc., a careful investigation of volatile matter distribution in natural coke washability fractions would be of immense help in planning its bulk use.

  4. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    Behzad Majidi


    Full Text Available Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  5. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures.

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P; Alamdari, Houshang


    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  6. Volatiles production from the coking of coal; Sekitan no netsubunkai ni okeru kihatsubun seisei

    Yamashita, Y.; Saito, H.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)


    In order to simplify the coke manufacturing process, a coke production mechanism in coal pyrolysis was discussed. Australian bituminous coal which can produce good coke was used for the discussion. At a temperature raising rate of 50{degree}C per minute, coal weight loss increases monotonously. However, in the case of 3{degree}C, the weight loss reaches a peak at a maximum ultimate temperature of about 550{degree}C. The reaction mechanism varies with the temperature raising rates, and in the case of 50{degree}C per minute, volatiles other than CO2 and propane increased. Weight loss of coal at 3{degree}C per minute was caused mainly by methane production at 550{degree}C or lower. When the temperature is raised to 600{degree}C, tar and CO2 increased, and so did the weight loss. Anisotropy was discerned in almost of all coke particles at 450{degree}C, and the anisotropy became remarkable with increase in the maximum ultimate temperature. Coke and volatiles were produced continuously at a temperature raising rate of 50{degree}C per minute, and at 3{degree}C per minute, the production of the coke and volatiles progressed stepwise as the temperature has risen. 7 refs., 6 figs.

  7. A XANES Study of Sulfur Speciation and Reactivity in Cokes for Anodes Used in Aluminum Production

    Jahrsengene, Gøril; Wells, Hannah C.; Rørvik, Stein; Ratvik, Arne Petter; Haverkamp, Richard G.; Svensson, Ann Mari


    Availability of anode raw materials in the growing aluminum industry results in a wider range of petroleum cokes being used to produce carbon anodes. The boundary between anode grade cokes and what previously was considered non-anode grades are no longer as distinct as before, leading to introduction of cokes with higher sulfur and higher trace metal impurity content in anode manufacturing. In this work, the chemical nature of sulfur in five industrial cokes, ranging from 1.42 to 5.54 wt pct S, was investigated with K-edge XANES, while the reactivity of the cokes towards CO2 was measured by a standard mass loss test. XANES identified most of the sulfur as organic sulfur compounds. In addition, a significant amount is identified (16 to 53 pct) as S-S bound sulfur. A strong inverse correlation is observed between CO2-reactivity and S-S bound sulfur in the cokes, indicating that the reduction in reactivity is more dependent on the amount of this type of sulfur compound rather than the total amount of sulfur or the amount of organic sulfur.

  8. Reference method for total water in lint cotton by automated oven drying combined with volumetric Karl Fischer titration

    In a preliminary study to measure total water in lint cotton we demonstrated that volumetric Karl Fischer Titration of moisture transported by a carrier gas from an attached small oven is more accurate than standard oven drying in air. The objective of the present study was to assess the measuremen...

  9. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  10. Ontwateren van zeugenmest door middel van omgekeerde osmose

    Thelosen, J.; Gastel, van J.; Cuyck, van J.


    In periodiek nummer 1 (februari 1991) is het proces van omgekeerde osmose reeds beschreven. In het kort komt omgekeerde osmose op het volgende neer: de te ontwateren vloeistof wordt onder hoge druk (55 bar) door filterbuizen gepompt.

  11. Deeltjesemissie door wegverkeer: emissiefactoren, deeltjesgrootteverdeling en chemische samenstelling

    Brink RMM van den; LAE


    In deze literatuurstudie werden zowel gegevens over uitlaatgas-deeltjesemissie alsook over deeltjesemissie als gevolg van slijtage van banden, remvoering en wegdek ge-inventariseerd. Daarnaast werd aandacht besteed aan deeltjesemissie als gevolg van, door rijdend verkeer, opgewerveld stof. Naast

  12. Rotational and frictional dynamics of the slamming of a door

    Klein, Pascal; Müller, Andreas; Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen


    A theoretical and experimental investigation of the rotational dynamics, including friction, of a slamming door is presented. Based on existing work regarding different damping models for rotational and oscillatory motions, we examine different forms for the (angular) velocity dependence (ωn, n = 0, 1, 2) of the frictional force. An analytic solution is given when all three friction terms are present and several solutions for specific cases known from the literature are reproduced. The motion of a door is investigated experimentally using a smartphone, and the data are compared with the theoretical results. A laboratory experiment under more controlled conditions is conducted to gain a deeper understanding of the movement of a slammed door. Our findings provide quantitative evidence that damping models involving quadratic air drag are most appropriate for the slamming of a door. Examining this everyday example of a physical phenomenon increases student motivation, because they can relate it to their own personal experience.

  13. Plattelandimpuls : leren door gewoon te dóen

    Noorduyn, L.


    Plattelandsondernemers die hun activiteiten verbreden, vergeten nogal eens serieuze aandacht te besteden aan de vermarkting van hun product. Met het project PlattelandImpuls hebben ondernemers hun vaardigheden op dat vlak kunnen verbeteren door te werken met product-marktcombinaties.

  14. Landing Gear Door Liners for Airframe Noise Reduction

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)


    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  15. 78 FR 7939 - Energy Conservation Program: Test Procedures for Microwave Ovens (Active Mode)


    ...--Measurement of standby power,'' Edition 2.0 2011-01 (IEC Standard 62301 (Second Edition)) for measuring... cooking mode, plus the sum of the product of the average standby mode and off mode power consumption and... usage habits for microwave ovens.\\5\\ The survey collected data from 2258 households on the typical cycle...

  16. Control of final moisture content of food products baked in continuous tunnel ovens

    McFarlane, Ian


    There are well-known difficulties in making measurements of the moisture content of baked goods (such as bread, buns, biscuits, crackers and cake) during baking or at the oven exit; in this paper several sensing methods are discussed, but none of them are able to provide direct measurement with sufficient precision. An alternative is to use indirect inferential methods. Some of these methods involve dynamic modelling, with incorporation of thermal properties and using techniques familiar in computational fluid dynamics (CFD); a method of this class that has been used for the modelling of heat and mass transfer in one direction during baking is summarized, which may be extended to model transport of moisture within the product and also within the surrounding atmosphere. The concept of injecting heat during the baking process proportional to the calculated heat load on the oven has been implemented in a control scheme based on heat balance zone by zone through a continuous baking oven, taking advantage of the high latent heat of evaporation of water. Tests on biscuit production ovens are reported, with results that support a claim that the scheme gives more reproducible water distribution in the final product than conventional closed loop control of zone ambient temperatures, thus enabling water content to be held more closely within tolerance.

  17. Development and optimization of operational parameters of a gas-fired baking oven

    Afolabi Tunde MORAKINYO


    Full Text Available This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The physical properties of the baked breads were measured and analyzed using Duncan multiple range test of one way ANOVA at significant level of p<0.05. These properties were optimized to determine the optimum baking temperature using 3D surface response plot of Statistical Release 7. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 12.5 kg/hr, 87.8%, 12.5 g, 200-220oC, respectively. The physical properties of baked bread dough were found to correspond with the imported product (control sample. These results showed that, the developed gas-fired baking oven can be adopted for baking of bread at domestic and commercial levels.

  18. Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview

    Wattanachai, Pitiwat; Suwan, Teewara


    At the present day, a concept of environmentally friendly construction materials has been intensively studying to reduce the amount of releasing greenhouse gases. Geopolymer is one of the cementitious binders which can be produced by utilising pozzolanic wastes (e.g. fly ash or furnace slag) and also receiving much more attention as a low-CO2 emission material. However, to achieve excellent mechanical properties, heat curing process is needed to apply to geopolymer cement in a range of temperature around 40 to 90°C. To consume less oven-curing energy and be more convenience in practical work, the study on geopolymer curing at ambient temperature (around 20 to 25°C) is therefore widely investigated. In this paper, a core review of factors and approaches for non-oven curing geopolymer has been summarised. The performance, in term of strength, of each non-oven curing method, is also presented and analysed. The main aim of this review paper is to gather the latest study of ambient temperature curing geopolymer and to enlarge a feasibility of non-oven curing geopolymer development. Also, to extend the directions of research work, some approaches or techniques can be combined or applied to the specific properties for in-field applications and embankment stabilization by using soil-cement column.

  19. Science at Home: Measuring a Thermophysical Property of Water with a Microwave Oven

    Levine, Zachary H.


    An attempt to calibrate a conventional oven led to making a measurement of a thermophysical property of water using items found in the author's home. Specifically, the ratio of the energy required to heat water from the melting point to boiling to the energy required to completely boil away the water is found to be 5.7. This may be compared to the…

  20. Are freeze drying and oven drying methods for trace metal determination in zoological specimens analytically sound

    Fourie, H.O.; Peisach, M.


    High specific activity radio-isotopes of chromium, zinc and selenium were used to label these elements accumulated by the oyster Crassostrea gigas. The retention of the metabolised forms of these elements during freeze-drying or oven drying at 50, 90, 105 and 120 deg C was studied. Observed losses question the accuracy of these analytical procedures. (author)