WorldWideScience

Sample records for coincidence counting system

  1. High rate 4π β-γ coincidence counting system

    International Nuclear Information System (INIS)

    Johnson, L.O.; Gehrke, R.J.

    1978-01-01

    A high count rate 4π β-γ coincidence counting system for the determination of absolute disintegration rates of short half-life radionuclides is described. With this system the dead time per pulse is minimized by not stretching any pulses beyond the width necessary to satisfy overlap coincidence requirements. The equations used to correct for the β, γ, and coincidence channel dead times and for accidental coincidences are presented but not rigorously developed. Experimental results are presented for a decaying source of 56 Mn initially at 2 x 10 6 d/s and a set of 60 Co sources of accurately known source strengths varying from 10 3 to 2 x 10 6 d/s. A check of the accidental coincidence equation for the case of two independent sources with varying source strengths is presented

  2. Digital coincidence counting

    Science.gov (United States)

    Buckman, S. M.; Ius, D.

    1996-02-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.

  3. Digital coincidence counting

    International Nuclear Information System (INIS)

    Buckman, S.M.; Ius, D.

    1996-01-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method. (orig.)

  4. Recent progress with digital coincidence counting

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Watt, G.C.; Alexiev, D.

    1999-01-01

    Digital Coincidence Counting (DCC) is a new technique, based on the older method of analogue coincidence counting. It has been developed by ANSTO as a faster more reliable means of determining the activity of ionising radiation samples. The technique employs a dual channel analogue to digital converter acquisition system for collecting pulse information from a 4Π beta detector and a NaI(Tl) gamma detector. The digitised pulse information is stored on a high speed hard disk and timing information for both channels is also stored. The data may subsequently be recalled and analysed using software based algorithms. The system is operational and results are now being routinely collected and analysed. Some of the early work is presented for Co-60, Na-22 and Sm-153

  5. Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    International Nuclear Information System (INIS)

    Balpardo, C.; Capoulat, M.E.; Rodrigues, D.; Arenillas, P.

    2010-01-01

    The nuclide 241 Am decays by alpha emission to 237 Np. Most of the decays (84.6%) populate the excited level of 237 Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of 241 Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  6. Standardization of {sup 241}Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    Energy Technology Data Exchange (ETDEWEB)

    Balpardo, C., E-mail: balpardo@cae.cnea.gov.a [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina); Capoulat, M.E.; Rodrigues, D.; Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, CNEA, Buenos Aires (Argentina)

    2010-07-15

    The nuclide {sup 241}Am decays by alpha emission to {sup 237}Np. Most of the decays (84.6%) populate the excited level of {sup 237}Np with energy of 59.54 keV. Digital coincidence counting was applied to standardize a solution of {sup 241}Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid scintillation counting using the logical sum of double coincidences in a TDCR array and defined solid angle counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  7. A 15 channel 2- and 3-fold coincidence counting system for radioactivity standardization

    International Nuclear Information System (INIS)

    Simpson, B.R.S.; Meyer, B.R.; Raave, D.A.

    1986-01-01

    The 4π β-γ liquid scintillation coincidence counting system which is used at the National Accelerator Centre for standardizing radioisotopes, has been extended to allow for up to fifteen data points to be measured simultaneously by introducing a 15-fold coincidence unit and a 32-channel scaler into the system. A new control / data acquisition computer program has been written and its operation explained in detail. The advantages of the new system are discussed, and the activity of a 139 Ce source as measured by the new system and the old 3-fold system is compared

  8. Recent Advances in Digital Coincidence Counting for Radionuclide Metrology

    International Nuclear Information System (INIS)

    Keightley, John; Bobin, Christophe; Bouchard, Jacques; Capogni, Marco; Loreti, Stefano; Roteta, Miguel

    2013-06-01

    The radioactivity measurement techniques developed within the EURAMET EMRP 'MetroFission' Joint Research Project, were aimed at performing on-site activity measurements at the primary standard level (4πβ-γ coincidence counting) for a wide range of radionuclides utilizing recent advances in high-speed digital sampling and digital signal processing. The state-of-the-art technology employed within this project provides up to 14-bit digitizer systems operating with sampling rates in the order of 10 8 to 10 9 samples-per-second, incorporating on-board FPGA devices, which greatly enhances the application of digital signal processing for the implementation of digital coincidence counting. These devices when coupled to suitable analysis software, demonstrate a significant improvement in the provision of primary standards of radioactivity. This manuscript provides a description of the systems employed, along with recommendations regarding optimization of the digital sampling of signals from photo-multiplier tubes and pre-amplifiers and compare the benefits of 'off-line' versus 'on-line' 4πβ-γ digital coincidence counting systems. (authors)

  9. Standardisation of 64Cu using a software coincidence counting system

    International Nuclear Information System (INIS)

    Havelka, Miroslav; Sochorová, Jana

    2014-01-01

    The activity of the radionuclide 64 Cu was determined by the efficiency extrapolation method applied to 4π(PC)−γ coincidence counting. The standardisation was performed by software coincidence counting—a digital method for primary activity measurement that simplifies the setting of optimal coincidence parameters. The γ-ray-energy window, characterised by identical gamma detection efficiency related to the sum of EC and to the sum of beta decay branches, was found. This setting ensured a linear and zero slope extrapolation curve. - Highlights: • Standardisation realised by extrapolation method applied to 4π(PC)−γ coincidence. • Digital method for optimal setting of coincidence parameters was used. • Result with total standard uncertainty of 0.74% was obtained

  10. Coincidence counting corrections for dead time losses and accidental coincidences

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1987-04-01

    An equation is derived for the calculation of the radioactivity of a source from the results of coincidence counting taking into account the dead-time losses and accidental coincidences. The derivation is an extension of the method of J. Bryant [Int. J. Appl. Radiat. Isot., 14:143, 1963]. The improvement on Bryant's formula has been verified by experiment

  11. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  12. Computed neutron coincidence counting applied to passive waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-01-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs

  13. Method and apparstus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1980-01-01

    A method and apparatus for the reliable determination of a random coincidence count attributable to chance coincidences of single-photon events which are each detected in only a single detector of a scintillation counter utilizing two detectors in a coincidence counting technique are described. A firstdelay device is employed to delay output pulses from one detector, and then the delayed signal is compared with the undelayed signal from the other detector in a coincidence circuit, to obtain an approximate random coincidence count. The output of the coincidence circuit is applied to an anti-coincidence circuit, where it is corrected by elimination of pulses coincident with, and attributable to, conventionally detected real coincidences, and by elimination of pulses coincident with, and attributable to, real coincidences that have been delayed by a second delay device having the same time parameter as the first. 8 claims

  14. A new approach to beta-gamma coincidence counting. Advance report on the Samar electronic system

    International Nuclear Information System (INIS)

    Carlos, J. E. de; Granados, C. E.

    1972-01-01

    In 4π β-γ coincidence measurements, precision on the evaluation of coincidence counting losses is made difficult because of complex overlapping effects between theβ--and γ-side dead times due to pre cursive counted events. In this context the SAMAR electronic system is aimed to give a precise way of automatic counting and reduce the need for calculated corrections. This report describes its configuration and basic features. The SAMAR has been conceived in such a manner that both beta and gamma chains are sharing a common and non extending dead-time which is simultaneously applied to both channels. The shared dead time is made to be the only one inserted throughout the chains. Overlapping effects vanish and the three counting channels have identical transmission ratios. A new dead-time circuit based on fast linear gates as blocking elements has been developed. Application of the two-oscillator Muller's method evidences a fully non-extending character. Automatism is implemented by using a live timer corrective channel controlling the counting scalers. (Author) 21 refs

  15. The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs

    International Nuclear Information System (INIS)

    Krick, M.S.; Harker, W.C.; Rinard, P.M.; Wenz, T.R.; Lewis, W.; Pham, P.; Ridder, P. de

    1998-01-01

    Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows reg-sign and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium

  16. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Bourva, L.C.A.; Croft, S.

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM , or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this

  17. Coincidence-counting corrections for accidental coincidences, set dead time and intrinsic dead time

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1998-01-01

    An equation is derived for calculating the radioactivity of a source from the results of coincidence counting, taking into account dead-time losses and accidental coincidences. The corrections allow for the extension of the set dead time in the p channel by the intrinsic dead time. Experimental verification shows improvement over a previous equation. (author)

  18. Statistical data filtration in neutron coincidence counting

    International Nuclear Information System (INIS)

    Beddingfield, D.H.; Menlove, H.O.

    1992-11-01

    We assessed the effectiveness of statistical data filtration to minimize the contribution of matrix materials in 200-ell drums to the nondestructive assay of plutonium. Those matrices were examined: polyethylene, concrete, aluminum, iron, cadmium, and lead. Statistical filtration of neutron coincidence data improved the low-end sensitivity of coincidence counters. Spurious data arising from electrical noise, matrix spallation, and geometric effects were smoothed in a predictable fashion by the statistical filter. The filter effectively lowers the minimum detectable mass limit that can be achieved for plutonium assay using passive neutron coincidence counting

  19. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  20. Uranium mass and neutron multiplication factor estimates from time-correlation coincidence counts

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenxiong [China Academy of Engineering Physics, Center for Strategic Studies, Beijing 100088 (China); Li, Jiansheng [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900 (China); Zhu, Jianyu [China Academy of Engineering Physics, Center for Strategic Studies, Beijing 100088 (China)

    2015-10-11

    Time-correlation coincidence counts of neutrons are an important means to measure attributes of nuclear material. The main deficiency in the analysis is that an attribute of an unknown component can only be assessed by comparing it with similar known components. There is a lack of a universal method of measurement suitable for the different attributes of the components. This paper presents a new method that uses universal relations to estimate the mass and neutron multiplication factor of any uranium component with known enrichment. Based on numerical simulations and analyses of 64 highly enriched uranium components with different thicknesses and average radii, the relations between mass, multiplication and coincidence spectral features have been obtained by linear regression analysis. To examine the validity of the method in estimating the mass of uranium components with different sizes, shapes, enrichment, and shielding, the features of time-correlation coincidence-count spectra for other objects with similar attributes are simulated. Most of the masses and multiplications for these objects could also be derived by the formulation. Experimental measurements of highly enriched uranium castings have also been used to verify the formulation. The results show that for a well-designed time-dependent coincidence-count measuring system of a uranium attribute, there are a set of relations dependent on the uranium enrichment by which the mass and multiplication of the measured uranium components of any shape and size can be estimated from the features of the source-detector coincidence-count spectrum.

  1. Calibration of nuclides by gamma-gamma sum peak coincidence counting

    International Nuclear Information System (INIS)

    Guevara, E.A.

    1986-01-01

    The feasibility of extending sum peak coincidence counting to the direct calibration of gamma-ray emitters having particular decay schemes was investigated, also checkings of the measurement accuracy, by comparing with more precise beta-gamma coincidence counting have been performed. New theoretical studies and experiments were developed, demonstrating the reliability of the procedure. Uncertainties of less than one percent were obtained when certain radioactive sources were measured. The application of the procedure to 60 Co, 22 Na, 47 Ca and 148 Pm was studied. Theoretical bases of sum peak coincidence counting were set in order to extend it as an alternative method for absolute activity determination. In this respect, theoretical studies were performed for positive and negative beta decay, and electron capture, either accompanied or unaccompanied by coincident gamma rays. They include decay schemes containing up to three daughter nuclide excited levels, for different geometrical configurations. Equations are proposed for a possible generalization of the procedure. (M.E.L.) [es

  2. High sensitivity neutron activation analysis using coincidence counting method

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    1999-01-01

    Four kinds of standard samples such as river sediment (NIES CRM No.16), Typical Japanese Diet, otoliths and river water were irradiated by TRIGA-II (100 kW, 3.7x10 12 n cm -2 s -1 ) for 6 h. After irradiation and cooling, they were analyzed by the coincidence counting method and a conventional γ-ray spectrometry. Se, Ba and Hf were determined by 75 Se 265 keV, 131 Ba 496 keV and 181 Hf 482 keV. On the river sediment sample, Ba and Hf showed the same values by two methods, but Se value contained Ta by the conventional method, although the coincidence counting method could analyze Se. On Typical Japanese Diet and otoliths, Se could be determined by two methods and Ba and Hf determined by the coincidence counting method but not determined by the conventional method. Se value in the river water agreed with the authorization value. (S.Y.)

  3. Metrology and statistical analysis for the precise standardisation of cobalt-60 by 4πβ-γ coincidence counting

    International Nuclear Information System (INIS)

    Buckman, S.M.

    1995-03-01

    The major part of the thesis is devoted to the theoretical development of a comprehensive PC-based statistical package for the analysis of data from coincidence-counting experiments. This analysis is applied to primary standardizations of Co performed in Australia and Japan. The Australian standardisation, the accuracy of which is confirmed through international comparison, is used to re-calibrate the ionisation chamber. Both Australian and Japanese coincidence-counting systems are interfaced to personal computers to enable replicated sets of measurements to be made under computer control. Further research to confirm the validity of the statistical model includes an experimental investigation into the non-Poisson behaviour of radiation detectors due to the effect of deadtime. Experimental investigation is conducted to determine which areas are most likely to limit the ultimate accuracy achievable with coincidence counting. The thesis concludes by discussing the possibilities of digital coincidence counting and outlines the design of a prototype system presently under development. The accuracy of the Australian standardisation is confirmed by international comparison. From this result a more accurate Co calibration is obtained for the Australian working standard. Based on the work of this thesis, uncertainties in coincidence counting experiments can be better handled with resulting improvements in measurement reliability. The concept and benefits of digital coincidence counting are discussed and a proposed design is given for such a system. All of the data and software associated with this thesis is provided on computer discs. 237 refs., figs., tabs

  4. Coincidence and noncoincidence counting (81Rb and 43K): a comparative study

    International Nuclear Information System (INIS)

    Ikeda, S.; Duken, H.; Tillmanns, H.; Bing, R.J.

    1975-01-01

    The accuracy of imaging and resolution obtained with 81 Rb and 43 K using coincidence and noncoincidence counting was compared. Phantoms and isolated infarcted dog hearts were used. The results clearly show the superiority of coincidence counting with a resolution of 0.5 cm. Noncoincidence counting failed to reveal even sizable defects in the radioactive source. (U.S.)

  5. Summing coincidence errors using Eu-152 lungs to calibrate a lung-counting system: are they significant?

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Lynch, Timothy P.; Lopez, Maria A.; Hauck, Brian

    2004-01-01

    The use of a lung phantom containing 152Eu/241Am activity can provide a sufficient number of energy lines to generate an efficiency calibration for the in vivo measurements of radioactive materials in the lungs. However, due to the number of energy lines associated with 152Eu, coincidence summing occurs and can present a problem when using such a phantom for calibrating lung-counting systems. A Summing Peak Effect Study was conducted at three laboratories to determine the effect of using an efficiency calibration based on a 152Eu/241Am lung phantom. The measurement data at all three laboratories showed the presence of sum peaks. However, two of the three laboratories found only small biases (<5%) when using the 152Eu/241Am calibration. The third facility noted a 25% to 30% positive bias in the 140-keV to 190-keV energy range that prevents the use of the 152Eu/241Am lung phantom for routine calibrations. Although manufactured by different vendors, the three facilities use similar types of detectors (38 cm2 by 25 mm thick or 38 cm2 by 30 mm thick) for counting. These study results underscore the need to evaluate the coincidence summing effect when using a nuclide such as 152Eu for the calibration of low energy lung counting systems

  6. More accurate thermal neutron coincidence counting technique

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    Using passive thermal neutron coincidence counting techniques, the accuracy of nondestructive assays of fertile material can be improved significantly using a two-ring detector. It was shown how the use of a function of the coincidence count rate ring-ratio can provide a detector response rate that is independent of variations in neutron detection efficiency caused by varying sample moderation. Furthermore, the correction for multiplication caused by SF- and (α,n)-neutrons is shown to be separable into the product of a function of the effective mass of 240 Pu (plutonium correction) and a function of the (α,n) reaction probability (matrix correction). The matrix correction is described by a function of the singles count rate ring-ratio. This correction factor is empirically observed to be identical for any combination of PuO 2 powder and matrix materials SiO 2 and MgO because of the similar relation of the (α,n)-Q value and (α,n)-reaction cross section among these matrix nuclei. However the matrix correction expression is expected to be different for matrix materials such as Na, Al, and/or Li. Nevertheless, it should be recognized that for comparison measurements among samples of similar matrix content, it is expected that some function of the singles count rate ring-ratio can be defined to account for variations in the matrix correction due to differences in the intimacy of mixture among the samples. Furthermore the magnitude of this singles count rate ring-ratio serves to identify the contaminant generating the (α,n)-neutrons. Such information is useful in process control

  7. Moisture corrections in neutron coincidence counting of PuO2

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.

    1987-01-01

    Passive neutron coincidence counting is capable of 1% assay accuracy for pure, well-characterized PuO 2 samples that contain plutonium masses from a few tens of grams to several kilograms. Moisture in the sample can significantly bias the assay high by changing the (α,n) neutron production, the sample multiplication, and the detection efficiency. Monte Carlo calculations and an analytical model of coincidence counting have been used to quantify the individual and cumulative effects of moisture biases for two PuO 2 sample sizes and a range of moisture levels from 0 to 9 wt %. Results of the calculations suggest a simple correction procedure for moisture bias that is effective from 0 to 3 wt % H 2 O. The procedure requires that the moisture level in the sample be known before the coincidence measurement

  8. Primary standardization of {sup 152}Eu by 4πβ(LS) - γ (NaI) coincidence counting and CIEMAT-NIST method

    Energy Technology Data Exchange (ETDEWEB)

    Ruzzarin, A., E-mail: aruzzarin@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (LIN/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentação Nuclear; Cruz, P.A.L. da; Ferreira Filho, A.L.; Iwahara, A. [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes

    2017-07-01

    The 4πβ-γ coincidence counting and CIEMAT/NIST liquid scintillation method were used in the standardization of a solution of {sup 152}Eu. In CIEMAT/NIST method, measurements were performed in a Liquid Scintillation Counter model Wallac 1414. In the 4πβ-γ coincidence counting, the solution was standardized using a coincidence method with 'beta-efficiency extrapolation'. A simple 4πβ-γ coincidence system was used, with acrylic scintillation cell coupled to two coincident photomultipliers at 180° each other and NaI(Tl) detector. The activity concentrations obtained were 156.934 ± 0.722 and 157.403 ± 0.113 kBq/g, respectively, for CIEMAT/NIST and 4πβ-γ coincidence counting measurement methods. (author)

  9. Use of sum-peak and coincidence counting methods for activity standardization of {sup 22}Na

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, E.M. de, E-mail: estela@ird.gov.br [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI/IRD/CNEN), Av. Salvador Allende, s/n, Recreio, CEP 22780-160 Rio de Janeiro (Brazil); Iwahara, A.; Poledna, R. [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI/IRD/CNEN), Av. Salvador Allende, s/n, Recreio, CEP 22780-160 Rio de Janeiro (Brazil); Silva, M.A.L. da [Coordenacao Geral de Instalacoes Nucleares/Comissao Nacional de Energia Nuclear, R. Gal. Severiano, 90 - Botafogo, CEP 22290-901 Rio de Janeiro (Brazil); Tauhata, L. [Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Av. Erasmo Braga, 118-6 Degree-Sign andar, CEP 20020-000 Centro, Rio de Janeiro (Brazil); Delgado, J.U. [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI/IRD/CNEN), Av. Salvador Allende, s/n, Recreio, CEP 22780-160 Rio de Janeiro (Brazil); Lopes, R.T. [Laboratorio de Instrumentacao Nuclear (LIN/PEN/COPPE/UFRJ), Caixa Postal 68509, CEP 21945-970 Rio de Janeiro (Brazil)

    2012-09-21

    A solution containing the positron emitter {sup 22}Na has been absolutely standardized using the 4{pi}{beta}-{gamma} coincidence counting method and the sum-peak spectrometry counting method. In the 4{pi}{beta}-{gamma} coincidence method two ways for the activity concentration measurements were used: gating on the 1275 keV photopeak and on the 1786 keV sum-peak where the knowledge of the {beta}{sup +}-branching ratio is required. In the sum-peak method the measurements were carried out using three experimental arrangements: the first composed by a well type 5 in. Multiplication-Sign 5 in. NaI(Tl) scintillation crystal, the second by a 3 in. Multiplication-Sign 3 in. NaI(Tl) scintillation crystal placed on the top of the first, resulting in a 4{pi} counting geometry and the third arrangement is a high purity coaxial germanium detector. The results that are obtained by these two methods are compatible within the standard uncertainty values with a coverage factor of k=2 ({approx}95% of the confidence level). This means that the sum-peak counting with its more simple experimental setup than the complex coincidence 4{pi}{beta}-{gamma} counting system gives consistent results for the activity standardization of {sup 22}Na with smaller uncertainties. Besides, the time period involved to attain the result of the standardization was quite shorter than the coincidence measurements used in this work.

  10. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting

    International Nuclear Information System (INIS)

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-01-01

    The radionuclide 68 Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of 68 Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ−γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. - Highlights: ► We standardized the positron emitter Ga-68 in a bilateral cooperation. ► We used several techniques, as coincidence, integral gamma and liquid scintillation. ► An efficiency comparison replaced a direct comparison of reference materials.

  11. Neutron coincidence counting with digital signal processing

    International Nuclear Information System (INIS)

    Bagi, Janos; Dechamp, Luc; Dransart, Pascal; Dzbikowicz, Zdzislaw; Dufour, Jean-Luc; Holzleitner, Ludwig; Huszti, Joseph; Looman, Marc; Marin Ferrer, Montserrat; Lambert, Thierry; Peerani, Paolo; Rackham, Jamie; Swinhoe, Martyn; Tobin, Steve; Weber, Anne-Laure; Wilson, Mark

    2009-01-01

    Neutron coincidence counting is a widely adopted nondestructive assay (NDA) technique used in nuclear safeguards to measure the mass of nuclear material in samples. Nowadays, most neutron-counting systems are based on the original-shift-register technology, like the (ordinary or multiplicity) Shift-Register Analyser. The analogue signal from the He-3 tubes is processed by an amplifier/single channel analyser (SCA) producing a train of TTL pulses that are fed into an electronic unit that performs the time- correlation analysis. Following the suggestion of the main inspection authorities (IAEA, Euratom and the French Ministry of Industry), several research laboratories have started to study and develop prototypes of neutron-counting systems with PC-based processing. Collaboration in this field among JRC, IRSN and LANL has been established within the framework of the ESARDA-NDA working group. Joint testing campaigns have been performed in the JRC PERLA laboratory, using different equipment provided by the three partners. One area of development is the use of high-speed PCs and pulse acquisition electronics that provide a time stamp (LIST-Mode Acquisition) for every digital pulse. The time stamp data can be processed directly during acquisition or saved on a hard disk. The latter method has the advantage that measurement data can be analysed with different values for parameters like predelay and gate width, without repeating the acquisition. Other useful diagnostic information, such as die-away time and dead time, can also be extracted from this stored data. A second area is the development of 'virtual instruments.' These devices, in which the pulse-processing system can be embedded in the neutron counter itself and sends counting data to a PC, can give increased data-acquisition speeds. Either or both of these developments could give rise to the next generation of instrumentation for improved practical neutron-correlation measurements. The paper will describe the

  12. Standardization of Ga-68 by coincidence measurements, liquid scintillation counting and 4πγ counting.

    Science.gov (United States)

    Roteta, Miguel; Peyres, Virginia; Rodríguez Barquero, Leonor; García-Toraño, Eduardo; Arenillas, Pablo; Balpardo, Christian; Rodrígues, Darío; Llovera, Roberto

    2012-09-01

    The radionuclide (68)Ga is one of the few positron emitters that can be prepared in-house without the use of a cyclotron. It disintegrates to the ground state of (68)Zn partially by positron emission (89.1%) with a maximum energy of 1899.1 keV, and partially by electron capture (10.9%). This nuclide has been standardized in the frame of a cooperation project between the Radionuclide Metrology laboratories from CIEMAT (Spain) and CNEA (Argentina). Measurements involved several techniques: 4πβ-γ coincidences, integral gamma counting and Liquid Scintillation Counting using the triple to double coincidence ratio and the CIEMAT/NIST methods. Given the short half-life of the radionuclide assayed, a direct comparison between results from both laboratories was excluded and a comparison of experimental efficiencies of similar NaI detectors was used instead. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Pile-up correction for coincidence counting using a CAEN 1724 digitizer

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Junior, Iberê S.; Zahn, Guilherme S.; Genezini, Frederico A., E-mail: gzahn@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In conventional gamma-ray spectrometry, the probability of pile-up effects is considered to be proportional to the dead-time, and is usually neglected for low dead-times (below 4-5%). In gamma-gamma coincidence spectrometry, though, while the dead time takes into account only events that are actually digitized, the pile-up effects are proportional to the actual gamma-ray detection rate in each detector, not only to the ones that trigger the coincidence gate. Thus, the pile-up corrections may not be so easy to assess as in single spectrometry systems. In this work, a system composed of two HPGe detectors coupled to a CAEN v1724 digitizer is studied. A 3kBq {sup 60}Co source was analyzed, both alone and in the presence of other radioactive sources ({sup 137}Cs, {sup 133}Ba and {sup 152}Eu), and the resulting coincidence peak areas were compared to assess the effectiveness of two distinct corrections: a simple normalization by the live time of acquisition and the normalization by the count rate obtained using a pulse generator. The results obtained stress the need to use the pulse generator in this specific setup in order to get accurate results. (author)

  14. Monte Carlo calculations of the neutron coincidence gate utilisation factor for passive neutron coincidence counting

    CERN Document Server

    Bourva, L C A

    1999-01-01

    The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...

  15. Fast coincidence counting with active inspection systems

    Science.gov (United States)

    Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.

    2005-12-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.

  16. Fast coincidence counting with active inspection systems

    International Nuclear Information System (INIS)

    Mullens, J.A.; Neal, J.S.; Hausladen, P.A.; Pozzi, S.A.; Mihalczo, J.T.

    2005-01-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements

  17. Sustaining IAEA Neutron Coincidence Counting: Past, Present and Future

    International Nuclear Information System (INIS)

    Longo, J.; Schaffer, K.M.; Nordquist, H.

    2015-01-01

    Los Alamos National Laboratory's IAEA Neutron Coincidence Counting (INCC) code is the standard tool for neutron coincidence counting measurements. INCC software and its' predecessors were originally implemented in the 1970s. The measurement and analysis techniques perfected in the code arise from many years of laboratory and field experience by nuclear engineers and physicists. Covering the full arc of INCC's lifecycle, we discuss the engineering approaches used for conception, original development, worldwide deployment of the stand-alone Windows application, more than a decade of sustained maintenance support, and our recent work to carry INCC successfully into future applications. We delve into the recent re-architecture of the INCC code base, an effort to create a maintainable and extensible architecture designed to preserve the existing INCC code base while adding support for new analyzes and instruments (e.g., List Mode PTR-32 and the List Mode Multiplicity Module). INCC now consists of separate modules implementing attended instrumentation control, data file processing, statistical and Pu mass calculation and analyzes, list mode counting and analyzes, reporting functions, and a database support library. Separating functional capabilities in this architecture enables better testing, isolates development risk and enables the use of INCC features in other software systems. We discuss our approach to handling divergent data and protocol support as a result of this re-architecture. INCC has complex testing requirements; we show how the testing effort was reduced by breaking the software into separate modules. This new architecture enables integration of INCC analysis into the IAEA's new Integrated Review and Analysis Programme (iRAP) data review system. iRAP is based on the respected Euratom Comprehensive Review Inspector Software Package (CRISP) software framework, and is expected to be the future data review system for IAEA and Euratom

  18. Fast counting electronics for neutron coincidence counting

    International Nuclear Information System (INIS)

    Swansen, J.E.

    1987-01-01

    This patent describes a high speed circuit for accurate neutron coincidence counting comprising: neutron detecting means for providing an above-threshold signal upon neutron detection; amplifying means inputted by the neutron detecting means for providing a pulse output having a pulse width of about 0.5 microseconds upon the input of each above threshold signal; digital processing means inputted by the pulse output of the amplifying means for generating a pulse responsive to each input pulse from the amplifying means and having a pulse width of about 50 nanoseconds effective for processing an expected neutron event rate of about 1 Mpps: pulse stretching means inputted by the digital processing means for producing a pulse having a pulse width of several milliseconds for each pulse received form the digital processing means; visual indicating means inputted by the pulse stretching means for producing a visual output for each pulse received from the digital processing means; and derandomizing means effective to receive the 50 ns neutron event pulses from the digital processing means for storage at a rate up to the neutron event rate of 1 Mpps and having first counter means for storing the input neutron event pulses

  19. The Absolute Standardization Method of 18F by Using 4π(PC)-γ Coincidence Counting System

    International Nuclear Information System (INIS)

    Pujadi

    2003-01-01

    The absolute standardization of 18 F radionuclide had been carried out using 4π(PC)-γ coincidence counting. The radionuclide 18 F fluoro 2 deoxyglucose (FDG) was the quantity used at nuclear medicine in diagnosis of oncology. The radionuclide 18 F had been produced by 18 O(p,n) 18 F reaction in a cyclotron. Source preparation had been done by gravimetry method after source was dissolved in aquadest. The samples have been measured using 4π(PC)-γ coincidence counting on different three window gamma energy, the gamma windows were set on 511 keV peak, 1022 keV and above 511 keV region. The result of measurement on 1022 keV peak and above 511 keV region, are fairly good with discrepancy about 0.15%, but the linearity of gamma window above 511 keV is the best with R 2 = 0.8287. The measurement on 511 keV gamma window region gave the result with difference 2.28% compared with another two region. (author)

  20. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Saurel, N.; Colas, S. [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France)

    2015-07-01

    passive neutron coincidence counting system for radioactive waste drums using plastic scintillators have been studied using the Monte Carlo radiation transport code MCNPX-PoliMi v2.0 coupled to data processing algorithms developed with ROOT data analysis software. In addition to the correlated background, accidental coincidences are taken into account in the simulation by randomly merging pulses from different calculations with fission and (α,n) sources. (authors)

  1. A new approach to beta-gamma coincidence counting. Advance report on the Samar electronic system; Informe preliminar del sistema Samar sistema automatico de medidas absolutas de Radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, J E. de; Granados, C E

    1972-07-01

    In 4{pi} {beta}-{gamma} coincidence measurements, precision on the evaluation of coincidence counting losses is made difficult because of complex overlapping effects between the{beta}--and {gamma}-side dead times due to pre cursive counted events. In this context the SAMAR electronic system is aimed to give a precise way of automatic counting and reduce the need for calculated corrections. This report describes its configuration and basic features. The SAMAR has been conceived in such a manner that both beta and gamma chains are sharing a common and non extending dead-time which is simultaneously applied to both channels. The shared dead time is made to be the only one inserted throughout the chains. Overlapping effects vanish and the three counting channels have identical transmission ratios. A new dead-time circuit based on fast linear gates as blocking elements has been developed. Application of the two-oscillator Muller's method evidences a fully non-extending character. Automatism is implemented by using a live timer corrective channel controlling the counting scalers. (Author) 21 refs.

  2. A new approach to beta-gamma coincidence counting. Advance report on the Samar electronic system; Informe preliminar del sistema Samar sistema automatico de medidas absolutas de Radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, J. E. de; Granados, C. E.

    1972-07-01

    In 4{pi} {beta}-{gamma} coincidence measurements, precision on the evaluation of coincidence counting losses is made difficult because of complex overlapping effects between the{beta}--and {gamma}-side dead times due to pre cursive counted events. In this context the SAMAR electronic system is aimed to give a precise way of automatic counting and reduce the need for calculated corrections. This report describes its configuration and basic features. The SAMAR has been conceived in such a manner that both beta and gamma chains are sharing a common and non extending dead-time which is simultaneously applied to both channels. The shared dead time is made to be the only one inserted throughout the chains. Overlapping effects vanish and the three counting channels have identical transmission ratios. A new dead-time circuit based on fast linear gates as blocking elements has been developed. Application of the two-oscillator Muller's method evidences a fully non-extending character. Automatism is implemented by using a live timer corrective channel controlling the counting scalers. (Author) 21 refs.

  3. A generalized model for coincidence counting

    International Nuclear Information System (INIS)

    Lu, Ming-Shih; Teichmann, T.

    1992-01-01

    The aim of this paper is to provide a description of the multiplicative processes associated with coincidence counting techniques, for example in the NDA of plutonium bearing materials. The model elucidates both the physical processes and the underlying mathematical formalism in a relatively simple but comprehensive way. In particular, it includes the effect of absorption by impurities or poisons, as well as that of neutron leakage on a parallel basis to the treatment of induced fission itself. The work thus parallels and generalizes the methods of Boehnel of Hage and Cifarelli, and more recently of Yanjushkin. This paper introduces the concept of a dual probability generating function to account for both the basic physical multiplication phenomena, as well as the detection phenomena. The underlying approach extends the idea of a simple probability generating function, due to De Moivre. The basic mathematical background may be found, for example, in Feller 1966

  4. Fast digital 4πβ-4πγ coincidence counting with offline analysis at IRA.

    Science.gov (United States)

    Teresa Durán, M; Nedjadi, Youcef; Juget, Frédéric; Bochud, François; Bailat, Claude

    2018-04-01

    IRA recently launched a project to digitize all the data acquisition systems it uses for primary radionuclide standardizations. It is well-known that the digital approach presents numerous advantages over the traditional analog electronics such as information losslessness, scalability, online and/or offline data processing, and it is also a solution to the growing difficulties to repair or renew ageing modules. As a first step in this wider program, our institute set-up a 4πβ-4πγ digital coincidence counting system, with FPGA (Field Programmable Gate Array)-based commercial boards from National Instruments (NI), to perform data acquisition and offline data analysis. Choosing all components and software from the same supplier provides a full compact and consistent electronic system. To demonstrate and validate the capacity of this system to standardize the activity of radioisotopes, we compare its predictions for the activity concentration of 133 Ba, 166m Ho and 18 F solutions with the results from a coincidence counting system with analog electronics, as well as with the results from other primary methods and a secondary measurement performed with an IG11 ionization chamber (CIR, chambre d'ionization de référence) with an equivalent activity traceable to the Système International de Référence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Feynman variance-to-mean in the context of passive neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S., E-mail: scroft@lanl.gov [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Favalli, A.; Hauck, D.K.; Henzlova, D.; Santi, P.A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-09-11

    Passive Neutron Coincidence Counting (PNCC) based on shift register autocorrelation time analysis of the detected neutron pulse train is an important Nondestructive Assay (NDA) method. It is used extensively in the quantification of plutonium and other spontaneously fissile materials for purposes of nuclear materials accountancy. In addition to the totals count rate, which is also referred to as the singles, gross or trigger rate, a quantity known as the reals coincidence rate, also called the pairs or doubles, is obtained from the difference between the measured neutron multiplicities in two measurement gates triggered by the incoming events on the pulse train. The reals rate is a measure of the number of time correlated pairs present on the pulse train and this can be related to the fission rates (and hence material mass) since fissions emit neutrons in bursts which are also detected in characteristic clusters. A closely related measurement objective is the determination of the reactivity of systems as they approach criticality. In this field an alternative autocorrelation signature is popular, the so called Feynman variance-to-mean technique which makes use of the multiplicity histogram formed the periodic, or clock-triggered opening of a coincidence gate. Workers in these two application areas share common challenges and improvement opportunities but are often separated by tradition, problem focus and technical language. The purpose of this paper is to recognize the close link between the Feynman variance-to-mean metric and traditional PNCC using shift register logic applied to correlated pulse trains. We, show using relationships for the late-gate (or accidentals) histogram recorded using a multiplicity shift register, how the Feynman Y-statistic, defined as the excess variance-to-mean ratio, can be expressed in terms of the singles and doubles rates familiar to the safeguards and waste assay communities. These two specialisms now have a direct bridge between

  6. Standardization of I-125 solution by extrapolation of an efficiency wave obtained by coincidence X-(X-γ) counting method

    International Nuclear Information System (INIS)

    Iwahara, A.

    1989-01-01

    The activity concentration of 125 I was determined by X-(X-α) coincidence counting method and efficiency extrapolation curve. The measurement system consists of 2 thin NaI(T1) scintillation detectors which are horizontally movable on a track. The efficiency curve is obtained by symmetricaly changing the distance between the source and the detectors and the activity is determined by applying a linear efficiency extrapolation curve. All sum-coincidence events are included between 10 and 100 KeV window counting and the main source of uncertainty is coming from poor counting statistic around zero efficiency. The consistence of results with other methods shows that this technique can be applied to photon cascade emitters and are not discriminating by the detectors. It has been also determined the 35,5 KeV gamma-ray emission probability of 125 I by using a Gamma-X type high purity germanium detector. (author) [pt

  7. Design and development of VHDL based IP core for coincidence analyzer for FPGA based TDCR system

    International Nuclear Information System (INIS)

    Agarwal, Shivam; Gupta, Ashutosh; Chaudhury, Probal; Sharma, M.K.; Kulkarni, M.S.

    2018-01-01

    The coincidence counting technique is used in activity measurement methods to determine the activity of radionuclide e.g. 4πβ-γ method and Triple to Double Coincidence Ratio (TDCR) method etc. The 4πβ-γ method requires two inputs Coincidence Analyzer (CA) whereas; TDCR method requires three inputs CA. A VHDL (Very High Speed Integrated Circuit Hardware Description Language) based IP (Intellectual Property) core for coincidence analyzer has been designed and implemented in FPGA (Field Programmable Gate Array) for TDCR system. The developed IP not only facilitates the coincidence counting of three channels simultaneously but also provides an extendable dead time feature

  8. Compton suppression gamma-counting: The effect of count rate

    Science.gov (United States)

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  9. Standardization of iodine-129 by the TDCR liquid scintillation method and 4π β-γ coincidence counting

    Science.gov (United States)

    Cassette, P.; Bouchard, J.; Chauvenet, B.

    1994-01-01

    Iodine-129 is a long-lived fission product, with physical and chemical properties that make it a good candidate for evaluating the environmental impact of the nuclear energy fuel cycle. To avoid solid source preparation problems, liquid scintillation has been used to standardize this nuclide for a EUROMET intercomparison. Two methods were used to measure the iodine-129 activity: triple-to-double-coincidence ratio liquid scintillation counting and 4π β-γ coincidence counting; the results are in good agreement.

  10. Determination of trace elements in scallop and fish otolith by instrumental neutron activation analysis using anti-coincidence and coincidence counting methods

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    2005-01-01

    Trace element concentrations in scallop reference material and fish otolith certified reference materials prepared at the National Institute for Environmental Studies (NIES) of Japan were determined by instrumental neutron activation analysis (INAA). Nine aliquots of scallop sample (ca. 252∼507 mg) and five aliquots of fish otolith sample (ca. 502 ∼ 988 mg) and comparative standards were irradiated for a short time (10 s) at a thermal neutron flux of 1.5 x 10 12 n cm -2 s -1 (pneumatic transfer) and for a long time (6 h) at a thermal neutron flux of 3.7 x 10 12 n cm -2 s -1 (central thimble) in the Rikkyo University Research Reactor (100 kW). The irradiated samples were measured by conventional γ-ray spectrometry using a coaxial Ge detector, and by anti-coincidence and coincidence γ-ray spectrometry with a coaxial Ge detector and a well-type NaI (Tl) detector to determine as many trace elements as possible with high sensitivity. The concentrations of 34 elements of the NIES No.15 scallop reference material and 16 elements of the NIES No.22 fish otolith CRM were determined. Using the coincidence counting method to determine Se, Ba and Hf, the lower limit of the determination was improved by 2 times compared with the conventional counting method. (author)

  11. First principle active neutron coincidence counting measurements of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Braden, E-mail: goddard.braden@gmail.com [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Charlton, William [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Peerani, Paolo [European Commission, EC-JRC-ITU, Ispra (Italy)

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (∼0.2 wt% {sup 235}U) to high enriched (>20 wt% {sup 235}U); compositions consisting of U{sub 3}O{sub 8}, UO{sub 2}, UF{sub 6}, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since {sup 235}U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the {sup 235}U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the “known standard” method. This technique was primarily tested through simulations of 1000 g U{sub 3}O{sub 8} samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact {sup 235}U sample masses.

  12. Performance of coincidence-based PSD on LiF/ZnS Detectors for Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sean M.; Stave, Sean C.; Lintereur, Azaree; Siciliano, Edward R.; Cowles, Christian C.; Kouzes, Richard T.; Behling, Richard S.

    2016-10-06

    Abstract: Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutron detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.

  13. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pahlka, R; Kappadath, S; Mawlawi, O [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray in the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.

  14. Determining random counts in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1979-01-01

    During measurements involving coincidence counting techniques, errors can arise due to the detection of chance or random coincidences in the multiple detectors used. A method and the electronic circuits necessary are here described for eliminating this source of error in liquid scintillation detectors used in coincidence counting. (UK)

  15. A Monte Carlo Model for Neutron Coincidence Counting with Fast Organic Liquid Scintillation Detectors

    International Nuclear Information System (INIS)

    Gamage, Kelum A.A.; Joyce, Malcolm J.; Cave, Frank D.

    2013-06-01

    Neutron coincidence counting is an established, nondestructive method for the qualitative and quantitative analysis of nuclear materials. Several even-numbered nuclei of the actinide isotopes, and especially even-numbered plutonium isotopes, undergo spontaneous fission, resulting in the emission of neutrons which are correlated in time. The characteristics of this i.e. the multiplicity can be used to identify each isotope in question. Similarly, the corresponding characteristics of isotopes that are susceptible to stimulated fission are somewhat isotope-related, and also dependent on the energy of the incident neutron that stimulates the fission event, and this can hence be used to identify and quantify isotopes also. Most of the neutron coincidence counters currently used are based on 3 He gas tubes. In the 3 He-filled gas proportional-counter, the (n, p) reaction is largely responsible for the detection of slow neutrons and hence neutrons have to be slowed down to thermal energies. As a result, moderator and shielding materials are essential components of many systems designed to assess quantities of fissile materials. The use of a moderator, however, extends the die-away time of the detector necessitating a larger coincidence window and, further, 3 He is now in short supply and expensive. In this paper, a simulation based on the Monte Carlo method is described which has been performed using MCNPX 2.6.0, to model the geometry of a sector-shaped liquid scintillation detector in response to coincident neutron events. The detection of neutrons from a mixed-oxide (MOX) fuel pellet using an organic liquid scintillator has been simulated for different thicknesses of scintillators. In this new neutron detector, a layer of lead has been used to reduce the gamma-ray fluence reaching the scintillator. The effect of lead for neutron detection has also been estimated by considering different thicknesses of lead layers. (authors)

  16. Unattended mode monitoring of passive neutron coincidence detector systems using a commercial data logger

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Outram, J.D.; Storey, M.

    1991-01-01

    A commercial Data Logger for unattended passive neutron coincidence data acquisition is described. This consists of an inexpensive commercial Data Logging equipment attached to a neutron coincidence electronics and a software package for data review. The Data Logger permits both the flexible configuration of a passive neutron coincidence measurement system for unattended mode monitoring and the storage of the measured Totals and Reals count rates. An additional feature of the Data Logger is a custom software package providing for the complete analysis of the stored data and yielding an assay of each item passing through the measurement cavity. The analysis includes an input for different isotopic compositions, the calculation of the multiplication corrected Reals rates, the inclusion of a calibration functions, and the determination of 240 Pu masses. The software package for data review displays the Totals and Reals count rates logged by the Data Logger as a function of time. In addition the custom software provides input files to the data review package to display the multiplication corrected Reals count rates and the measured 240 Pu masses as a function of time. Information on the Data Logger is presented along with the monitoring mode specifications. The analysis functions implemented are described as is the data review software. Results are presented for a specific application

  17. Quantitative Compton suppression spectrometry at elevated counting rates

    International Nuclear Information System (INIS)

    Westphal, G.P.; Joestl, K.; Schroeder, P.; Lauster, R.; Hausch, E.

    1999-01-01

    For quantitative Compton suppression spectrometry the decrease of coincidence efficiency with counting rate should be made negligible to avoid a virtual increase of relative peak areas of coincident isomeric transitions with counting rate. To that aim, a separate amplifier and discriminator has been used for each of the eight segments of the active shield of a new well-type Compton suppression spectrometer, together with an optimized, minimum dead-time design of the anticoincidence logic circuitry. Chance coincidence losses in the Compton suppression spectrometer are corrected instrumentally by comparing the chance coincidence rate to the counting rate of the germanium detector in a pulse-counting Busy circuit (G.P. Westphal, J. Rad. Chem. 179 (1994) 55) which is combined with the spectrometer's LFC counting loss correction system. The normally not observable chance coincidence rate is reconstructed from the rates of germanium detector and scintillation detector in an auxiliary coincidence unit, after the destruction of true coincidence by delaying one of the coincidence partners. Quantitative system response has been tested in two-source measurements with a fixed reference source of 60 Co of 14 kc/s, and various samples of 137 Cs, up to aggregate counting rates of 180 kc/s for the well-type detector, and more than 1400 kc/s for the BGO shield. In these measurements, the net peak areas of the 1173.3 keV line of 60 Co remained constant at typical values of 37 000 with and 95 000 without Compton suppression, with maximum deviations from the average of less than 1.5%

  18. Instrumentation and data handling. I. Positron coincidence imaging with the TOKIM system

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    In addition to the conventional singles mode of operation, the TOKIM system's two Anger-type gamma cameras may be used in the (stationary, 180 0 opposition) coincidence mode, making it possible to achieve tomographic imaging with three-dimensional spatial resolution and high detection sensitivity, utilizing β + emitting radioisotopes. This method, however, suffers from certain inherent limitations. Our efforts during this past year to improve upon the TOKIM imaging capability in the β + mode have been directed towards the reduction of the limitations by the following means: the removal of out of focal plane image contributions through a computerized iterative correction procedure, coupled with coincidence aperture limitation to achieve uniform sensitivity across a reasonable portion of the detector pair diameter, and the application of Muehllehner's graded filter approach to the TOKIM to increase the ratio of usable coincidence events versus singles count rate

  19. A training and educational tool for neutron coincidence measurements

    International Nuclear Information System (INIS)

    Huszti, J.; Bagi, J.; Langner, D.

    2009-01-01

    Neutron coincidence counting techniques are widely used for nuclear safeguards inspection. They are based on the detection of time correlated neutrons created from spontaneous or induced fission of plutonium and some other actinides. IAEA inspectors are trained to know and to use this technique, but it is not easy to illustrate and explain the basics of the neutron coincidence counting. The traditional shift registers or multiplicity counters give only multiplicity distributions and the singles, doubles and triples count rates. Using the list mode method for the recording and evaluation of neutron coincidence data makes it easier to teach this technique. List mode acquisition is a relatively new way to collect data in neutron coincidence counting. It is based on the recording of the follow-up times of neutron pulses originating from a neutron detector into a file. The recorded pulse train can be evaluated with special software after the measurement. Hardware and software for list mode neutron coincidence acquisition have been developed in the Institute of Isotopes and is called a Pulse Train Reader. A system called Virtual Source for replaying pulse trains registered with the list mode device has also been developed. The list mode device and the pulse train 're-player' together build a good educational tool for teaching the basics of neutron coincidence counting. Some features of the follow-up time, multiplicity and Rossi-alpha distributions can be well demonstrated by replaying artificially generated or pre-recorded pulse trains. The choice of real sources is stored on DVD. There is no need to transport and maintain real sources for the training. Virtual sources also give the possibility of investigating rare sources that trainees would not have access to otherwise. (authors)

  20. Beta-gamma counting system for Xe fission products

    International Nuclear Information System (INIS)

    Reeder, P.L.; Bowyer, T.W.; Perkins, R.W.

    1998-01-01

    A beta-gamma coincidence counting system has been developed for automated analysis of Xe gas samples separated from air. The Xe gas samples are contained in a cylindrical plastic scintillator cell located between two NaI(Tl) scintillation detectors. The X-ray and gamma spectra gated by coincident events in the plastic scintillator cell are recorded for each NaI(Tl) crystal. The characteristic signatures of the 131m Xe, 133g Xe, 133m Xe, and 135g Xe isotopes of interest for nuclear test-ban verification as well as the procedures and results of absolute efficiency measurements are described. A NaI(Tl) crystal with provision for 4 sample cells has been implemented for the system to be deployed in the field. Examples of data on ambient air samples in New York City obtained with the field prototype are presented. (author)

  1. High Sensitivity Detection of Xe Isotopes Via Beta-Gamma Coincidence Counting

    International Nuclear Information System (INIS)

    Bowyer, Ted W.; McIntyre, Justin I.; Reeder, Paul L.

    1999-01-01

    Measurement of xenon fission product isotopes is a key element in the global network being established to monitor the Comprehensive Nuclear-Test-Ban Treaty. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which includes a beta-gamma counting system for 131mXe, 133mXe, 133Xe, and 135Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. The counting geometry is nearly 100% for beta and conversion electrons. The resolution in the pulse height spectrum from the plastic scintillator is sufficient to observe distinct peaks for specific conversion electrons. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse height spectra of gamma energy versus beta energy are obtained. Each of the four xenon isotopes has a distinctive signature in the two-dimensional energy array. The details of the counting system, examples of two-dimensional beta-gamma data, and operational experience with this counting system will be described

  2. Development of the software dead time methodology for the 4πβ-γ software coincidence system analysis program

    International Nuclear Information System (INIS)

    Toledo, Fabio de; Brancaccio, Franco; Dias, Mauro da Silva

    2009-01-01

    The Laboratorio de Metrologia Nuclear - LMN, Nuclear Metrology Laboratory -, at IPEN-CNEN/SP, Sao Paulo, Brazil, developed a new Software Coincidence System (SCS) for 4πβ-γ radioisotope standardization. SCS is composed by the data acquisition hardware, for the coincidence data recording, and the coincidence data analysis program that performs the radioactive activity calculation for the target sample. Due to hardware intrinsic signal sampling characteristics, multiple undesired data recording occurs from a single saturated pulse. Also pulse pileup leads to bad data recording. As the beta counting rates are much greater than the gamma ones, due to the high 4π geometry beta detecting efficiencies, the beta counting significantly increases because of multiple pulse recordings, resulting in a respective increasing in the calculated activity value. In order to minimize such bad recordings effect, a software dead time value was introduced in the coincidence analysis program, under development at LMN, discarding multiple recordings, due to pulse pileup or saturation. This work presents the methodology developed to determine the optimal software dead time data value, for better accuracy results attaining, and discusses the results, pointing to software improvement possibilities. (author)

  3. Coincidence method for determination of radionuclides activities

    International Nuclear Information System (INIS)

    Andrukhovich, S.K.; Berestov, A.V.; Rudak, E.A.

    2004-01-01

    The radon and radium activity measurements using six-crystal gamma-gamma coincidence, 4 -spectrometer PRIPJAT and radioactivity measurements in different samples of meat and vegetation by 32-crystal spectrometer ARGUS, are described. Radiation detector with 4 -geometry provides higher efficiency, and therefore shorter counting time than a detector without such geometry. However, its application is limited by the fact that obtained spectrum contains summing peaks of all γ-quanta registered in coincidence. Multiparameter information on coincident photon emission can be obtained only by a detection system where the 4 -geometry is made by many detectors, such are both the PRIPJAT and the ARGUS - γ-coincidence spectrometer of the Crystal Ball type in the Institute of Physics, Minsk [1,2]. There are other characteristics, as background conditions, energy and time resolution, makes it ve suitable for investigation of rare decays and interactions, cascade transitions, k intensity radiations etc. We are developing a method of 2 26R a and 2 26 Rn measurement by a multidetector 4 -spectrometer. The method is based on coincidence counting of γ-rays from two step cascade transitions that follow - decay of 2 14 Bi. Its application to the PRIPL spectrometer, which has 6 Nal(Tl) detectors, is presented here, as well as the method of the determination of radionuclide activities based on the registration of the cascades intensity of γ-rays of different multiplicity using ARGUS

  4. Correction for variable moderation and multiplication effects associated with thermal neutron coincidence counting

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    A correction is described for multiplication and moderation when doing passive thermal neutron coincidence counting nondestructive assay measurements on powder samples of PuO 2 mixed arbitrarily with MgO, SiO 2 , and moderating material. The multiplication correction expression is shown to be approximately separable into the product of two independent terms; F/sub Pu/ which depends on the mass of 240 Pu, and F/sub αn/ which depends on properties of the matrix material. Necessary assumptions for separability are (1) isotopic abundances are constant, and (2) fission cross sections are independent of incident neutron energy: both of which are reasonable for the 8% 240 Pu powder samples considered here. Furthermore since all prompt fission neutrons are expected to have nearly the same energy distributions, variations among different samples can be due only to the moderating properties of the samples. Relative energy distributions are provided by a thermal neutron well counter having two concentric rings of 3 He proportional counters placed symmetrically about the well. Measured outer-to-inner ring ratios raised to an empirically determined power for coincidences, (N/sup I//N/sup O/)/sup Z/, and singles, (T/sup O//T/sup I/)/sup delta/, provide corrections for moderation and F/sub αn/ respectively, and F/sub Pu/ is approximated by M 240 /sup X//M 240 . The exponents are calibration constants determined by a least squares fitting procedure using standards' data. System calibration is greatly simplified using the separability principle. Once appropriate models are established for F/sub Pu/ and F/sub αn/, only a few standards are necessary to determine the calibration constants associated with these terms. Since F/sub Pu/ is expressed as a function of M 240 , correction for multiplication in a subsequent assay demands only a measurement of F/sub αn/

  5. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  6. Measurement of plutonium oxalate in thermal neutron coincidence counters

    International Nuclear Information System (INIS)

    Marshall, R.S.; Erkkila, B.H.

    1979-01-01

    A coincidence neutron counting method has been developed for assaying batches of plutonium oxalate. Using counting data from two concentric rings of 3 He detectors, corrections are made for the effects that water has on the coincidence neutron count rate. Batches of plutonium oxalate varying from 750 to 1000 g of plutonium and from 34 to 54% water are assayed with an average accuracy of +-3%

  7. System for ν-ν-coincidence spectra processing with data compression

    International Nuclear Information System (INIS)

    Byalko, A.A.; Volkov, N.G.; Tsupko-Sitnikov, V.M.; Churakov, A.K.

    1982-01-01

    Calculational algorithm and program for analyzing gamma-gamma coincidence spectra based on using the method of expansion in singular values for data compression (the SVD method) are described. Results of the testing of the program during the processing of coincidence spectrum for the low-energy region of transitions corresponding to decay 164 Lu → 164 Yb are given. The program is written in the FORTRAN language and is realized by the ES-1040 computer. The counting time constitutes about 20 min. It is concluded that the use of the SVD method permits to correct the data at the expense of distortion filtration caused with statistical deviations and random interferences, at that not distorting the initial data. The data compressed correspond more to theoretical suggestions of forms of semiconductor detector lines and two-dimensional line in the coincidence spectrum

  8. Determination of cosmic ray produced radionuclides by means of background radiation counting system, 3

    International Nuclear Information System (INIS)

    1976-01-01

    This is the third report of the progress report series on studies of cosmic ray produced radionuclides by means of low background radiation counting system. In Part I some characteristics of a low beta-gamma coincidence spectrometer are described -- counter system, electronics, background spectra, counting efficiencies -- and studies on radioactive impurities in materials for scientific research are also described. In Part II, suitable solvents for a large scale liquid scintillation counter were examined and best combinations of solvents, solutes and naphthalene are shown. In Part III, miscellaneous topics are reported. (auth.)

  9. On neutron activation analysis with γγ coincidence spectrometry

    International Nuclear Information System (INIS)

    Zeisler, Rolf; Danyal Turkoglu; Ibere Souza Ribeiro Junior; Shetty, M.G.

    2017-01-01

    A new γγ coincidence system has been set up at NIST. It is operated with a digital data finder supported by new software developed at NIST. The system is used to explore possible enhancements in instrumental neutron activation analysis (INAA) and study applicability to neutron capture prompt gamma activation analysis (PGAA). The performance of the system is tested with certified reference materials for efficiency calibration and quantitative performance. Comparisons of INAA results based on conventional gamma-ray spectrometry data with INAA results based on coincidence data obtained from the same samples show improvements in the counting uncertainties and demonstrates the quantitative accuracy of the new system. (author)

  10. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    International Nuclear Information System (INIS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Gagnon, Daniel; Wang, Wenli; Winkler, Mark

    2015-01-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. (paper)

  11. Operations manual for the megachannel gamma-ray coincidence system

    International Nuclear Information System (INIS)

    Ruhter, W.

    1977-01-01

    To aid in the study of nuclear structures, a megachannel pulse-height coincidence analysis system on a PDP-8 computer was constructed. The system digitizes the energies of coincident gamma-rays and stores the resultant information on a moving-head disk. The system uses a minicomputer to sort and store gamma-gamma coincident information on line. The megachannel system and how to use it are described

  12. A versatile fast coincidence system with memory

    International Nuclear Information System (INIS)

    Pouthas, J.

    1976-01-01

    A versatile fast coincidence system has been studied for experiments using several detectors. In this system, all the coincidence events are produced with an associated code, and thus, different kinds of events can be processed with the same experimental set-up. Also, the classification of the logical pulses gives the possibility of using a large number of ways (30 in this system). The setting of the system is very simple: there are only two time windows to adjust. (Auth.)

  13. Coincidence measurements of FFTF breeder fuel subassemblies

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Foley, J.E.; Krick, M.; Menlove, H.O.; Goris, P.; Ramalho, A.

    1984-04-01

    A prototype coincidence counter developed to assay fast breeder reactor fuel was used to measure four fast-flux test facility subassemblies at the Hanford Engineering Development Laboratory in Richland, Washington. Plutonium contents in the four subassemblies ranged between 7.4 and 9.7 kg with corresponding 240 Pu-effective contents between 0.9 and 1.2 kg. Large count rates were observed from the measurements, and plots of the data showed significant multiplication in the fuel. The measured data were corrected for deadtime and multiplication effects using established formulas. These corrections require accurate knowledge of the plutonium isotopics and 241 Am content in the fuel. Multiplication-corrected coincidence count rates agreed with the expected count rates based on spontaneous fission-neutron emission rates. These measurements indicate that breeder fuel subassemblies with 240 Pu-effective contents up to 1.2 kg can be nondestructively assayed using the shift-register electronics with the prototype counters. Measurements using the standard Los Alamos National Laboratory shift-register coincidence electronics unit can produce an assay value accurate to +-1% in 1000 s. The uncertainty results from counting statistics and deadtime-correction errors. 3 references, 8 figures, 8 tables

  14. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.

    Science.gov (United States)

    Zhang, Weihua; Ungar, Kurt; Liu, Chuanlei; Mailhot, Maverick

    2016-10-01

    A series of measurements have been recently conducted to determine the cosmic-muon intensities and attenuation factors at various indoor and underground locations for a gamma spectrometer. For this purpose, a digital coincidence spectrometer was developed by using two BC408 plastic scintillation detectors and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results indicate that the overburden in the building at surface level absorbs a large part of cosmic ray protons while attenuating the cosmic-muon intensity by 20-50%. The underground facility has the largest overburden of 39 m water equivalent, where the cosmic-muon intensity is reduced by a factor of 6. The study provides a cosmic-muon intensity measurement and overburden assessment, which are important parameters for analysing the background of an HPGe counting system, or for comparing the background of similar systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Digital data recording system for the 4 πβ-γ coincidence apparatus

    International Nuclear Information System (INIS)

    Shaha, V.V.; Srivastava, P.K.

    1975-01-01

    The data recording system for the 4πβ-γ coincidence apparatus consists of three scalers, a timer, a day-clock, a print control unit and a Hewlett-Packard printer. The print control unit serves as an interface unit as well as generates necessary electronic commands for starting, scanning, recycling and actuating the printer. It also generates the run number and identification number. It has made the data recording and recycling completely automatic. The report describes the data recording system which has been in continuous use since March 1973. Brief description of the scalers, the timer, the day-clock and the printer is given. The print control unit is described and the working of the data handling, scanning and cycle counting sections is explained. (author)

  16. Instrumentation and procedures for moisture corrections to passive neutron coincidence counting assays of bulk PuO2 and MOX powders

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.; Ferran, R.R.; Aparo, M.; Zeppa, P.; Troiani, F.

    1993-05-01

    For passive neutron-coincidence-counting verification measurements of PuO 2 and MOX powder, assay biases have been observed that result from moisture entrained in the sample. This report describes a unique set of experiments in which MOX samples, with a range of moisture concentrations, were produced and used to calibrate and evaluate two prototype moisture monitors. A new procedure for moisture corrections to PuO 2 and MOX verification measurements yields MOX assays accurate to 1.5% (1σ) for 0.6- and 1.1-kg samples. Monte Carlo simulations were used to extend the measured moisture calibration data to higher sample masses. A conceptual design for a high-efficiency neutron coincidence counter with improved sensitivity to moisture is also presented

  17. Quantifying radionuclide signatures from a γ–γ coincidence system

    International Nuclear Information System (INIS)

    Britton, Richard; Jackson, Mark J.; Davies, Ashley V.

    2015-01-01

    A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ–γ system utilises fully digital electronics and list-mode acquisition to time–stamp each event, allowing coincidence matrices to be easily produced alongside typical ‘singles’ spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ–γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. - Highlights: • Monte-Carlo based software developed to easily create/update a coincidence signal library for environmental radionuclides. • Coincidence library utilised to accurately quantify gamma coincidence signatures. • All coincidence signature probabilities are corrected for cascade summing, conversion electron emission and pair production. • Key CTBTO relevant radionuclides have been tested to verify the calculated correction factors. • Accurately quantifying coincidence signals during routine analysis will allow dramatically improved detection

  18. Standardization of {sup 67}Ga, {sup 51}Cr and {sup 55}Fe by live-timed anti-coincidence counting with extending dead time

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos J. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), Instituto de Radioprotecao e Dosimetria (IRD), Comissao Nacional de Energia Nuclear - CNEN, Av. Salvador Allende, s/n0-Recreio, CEP 22780-160 Rio de Janeiro (Brazil) and Laboratorio de Instrumentacao Nuclear (LIN/PEN/COPPE/UFRJ), Caixa Postal 68590, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: Carlos@ird.gov.br; Iwahara, A.; Poledna, R.; Bernardes, E.M. de O; Prinzio, M.A.R.R. de [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), Instituto de Radioprotecao e Dosimetria (IRD), Comissao Nacional de Energia Nuclear - CNEN, Av. Salvador Allende, s/n0-Recreio, CEP 22780-160 Rio de Janeiro (Brazil); Lopes, Ricardo T. [Laboratorio de Instrumentacao Nuclear (LIN/PEN/COPPE/UFRJ), Caixa Postal 68590, CEP 21945-970 Rio de Janeiro (Brazil)

    2008-02-15

    In this work, the activity standardization of {sup 51}Cr, {sup 55}Fe and {sup 67}Ga by live-timed anti-coincidence counting with extending dead time is described. The difficulties of the method, the uncertainties of the results of the measurements and the comparison of these results with others measurement methods are discussed.

  19. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Katrina E., E-mail: kkoehler@lanl.gov [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Croft, Stephen S. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Henzlova, Daniela; Santi, Peter A. [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States)

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  20. A β - γ coincidence

    International Nuclear Information System (INIS)

    Agullo, F.

    1960-01-01

    A β - γ coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from 1 98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs

  1. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  2. Radon Daughters Background Reduction in Alpha Particles Counting System

    International Nuclear Information System (INIS)

    Dadon, S. S.; Pelled, O.; Orion, I.

    2014-01-01

    The ABPC method is using a serially occurring events of the beta decay of the 214Bi fallow by alpha decay of the 214Po that take place almost simultaneously to detect the Pseudo Coincidence Event (PCE) from the RDP, and to subtract them from the gross alpha counts. 267 This work showed that it is possible to improve the efficiency of RDP background reduction, including subtracting the 218Po contribution by using the ABPC method based on a single solid state silicon PIPS detector. False counts percentage obtained at the output of the PCE circuit were smaller than 0.1%. The results show that the PCE circuit was not influenced by non RDP alpha emitters. The PCE system did not reduce the non PCE of the 218Po. After 20 minutes the 218Po was strongly decayed, and its contribution became negligible. In order to overcome this disadvantage, a mathematical matching calculations for the 214Po and the 218Po decay equations were employed, and a constant ratio of the APo214(0) / APo218(0) was obtained. This ratio can be used to estimate the count rate of the 218Po at the first 20 minutes, and to subtract it from the total count rate in order to obtain correct RDP reduction

  3. Design of an electronic system with simultaneous registering of pulse amplitude and event time applied to the 4πβ-γ coincidence method

    International Nuclear Information System (INIS)

    Toledo, Fabio de

    2009-01-01

    The 4πβ-γ coincidence method for absolute radionuclide activity measurement has been considered for many years as a primary standard in Nuclear Metrology, because of dependence on few observable quantities and high accuracy. The Laboratorio de Metrologia Nuclear (LMN) - Nuclear Metrology Laboratory -, at Instituto de Pesquisas Energeticas e Nucleares (IPEN) - Nuclear and Energy Research Institute -, among its measurement techniques, uses the 4πβ-γ coincidence method. Recently a new technique known as 'software coincidence' has been used, with many advantages over the conventional coincidence methodology. In order to update the methodologies for radionuclide standardizations, the LMN developed a new system based on the software coincidence technique, described in the present work. This system uses the same nuclear set up for beta and gamma detection. The new software coincidence electronics uses a National Instruments (NI) acquisition card connected to a microcomputer and, through a connection panel, to the nuclear detection set up. The card configuration and controlling is accomplished by software using the LabVIEW, a NI proprietary product. This system records into disk files all the amplitudes and occurrence times for beta and gamma detected pulses. A suitable software was developed (the coincidence analysis program) to process the recorded data in order to obtain beta, gamma and coincidence counts and perform calculation of the radioactive source activity. The work also presents and discusses the results obtained with the first version of the coincidence analysis program, as well as perspectives for future works. (author)

  4. Cascaded systems analysis of photon counting detectors.

    Science.gov (United States)

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  5. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    Science.gov (United States)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  6. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  7. Low background gas flow beta counting system [Paper No.:M2

    International Nuclear Information System (INIS)

    Abani, M.C.; Anilkumar, S.; Bhende, D.R.; Krishnan, Narayani; Babu, D.A.R.

    1993-01-01

    It is difficult to count beta samples of low specific activity in conventional types of counting systems which have inherently high background. This is specially true in case of environmental samples. A gas flow type beta counter has been developed which have the twin advantage of high efficiency and low background. This system uses a gas flow type main counter and another gas flow type guard counter working on the same principle in anticoincidence mode. Both counters are operated in G.M. region. With this anticoincidence arrangement and lead shielding of 3 inch, the system has the background of the order of 1 cpm and efficiency of 40% for 40 K beta and 14% for 14 C beta. The electronics developed includes a quenching cum coincidence-anticoincidence unit, EHT and a counter timer. This paper describes in detail the development and operational experience with the system. A number of units are already operational at BARC and at Environmental Survey Laboratories set up by Department of Atomic Energy and at various other institutions. (author). 4 refs., 2 figs

  8. Active method of neutron time correlation coincidence measurement to authenticate mass and enrichment of uranium metal

    International Nuclear Information System (INIS)

    Zhang Songbai; Wu Jun; Zhu Jianyu; Tian Dongfeng; Xie Dong

    2011-01-01

    The active methodology of time correlation coincidence measurement of neutron is an effective verification means to authenticate uranium metal. A collimated 252 Cf neutron source was used to investigate mass and enrichment of uranium metal through the neutron transport simulation for different enrichments and different masses of uranium metal, then time correlation coincidence counts of them were obtained. By analyzing the characteristic of time correlation coincidence counts, the monotone relationships were founded between FWTH of time correlation coincidence and multiplication factor, between the total coincidence counts in FWTH for time correlation coincidence and mass of 235 U multiplied by multiplication factor, and between the ratio of neutron source penetration and mass of uranium metal. Thus the methodology to authenticate mass and enrichment of uranium metal was established with time correlation coincidence by active neutron investigation. (authors)

  9. Emission tomography system

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Williams, C.W.; Burgiss, S.G.

    1983-01-01

    In the present invention a positron emission tomographic system is provided in which the random photon coincidence background is determined for the lines of sight along which the positron annihiliations are located. The circuitry is arranged so that this background may be subtracted almost simultaneously from the total photon coincidence measurement, or may be stored in a temporary memory for latter subtraction. In this system, an appropriate coincidence resolution time is selected and coincidences of photons detected at 180 degree opposed detectors within the time resolution are recorded as the overall coincidence count. This total count includes a source(true events) count plus a background(random coincidences) count. The background count is determined by measuring photons detected at these same sets of photon detectors and employing the same coincidence resolution period, where the signals from one set of detectors are passed through a delay longer in time than this resolution period

  10. Recovery and normalization of triple coincidences in PET.

    Science.gov (United States)

    Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L

    2015-03-01

    Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak

  11. Recovery and normalization of triple coincidences in PET

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.; Herraiz, Joaquin L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Moore, Stephen C.; Sitek, Arkadiusz; Park, Mi-Ae [Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Udías, Jose M. [Grupo de Física Nuclear, Departamento de Física Atómica Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Vaquero, Juan J. [Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911 (Spain)

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the

  12. The optimum choice of gate width for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S., E-mail: crofts@ornl.gov [Safeguards and Security Technology (SST), Global Nuclear Security Technology Divisions, PO Box 2008, Building 5700, MS-6166, Oak Ridge, TN 37831-6166 (United States); Henzlova, D.; Favalli, A.; Hauck, D.K.; Santi, P.A. [Safeguards Science and Technology Group (NEN-1), Nuclear Engineering and Nonproliferation Division, MS-E540, Los Alamos, NM 87545 (United States)

    2014-11-11

    In the measurement field of international nuclear safeguards, passive neutron coincidence counting is used to quantify the spontaneous fission rate of certain special nuclear materials. The shift register autocorrelation analysis method is the most commonly used approach. However, the Feynman-Y technique, which is more commonly applied in reactor noise analysis, provides an alternative means to extract the correlation information from a pulse train. In this work we consider how to select the optimum gate width for each of these two time-correlation analysis techniques. The optimum is considered to be that which gives the lowest fractional precision on the net doublets rate. Our theoretical approach is approximate but is instructional in terms of revealing the key functional dependence. We show that in both cases the same performance figure of merit applies so that common design criteria apply to the neutron detector head. Our prediction is that near optimal results, suitable for most practical applications, can be obtained from both techniques using a common gate width setting. The estimated precision is also comparable in the two cases. The theoretical expressions are tested experimentally using {sup 252}Cf spontaneous fission sources measured in two thermal well counters representative of the type in common use by international inspectorates. Fast accidental sampling was the favored method of acquiring the Feynman-Y data. Our experimental study confirmed the basic functional dependences predicted although experimental results when available are preferred. With an appropriate gate setting Feynman-Y analysis provides an alternative to shift register analysis for safeguards applications which is opening up new avenues of data collection and data reduction to explore.

  13. Triple-coincidence with automatic chance coincidence correction

    International Nuclear Information System (INIS)

    Chase, R.L.

    1975-05-01

    The chance coincidences in a triple-coincidence circuit are of two types--partially correlated and entirely uncorrelated. Their relative importance depends on source strength and source and detector geometry so that the total chance correction cannot, in general, be calculated. The system described makes use of several delays and straightforward integrated circuit logic to provide independent evaluation of the two components of the chance coincidence rate. (auth)

  14. 65Zn and 133Ba standardizing by photon-photon coincidence counting

    International Nuclear Information System (INIS)

    Loureiro, Jamir S.; Cruz, Paulo A.L. da; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.

    2017-01-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65 Zn and 133 Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65 Zn and 0.48 % for 133 Ba samples. (author)

  15. 65Zn and 133Ba standardizing by photon-photon coincidence counting

    Science.gov (United States)

    Loureiro, Jamir S.; da Cruz, Paulo A. L.; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.

    2018-03-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65Zn and 133Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65Zn and 0.48 % for 133Ba samples.

  16. Standardisation of {sup 18}F by a coincidence method using full solid angle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nedjadi, Youcef, E-mail: youcef.nedjadi@chuv.c [Institut de Radiophysique Appliquee, Grand Pre 1, 1007 Lausanne (Switzerland); Bailat, Claude; Caffari, Yvan; Bochud, Francois [Institut de Radiophysique Appliquee, Grand Pre 1, 1007 Lausanne (Switzerland)

    2010-07-15

    A solution of {sup 18}F was standardised with a 4{pi}{beta}-4{pi}{gamma} coincidence counting system in which the beta detector is a one-inch diameter cylindrical UPS89 plastic scintillator, positioned at the bottom of a well-type 5''x5'' NaI(Tl) gamma-ray detector. Almost full detection efficiency-which was varied downwards electronically-was achieved in the beta-channel. Aliquots of this {sup 18}F solution were also measured using 4{pi}{gamma} NaI(Tl) integral counting and Monte Carlo calculated efficiencies as well as the CIEMAT-NIST method. Secondary measurements of the same solution were also performed with an IG11 ionisation chamber whose equivalent activity is traceable to the Systeme International de Reference through the contribution IRA-METAS made to it in 2001; IRA's degree of equivalence was found to be close to the key comparison reference value (KCRV). The {sup 18}F activity predicted by this coincidence system agrees closely with the ionisation chamber measurement and is compatible within one standard deviation of the other primary measurements. This work demonstrates that our new coincidence system can standardise short-lived radionuclides used in nuclear medicine.

  17. Comparison of triple to double coincidence ratio and Quench Parameter External methods for the determination of 3H efficiency by liquid scintillation counting

    International Nuclear Information System (INIS)

    Nisti, M.B.; Saueia, C.H.R.; Mazzilli, B.P.

    2013-01-01

    The aim of this study is to determine the tritium efficiency by liquid scintillation counting using two methodologies, Quench Parameter External (QPE) and Triple to Double Coincidence Ratio (TDCR), and to compare the results. The equipment used was the HIDEX model 300-SL Liquid Scintillation Counter, composed of three photomultipliers coupled with coincidence pulses, discrimination level and Mikro Win 2000 software. The efficiency varied from 0.028 to 0.706 cps dps -1 for QPE and from 0.061 to 0.703 cps dps -1 for TDCR. Different efficiencies were obtained using both methods, in the range from 459 to 572 quenching, above this range the efficiencies were similar. The verification of the efficiencies was performed by participating in the Intercomparison National Program (PNI). (author)

  18. Development of Coincidence Method for Determination Thermal Neutron Flux on RSG-GAS

    International Nuclear Information System (INIS)

    Bakhri, Syaiful; Hamzah, Amir

    2004-01-01

    The research to develop detection radiation system using coincidence method has been done to determine thermal neutron flux in RS1 and RS2 irradiation facilities RSG-GAS. At this research has arranged beta-gamma coincidence equipment system and parameter of measurement according to Au-198 beta-gamma spectrum. Gold foils that have irradiated for period of time, counted, and the activities of radiation is analyzed to get neutron flux. Result of research indicate that systems measurement of absolute activity with gamma beta coincidence method functioning well and can be applied at activity measurement of gold foil for irradiation facility characterization. The results show that thermal neutron flux in RS1 and RS2, respectively is 2.007E+12 n/cm 2 s and 2.147E+12 n/cm 2 s. To examine the system performance, the result was compared to measure activity using high resolution of Hp Ge detector and achieved discrepancy is about 1.26% and 6.70%. (author)

  19. Cascaded systems analysis of photon counting detectors

    International Nuclear Information System (INIS)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f 50 (spatial-frequency at

  20. Cascaded systems analysis of photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  1. Comparative study of chance coincidence correction in measuring 223Ra and 224Ra by delay coincidence method

    International Nuclear Information System (INIS)

    Yan Yongjun; Huang Derong; Zhou Jianliang; Qiu Shoukang

    2013-01-01

    The delay coincidence measurement of 220 Rn and 219 Rn has been proved to be a valid indirect method for measuring 224 Ra and 223 Ra extracted from natural water, which can provide valuable information on estuarine/ocean mixing, submarine groundwater discharge, and water/soil interactions. In practical operation chance coincidence correction must be considered, mostly Moore's correction method, but Moore's and Giffin's methods were incomplete in some ways. In this paper the modification (method 1) and a new chance coincidence correction formula (method 2) were provided. Experiments results are presented to demonstrate the conclusions. The results show that precision is improved while counting rate is less than 70 min- 1 . (authors)

  2. Data acquisition and processing system for coincidence measurements

    International Nuclear Information System (INIS)

    Li Xu

    1990-07-01

    An instrument has been designed for the absolute measurement of radioactivity with 4πβ(PC)-γ coincidence. The instrument can be used as a standard device for the radioactivity measurement in metrology laboratories. Also it can be used in the nuclear science and engineering research for absolute measurement of nuclear decay rate. The control of the system dead time and coincidence resolving time is digitized. The precision can reach ±2 ns. For data acquisition and communication the normalizing GPIB interface system technique is adopted. The measuring error caused by this instrument itself can be better than ±0.02%

  3. Disintegration rate of Tc -99m and In -111 radioactive solutions in coincidence systems

    International Nuclear Information System (INIS)

    Brito, Andreia Barreto de

    2011-01-01

    The 111 In and 99 mTc standardization in a 4πβ-γ coincidence system is described. The 111 In was produced by the reaction of 111 Cd (p, n) 111 In in the cyclotron. The 111 In decays with a half life of 2.8 days by electron capture process, populating the excited levels of 111 Cd, emitting two main gamma rays with energies of 171 keV and 245 keV. The 99m Tc decay with a half life of 6.007 h for isomeric transition, from the radioactive decay of 99 Mo. 111 In standardization was carried out in a 4πβ-γ system, consisted of a gas flow proportional counter with 4π geometry coupled to a pair of NaI(Tl) scintillation counter with conventional electronics. The gamma window was set comprising the (171 keV + 245 keV) total absorption energy peaks. The choice of the window was based on the analysis of the extrapolation curves prediction, obtained by Monte Carlo simulation. The 99 mTc standardization has been accomplished by the 4πβ-γ coincidence method using a thin window proportional counter in a 4π geometry coupled to a single NaI(Tl) scintillation counter. The beta efficiency was varied by electronic discrimination using a software coincidence counting system (SCS). Two windows were selected for the gamma channel: one at 140 keV gamma ray and the other at 20 keV X ray total absorption peaks. The result of the experimental activity of 111 In two solutions agree with the results obtained by Monte Carlo simulation. The experimental activities of 99m Tc for the two gamma windows are in agreement within the experimental uncertainty, indicating that the adopted methodology is adequate. (author)

  4. Application of neutron multiplicity counting to waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Ensslin, N. [Los Alamos National Lab., NM (United States); Sharpe, T.J. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    This paper describes the use of a new figure of merit code that calculates both bias and precision for coincidence and multiplicity counting, and determines the optimum regions for each in waste assay applications. A {open_quotes}tunable multiplicity{close_quotes} approach is developed that uses a combination of coincidence and multiplicity counting to minimize the total assay error. An example is shown where multiplicity analysis is used to solve for mass, alpha, and multiplication and tunable multiplicity is shown to work well. The approach provides a method for selecting coincidence, multiplicity, or tunable multiplicity counting to give the best assay with the lowest total error over a broad spectrum of assay conditions. 9 refs., 6 figs.

  5. Determination iodine in biological materials using instrumental neutron activation and anti-coincidence gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zhang, W.H.; Chatt, A.

    1997-01-01

    Iodine is an element of interest in nutritional research. Its lower limit of safe and adequate daily dietary intake for adults varies between 150 and 200 micrograms per day. In the present study, an epithermal instrumental neutron activation analysis (EINAA) method in conjunction with anti-coincidence counting has been developed for the determination of ppb levels of iodine in individual food items. Typically 200-300 mg of a sample are irradiated for 10 or 20 minutes at the Dalhousie University SLOWPOKE-2 reactor in an epithermal flux of 1x10 11 n cm -2 s -1 , followed by 1 min decay and then counting for 30 min. The 443-keV gamma-ray of 128 I is used for measuring iodine content by anti-coincidence counting. The anti-coincidence spectrometer consists of a 25% HPGe detector surrounded by a 10''x10'' NaI(TI) annulus and a 3''x3'' NaI(TI) plug. This system has a peak-to-Compton ratio of about 650 to 1 for the 661.6-keV photopeak of 137 Cs. The Compton background resulting from the scattering of many gamma-rays of energies higher than 443 keV can be reduced by a factor of about 4 using anti-coincidence counting compared to conventional counting. The detection limit for iodine can be improved by a factor of 2 to 5 depending on the sample matrix, dead time, position of the annulus and counting geometry among several other factors.The lowest detection limit of 5 ppb can be achieved for low-salt foods. This limit is comparable to that obtained by a preconcentration NAA (PNAA) method. However, a detection limit of 20 ppb is more realistic for samples containing high amounts of Na, Cl and Al. The results obtained for many reference materials are in good agreement with the certified values and those reported by the PNAA method. Details of the methods and results will be reported

  6. Determination iodine in biological materials using instrumental neutron activation and anti-coincidence gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.H.; Chatt, A. [Dalhousie University, Halifax, Nova Scotia (Canada). Radiochemistry Research Laboratory

    1997-10-01

    Iodine is an element of interest in nutritional research. Its lower limit of safe and adequate daily dietary intake for adults varies between 150 and 200 micrograms per day. In the present study, an epithermal instrumental neutron activation analysis (EINAA) method in conjunction with anti-coincidence counting has been developed for the determination of ppb levels of iodine in individual food items. Typically 200-300 mg of a sample are irradiated for 10 or 20 minutes at the Dalhousie University SLOWPOKE-2 reactor in an epithermal flux of 1x10{sup 11} n cm{sup -2} s{sup -1}, followed by 1 min decay and then counting for 30 min. The 443-keV gamma-ray of {sup 128}I is used for measuring iodine content by anti-coincidence counting. The anti-coincidence spectrometer consists of a 25% HPGe detector surrounded by a 10``x10`` NaI(TI) annulus and a 3``x3`` NaI(TI) plug. This system has a peak-to-Compton ratio of about 650 to 1 for the 661.6-keV photopeak of {sup 137}Cs. The Compton background resulting from the scattering of many gamma-rays of energies higher than 443 keV can be reduced by a factor of about 4 using anti-coincidence counting compared to conventional counting. The detection limit for iodine can be improved by a factor of 2 to 5 depending on the sample matrix, dead time, position of the annulus and counting geometry among several other factors.The lowest detection limit of 5 ppb can be achieved for low-salt foods. This limit is comparable to that obtained by a preconcentration NAA (PNAA) method. However, a detection limit of 20 ppb is more realistic for samples containing high amounts of Na, Cl and Al. The results obtained for many reference materials are in good agreement with the certified values and those reported by the PNAA method. Details of the methods and results will be reported 6 refs., 2 tabs.

  7. A coincidence-type ion-electron converter detector for low-energy protons

    International Nuclear Information System (INIS)

    Benka, O.; Weinzierl, P.; Dobrozemsky, R.; Stratowa, C.

    1981-04-01

    A coincidence type ion-electron converter detector has been developed and used - together with an electrostatic energy-analyser - for precision measurements of the energy distribution of recoil protons from free-neutron decay. The most important aspect of the development was, besides keeping the background below 0,2 counts/sec in the presence of a certain radiation background, to achieve a high and energy-independent counting probability for protons with energies between 100 and 1000 eV. With an acceleration voltage of about 25 kV and Al-foils (20 to 35 ug/cmsup2) as converter, we obtained counting efficiences of 70 to 85 percent. The design and performance of the detector system, employing six foils with different sensitive areas, are described and discussed in detail. (author)

  8. MTR2: a discriminator and dead-time module used in counting systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2000-01-01

    In the field of radioactivity measurement, there is a constant need for highly specialized electronic modules such as ADCs, amplifiers, discriminators, dead-time modules, etc. But sometimes it is almost impossible to find on the market the modules having the performances corresponding to our needs. The purpose of the module presented here, called MTR2 (Module de Temps-mort Reconductible), is to process, in terms of pulse height discrimination and dead-time corrections, the pulses delivered by the detectors used in counting systems. This dead-time, of the extendible type, is triggered by both the positive and negative parts of the incoming pulse and the dead-time corrections are made according to the live-time method. This module, which has been developed and tested at LPRI, can be used alone in simple counting channels or in more complex systems such as coincidence systems. The philosophy governing the choice and the implementation of this type of dead-time as well as the system used for the dead-time corrections is presented. The electronic scheme and the performances are also presented. This module is available in the NIM standard

  9. Performance of a coincidence based blood activity monitor

    International Nuclear Information System (INIS)

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per μCi/ml, and has a paralyzing dead time of 1.2 μs, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for 18 F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs

  10. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  11. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.

    Science.gov (United States)

    de la Fuente, R; de Celis, B; del Canto, V; Lumbreras, J M; de Celis Alonso, B; Martín-Martín, A; Gutierrez-Villanueva, J L

    2008-10-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for alpha/beta/gamma-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of alpha/beta particles and X-rays/gamma particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by alpha/gamma coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg(-1) for 0.1 kg of soil and 1000 min counting.

  12. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis

    International Nuclear Information System (INIS)

    Fuente, R. de la; Celis, B. de; Canto, V. del; Lumbreras, J.M.; Celis, Alonso B. de; Martin-Martin, A.; Gutierrez-Villanueva, J.L.

    2008-01-01

    A new system has been developed for the detection of low radioactivity levels of fission products and actinides using coincidence techniques. The device combines a phoswich detector for α/β/γ-ray recognition with a fast digital card for electronic pulse analysis. The phoswich can be used in a coincident mode by identifying the composed signal produced by the simultaneous detection of α/β particles and X-rays/γ particles. The technique of coincidences with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty (NTBT) which established the necessity of monitoring low levels of gaseous fission products produced by underground nuclear explosions. With the device proposed here it is possible to identify the coincidence events and determine the energy and type of coincident particles. The sensitivity of the system has been improved by employing liquid scintillators and a high resolution low energy germanium detector. In this case it is possible to identify simultaneously by α/γ coincidence transuranic nuclides present in environmental samples without necessity of performing radiochemical separation. The minimum detectable activity was estimated to be 0.01 Bq kg -1 for 0.1 kg of soil and 1000 min counting

  13. Recovering the triple coincidence of non-pure positron emitters in preclinical PET

    Science.gov (United States)

    Lin, Hsin-Hon; Chuang, Keh-Shih; Chen, Szu-Yu; Jan, Meei-Ling

    2016-03-01

    Non-pure positron emitters, with their long half-lives, allow for the tracing of slow biochemical processes which cannot be adequately examined by the commonly used short-lived positron emitters. Most of these isotopes emit high-energy cascade gamma rays in addition to positron decay that can be detected and create a triple coincidence with annihilation photons. Triple coincidence is discarded in most scanners, however, the majority of the triple coincidence contains true photon pairs that can be recovered. In this study, we propose a strategy for recovering triple coincidence events to raise the sensitivity of PET imaging for non-pure positron emitters. To identify the true line of response (LOR) from a triple coincidence, a framework utilizing geometrical, energy and temporal information is proposed. The geometrical criterion is based on the assumption that the LOR with the largest radial offset among the three sub pairs of triple coincidences is least likely to be a true LOR. Then, a confidence time window is used to test the valid LOR among those within triple coincidence. Finally, a likelihood ratio discriminant rule based on the energy probability density distribution of cascade and annihilation gammas is established to identify the true LOR. An Inveon preclinical PET scanner was modeled with GATE (GEANT4 application for tomographic emission) Monte Carlo software. We evaluated the performance of the proposed method in terms of identification fraction, noise equivalent count rates (NECR), and image quality on various phantoms. With the inclusion of triple coincidence events using the proposed method, the NECR was found to increase from 11% to 26% and 19% to 29% for I-124 and Br-76, respectively, when 7.4-185 MBq of activity was used. Compared to the reconstructed images using double coincidence, this technique increased the SNR by 5.1-7.3% for I-124 and 9.3-10.3% for Br-76 within the activity range of 9.25-74 MBq, without compromising the spatial resolution or

  14. Simplified slow anti-coincidence circuit for Compton suppression systems

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2008-01-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples

  15. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, B., E-mail: lahmann@mit.edu; Milanese, L. M.; Han, W.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hahn, K. D.; Jones, B. [Sandia National Laboratory, Albuquerque, New Mexico 87123 (United States)

    2016-11-15

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

  16. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z.

    Science.gov (United States)

    Lahmann, B; Milanese, L M; Han, W; Gatu Johnson, M; Séguin, F H; Frenje, J A; Petrasso, R D; Hahn, K D; Jones, B

    2016-11-01

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

  17. Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z

    International Nuclear Information System (INIS)

    Lahmann, B.; Milanese, L. M.; Han, W.; Gatu Johnson, M.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Hahn, K. D.; Jones, B.

    2016-01-01

    A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.

  18. Delta count-rate monitoring system

    International Nuclear Information System (INIS)

    Van Etten, D.; Olsen, W.A.

    1985-01-01

    A need for a more effective way to rapidly search for gamma-ray contamination over large areas led to the design and construction of a very sensitive gamma detection system. The delta count-rate monitoring system was installed in a four-wheel-drive van instrumented for environmental surveillance and accident response. The system consists of four main sections: (1) two scintillation detectors, (2) high-voltage power supply amplifier and single-channel analyzer, (3) delta count-rate monitor, and (4) count-rate meter and recorder. The van's 6.5-kW generator powers the standard nuclear instrument modular design system. The two detectors are mounted in the rear corners of the van and can be run singly or jointly. A solid-state bar-graph count-rate meter mounted on the dashboard can be read easily by both the driver and passenger. A solid-state strip chart recorder shows trends and provides a permanent record of the data. An audible alarm is sounded at the delta monitor and at the dashboard count-rate meter if a detected radiation level exceeds the set background level by a predetermined amount

  19. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Wiebe, L.I.; Helus, F.; Maier-Borst, W.

    1978-01-01

    18 F and 14 C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched 14 C fluorescence, and with a 10-fold excess of DMSO over MS, 18 F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of 18 F in MS. Nitrobenzene was a concentration-dependent quencher for both 14 C and 18 F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with 18 F. Counting efficiencies for 18 F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. 14 C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high 14 C and 18 F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as 18 F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as 14 C. (author)

  20. Standardization of 18F by coincidence and LSC methods

    International Nuclear Information System (INIS)

    Roteta, Miguel; Garcia-Torano, Eduardo; Rodriguez Barquero, Leonor

    2006-01-01

    The nuclide 18 F disintegrates to 18 O by β + emission (96.86%) and electron capture (3.14%) with a half-life of 1.8288 h. It is widely used in nuclear medicine for positron emission tomography (PET). A radioactive solution of this nuclide has been standardized by two techniques: coincidence measurements with a pressurized proportional counter and liquid scintillation counting using the CIEMAT/NIST method. One ampoule containing a solution calibrated in activity was sent for measurement at the International Reference System maintained by the BIPM. Results are in excellent agreement with SIR values

  1. Calculation of coincidence summing corrections for a specific small soil sample geometry

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, R.G.; Gehrke, R.J.

    1996-10-01

    Previously, a system was developed at the INEL for measuring the {gamma}-ray emitting nuclides in small soil samples for the purpose of environmental monitoring. These samples were counted close to a {approx}20% Ge detector and, therefore, it was necessary to take into account the coincidence summing that occurs for some nuclides. In order to improve the technical basis for the coincidence summing corrections, the authors have carried out a study of the variation in the coincidence summing probability with position within the sample volume. A Monte Carlo electron and photon transport code (CYLTRAN) was used to compute peak and total efficiencies for various photon energies from 30 to 2,000 keV at 30 points throughout the sample volume. The geometry for these calculations included the various components of the detector and source along with the shielding. The associated coincidence summing corrections were computed at these 30 positions in the sample volume and then averaged for the whole source. The influence of the soil and the detector shielding on the efficiencies was investigated.

  2. Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy

    Science.gov (United States)

    Reeder, P. L.; Bowyer, T. W.

    1998-02-01

    Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.

  3. Simulation approach to coincidence summing in {gamma}-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dziri, S., E-mail: samir.dziri@iphc.cnrs.fr [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Nourreddine, A.; Sellam, A.; Pape, A.; Baussan, E. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), University of Strasbourg, CNRS, IN2P3, UMR 7178, 23 rue de Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    2012-07-15

    Some of the radionuclides used for efficiency calibration of a HPGe spectrometer are subject to coincidence-summing (CS) and account must be taken of the phenomenon to obtain quantitative results when counting samples to determine their activity. We have used MCNPX simulations, which do not take CS into account, to obtain {gamma}-ray peak intensities that were compared to those observed experimentally. The loss or gain of a measured peak intensity relative to the simulated peak is attributed to CS. CS correction factors are compared with those of ETNA and GESPECOR. Application to a test sample prepared with known radionuclides gave values close to the published activities. - Highlights: Black-Right-Pointing-Pointer Coincidence summing occurs when the solid angle is increased. Black-Right-Pointing-Pointer The loss of counts gives rise to an approximative efficiency curves, this means a wrong quantitative data. Black-Right-Pointing-Pointer To overcome this problem we need mono-energetic source, otherwise, the MCNPX simulation allows by comparison with the experiment data to get the coincidence summing correction factors. Black-Right-Pointing-Pointer By multiplying these factors by the approximative efficiency, we obtain the accurate efficiency.

  4. {sup 65}Zn and {sup 133}Ba standardizing by photon-photon coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Jamir S.; Cruz, Paulo A.L. da; Iwahara, Akira; Delgado, José U., E-mail: palcruz@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of {sup 65}Zn and {sup 133}Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for {sup 65}Zn and 0.48 % for {sup 133}Ba samples. (author)

  5. Cerenkov counting and Cerenkov-scintillation counting with high refractive index organic liquids using a liquid scintillation counter

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I; Helus, F; Maier-Borst, W [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin

    1978-06-01

    /sup 18/F and /sup 14/C radioactivity was measured in methyl salicylate (MS), a high refractive index hybrid Cherenkov-scintillation generating medium, using a liquid scintillation counter. At concentrations of up to 21.4%, in MS, dimethyl sulfoxide (DMSO) quenched /sup 14/C fluorescence, and with a 10-fold excess of DMSO over MS, /sup 18/F count rates were reduced below that for DMSO alone, probably as a result of concentration-independent self-quenching due to 'dark-complex' formation. DMSO in lower concentrations did not reduce the counting efficiency of /sup 18/F in MS. Nitrobenzene was a concentration-dependent quencher for both /sup 14/C and /sup 18/F in MS. Chlorobenzene (CB) and DMSO were both found to be weak Cherenkov generators with /sup 18/F. Counting efficiencies for /sup 18/F in MS, CB, and DMSO were 50.3, 7.8 and 4.3% respectively in the coincidence counting mode, and 58.1, 13.0 and 6.8% in the singles mode. /sup 14/C efficiencies were 14.4 and 22.3% for coincidence and singles respectively, and 15.3 and 42.0% using a modern counter designed for coincidence and single photon counting. The high /sup 14/C and /sup 18/F counting efficiency in MS are discussed with respect to excitation mechanism, on the basis of quench and channels ratios changes observed. It is proposed that MS functions as an efficient Cherenkov-scintillation generator for high-energy beta emitters such as /sup 18/F, and as a low-efficiency scintillator for weak beta emitting radionuclides such as /sup 14/C.

  6. Studies of weak capture-gamma-ray resonances via coincidence techniques

    CERN Document Server

    Rowland, C; Champagne, A E; Dummer, A K; Fitzgerald, R; Harley, E C T; Mosher, J; Runkle, R

    2002-01-01

    A method for measuring weak capture-gamma-ray resonances via gamma gamma-coincidence counting techniques is described. The coincidence apparatus consisted of a large-volume germanium detector and an annular NaI(Tl) crystal. The setup was tested by measuring the weak E sub R =227 keV resonance in sup 2 sup 6 Mg(p,gamma) sup 2 sup 7 Al. Absolute germanium and NaI(Tl) counting efficiencies for a range of gamma-ray energies and for different detector-target geometries are presented. Studies of the gamma-ray background in our spectra are described. Compared to previous work, our method improves the detection sensitivity for weak capture-gamma-ray resonances by a factor of approx 100. The usefulness of the present technique for investigations of interest to nuclear astrophysics is discussed.

  7. Study and development of a spectrometer with Compton suppression and gamma coincidence counting

    International Nuclear Information System (INIS)

    Masse, D.

    1990-10-01

    This paper presents the characteristics of a spectrometer consisting of a Ge detector surrounded by a NaI(T1) detector that can operate in Compton-suppression and gamma-gamma coincidence modes. The criteria that led to this measurement configuration are discussed and the spectrometer performances are shown for 60 Co and 137 Cs gamma-ray sources. The results for the measurement of 189 Ir (Compton suppression) and for the measurement of 101 Rh (gamma-gamma coincidence) in the presence of other radioisotopes are given. 83 Rb and 105 Ag isotopes are also measured with this spectrometer [fr

  8. Primary 4πβ-γ coincidence system for standardization of radionuclides by means of plastic scintillators

    International Nuclear Information System (INIS)

    Baccarelli, Aida Maria

    2003-01-01

    The present work describes a 4π(α,β)-γ coincidence system for absolute measurement of radionuclide activity using a plastic scintillator in 4π geometry for charged particles detection and a Nal (Tl) crystal for gamma-ray detection. Several shapes and dimensions of the plastic scintillator have been tried in order to obtain the best system configuration. Radionuclides which decay by alpha emission, β - , β + and electron capture have been standardized. The results showed excellent agreement with other conventional primary system which makes use of a 4π proportional counter for X-ray and charged particle detection. The system developed in the present work have some advantages when compared with the conventional systems, namely; it does not need metal coating on the films used as radioactive source holders. When compared to liquid scintillators, is showed the advantage of not needing to be kept in dark for more than 24 h to allow phosphorescence decay of ambient light. Therefore it can be set to count immediately after the sources are placed inside of it. (author)

  9. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    Science.gov (United States)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  10. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    International Nuclear Information System (INIS)

    Lewellen, T.K.; Miyaoka, R.S.; Kaplan, M.S.

    1996-01-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz

  11. Subtraction of random coincidences in γ-ray spectroscopy: A new approach

    International Nuclear Information System (INIS)

    Pattabiraman, N.S.; Ghugre, S.S.; Basu, S.K.; Garg, U.; Ray, S.; Sinha, A.K.; Zhu, S.

    2006-01-01

    A new analytical method for estimation and subsequent subtraction of random coincidences has been developed. It utilizes the knowledge of the counts in the main diagonal of a background-subtracted symmetric data set for the estimation of the events originating from random coincidences. This procedure has been successfully applied to several data sets. It could be a valuable tool for low-fold data sets, especially for low-cross-section events

  12. True coincidence-summing corrections for the coincident γ-rays measured with coplanar grid CdZnTe detectors

    International Nuclear Information System (INIS)

    Yuecel, H.; Solmaz, A.N.; Koese, E.; Bor, D.

    2010-01-01

    In this study, true coincidence-summing (TCS) correction factors have been measured for the sources 22 Na, 60 Co, 133 Ba and 152 Eu by use of three large volume coplanar grid CdZnTe (acronym: CZT) detectors. In case of a close-in detection geometry, two different TCS calculation algorithms were used to compute the required TCS correction factors. Both of the algorithms are based on the measured total-to-peak (TTP) ratio and full-energy peak (FEP) efficiency values that were obtained using almost 'single' energy and coincidence-free nuclides. The results for TCS correction factors obtained by two different algorithms were agreeable to each other. The obtained TCS factors were ranged from about 7% to 30.5% in a 2250 mm 3 CZT detector when a close counting geometry was used. For other two detectors with a volume of 1000 and 1687.5 mm 3 , the resulted TCS correction factors were relatively smaller and varied between about 0.1% and 20% at the close counting geometry condition. Therefore, the results indicate that there is a need for the estimation of TCS corrections in CZT detectors, especially when their crystal volumes are greater than 1 cm 3 and these detectors are used in the case of a close-in detection geometry.

  13. Minicomputer system for radiochemical analysis by coincidence spectrometry

    International Nuclear Information System (INIS)

    Brauer, F.P.; Fager, J.E.

    1979-01-01

    Minicomputer-based coincidence analysis methods have been developed for use in performing radiochemical analysis by high-resolution x- and gamma-ray coincidence spectrometry. This paper describes the data-acquisition and analysis methods develolped for qualitative and quantitative analyses of coincidence spectrometric data. Data-acquisition capabilities include both direct multiparameter pulse-height analysis and buffered list-mode acquisition

  14. Real-Time, Fast Neutron Coincidence Assay of Plutonium With a 4-Channel Multiplexed Analyzer and Organic Scintillators

    Science.gov (United States)

    Joyce, Malcolm J.; Gamage, Kelum A. A.; Aspinall, M. D.; Cave, F. D.; Lavietes, A.

    2014-06-01

    The design, principle of operation and the results of measurements made with a four-channel organic scintillator system are described. The system comprises four detectors and a multiplexed analyzer for the real-time parallel processing of fast neutron events. The function of the real-time, digital multiple-channel pulse-shape discrimination analyzer is described together with the results of laboratory-based measurements with 252Cf, 241Am-Li and plutonium. The analyzer is based on a single-board solution with integrated high-voltage supplies and graphical user interface. It has been developed to meet the requirements of nuclear materials assay of relevance to safeguards and security. Data are presented for the real-time coincidence assay of plutonium in terms of doubles count rate versus mass. This includes an assessment of the limiting mass uncertainty for coincidence assay based on a 100 s measurement period and samples in the range 0-50 g. Measurements of count rate versus order of multiplicity for 252Cf and 241Am-Li and combinations of both are also presented.

  15. Calibration and adjustment of the EGRET coincidence/time-of-flight system

    International Nuclear Information System (INIS)

    Hunter, S.D.

    1991-01-01

    The coincidence/time-of-flight system of the energetic gamma ray experiment telescope (EGRET) on NASA's Gamma Ray Observatory (GRO) consists of two layers of sixteen scintillator tiles. These tiles are paired into 96 coincidence telescopes. Valid coincidence and time-of-flight values (indicating downward moving particles) from one of these telescopes are two of the requirements for an EGRET event trigger. To maximize up-down discrimination, variations in the mean timing value of the telescopes must be minimized. The timing values of the 96 telescopes are not independent, hence they cannot be individually adjusted to calibrate the system. An iterative approach was devised to determine adjustments to the length of the photomultiplier signal cables. These adjustments were made directly in units of time using a time domain reflectometry technique, by timing the reflection of a fast pulse from the unterminated end of eable, and observing the charge in signal propagation time as the length of the cable was shortened. Two constant fraction discriminators, a time-to-amplitude converter and a pulse height analyzer were used for these measurements. Using this direct time measuring approach, the timing values for the 96 EGRET coincidence/time-of-flight telescopes were adjusted with an FWHM variation of less than 450 ps (± 1 TOF timing channel). (orig.)

  16. A {beta} - {gamma} coincidence; Metodo de coincidencias {beta} - {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, F

    1960-07-01

    A {beta} - {gamma} coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from {sup 1}98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs.

  17. Determination of U-235 quantity in fresh fuel elements by neutron coincidence collar technique

    International Nuclear Information System (INIS)

    Almeida, M.C.M. de; Almeida, S.G. de; Marzo, M.A.S.; Moita, L.P.M.

    1990-01-01

    The U-235 quantity per lenght of fresh fuel assemblies of the Angra-I first recharge was determined by Neutron Coincidence Collar technique (N.C.C.). This technique is well-founded in fresh fuel assemblies activation by thermal neutrons from AmLi source to generate U-235 fission neutrons. These neutrons are detected by coincidence method in polyethylene structure where 18 He-3 detectors were placed. The coincidence counting results, in active mode (AmLi), showed 0,7% to standard deviation and equal to 1,49% to mass in 1000s of counting. The accuracies of different calibration methods were evaluated and compared. The results showed that the operator declared values are consistent. This evaluation was part of technical-exchange program between Safeguards Laboratory from C.N.E.N. and Los Alamos National Lab., United States. (author)

  18. Operating program for an automatic alpha-beta counting system-FAG

    Energy Technology Data Exchange (ETDEWEB)

    German, U; Levinson, L; Shemesh, Y; Peled, O; Weistein, M [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    An alpha and beta counting system - FAG, for planchette samples is operated at the Health Physics department`s laboratory of the NRCN. The system consists of a proportional detector of 8`` diameter operated in coincidence with a guard detector, an automatic sample changer (FAG-FHT770E) and electronics (FAG- FHT1100 digital counter and controller). The original operation mode of the system was based on manual tasks handled by the FHT1100 electronics. Pin option for a basic computer keyboard operation was available too. A computer with appropriate 110 card was connected to the system and a new operating program was developed which enables full automatic control of the various components. The program includes activity calculations and statistical checks as well as data management. The program which was developed enables computer control of all components of the system, based on bi-directional communication. The computer software controls the FHT1100 electronics using the R5232 protocol and the sample changer by an additional 110 card Contec Inodel PIO-48W(PC). The computer controls the whole operation of the system: change of samples, high voltage change, start, stop etc. It handles in the appropriate order the different commands and operates the electronic and mechanic components accordingly (authors).

  19. Operating program for an automatic alpha-beta counting system-FAG

    International Nuclear Information System (INIS)

    German, U.; Levinson, L.; Shemesh, Y.; Peled, O.; Weistein, M.

    1996-01-01

    An alpha and beta counting system - FAG, for planchette samples is operated at the Health Physics department's laboratory of the NRCN. The system consists of a proportional detector of 8'' diameter operated in coincidence with a guard detector, an automatic sample changer (FAG-FHT770E) and electronics (FAG- FHT1100 digital counter and controller). The original operation mode of the system was based on manual tasks handled by the FHT1100 electronics. Pin option for a basic computer keyboard operation was available too. A computer with appropriate 110 card was connected to the system and a new operating program was developed which enables full automatic control of the various components. The program includes activity calculations and statistical checks as well as data management. The program which was developed enables computer control of all components of the system, based on bi-directional communication. The computer software controls the FHT1100 electronics using the R5232 protocol and the sample changer by an additional 110 card Contec Inodel PIO-48W(PC). The computer controls the whole operation of the system: change of samples, high voltage change, start, stop etc. It handles in the appropriate order the different commands and operates the electronic and mechanic components accordingly (authors)

  20. Simulations of Lithium-Based Neutron Coincidence Counter for Gd-Loaded Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siciliano, Edward R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Lithium-Based Alternative Neutron Detection Technology Coincidence Counting for Gd-loaded Fuels at Pacific Northwest National Laboratory for the development of a lithium-based neutron coincidence counter for nondestructively assaying Gd loaded nuclear fuel. This report provides results from MCNP simulations of a lithium-based coincidence counter for the possible measurement of Gd-loaded nuclear fuel. A comparison of lithium-based simulations and UNCL-II simulations with and without Gd loaded fuel is provided. A lithium-based model, referred to as PLNS3A-R1, showed strong promise for assaying Gd loaded fuel.

  1. IMPECC, new 4 π β γ coincidence system

    International Nuclear Information System (INIS)

    Bouchard, J.; Chauvenet, B.; Vatin, R.

    1988-05-01

    The new 4 π β γ coincidence system IMPECC which uses an extensible dead time circuit common to both channels is described. Correction formulae which take into account the particularities of the electronics are also presented. The use of two ADC's and the symmetry in the two channels gives us a very powerful instrument when measuring complex decay scheme radionuclides [fr

  2. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the 235 U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The 238 U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables

  3. Coincidence corrections for a multi-detector gamma spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Britton, R., E-mail: r.britton@surrey.ac.uk [University of Surrey, Guildford GU2 7XH (United Kingdom); AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Burnett, J.L.; Davies, A.V. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Regan, P.H. [University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-01-01

    List-mode data acquisition has been utilised in conjunction with a high-efficiency γ–γ coincidence system, allowing both the energetic and temporal information to be retained for each recorded event. Collected data is re-processed multiple times to extract any coincidence information from the γ-spectroscopy system, correct for the time-walk of low-energy events, and remove accidental coincidences from the projected coincidence spectra. The time-walk correction has resulted in a reduction in the width of the coincidence delay gate of 18.4±0.4%, and thus an equivalent removal of ‘background’ coincidences. The correction factors applied to ∼5.6% of events up to ∼500 keV for a combined {sup 137}Cs and {sup 60}Co source, and are crucial for accurate coincidence measurements of low-energy events that may otherwise be missed by a standard delay gate. By extracting both the delay gate and a representative ‘background’ region for the coincidences, a coincidence background subtracted spectrum is projected from the coincidence matrix, which effectively removes ∼100% of the accidental coincidences (up to 16.6±0.7% of the total coincidence events seen during this work). This accidental-coincidence removal is crucial for accurate characterisation of the events seen in coincidence systems, as without this correction false coincidence signatures may be incorrectly interpreted.

  4. Performance Evaluation of the Neutron Coincidence Counter for the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Menlove, Howard O.; Kim, H.D.; Ko, W.I.; Park, S.W.

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyrochemical dry reprocessing technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, which could decrease the burden of safety and economics. In this study, MCNPX code calculations were carried out to estimate the performance of a neutron coincidence counter designed for measruement of the process materials in the pilot-scale ACP facility. To verify the design requirement, the singles and doubles counting rates of the detectors were simulated with the latest coincidence capability of the MCNPX code. Then, the precision of the coincidence measurements were evaluated on various process materials from the ACP. It was verified that the performance of the neutron coincidence counter could meet the design criteria for all samples in the ACP, and the material accounting system for the pilot-scale ACP facility could meet the IAEA safeguards goals.

  5. Development of an analysis methodology applied to 4πβ-γ software coincidence data acquisition system

    International Nuclear Information System (INIS)

    Brancaccio, Franco; Dias, Mauro da Silva; Toledo, Fabio de

    2009-01-01

    The present work describes the new software methodology under development at the IPEN Nuclear Metrology Laboratory for radionuclide standardizations with 4πβ-γ coincidence technique. The software includes the Coincidence Graphic User Interface (GUI) and the Coincidence Analysis Program. The first results for a 60 Co sample measurement are discussed and compared to the results obtained with two different conventional coincidence systems. (author)

  6. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  7. Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma-gamma coincidence spectroscopy.

    Science.gov (United States)

    Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H

    2011-06-01

    The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Seed counting system evaluation using arduino microcontroller

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Escobar Paim

    2018-01-01

    Full Text Available The development of automated systems has been highlighted in the most diverse productive sectors, among them, the agricultural sector. These systems aim to optimize activities by increasing operational efficiency and quality of work. In this sense, the present work has the objective of evaluating a prototype developed for seed count in laboratory, using Arduino microcontroller. The prototype of the system for seed counting was built using a dosing mechanism commonly used in seeders, electric motor, Arduino Uno, light dependent resistor and light emitting diode. To test the prototype, a completely randomized design (CRD was used in a two-factorial scheme composed of three groups defined according to the number of seeds (500, 1000 and 1500 seeds tested, three speeds of the dosing disc that allowed the distribution in 17, 21 and 32 seeds per second, with 40 repetitions evaluating the seed counting prototype performance in different speeds. The prototype of the bench counter showed a moderate variability of seed number of counted within the nine tests and a high precision in the seed count on the distribution speeds of 17 and 21 seeds per second (s-1 up to 1500 seeds tested. Therefore, based on the observed results, the developed prototype presents itself as an excellent tool for counting seeds in laboratory.

  9. Radiation Counting System Software Using Visual Basic

    International Nuclear Information System (INIS)

    Nanda Nagara; Didi Gayani

    2009-01-01

    It has been created a Gamma Radiation Counting System using interface card, which paired with Personal Computer (PC) and operated by the Visual Basic program. The program was set through varied menu selections such as ”Multi Counting” , ”Counting and Record” and ”View Data”. An interface card for data acquisition was formed by using AMD9513 components as a counter and timer which can be programmed. This counting system was tested and used in waste facility in PTNBR and the result is quite good. (author)

  10. Principles of correlation counting

    International Nuclear Information System (INIS)

    Mueller, J.W.

    1975-01-01

    A review is given of the various applications which have been made of correlation techniques in the field of nuclear physics, in particular for absolute counting. Whereas in most cases the usual coincidence method will be preferable for its simplicity, correlation counting may be the only possible approach in such cases where the two radiations of the cascade cannot be well separated or when there is a longliving intermediate state. The measurement of half-lives and of count rates of spurious pulses is also briefly discussed. The various experimental situations lead to different ways the correlation method is best applied (covariance technique with one or with two detectors, application of correlation functions, etc.). Formulae are given for some simple model cases, neglecting dead-time corrections

  11. A method for measuring the energy spectrum of coincidence events in positron emission tomography.

    Science.gov (United States)

    Goertzen, Andrew L; Stout, David B; Thompson, Christopher J

    2010-01-21

    Positron emission tomography (PET) system energy response is typically characterized in singles detection mode, yet there are situations in which the energy spectrum of coincidence events might be different than the spectrum measured in singles mode. Examples include imaging with isotopes that emit a prompt gamma in coincidence with a positron emission, imaging with low activity in a LSO/LYSO-based cameras, in which the intrinsic activity is significant, and in high scatter situations where the two 511 keV photons have different scattering probabilities (i.e. off-center line source). The ability to accurately measure the energy spectrum of coincidence events could be used for validating simulation models, optimizing energy discriminator levels and examining scatter models and corrections. For many PET systems operating in coincidence mode, the only method available for estimating the energy spectrum is to step the lower and upper level discriminators (LLD and ULD). Simple measurement techniques such as using a narrow sliding energy window or stepping only the LLD will not yield a spectrum of coincidence events that is accurate for cases where there are different energy components contributing to the spectrum. In this work we propose a new method of measuring the energy spectrum of coincidence events in PET based on a linear combination of two sets of coincident count measurements: one made by stepping the LLD and one made by stepping the ULD. The method was tested using both Monte Carlo simulations of a Siemens microPET R4 camera and measured data acquired on a Siemens Inveon PET camera. The results show that our energy spectrum calculation method accurately measures the coincident energy spectra for cases including the beta/gamma spectrum of the (176)Lu intrinsic activity present in the LSO scintillator crystals, a (68)Ge source and an (124)I source (in which there are prompt gamma-rays emitted together with the positron).

  12. A gamma-gamma coincidence/anticoincidence spectrometer for low-level cosmogenic (22)Na/(7)Be activity ratio measurement.

    Science.gov (United States)

    Zhang, Weihua; Ungar, Kurt; Stukel, Matthew; Mekarski, Pawel

    2014-04-01

    In this study, a digital gamma-gamma coincidence/anticoincidence spectrometer was developed and examined for low-level cosmogenic (22)Na and (7)Be in air-filter sample monitoring. The spectrometer consists of two bismuth germanate scintillators (BGO) and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The spectrometer design allows a more selective measurement of (22)Na with a significant background reduction by gamma-gamma coincidence events processing. Hence, the system provides a more sensitive way to quantify trace amounts of (22)Na than normal high resolution gamma spectrometry providing a critical limit of 3 mBq within a 20 h count. The use of a list-mode data acquisition technique enabled simultaneous determination of (22)Na and (7)Be activity concentrations using a single measurement by coincidence and anticoincidence mode respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  14. Effect of time walk in the use of single channel analyzer/discriminator for saturated pulses in the 4πβ–γ coincidence experiments

    International Nuclear Information System (INIS)

    Kawada, Yasushi; Yunoki, Akira; Yamada, Takahiro; Hino, Yoshio

    2016-01-01

    Using the TAC technique, the timing properties of a 4πβ–γ coincidence counting system were experimentally studied with an emphasis on saturated pulses. Experiments were performed for several discriminators (integral mode of TSCA) each with different kinds of timing techniques. Timing spectra were measured at various applied voltage to the 4π proportional detector covering the entire region of the plateau. Most of timing discriminators show good timing property when the pulses remain the linear region, but suddenly deteriorate after the pulses was saturated, and the timing spectra expands seriously up to a few μs in some types of timing discriminator. To overcome this problem, two techniques were proposed. - Highlights: • Timing properties of several kinds of SCA/Discriminators were studied, including trailing edge CFT. • Focus of study on saturated pulses, using a 4πβ–γ coincidence counting system and TAC. • Validity of two novel techniques to overcome this problem was shown.

  15. A portable neutron coincidence counter

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Bowyer, S.M.; Craig, R.A.; Dudder, G.B.; Knopf, M.A.; Panisko, M.E.; Reeder, P.L.; Stromswold, D.C.; Sunberg, D.S.

    1996-11-01

    Pacific Northwest National Laboratory has designed and constructed a prototype portable neutron coincidence counter intended for use in a variety of applications, such as the verification and inspection of weapons components, safety measurements for novel and challenging situations, portable portal deployment to prevent the transportation of fissile materials, uranium enrichment measurements in hard-to-reach locations, waste assays for objects that cannot be measured by existing measurement systems, and decontamination and decommissioning. The counting system weighs less than 40 kg and is composed of parts each weighing no more than 5 kg. In addition, the counter`s design is sufficiently flexible to allow rapid, reliable assembly around containers of nearly arbitrary size and shape. The counter is able to discern the presence of 1 kg of weapons-grade plutonium within an ALR-8 (30-gal drum) in roughly 100 seconds and 10 g in roughly 1000 seconds. The counter`s electronics are also designed for maximum adaptability, allowing operation under a wide variety of circumstances, including exposure to gamma-ray fields of 1 R/h. This report provides a detailed review of the design and construction process. Finally, preliminary experimental measurements that confirm the performance capabilities of this counter are discussed. 6 refs., 18 figs., 3 tabs.

  16. Positron emission measurement with coincidence counting technic using large plastic scintillators

    International Nuclear Information System (INIS)

    Espinasse, P.; Minchella, P.

    1990-01-01

    For measuring positron emission of a large organ such as the brain for example, a device has been built with two cylindric plastic scintillators allowing the detection in coincidence of the 511 keV gamma rays without any spectrometry. The main results are for the sensitivity at the center of the field with 22 Na source in water: 240 ips/MBq; background = 12 ips, and for the countloss due to the deadtime >5% with 42 MBq. Sensitivity is almost uniform on the main axis between the probes. It falls to about 50% on the edges of a central diameter of 20 cm. The performances could certainly be improved by using modern rapid photomultipliers [fr

  17. Development of a stained cell nuclei counting system

    Science.gov (United States)

    Timilsina, Niranjan; Moffatt, Christopher; Okada, Kazunori

    2011-03-01

    This paper presents a novel cell counting system which exploits the Fast Radial Symmetry Transformation (FRST) algorithm [1]. The driving force behind our system is a research on neurogenesis in the intact nervous system of Manduca Sexta or the Tobacco Hornworm, which was being studied to assess the impact of age, food and environment on neurogenesis. The varying thickness of the intact nervous system in this species often yields images with inhomogeneous background and inconsistencies such as varying illumination, variable contrast, and irregular cell size. For automated counting, such inhomogeneity and inconsistencies must be addressed, which no existing work has done successfully. Thus, our goal is to devise a new cell counting algorithm for the images with non-uniform background. Our solution adapts FRST: a computer vision algorithm which is designed to detect points of interest on circular regions such as human eyes. This algorithm enhances the occurrences of the stained-cell nuclei in 2D digital images and negates the problems caused by their inhomogeneity. Besides FRST, our algorithm employs standard image processing methods, such as mathematical morphology and connected component analysis. We have evaluated the developed cell counting system with fourteen digital images of Tobacco Hornworm's nervous system collected for this study with ground-truth cell counts by biology experts. Experimental results show that our system has a minimum error of 1.41% and mean error of 16.68% which is at least forty-four percent better than the algorithm without FRST.

  18. Accuracy in activation analysis: count rate effects

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Fleming, R.F.

    1980-01-01

    The accuracy inherent in activation analysis is ultimately limited by the uncertainty of counting statistics. When careful attention is paid to detail, several workers have shown that all systematic errors can be reduced to an insignificant fraction of the total uncertainty, even when the statistical limit is well below one percent. A matter of particular importance is the reduction of errors due to high counting rate. The loss of counts due to random coincidence (pulse pileup) in the amplifier and to digitization time in the ADC may be treated as a series combination of extending and non-extending dead times, respectively. The two effects are experimentally distinct. Live timer circuits in commercial multi-channel analyzers compensate properly for ADC dead time for long-lived sources, but not for pileup. Several satisfactory solutions are available, including pileup rejection and dead time correction circuits, loss-free ADCs, and computed corrections in a calibrated system. These methods are sufficiently reliable and well understood that a decaying source can be measured routinely with acceptably small errors at a dead time as high as 20 percent

  19. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the 240 Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies

  20. Study of a 4πβ-γ coincidence system for absolute radionuclide activity measurement using plastic scintillators

    International Nuclear Information System (INIS)

    Piuvezam Filho, Helio

    2007-01-01

    The present work was intended to study a coincidence system 4π(PS)β-γ for absolute activity measurement using plastic scintillators in 4π geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4π(PS)β-γ and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  1. Coincident effect characteristic in a thermoacoustic regenerator

    International Nuclear Information System (INIS)

    Liu Yicai; Xin Tianlong; Huang Qian; Shi Xiangnan; Chen Siming; Chen Lixin

    2011-01-01

    Many previous studies on characteristics of thermoacoustic regenerator are based on fluid micro-groups and their compression-expansion cycle. In this paper, coincident frequency is introduced to evaluate its acoustic characteristics by combining structural acoustic with structural vibration theories. The relationship among structure wave radiation and regenerator position, slab thickness, and properties of material are analyzed by numerical calculation. The results show that in the low-frequency thermoacoustic system, the coincident effect generated by higher frequency wave weakens the fundamental sound wave. While in the high-frequency thermoacoustic system, where the oscillating fundamental frequency is higher than the coincident frequency, the sound field strength is enhanced by stronger structure wave radiation because of the coincident effect.

  2. The development and application of a coincidence measurement apparatus with micro-computer system

    International Nuclear Information System (INIS)

    Du Hongshan; Zhou Youpu; Gao Junlin; Qin Deming; Cao Yunzheng; Zhao Shiping

    1987-01-01

    A coincidence measurement apparatus with micro-computer system is developed. Automatic data acquisition and processing are achieved. Results of its application for radioactive measurement are satisfactory

  3. A high-efficiency neutron coincidence counter for small samples

    International Nuclear Information System (INIS)

    Miller, M.C.; Menlove, H.O.; Russo, P.A.

    1991-01-01

    The inventory sample coincidence counter (INVS) has been modified to enhance its performance. The new design is suitable for use with a glove box sample-well (in-line application) as well as for use in the standard at-line mode. The counter has been redesigned to count more efficiently and be less sensitive to variations in sample position. These factors lead to a higher degree of precision and accuracy in a given counting period and allow for the practical use of the INVS counter with gamma-ray isotopics to obtain a plutonium assay independent of operator declarations and time-consuming chemicals analysis. A calculation study was performed using the Los Alamos transport code MCNP to optimize the design parameters. 5 refs., 7 figs., 8 tabs

  4. Automation system for optical counting of nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V

    1999-06-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2{center_dot}10{sup 5} tracks/cm{sup 2}. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  5. Automation system for optical counting of nuclear tracks

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V.

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2·10 5 tracks/cm 2 . The automatic system was applied in the experimental investigation of uranium and transuranium elements

  6. Automation system for optical counting of nuclear tracks

    CERN Document Server

    Boulyga, S F; Lomonosova, E M; Zhuk, I V

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2 centre dot 10 sup 5 tracks/cm sup 2. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  7. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF

    International Nuclear Information System (INIS)

    Casey, D. T.; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Rosenberg, M. J.; Rinderknecht, H.; Manuel, M. J.-E.; Gatu Johnson, M.; Schaeffer, J. C.; Frankel, R.; Sinenian, N.; Childs, R. A.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Burke, M.; Roberts, S.

    2011-01-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  8. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  9. Comprehensive nuclear counting and detector characterisation system for the radiochemistry laboratory

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Mishra, G.K.; Srinivas, K.C.; Venkatasubramani, C.R.

    2004-01-01

    The paper describes a comprehensive nuclear pulse counting system that can cater to up to seven nuclear detector set-ups located in different places in the laboratory. Each detector set up has an interfacing module that conditions the amplifier pulses and transmits them to a common counting system. The microcontroller-based system receives these pulses through a multiplexer and counts the pulses for a user specified preset time. The system has a routine to determine detector plateau characteristics and fix the detector operating voltage. In this mode, the system collects the EHT-versus- counts data in a EHT programmed sequence and plots the profile. The system conducts the counting routine for a stipulated number of times and does all necessary statistical tests to ensure the proper functioning of the detector under test. The system also includes a test routine that checks the performance of the counting system by connecting it to a local pulse generator. The microcontroller based system interacts with a PC through RS232 communication for user interaction and reporting. (author)

  10. Coincident systemic lupus erythematosus and psoriasis vulgaris: a case report.

    Science.gov (United States)

    Wang, Y; Da, G; Yu, Y; Han, J; Li, H

    2015-12-01

    Psoriasis vulgaris is an autoimmune chronic inflammatory skin disease, but its association with other typical autoimmune disease such as systemic lupus erythematosus has only occasionally been reported. We presented a 25-year-old female who developed systemic lupus erythematosus associated with psoriasis vulgaris. Her conditions were in good control after she got administration of prednisolone (5 mg/day) and Tripterygium Wilfordii Hook (20 mg/day). It is necessary to integrate past history and physical examination to diagnose coincident SLE and psoriasis, and combined treatment with prednisolone and Tripterygium Wilfordii Hook proves effective.

  11. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.; Baker, M.; Pecos, J.

    1999-01-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency 3 He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the 240 Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual

  12. Automatic quench compensation for liquid scintillation counting system

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    A method of automatic quench compensation is provided, where a reference measure of quench is taken on a sample prior to taking a sample count. The measure of quench is then compared with a reference voltage source which has been established to vary in proportion to the variation of the measure of quench with the level of a system parameter required to restore at least one isotope spectral energy endpoint substantially to a selected counting window discriminator level in order to determine the amount of adjustment of the system parameter required to restore the endpoint. This is followed by the appropriate adjustment of the system parameter required to restore the relative position of the discriminator windows and the sample spectrum and is followed in turn by taking a sample count

  13. Pulse mode counting system with parallel port interface

    International Nuclear Information System (INIS)

    Farooq, M.A.; Mushtaq, N.; Sultan, M.; Karim, A.

    2010-11-01

    Pulse mode Counting System (PPCS) module has been designed and developed which is compatible with SPP (Standard Parallel Port) and EPP Enhanced Parallel Port). This system can capture, present and store real time data in a well formatted form. The stored data is in a format that can be imported in different packages for further analysis. The purpose of this system is to facilitate the research experiments having frequency range up to 4 MHz and storing range up to 16 million counts. (author)

  14. Count-rate analysis from clinical scans in PET with LSO detectors

    International Nuclear Information System (INIS)

    Bonutti, F.; Cattaruzzi, E.; Cragnolini, E.; Floreani, M.; Foti, C.; Malisan, M. R.; Moretti, E.; Geatti, O.; Padovani, R.

    2008-01-01

    The purpose of optimising the acquisition parameters in positron emission tomography is to improve the quality of the diagnostic images. Optimisation can be done by maximising the noise equivalent count rate (NECR) that in turn depends on the coincidence rate. For each bed position the scanner records coincidences and singles rates. For each patient, the true, random and scattered coincidences as functions of the single count rate(s) are determined by fitting the NEMA (National Electrical Manufacturers Association) 70 cm phantom count rate curves to measured clinical points. This enables analytical calculation of the personalised PNECR [pseudo NECR(s)] curve, linked to the NECR curve. For central bed positions, missing activity of ∼70% is estimated to get maximum PNECR (PNECR max ), but the improvement in terms of signal-to-noise ratio would be ∼15%. The correlation between patient weight and PNECR max is also estimated to determine the optimal scan duration of a single bed position as a function of patient weight at the same PNEC. Normalising the counts at PNECR max for the 70 kg patient, the bed duration for a 90 kg patient should be 230 s, which is ∼30% longer. Although the analysis indicates that the fast scanner electronics allow using higher administered activities, this would involve poor improvement in terms of NECR. Instead, attending to higher bed duration for heavier patients may be more useful. (authors)

  15. Low-priced, time-saving, reliable and stable LR-115 counting system

    International Nuclear Information System (INIS)

    Tchorz-Trzeciakiewicz, D.E.

    2015-01-01

    Nuclear alpha particles leave etches (tracks) when they hit the surface of a LR-115 detector. The density of these tracks is used to measure radon concentration. Counting these tracks by human sense is tedious and time-consuming procedure and may introduce counting error, whereas most available automatic and semiautomatic counting systems are expensive or complex. An uncomplicated, robust, reliable and stable counting system using freely available on the Internet software as Digimizer™ and PhotoScape was developed and proposed. The effectiveness of the proposed procedure was evaluated by comparing the amount of tracks counted by software with the amount of tracks counted manually for 223 detectors. The percentage error for each analysed detector was obtained as a difference between automatic and manual counts divided by manual count. For more than 97% of detectors, the percentage errors oscillated between −3% and 3%. - Highlights: • Semiautomatic, uncomplicated procedure was proposed to count the amount of alpha tracks. • Freely available software on the Internet used as alpha tracks counting system for LR-115. • LR-115 detectors used to measure radon concentration and radon exhalation rate

  16. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  17. A high dynamic range pulse counting detection system for mass spectrometry.

    Science.gov (United States)

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Quality control of radiation counting systems and measurement of minimum detectable activity

    International Nuclear Information System (INIS)

    Song, Byoung Chul; Han, Sung Sim; Kim, Young Bok; Jee, Kwang Yong; Sohn, Se Chul

    2004-01-01

    Various radiation counters have been using to determine radioactivity of radwastes for disposal. A radiation counting system was set up using a radiation detector chosen in this study and its stability was investigated through the periodic determination of background and counting efficiencies in accordance with a quality control program to increase the confidence level. The average background level for the γ-spectrometer was 1.59 cps and the average counting level for the standard sample was 45248 dps within 20 confidence levels. The average alpha background level for the low background α/β counting system was 0.31 cpm and the efficiency for alpha counting was 34.38 %. The average beta background level for the α/β counting system was 1.30 cpm and the efficiency for beta counting was 46.5%. The background level in the region of 3H and 14C for the liquid scintillation counting system was 2.52 and 3.31 cpm and the efficiency for alpha counting was 58.5 and 95.6%, respectively. The minimum detectable activity for the γ-spectrometer was found to be 3.2 Bq/mL and 3.8 Bq/mL for the liquid scintillation counter, and 20.5 and 23.0 Bq/mL, respectively for the α and β counting system

  19. Method for determining efficiency in a liquid scintillation system

    International Nuclear Information System (INIS)

    Laney, B.H.

    1975-01-01

    In a liquid scintillation system utilizing plural photomultiplyier means, a method for determining efficiency of coincident pulse detection. Various incremental counting efficiency levels are associated with asymptotic functions in a two dimension matrix in which the abscissa and ordinate correspond to the pulse heights of each of a pair of coincident pulses from different photomultiplier means. An efficiency determining point is located in the matrix based on the sum of the pulse heights of each of the coincident pulses as well as on the amplitude of the smallest pulse of the coincident pulses. The single counting efficiency determining point is recorded as the level of efficiency at which the photomultiplier means detect scintillations that generate coincident pulses having pulse heights equal to those recorded. (Patent Office Record)

  20. Measurement of scintillation decay curves by a single photon counting technique

    International Nuclear Information System (INIS)

    Noguchi, Tsutomu

    1978-01-01

    An improved apparatus suitable for the measurement of spectroscopic scintillation decay curves has been developed by combination of a single photon counting technique and a delayed coincidence method. The time resolution of the apparatus is improved up to 1.16 nsec (FWHM), which is obtained from the resolution function of the system for very weak Cherenkov light flashes. Systematic measurement of scintillation decay curves is made for liquid and crystal scintillators including PPO-toluene, PBD-xylene, PPO-POPOP-toluene, anthracene and stilbene. (auth.)

  1. Liquid scintillation counting system with automatic gain correction

    International Nuclear Information System (INIS)

    Frank, R.B.

    1976-01-01

    An automatic liquid scintillation counting apparatus is described including a scintillating medium in the elevator ram of the sample changing apparatus. An appropriate source of radiation, which may be the external source for standardizing samples, produces reference scintillations in the scintillating medium which may be used for correction of the gain of the counting system

  2. Problems and precision of the alpha scintillation radon counting system

    International Nuclear Information System (INIS)

    Lucas, H.F.; Markuu, F.

    1985-01-01

    Variations in efficiency as large as 3% have been found for radon scintillation counting systems in which the photomultiplier tubes are sensitive to the thermoluminescent photons emitted by the scintillator after exposure to light or for which the resolution has deteriorated. The additional standard deviation caused by counting a radon chamber on multiple counting systems has been evaluated and the effect, if present, did not exceed about 0.1%. The chambers have been calibrated for the measurement of radon in air, and the standard deviation was equal to statistical counting error combined with a systematic error of 1.1%. 3 references, 2 figures, 2 tables

  3. Development of a minicomputer system for on-line processing of gamma--gamma coincidence events and measurements of E2/M1 mixing ratios in 110Cd and 134Ba

    International Nuclear Information System (INIS)

    Ruhter, W.D.

    1977-12-01

    A megachannel pulse-height analysis system using a 32,000-word PDP-8/E minicomputer and two moving-head disk memories was developed. The system has a storage capacity of 2 18 events at any of 2 20 data locations, is capable of processing 1,040 events/s, and provides on-line sorting and disk storage. An X- or Y- pulse-height spectrum in coincidence with one to four arithmetically combined pulse-height windows can be assembled in core for scope display and spectral analysis within 2 to 20 seconds. The software for the system was written extensively in machine language. Excellent energy and timing resolution were achieved. An energy resolution of 2.3 keV fwhm and a timing resolution of 8.5 ns fwhm were obtained for 60 Co at a singles rate of 10,000 counts/s. The prompt timing peak remained Gaussian down to the fwtm by gating the TAC with SCAs which discriminated against low-energy events. The coincidence electronics also allowed on-line subtraction of accidental coincidence events. Alignment of the detectors and tests of the system's performance were made by measuring solid-angle correction factors for the Ge(Li) detectors through the correlation measurements of the 0 + --2 + --0 + cascade in 106 Pd, and by measuring the angular spread of positron annihilation radiation coincidences. Results were in excellent agreement with theoretical solid-angle correction factors calculated for the detector and source sizes used. Directional correlation data were obtained for gamma-ray cascades in 134 Ba and 110 Cd. Analyses of these data gave E2/M1 mixing ratios which are in excellent agreement with results obtained by other investigators. The improved resolution and data processing capabilities of this system gave new results for the 563-keV transition in 134 Ba and the 1505-keV transition in 110 Cd. E2/M1 mixing ratios of 13.3/sup +2.3/sub -1.8/ for the 563-keV transition and -1.24 +- 0.20 for the 1505-keV transition were measured

  4. The memory coincidence system (CALI). Principle and use for the multidetector experiments in nuclear physics

    International Nuclear Information System (INIS)

    Pouthas, J.

    1984-01-01

    In an experimental set up, the main function of the ''CALI system'' is to achieve ''coincidence'' between logic channels. This system also provides a fast selection of the events and their identification by a digital word, and the connection to the data acquisition system [fr

  5. Standardization of {sup 241}Am, {sup 124}Sb and {sup 131}I by live-timed anti-coincidence counting with extending dead time

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos J. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), Instituto de Radioprotecao e Dosimetria (IRD), Comissao Nacional de Energia Nuclear - CNEN, Av. Salvador Allende, s/n-Recreio, CEP 22780-160 Rio de Janeiro (Brazil) and Laboratorio de Instrumentacao Nuclear (LIN/PEN/COPPE/UFRJ), Caixa Postal 68590, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: Carlos@ird.gov.br; Iwahara, A.; Poledna, R.; Oliveira, E.M. de; Prinzio, M.A.R.R. de; Delgado, Jose U. [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), Instituto de Radioprotecao e Dosimetria (IRD), Comissao Nacional de Energia Nuclear - CNEN, Av. Salvador Allende, s/n-Recreio, CEP 22780-160 Rio de Janeiro (Brazil); Lopes, Ricardo T. [Laboratorio de Instrumentacao Nuclear (LIN/PEN/COPPE/UFRJ), Caixa Postal 68590, CEP 21945-970 Rio de Janeiro (Brazil)

    2008-06-15

    The National Metrology Laboratory for Ionizing Radiation (LNMRI)/Brazil has implemented a live-timed anti-coincidence system with extending dead time to complement the existing systems in its Radionuclide Laboratory for activity measurements of radioactive sources. In this new system, the proportional counter has been replaced by a liquid-scintillation-counter for alpha and beta detection. In order to test the performance of the new system, radioactive solutions of {sup 131}I, {sup 124}Sb and {sup 241}Am have been standardized. In this work the measurement method, the results and the associated uncertainties are described and discussed.

  6. An automated LS(β)- NaI(Tl)(γ) coincidence system as absolute standard for radioactivity measurements.

    Science.gov (United States)

    Joseph, Leena; Das, A P; Ravindra, Anuradha; Kulkarni, D B; Kulkarni, M S

    2018-07-01

    4πβ-γ coincidence method is a powerful and widely used method to determine the absolute activity concentration of radioactive solutions. A new automated liquid scintillator based coincidence system has been designed, developed, tested and established as absolute standard for radioactivity measurements. The automation is achieved using PLC (programmable logic controller) and SCADA (supervisory control and data acquisition). Radioactive solution of 60 Co was standardized to compare the performance of the automated system with proportional counter based absolute standard maintained in the laboratory. The activity concentrations determined using these two systems were in very good agreement; the new automated system can be used for absolute measurement of activity concentration of radioactive solutions. Copyright © 2018. Published by Elsevier Ltd.

  7. Characteristics of commercially available well scintillation counting systems

    International Nuclear Information System (INIS)

    Morris, A.C. Jr.; Dudley, R.A.

    1977-01-01

    The document contains data on commercially available well scintillation counting systems as collected during early 1977, and up-dated in July 1977, by the staff of the Medical Application Section, Division of Life Sciences, IAEA. These data also appear as Appendix 2 of IAEA-201, Well Scintillation Counting Systems for Nuclear Medicine Applications in Developing Countries, Vienna, 1977. An attempt was made to include instruments currently offered by all manufacturers. However, it is inevitable that several manufacturers remain unknown to the Section, and a number of known manufacturers failed to provide adequate information. (orig.) [de

  8. An Automatic Car Counting System Using OverFeat Framework

    OpenAIRE

    Biswas, Debojit; Su, Hongbo; Wang, Chengyi; Blankenship, Jason; Stevanovic, Aleksandar

    2017-01-01

    Automatic car counting is an important component in the automated traffic system. Car counting is very important to understand the traffic load and optimize the traffic signals. In this paper, we implemented the Gaussian Background Subtraction Method and OverFeat Framework to count cars. OverFeat Framework is a combination of Convolution Neural Network (CNN) and one machine learning classifier (like Support Vector Machines (SVM) or Logistic Regression). With this study, we showed another poss...

  9. Performance of an active well coincidence counter for HEU samples

    International Nuclear Information System (INIS)

    Ferrari, Francesca; Peerani, Paolo

    2010-01-01

    Neutron coincidence counting is the reference NDA technique used in nuclear safeguards to measure the mass of nuclear material in samples. For high-enriched uranium (HEU) samples active neutron interrogation is generally performed and the most common device used by nuclear inspectors is the Active Well Coincidence Counter (AWCC). Within her master thesis at the Polytechnic of Milan, the first author performed an intensive study on the characteristics and performances of the AWCC in order to assess the 235 U mass in HEU oxide samples at the PERLA laboratory of JRC. The work has been summarised in this paper that starts with the optimisation of the use of AWCC for nuclear safeguards, describing the calibration procedure, reporting results of a series of verification measurements, summarising the performances that can be obtained with this instruments during inspections at fuel production plants and concluding with the discussion of uncertainties related to these measurements.

  10. Accurate disintegration-rate measurement of 55Fe by liquid scintillation counting

    International Nuclear Information System (INIS)

    Steyn, J.; Oberholzer, P.; Botha, S.M.

    1979-01-01

    A method involving liquid scintillation counting is described for the accurate measurement of disintegration rate of 55 Fe. The method is based on the use of calculated efficiency functions together with either of the nuclides 54 Mn and 51 Cr as internal standards for measurement of counting efficiencies by coincidence counting. The method was used by the NAC during a recent international intercomparison of radioactivity measurements, and a summary of the results obtained by nine participating laboratories is presented. A spread in results of several percent is evident [af

  11. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    Science.gov (United States)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  12. Characterization of a new computer-ready photon counting system

    Science.gov (United States)

    Andor, Gyorgy

    1998-08-01

    The photon-counting system seems to be the best solution for extremely low optical power measurements. The Hamamatsu HC135 photon counting module has a built-in high-voltage power supply amplifier, discriminator, micro-controller with an RS232 serial output. It requires only a +5V supply voltage and an IBM PC or compatible computer to run. The system is supplied with an application software. This talk is about the testing of the device.

  13. Analysis method for beta-gamma coincidence spectra from radio-xenon isotopes

    International Nuclear Information System (INIS)

    Yang Wenjing; Yin Jingpeng; Huang Xiongliang; Cheng Zhiwei; Shen Maoquan; Zhang Yang

    2012-01-01

    Radio-xenon isotopes monitoring is one important method for the verification of CTBT, what includes the measurement methods of HPGe γ spectrometer and β-γ coincidence. The article describes the analytic flowchart and method of three-dimensional beta-gamma coincidence spectra from β-γ systems, and analyses in detail the principles and methods of the regions of interest of coincidence spectra and subtracting the interference, finally gives the formula of radioactivity of Xenon isotopes and minimum detectable concentrations. Studying on the principles of three-dimensional beta-gamma coincidence spectra, which can supply the foundation for designing the software of β-γ coincidence systems. (authors)

  14. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  15. Fractional counts-the simulation of low probability events

    International Nuclear Information System (INIS)

    Coldwell, R.L.; Lasche, G.P.; Jadczyk, A.

    2001-01-01

    The code RobSim has been added to RobWin.1 It simulates spectra resulting from gamma rays striking an array of detectors made up of different components. These are frequently used to set coincidence and anti-coincidence windows that decide if individual events are part of the signal. The first problem addressed is the construction of the detector. Then owing to the statistical nature of the responses of these elements there is a random nature in the response that can be taken into account by including fractional counts in the output spectrum. This somewhat complicates the error analysis, as Poisson statistics are no longer applicable

  16. Investigating the impact of LSO on the count rate of wholebody PET tomographs

    International Nuclear Information System (INIS)

    Douglas, J.L.; Moisan, C.; Rogers, J.G.

    1996-05-01

    We investigated the impact of using detectors made of lutetium oxyorthosilicate (LSO) on the count rate performances of wholebody PET tomographs. To that end, we used a single computational model that predicts the prompt and random contributions to the total event rate in septaless PET tomographs. Dead time factors at all stages of a typical event acquisition stream are calculated from specified values of their respective processing clock cycle. We validated our approach by fitting the true, random and multiple count rates measured with the ECAT-953B and the EXACT HR PLUS scanners for a standard 20 x 20 cm cylindrical phantom. We then investigated the implications of using position encoding detectors made of LSO in the EXACT HR PLUS scanner geometry. The results in indicate that only replacing BGO by the faster LSO incurs no appreciable change in the maximum noise-equivalent-count (NEC) rate of the scanner. However, one could realistically increase the NEC by a factor 2.5 using a 4 nsec coincidence window width with the detector processing front-end operating on a 128 nsec clock cycle. Further reducing the coincidence window width to 600 psec and the front-end clock cycle to 64 nsec leads to an increase of the NEC by a factor 7.5. To sustain the operation of an HR Plus with these specifications, the saturation bandwidth of the data acquisition system would have to be increased to no more than 4.5 MHz. (authors)

  17. 3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection

    Science.gov (United States)

    Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.

    2018-02-01

    Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).

  18. Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system

    Science.gov (United States)

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Kato, Katsuhiko; Hatazawa, Jun

    2013-03-01

    A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd3Al12Ga3O12 (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm3 GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm2. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.

  19. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    International Nuclear Information System (INIS)

    Bowman, P.

    2016-01-01

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has been considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.

  20. Single-photon counting in the 1550-nm wavelength region for quantum cryptography

    International Nuclear Information System (INIS)

    Park, Chul-Woo; Park, Jun-Bum; Park, Young-Soo; Lee, Seung-Hun; Shin, Hyun-Jun; Bae, Byung-Seong; Moon, Sung; Han, Sang-Kook

    2006-01-01

    In this paper, we report the measured performance of an InGaAs avalanche photodiode (APD) Module fabricated for single-photon counting. We measured the dark current noise, the after-pulse noise, and the quantum efficiency of the single- photon detector for different temperatures. We then examined our single-photon source and detection system by measuring the coincident probability. From our measurement, we observed that the after-pulse effect of the APD at temperatures below 105 .deg. C caused cascade noise build-up on the succeeding electrical signals.

  1. Gamma-gamma directional correlations and coincidence studies in 154Gd

    International Nuclear Information System (INIS)

    Gupta, J.B.; Gupta, S.L.; Hamilton, J.H.; Ramayya, A.V.; Delhi Univ.

    1977-01-01

    The intensities, placements and E2/M1 mixing ratios of transitions in the decay of 154 Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in thhe decay of 154 Eu have been studied extensively with a multiparameter γ-γ coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of the E2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined from γ-γ directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those from KPI = 0 - and 2+ bands from direct and skipped cascade correlations. (orig.) [de

  2. Construction and implementation of a liquid scintillation TDCR system

    International Nuclear Information System (INIS)

    Wu Yongle; Liang Juncheng; Liu Jiacheng; Yang Yuandi; Yuan Daqing

    2012-01-01

    The triple-to-double coincidence ratio (TDCR) method is an absolute measurement method of radioactivity, and is a popular technique for the standardization of pure beta radionuclides. A triple-to-double coincidence ratio (TDCR) liquid scintillation counting system has been constructed in China. A description of the system and measured activities for sources such as 3 H and 99 Te are presented. (authors)

  3. Research about an automatic timing count system based on LabView

    International Nuclear Information System (INIS)

    Yan Jie; Liu Rong; Jian Li; Lu Xinxin; Zhu Tonghua; Wang Mei; Wen Zhongwei; Lin Jufang; Li Cheng

    2009-01-01

    Based on the LabView Virtual Instrument Development Platform and the GPIB instrument control and data transmission bus protocol, the design and research of a virtual instrument about an automatic timing count system using ORTEC 974 Counter/Timer is introduced in this paper. Comparing with the real instrument, the virtual instrument system enriched the timing count function and carried out the remote control of the real instrument. The counts and measured time can be recorded automatically during the measurement process for the further analysis and processing. (authors)

  4. Design of multichannel counting system for IBM PC and compatibles

    International Nuclear Information System (INIS)

    Majeed, B.; Ahmad, Z.; Osman, A.; Ysain, M.M.

    1995-07-01

    A Multichannel Counting System (MCCS), based on IBM-PC and compatible computer systems have been designed. The MCCS consists of a Multichannel Counting System plug-in interface card (MCCS-PC) for IBM PC and compatibles and a NIM-BIN module (MCCS-NB). The MCCS-PC provides simultaneous monitoring of upto seven independent SCA type inputs. An on board programmable timer provides elapsed time measurement. A menu-driven program for data acquisition and timer control has also been developed. (author) 8 figs

  5. An Automatic Car Counting System Using OverFeat Framework

    Directory of Open Access Journals (Sweden)

    Debojit Biswas

    2017-06-01

    Full Text Available Automatic car counting is an important component in the automated traffic system. Car counting is very important to understand the traffic load and optimize the traffic signals. In this paper, we implemented the Gaussian Background Subtraction Method and OverFeat Framework to count cars. OverFeat Framework is a combination of Convolution Neural Network (CNN and one machine learning classifier (like Support Vector Machines (SVM or Logistic Regression. With this study, we showed another possible application area for the OverFeat Framework. The advantages and shortcomings of the Background Subtraction Method and OverFeat Framework were analyzed using six individual traffic videos with different perspectives, such as camera angles, weather conditions and time of the day. In addition, we compared the two algorithms above with manual counting and a commercial software called Placemeter. The OverFeat Framework showed significant potential in the field of car counting with the average accuracy of 96.55% in our experiment.

  6. An Automatic Car Counting System Using OverFeat Framework.

    Science.gov (United States)

    Biswas, Debojit; Su, Hongbo; Wang, Chengyi; Blankenship, Jason; Stevanovic, Aleksandar

    2017-06-30

    Automatic car counting is an important component in the automated traffic system. Car counting is very important to understand the traffic load and optimize the traffic signals. In this paper, we implemented the Gaussian Background Subtraction Method and OverFeat Framework to count cars. OverFeat Framework is a combination of Convolution Neural Network (CNN) and one machine learning classifier (like Support Vector Machines (SVM) or Logistic Regression). With this study, we showed another possible application area for the OverFeat Framework. The advantages and shortcomings of the Background Subtraction Method and OverFeat Framework were analyzed using six individual traffic videos with different perspectives, such as camera angles, weather conditions and time of the day. In addition, we compared the two algorithms above with manual counting and a commercial software called Placemeter. The OverFeat Framework showed significant potential in the field of car counting with the average accuracy of 96.55% in our experiment.

  7. Improvement and automatization of a proportional alpha-beta counting system - FAG

    International Nuclear Information System (INIS)

    German, U.; Levinson, S.; Pelled, O.; Shemesh, Y.; Assido, H.

    1997-01-01

    An alpha and beta counting system - FAG*, for planchette samples is operated at the Health Physics department's laboratory of the NRCN. The original operation mode of the system was based on manual tasks handled by the FHT1 100 electronics. An option for a basic computer keyboard operation was available too. A computer with an appropriate I/O card was connected to the system and a new operating program was developed which enables full automatic control of the various components. The program includes activity calculations and statistical checks as well as data management. A bar-code laser system for sample number reading was integrated into the Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. authors)

  8. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.

    Science.gov (United States)

    Khrustalev, K; Popov, V Yu; Popov, Yu S

    2017-08-01

    We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization

    Science.gov (United States)

    Walrand, Stephan; Hesse, Michel; Jamar, François; Lhommel, Renaud

    2018-04-01

    Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing

  10. An Inexpensive Coincidence Circuit for the Pasco Geiger Sensors

    CERN Document Server

    Fichera, F; Librizzi, F; Riggi, F

    2005-01-01

    A simple coincidence circuit was devised to carry out educational coincidence experiments involving the use of Geiger counters. The system was tested by commercially available Geiger sensors from PASCO, and is intended to be used in collaboration with high school students and teachers

  11. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture

    Directory of Open Access Journals (Sweden)

    Yuanhong Zhong

    2018-05-01

    Full Text Available Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO object detection, the classification method and fine counting based on Support Vector Machines (SVM using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.

  12. Evaluation of accidental coincidences for time-differential Moessbauer-spectroscopy

    International Nuclear Information System (INIS)

    Alflen, M.; Meyer, W.

    1995-01-01

    The accidental coincidences of a measuring system based on time-to-amplitude conversion are considered in some detail for the case of low starting and high stopping rates. Two types of accidental coincidences are distinguished, those carrying time information and those without time information. Neglecting any deadtime effects of the detectors, analytical expressions for the calculation of the time distribution of the random coincidences are evaluated. The analytical expressions have been confirmed by Monte Carlo simulations. The procedure is applied to time-differential Moessbauer spectroscopy in order to extract the time spectra of true coincidences. The measured spectrum in a time channel turns out to be a superposition of the true spectrum (true coincidences), a time integral spectrum (random coincidences), and a weighted superposition of true spectra of other time channels (random but time carrying information). A measurement with a single line 57 Co/Rh-source and single line K[Fe(CN) 6 ].3H 2 O-absorber with stopping rates of 1 MBq shows agreement between the theoretical time-filtered spectra and the corrected measured spectra of true coincidences. ((orig.))

  13. Performance of gamma spectrometry counting system

    International Nuclear Information System (INIS)

    Yii Mei Wo; Maziah Mahmud

    2007-01-01

    Gamma spectrometry counting system widely used as tool to measure qualitative and quantitative gamma-ray emitters in a sample. Container size, sample to detector distance, sample volume are well known factors that affecting the quality of measurement. However, factor such as the age of the system was not been reported. Therefore, the objective of this study is to find out how the age factor affecting the quality of the measurement. From this study, it is found that when the age of the system increased, the system tends to have higher lower limit of detection and poorer linearity showing that age factor do affecting the quality of measurement. (Author)

  14. Modelling a Java Ring based implementation of an N-Count payment system

    NARCIS (Netherlands)

    Revill, J.D.; Hartel, Pieter H.

    N-Count is a system for offline value transfer. A prototype of an N-Count payment system has been designed, and it has been implemented in Java. We have used the Java Ring with the Java Card API as a secure device. The system has also been modelled using the Spin model checker. The combined

  15. Operation voltage of the counting system of nuclear traces in solids

    International Nuclear Information System (INIS)

    Garcia, M.L.; Quirino, L.L.; Mireles, F.; Davila, J.I.; Pinedo, J.L.; Lugo, J.F.; Vadillo, V.E.

    2002-01-01

    The semi-automatic counting system based on electric spark and used for traces reading in solid state detectors is evaluated for obtaining its counting voltage and also the breaking voltage of material. In the treatment of the solid state detectors it is continued the NTD methodology for concluding with the individual counting of the films, whose graphics offer the existing relationship among the applied voltage and the traces number. From each film a counting and breaking voltages are obtained. Finally, an average voltage of all them is estimated. (Author)

  16. Counting efficiency formulae for two, three or four photomultiplier systems

    International Nuclear Information System (INIS)

    Grau Malonda, A.

    1993-01-01

    Counting efficiency formulae as a function of the non-detection probability and the electron distributions for systems with two, three or dour photomultipliers are obtained in this paper. It is assumed that the photocathode electron emission follows the Poisson distribution. The obtained formulae are basic to compute the counting efficiency in liquid scintillation spectrometers

  17. Gamma--gamma directional correlations and coincidence studies in /sup 154/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J B; Gupta, S L; Hamilton, J H; Ramayya, A V [Vanderbilt Univ., Nashville, Tenn. (USA). Dept. of Physics; Delhi Univ. (India). Ramjas Coll.)

    1977-06-01

    The intensities, placements and E2/M1 mixing ratios of transitions in the decay of /sup 154/Eu have been carefully studied to provide accurate data for microscopic calculations. Coincidence relationships in thhe decay of /sup 154/Eu have been studied extensively with a multiparameter ..gamma..-..gamma.. coincidence system with two large volume Ge(Li) detectors. Spectra in coincidence with twenty energy gates were analyzed. Twenty-nine new coincidence relationships were established and confirmed most, but not all, of several levels previously assigned by energy fits only. From an analysis of coincidence spectra and singles spectra with a 18% efficiency Ge(Li) detector new information on the gamma-ray intensities were obtained. Precise values of the E2/M1 mixing ratios of transitions from the gamma- and beta-vibrational bands to the g.s. band have been determined from ..gamma..-..gamma.. directional correlation measurements with a NaI(Tl)-Ge(Li) detector coincidence system. Mixing ratios were obtained for a number of other transitions including those from KPI = 0/sup -/ and 2+ bands from direct and skipped cascade correlations.

  18. Measurement of the neutron lifetime by counting trapped protons

    International Nuclear Information System (INIS)

    Byrne, J.; Dawber, P.G.; Spain, J.A.; Williams, A.P.; Dewey, M.S.; Gilliam, D.M.; Greene, G.L.; Lamaze, G.P.; Scott, R.D.; Pauwels, J.; Eykens, R.; Lamberty, A.

    1990-01-01

    The neutron lifetime τ n has been measured by counting decay protons stored in a Penning trap whose magnetic axis coincided with a neutron-beam axis. The result of the measurement is τ n =893.6±5.3 s, which agrees well with the value predicted by precise measurements of the β-decay asymmetry parameter A and the standard model

  19. Validation of an automated colony counting system for group A Streptococcus.

    Science.gov (United States)

    Frost, H R; Tsoi, S K; Baker, C A; Laho, D; Sanderson-Smith, M L; Steer, A C; Smeesters, P R

    2016-02-08

    The practice of counting bacterial colony forming units on agar plates has long been used as a method to estimate the concentration of live bacteria in culture. However, due to the laborious and potentially error prone nature of this measurement technique, an alternative method is desirable. Recent technologic advancements have facilitated the development of automated colony counting systems, which reduce errors introduced during the manual counting process and recording of information. An additional benefit is the significant reduction in time taken to analyse colony counting data. Whilst automated counting procedures have been validated for a number of microorganisms, the process has not been successful for all bacteria due to the requirement for a relatively high contrast between bacterial colonies and growth medium. The purpose of this study was to validate an automated counting system for use with group A Streptococcus (GAS). Twenty-one different GAS strains, representative of major emm-types, were selected for assessment. In order to introduce the required contrast for automated counting, 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) dye was added to Todd-Hewitt broth with yeast extract (THY) agar. Growth on THY agar with TTC was compared with growth on blood agar and THY agar to ensure the dye was not detrimental to bacterial growth. Automated colony counts using a ProtoCOL 3 instrument were compared with manual counting to confirm accuracy over the stages of the growth cycle (latent, mid-log and stationary phases) and in a number of different assays. The average percentage differences between plating and counting methods were analysed using the Bland-Altman method. A percentage difference of ±10 % was determined as the cut-off for a critical difference between plating and counting methods. All strains measured had an average difference of less than 10 % when plated on THY agar with TTC. This consistency was also observed over all phases of the growth

  20. Determining chance coincidence, survival factor and decay factor in 220Rn delayed coincidence measurement

    International Nuclear Information System (INIS)

    Huang Derong; Yan Yongjun; Zhou Jianliang; Qiu Shoukang

    2013-01-01

    The method and calculation formulas to determine the chance coincidence in the 220 Rn coincidence measurement are introduced in this paper. The poisson distribution is introduced to correct the chance coincidence. The relative deviation of the true coincidence between the method and the Giffin's is within 5% after the correction of the cohance coincidence. The measurement of 220 Rn is done by comparative measurement with RAD7. The results shows that 220 Rn can be measured by the method with a relative deviation of 14%. Mean while, for the 220 Rn flow regime is difficult to meet the condition of calculation formulas, a solution to solve the survival factor and decay factor is proposed and the error come from the useage of theoretical calculation formula is avoided. (authors)

  1. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    International Nuclear Information System (INIS)

    Jaederstroem, Henrik; Bronson, Frazier

    2013-01-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  2. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    Energy Technology Data Exchange (ETDEWEB)

    Jaederstroem, Henrik; Bronson, Frazier [Canberra Industries Inc., 800 Research Parkway Meriden CT 06450 (United States)

    2013-07-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  3. Method Verification Requirements for an Advanced Imaging System for Microbial Plate Count Enumeration.

    Science.gov (United States)

    Jones, David; Cundell, Tony

    2018-01-01

    The Growth Direct™ System that automates the incubation and reading of membrane filtration microbial counts on soybean-casein digest, Sabouraud dextrose, and R2A agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. LAY ABSTRACT: The Growth Direct™ System that automates the incubation and reading of microbial counts on membranes on solid agar differs only from the traditional method in that micro-colonies on the membrane are counted using an advanced imaging system up to 50% earlier in the incubation time. Based on the recommendations in USP Validation of New Microbiological Testing Methods , the system may be implemented in a microbiology laboratory after simple method verification and not a full method validation. © PDA, Inc. 2018.

  4. Artificial neural network-aided image analysis system for cell counting.

    Science.gov (United States)

    Sjöström, P J; Frydel, B R; Wahlberg, L U

    1999-05-01

    In histological preparations containing debris and synthetic materials, it is difficult to automate cell counting using standard image analysis tools, i.e., systems that rely on boundary contours, histogram thresholding, etc. In an attempt to mimic manual cell recognition, an automated cell counter was constructed using a combination of artificial intelligence and standard image analysis methods. Artificial neural network (ANN) methods were applied on digitized microscopy fields without pre-ANN feature extraction. A three-layer feed-forward network with extensive weight sharing in the first hidden layer was employed and trained on 1,830 examples using the error back-propagation algorithm on a Power Macintosh 7300/180 desktop computer. The optimal number of hidden neurons was determined and the trained system was validated by comparison with blinded human counts. System performance at 50x and lO0x magnification was evaluated. The correlation index at 100x magnification neared person-to-person variability, while 50x magnification was not useful. The system was approximately six times faster than an experienced human. ANN-based automated cell counting in noisy histological preparations is feasible. Consistent histology and computer power are crucial for system performance. The system provides several benefits, such as speed of analysis and consistency, and frees up personnel for other tasks.

  5. Coincidence summing corrections for positron emitters in germanium gamma spectrometry

    International Nuclear Information System (INIS)

    Richardson, A.E.; Sallee, W.W.; New Mexico State Univ., Las Cruces

    1990-01-01

    For positron emitters, 511 keV annihilation quanta are in coincidence with other gamma rays in the decay scheme. If the positrons are not localized at the point of decay, annihilation quanta will be produced at a site some distance from the point of emission. The magnitude of the summing coincidence effect will depend upon the position of annihilation. A method for determining the magnitude of the summing effect for a single gamma of energy E in coincidence with the annihilation gammas from non-localized positrons has been developed which makes use of the counting data for the full energy peaks for both the gamma ray (E) and the 511 keV annihilation gammas. With this data and efficiency calibration data one can determine the average total efficiency for the annihilation positions from which 511 keV gammas originate, and thereby obtain the summing correction factor, SCF, for gamma ray (E). Application of the method to a 22 Na NIST standard gave excellent agreement of observed emission rates for the 1275 keV gamma with the NIST value for wide ranging degrees of positron localization having summing correction factors ranging from 1.021 to 1.505. The method was also applied successfully to 58 Co in neutron-irradiated nickel foils. The method shows promise as a check on the accuracy of the efficiency calibration for a particular detector geometry at the 511 keV energy and energies for other gammas associated with positron emission. (orig.)

  6. Leukocyte count, systemic inflammation, and health status in older adults: a narrative review

    Directory of Open Access Journals (Sweden)

    Chmielewski Piotr

    2018-03-01

    Full Text Available Epidemiological and clinical studies suggest that elevated leukocyte count within the normal range can predict cardiovascular and total mortality in older adults. These findings are remarkable because this simple and common laboratory test is included in routine medical check-ups. It is well known that chronic systemic inflammation (inflammaging is one of the hallmarks of aging and an important component of obesity-associated insulin resistance that can lead to type 2 diabetes and other health problems in both overweight individuals and elderly people. To understand the molecular mechanisms linking increased systemic inflammation with aging-associated diseases and elevated leukocyte counts in the elderly is to unravel the multiplicity of molecular factors and mechanisms involved in chronic low-grade systemic inflammation, the gradual accumulation of random molecular damage, age-related diseases, and the process of leukopoiesis. There are several possible mechanisms through which chronic low-grade systemic inflammation is associated with both higher leukocyte count and a greater risk of aging-associated conditions in older adults. For example, the IL-6 centric model predicts that this biomediator is involved in chronic systemic inflammation and leukopoiesis, thereby suggesting that elevated leukocyte count is a signal of poor health in older adults. Alternatively, an increase in neutrophil and monocyte counts can be a direct cause of cardiovascular events in the elderly. Interestingly, some authors assert that the predictive ability of elevated leukocyte counts with regard to cardiovascular and allcause mortality among older adults surpass the predictive value of total cholesterol. This review reports the recent findings on the links between elevated but normal leukocyte counts and the increased risks of all-cause, cardiovascular, and cancer mortality. The possible molecular mechanisms linking higher but normal leukocyte counts with increased

  7. Experimental Study for Automatic Colony Counting System Based Onimage Processing

    Science.gov (United States)

    Fang, Junlong; Li, Wenzhe; Wang, Guoxin

    Colony counting in many colony experiments is detected by manual method at present, therefore it is difficult for man to execute the method quickly and accurately .A new automatic colony counting system was developed. Making use of image-processing technology, a study was made on the feasibility of distinguishing objectively white bacterial colonies from clear plates according to the RGB color theory. An optimal chromatic value was obtained based upon a lot of experiments on the distribution of the chromatic value. It has been proved that the method greatly improves the accuracy and efficiency of the colony counting and the counting result is not affected by using inoculation, shape or size of the colony. It is revealed that automatic detection of colony quantity using image-processing technology could be an effective way.

  8. Comparison of least-squares vs. maximum likelihood estimation for standard spectrum technique of β−γ coincidence spectrum analysis

    International Nuclear Information System (INIS)

    Lowrey, Justin D.; Biegalski, Steven R.F.

    2012-01-01

    The spectrum deconvolution analysis tool (SDAT) software code was written and tested at The University of Texas at Austin utilizing the standard spectrum technique to determine activity levels of Xe-131m, Xe-133m, Xe-133, and Xe-135 in β–γ coincidence spectra. SDAT was originally written to utilize the method of least-squares to calculate the activity of each radionuclide component in the spectrum. Recently, maximum likelihood estimation was also incorporated into the SDAT tool. This is a robust statistical technique to determine the parameters that maximize the Poisson distribution likelihood function of the sample data. In this case it is used to parameterize the activity level of each of the radioxenon components in the spectra. A new test dataset was constructed utilizing Xe-131m placed on a Xe-133 background to compare the robustness of the least-squares and maximum likelihood estimation methods for low counting statistics data. The Xe-131m spectra were collected independently from the Xe-133 spectra and added to generate the spectra in the test dataset. The true independent counts of Xe-131m and Xe-133 are known, as they were calculated before the spectra were added together. Spectra with both high and low counting statistics are analyzed. Studies are also performed by analyzing only the 30 keV X-ray region of the β–γ coincidence spectra. Results show that maximum likelihood estimation slightly outperforms least-squares for low counting statistics data.

  9. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  10. It takes two—coincidence coding within the dual olfactory pathway of the honeybee

    OpenAIRE

    Brill, Martin F.; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and...

  11. A bar-code reader for an alpha-beta automatic counting system - FAG

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, S; Shemesh, Y; Ankry, N; Assido, H; German, U; Peled, O [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors).

  12. A bar-code reader for an alpha-beta automatic counting system - FAG

    International Nuclear Information System (INIS)

    Levinson, S.; Shemesh, Y.; Ankry, N.; Assido, H.; German, U.; Peled, O.

    1996-01-01

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors)

  13. Monte Carlo simulation of {beta}-{gamma} coincidence system using plastic scintillators in 4{pi} geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M.S. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)], E-mail: msdias@ipen.br; Piuvezam-Filho, H. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil); Baccarelli, A.M. [Departamento de Fisica-PUC/SP-Rua Marques de Paranagua 111, 01303-050 Sao Paulo, SP (Brazil); Takeda, M.N. [Universidade Santo Amaro, UNISA-Rua Prof. Eneas da Siqueira Neto 340, 04829-300 Sao Paulo, SP (Brazil); Koskinas, M.F. [Instituto de Pesquisas Energeticas e Nucleares: IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2007-09-21

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4{pi}{beta}(PS)-{gamma} coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4{pi} geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to {sup 60}Co and {sup 133}Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4{pi}{beta}(PC)-{gamma} coincidence system.

  14. Monte Carlo simulation of β-γ coincidence system using plastic scintillators in 4π geometry

    International Nuclear Information System (INIS)

    Dias, M.S.; Piuvezam-Filho, H.; Baccarelli, A.M.; Takeda, M.N.; Koskinas, M.F.

    2007-01-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, Sao Paulo, Brazil, has been applied for simulating a 4πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60 Co and 133 Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4πβ(PC)-γ coincidence system

  15. Energy and resolution calibration of detectors for noble gas β-γ coincidence system

    International Nuclear Information System (INIS)

    Jia Huaimao; Wang Shilian; Li Qi; Wang Jun; Zhao Yungang; Zhang Xinjun; Fan Yuanqing

    2010-01-01

    The β-γ coincidence technique is a kind of important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty(CTBT). The energy and resolution calibration of detectors is the first key technique. This paper describes in detail the energy and resolution calibration methods of NaI (Tl) and plastic scintillator detectors for the noble gas β-γ coincidence system SAUNA II-Lab. NaI (Tl) detector's energy and resolution for γ-ray were calibrated with γ radioactive point sources. Plastic scintillator detector's energy and resolution for β-ray were calibrated by Compton scattering electrons of 137 Cs 661.66 keV γ-ray. And the results of β-ray energy resolution calibrated by Compton scattering electrons of 137 Cs were compared with the results of conversion electron of 131 Xe m . In conclusion,it is an easy and feasible method of calibrating plastic scintillator detector's energy by Compton scattering electrons of 137 Cs,but detector's resolution calibrated by Compton scattering electrons is higher than factual result. (authors)

  16. Controlling a sample changer using the integrated counting system

    International Nuclear Information System (INIS)

    Deacon, S.; Stevens, M.P.

    1985-06-01

    Control of the Sample Changer from a counting system can be achieved by using a Scaler Timer type 6255 and Sample Changer Control Interface type 6263. The interface used, however, has quite complex circuitry. The application therefore lends itself to the use of another 6000 Series module the Integrated Counting System (ICS). Using this unit control is carried out through a control program written in BASIC for the Commodore PET (or any other device with an IEEE-488 interface). The ICS then controls the sample changer through an interface unit which is relatively simple. A brief description of how ICS controls the sample changer is given. The control program is then described, firstly the running options are given, followed by a program description listing and flowchart. (author)

  17. Controlling a sample changer using the integrated counting system

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, S; Stevens, M P

    1985-06-01

    Control of the Sample Changer from a counting system can be achieved by using a Scaler Timer type 6255 and Sample Changer Control Interface type 6263. The interface used, however, has quite complex circuitry. The application therefore lends itself to the use of another 6000 Series module-the Integrated Counting System (ICS). Using this unit control is carried out through a control program written in BASIC for the Commodore PET (or any other device with an IEEE-488 interface). The ICS then controls the sample changer through an interface unit which is relatively simple. A brief description of how ICS controls the sample changer is given. The control program is then described; first the running options are given, followed by a program description listing and flowchart.

  18. Automatic analysis algorithm for radionuclide pulse-height data from beta-gamma coincidence systems

    International Nuclear Information System (INIS)

    Foltz Biegalski, K.M.

    2001-01-01

    There are two acceptable noble gas monitoring measurement modes for Comprehensive Nuclear-Test-Ban-Treaty (CTBT) verification purposes defined in CTBT/PC/II/WG.B/1. These include beta-gamma coincidence and high-resolution gamma-spectrometry. There are at present no commercial, off-the-shelf (COTS) applications for the analysis of β-γ coincidence data. Development of such software is in progress at the Prototype International Data Centre (PIDC) for eventual deployment at the International Data Centre (IDC). Flowcharts detailing the automatic analysis algorithm for β-γ coincidence data to be coded at the PIDC is included. The program is being written in C with Oracle databasing capabilities. (author)

  19. Counting efficiency for liquid scintillator systems with a single multiplier phototube

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1984-01-01

    In this paper counting efficiency as a function of a free parameter (the figure of merit) has been computed. The results are applicable to liquid scintillator systems with a single multiplier phototube. Tables of counting efficiency for 62 pure beta emitters are given for figures of merit in the range 0.25 to 50. (Author) 16 refs

  20. Integrated coincidence circuits

    International Nuclear Information System (INIS)

    Borejko, V.F.; Grebenyuk, V.M.; Zinov, V.G.

    1976-01-01

    The description is given of two coincidence units employing integral circuits in the VISHNYA standard. The units are distinguished for the coincidence selection element which is essentially a combination of a tunnel diode and microcircuits. The output fast response of the units is at least 90 MHz in the mode of the output signal unshaped in duration and 50 MHz minimum in the mode of the output signal shaping. The resolution time of the units is dependent upon the duration of input signals

  1. Upgradation of automatic liquid scintillation counting system

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Behere, Anita; Sonalkar, S.Y.; Vaidya, P.P.

    2001-01-01

    This paper describes the upgradation of Microprocessor based Automatic Liquid Scintillation Counting systems (MLSC). This system was developed in 1980's and subsequently many systems were manufactured and supplied to Environment Survey labs at various Nuclear Power Plants. Recently this system has been upgraded to a more sophisticated one by using PC add-on hardware and developing Windows based software. The software implements more intuitive graphical user interface and also enhances the features making it comparable with commercially available systems. It implements data processing using full spectrum analysis as against channel ratio method adopted earlier, improving the accuracy of the results. Also it facilitates qualitative as well as quantitative analysis of the β-spectrum. It is possible to analyze a sample containing an unknown β-source. (author)

  2. An automated NaI 'well' counting system for the determination of radiocaesium

    International Nuclear Information System (INIS)

    Andrews, D.J.; Sutton, G.A.

    1993-01-01

    During the past five years the number of sea and freshwater samples collected by the (DFR) for radiocaesium analysis has increased significantly due to the extended monitoring programme following the Chernobyl accident. Counting times have increased because of the general reduction in levels of radioactivity following the introduction of a new effluent-treatment plant at British Nuclear Fuels's reprocessing plant at Sellafield. The large number of samples and the low levels of radioactivity have resulted in the requirement for an additional, highly sensitive, gamma counting system. This paper describes the design and development of an improved automated gamma counting system suitable for the determination of low levels of radiocaesium activity in these samples. (author)

  3. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    Muehllehner, G.; Buchin, M.P.

    1980-01-01

    Improvements to a positron camera imaging system are described. A pair of Angear-type scintillation cameras serve as the detectors, each camera being positioned on opposite sides of the organ of interest. Pulse shaping circuits reduce the pulse duration below 900 nanoseconds and the integration time below 500 noneseconds, improving the count rate capability and the counting statistics of the system and thus the image quality and processing speed. The invention also provides means for rotating the opposed camera heads about an axis which passes through the organ of interest. The cameras do not use collimators, and are capable of accepting radiation travelling in planes not perpendicular to the scintillation crystals. (LL)

  4. “Mass Centre” Vectorization Algorithm for Vehicle’s Counting Portable Video System

    Directory of Open Access Journals (Sweden)

    Gaidash Vladislav

    2016-12-01

    Full Text Available Vehicle counting is one of the most basic challenges during the development and establishment of Intelligent Transport Systems (ITS. The main reason for vehicle counting is the necessity of monitoring and maintaining the transport infrastructure, preventing different kind of faults such as traffic jams. The main applied solution to this problem is video surveillance, which is presented by different kind of systems. Some of these systems use a network of static traffic cameras, expensive for establish and maintain, or mobile units, fast for redeployment, but fewer in diversity.

  5. Design and implementation of microcontroller-based automatic sequence counting and switching system

    Directory of Open Access Journals (Sweden)

    Joshua ABOLARINWA

    2015-05-01

    Full Text Available Technological advancement and its influence on human being have been on the increase in recent time. Major areas of such influence, include monitoring and control activities. In order to keep track of human movement in and out of a particular building, there is the need for an automatic counting system. Therefore, in this paper, we present the design and implementation of a microcontroller-based automatic sequence counting and switching system. This system was designed and developed to save cost, time, energy, and to achieve seamless control in the event of switching on or off of electrical appliances within a building. Top-down modular design approach was used in conjunction with the versatility of microcontroller. The system is able to monitor, sequentially count the number of entry and exit of people through an entrance, afterwards, automatically control any electrical device connected to it. From various tests and measurements obtained, there are comparative benefits derived from the deployment of this system in terms of simplicity and accuracy over similar system that is not microcontroller-based. Therefore, this system can be deployed at commercial quantity with wide range of applications in homes, offices and other public places.

  6. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  7. Method of summation of amplitudes of coinciding pulses from Ge(Li) detectors used to study cascades of gamma-transitions in (n,#betta#) reaction

    International Nuclear Information System (INIS)

    Bogdzel', A.A.; Vasil'eva, Eh.V.; Elizarov, O.I.

    1982-01-01

    Main performanes and peculiarities of spectrometer based on the coincidence pulse amplitude total-count method and containing two Ge(La) detectors with transmission neutron spectrometer - IBR-30 pulse reactor are considered. It is shown on the 35 Cl(n, #betta#) reaction that the method of summalion of amplitudes of coinciding pulses from the Ge(Li) detector can be used to study the cascades of two #betta#-transitions with a total energy similar to the neutron binding energy. The shape of the response function of this spectrometer was studied versus the energies of #betta#-transition cascades

  8. Radiation counting statistics

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Jee, K. Y.; Park, K. K.; Park, Y. J.; Kim, W. H

    1999-08-01

    This report is intended to describe the statistical methods necessary to design and conduct radiation counting experiments and evaluate the data from the experiment. The methods are described for the evaluation of the stability of a counting system and the estimation of the precision of counting data by application of probability distribution models. The methods for the determination of the uncertainty of the results calculated from the number of counts, as well as various statistical methods for the reduction of counting error are also described. (Author). 11 refs., 8 tabs., 8 figs.

  9. Radiation counting statistics

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Jee, K. Y.; Park, K. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    This report is intended to describe the statistical methods necessary to design and conduct radiation counting experiments and evaluate the data from the experiments. The methods are described for the evaluation of the stability of a counting system and the estimation of the precision of counting data by application of probability distribution models. The methods for the determination of the uncertainty of the results calculated from the number of counts, as well as various statistical methods for the reduction of counting error are also described. 11 refs., 6 figs., 8 tabs. (Author)

  10. Radiation counting statistics

    International Nuclear Information System (INIS)

    Suh, M. Y.; Jee, K. Y.; Park, K. K.; Park, Y. J.; Kim, W. H.

    1999-08-01

    This report is intended to describe the statistical methods necessary to design and conduct radiation counting experiments and evaluate the data from the experiment. The methods are described for the evaluation of the stability of a counting system and the estimation of the precision of counting data by application of probability distribution models. The methods for the determination of the uncertainty of the results calculated from the number of counts, as well as various statistical methods for the reduction of counting error are also described. (Author). 11 refs., 8 tabs., 8 figs

  11. Well scintillation counting systems for nuclear medicine applications in developing countries

    International Nuclear Information System (INIS)

    1977-01-01

    This report of a consultants' meeting, organized by the Medical Applications Section of the Division of Life Sciences, IAEA, during the period 23-25 May 1977, examines well scintillation counting systems in the light of the requirements of laboratories in developing countries. It has three facets: 1) identification of the most rewarding applications of nuclear medicine techniques, 2) identification of favourable design attributes of instruments used in such applications, and 3) development of maintenance strategies to assure reliable performance of the instruments once put into service. Some characteristics of commercially available well scintillation counting systems are given

  12. A manual low background alpha beta counting system

    Energy Technology Data Exchange (ETDEWEB)

    Levison, S; German, U; Peled, O; Turgeman, S; Vangrovitz, U; Tirosh, D; Piestum, S; Assido, H [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    An Alpha and Beta counting system consisting of a micro controller-based electronic unit and detectors assembly was developed. The radiation detection unit consists of two proportional detectors (a main detector and a cosmic-ray guard detector) which can be easily disassembled for decontamination or repair. The detectors are mounted in a manual operating sample changer shielded by 5 cm of lead. Simplicity of maintenance and functional operation were taken into consideration in the design. The electronic unit supplies the high voltage and enables the operational functions including controls anti alarms. Calculations of net cpm of Alpha and Beta counting are displayed and can be printed. RS-232 communication option enables connection to a computer and operation of more sophisticated programs for calculations and data storage in the future (authors).

  13. A manual low background alpha beta counting system

    International Nuclear Information System (INIS)

    Levison, S.; German, U.; Peled, O.; Turgeman, S.; Vangrovitz, U.; Tirosh, D.; Piestum, S.; Assido, H.

    1996-01-01

    An Alpha and Beta counting system consisting of a micro controller-based electronic unit and detectors assembly was developed. The radiation detection unit consists of two proportional detectors (a main detector and a cosmic-ray guard detector) which can be easily disassembled for decontamination or repair. The detectors are mounted in a manual operating sample changer shielded by 5 cm of lead. Simplicity of maintenance and functional operation were taken into consideration in the design. The electronic unit supplies the high voltage and enables the operational functions including controls anti alarms. Calculations of net cpm of Alpha and Beta counting are displayed and can be printed. RS-232 communication option enables connection to a computer and operation of more sophisticated programs for calculations and data storage in the future (authors)

  14. THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).

    Science.gov (United States)

    Li, Jing; Su, Wei

    2015-06-01

    The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.

  15. Automated cell counts on CSF samples: A multicenter performance evaluation of the GloCyte system.

    Science.gov (United States)

    Hod, E A; Brugnara, C; Pilichowska, M; Sandhaus, L M; Luu, H S; Forest, S K; Netterwald, J C; Reynafarje, G M; Kratz, A

    2018-02-01

    Automated cell counters have replaced manual enumeration of cells in blood and most body fluids. However, due to the unreliability of automated methods at very low cell counts, most laboratories continue to perform labor-intensive manual counts on many or all cerebrospinal fluid (CSF) samples. This multicenter clinical trial investigated if the GloCyte System (Advanced Instruments, Norwood, MA), a recently FDA-approved automated cell counter, which concentrates and enumerates red blood cells (RBCs) and total nucleated cells (TNCs), is sufficiently accurate and precise at very low cell counts to replace all manual CSF counts. The GloCyte System concentrates CSF and stains RBCs with fluorochrome-labeled antibodies and TNCs with nucleic acid dyes. RBCs and TNCs are then counted by digital image analysis. Residual adult and pediatric CSF samples obtained for clinical analysis at five different medical centers were used for the study. Cell counts were performed by the manual hemocytometer method and with the GloCyte System following the same protocol at all sites. The limits of the blank, detection, and quantitation, as well as precision and accuracy of the GloCyte, were determined. The GloCyte detected as few as 1 TNC/μL and 1 RBC/μL, and reliably counted as low as 3 TNCs/μL and 2 RBCs/μL. The total coefficient of variation was less than 20%. Comparison with cell counts obtained with a hemocytometer showed good correlation (>97%) between the GloCyte and the hemocytometer, including at very low cell counts. The GloCyte instrument is a precise, accurate, and stable system to obtain red cell and nucleated cell counts in CSF samples. It allows for the automated enumeration of even very low cell numbers, which is crucial for CSF analysis. These results suggest that GloCyte is an acceptable alternative to the manual method for all CSF samples, including those with normal cell counts. © 2017 John Wiley & Sons Ltd.

  16. Megachannel γ--γ coincidence system using a PDP-8/E computer and moving-head disks

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Camp, D.C.; Mann, L.G.; Niday, J.B.; Siemens, P.D.

    1976-01-01

    A megachannel pulse-height analysis system using a PDP-8/E computer and two moving-head disk memories has been developed. The system has a storage capacity of 220 memory locations, is capable of processing 1100 events/s, and provides on-line sorting and disk storage. An X- or Y-pulse-height spectrum in coincidence with one or several arbitrary pulse-height windows can be assembled in core for scope display and spectral analysis within 2 to 20 seconds. Reconstruction of a complete X- or Y-pulse-height spectrum requires about 3 minutes

  17. An examination of the time-dependent background counts of the delayed neutron counting system at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Sellers, M.T.; Corcoran, E.C.; Kelly, D.G.

    2011-01-01

    A delayed neutron counting (DNC) system for the analysis of special nuclear materials (SNM) has been constructed and calibrated at the Royal Military College of Canada. The polyethylene vials used to transport SNM samples have been found to contribute a time-dependent count rate, B(t), far above the system background. B(t) has been found to be independent of polyethylene mass and shows a dependence on irradiation position in the SLOWPOKE-2 reactor and irradiation time. A comparison of B(t) and the theoretical delayed neutron production from the fission of small amounts of 235 U has indicated that trace amounts of uranium may be present in the DNC system tubing. (author)

  18. Standard test method for non-destructive assay of nuclear material in waste by passive and active neutron counting using a differential Die-away system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a system that performs nondestructive assay (NDA) of uranium or plutonium, or both, using the active, differential die-away technique (DDT), and passive neutron coincidence counting. Results from the active and passive measurements are combined to determine the total amount of fissile and spontaneously-fissioning material in drums of scrap or waste. Corrections are made to the measurements for the effects of neutron moderation and absorption, assuming that the effects are averaged over the volume of the drum and that no significant lumps of nuclear material are present. These systems are most widely used to assay low-level and transuranic waste, but may also be used for the measurement of scrap materials. The examples given within this test method are specific to the second-generation Los Alamos National Laboratory (LANL) passive-active neutron assay system. 1.1.1 In the active mode, the system measures fissile isotopes such as 235U and 239Pu. The neutrons from a pulsed, 14-MeV ne...

  19. Primary 4{pi}{beta}-{gamma} coincidence system for standardization of radionuclides by means of plastic scintillators; Sistema primario por coincidencias 4{pi}{beta}-{gamma} para a padronizacao de radionuclideos empregando cintiladores plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Baccarelli, Aida Maria

    2003-07-01

    The present work describes a 4{pi}({alpha},{beta})-{gamma} coincidence system for absolute measurement of radionuclide activity using a plastic scintillator in 4{pi} geometry for charged particles detection and a Nal (Tl) crystal for gamma-ray detection. Several shapes and dimensions of the plastic scintillator have been tried in order to obtain the best system configuration. Radionuclides which decay by alpha emission, {beta}{sup -}, {beta}{sup +} and electron capture have been standardized. The results showed excellent agreement with other conventional primary system which makes use of a 4{pi} proportional counter for X-ray and charged particle detection. The system developed in the present work have some advantages when compared with the conventional systems, namely; it does not need metal coating on the films used as radioactive source holders. When compared to liquid scintillators, is showed the advantage of not needing to be kept in dark for more than 24 h to allow phosphorescence decay of ambient light. Therefore it can be set to count immediately after the sources are placed inside of it. (author)

  20. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    Science.gov (United States)

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  1. Sensitivity to coincidences and paranormal belief.

    Science.gov (United States)

    Hadlaczky, Gergö; Westerlund, Joakim

    2011-12-01

    Often it is difficult to find a natural explanation as to why a surprising coincidence occurs. In attempting to find one, people may be inclined to accept paranormal explanations. The objective of this study was to investigate whether people with a lower threshold for being surprised by coincidences have a greater propensity to become believers compared to those with a higher threshold. Participants were exposed to artificial coincidences, which were formally defined as less or more probable, and were asked to provide remarkability ratings. Paranormal belief was measured by the Australian Sheep-Goat Scale. An analysis of the remarkability ratings revealed a significant interaction effect between Sheep-Goat score and type of coincidence, suggesting that people with lower thresholds of surprise, when experiencing coincidences, harbor higher paranormal belief than those with a higher threshold. The theoretical aspects of these findings were discussed.

  2. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  3. Evaluation of in-plant neutron coincidence counters for the measurement of molten salt extraction residues

    International Nuclear Information System (INIS)

    Langner, D.G.; Russo, P.A.; Wachter, J.R.

    1993-01-01

    Americium is extracted from plutonium by a molten salt extraction (MSE) process. The residual americium-laden salts are a significant waste stream in this pyrochemical purification process. Rapid assay of MSE residues is desirable to minimize the exposure of personnel to these often high-level emissions. However, the quantitative assay of plutonium in MSE residues is difficult. Variable, unknown (a,n) rates and variable emitted-neutron energy spectra preclude the use of standard neutron coincidence counting techniques with old-generation neutron coincidence counters. Gamma-ray assay methods have not been successful with some residues because of random lumps of plutonium metal. In this paper, we present measurements of MSE residues with two state-of-the-art neutron coincidence counters at the Los Alamos Plutonium Processing Facility: an in-line counter built for the assay of bulk waste material and the pyrochemical multiplicity counter that underwent test and evaluation at that facility. Both of these counters were designed to minimize the effects on measurements of variations in the sample geometry and variable energy spectra of emitted neutrons. These results are compared to measurements made with an HLNCII and with a 20-yr-old in-line well counter. The latter two counters are not optimized in ft sense. We conclude that the newer counters provide significantly improved assay results. The pyrochemical multiplicity counter operated in the conventional coincidence mode provided the best assays overall

  4. Determination of 131mXe and 133mXe in the presence of 133gXe via combined beta-spectroscopy and delayed coincidence

    International Nuclear Information System (INIS)

    Reeder, P.L.; Bowyer, T.W.; McIntyre, J.I.; Pitts, W.K.

    2001-01-01

    The International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty will include measurements of Xe fission products. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which detects Xe fission products using a beta-gamma counting system for 131m Xe, 133m Xe, 133g Xe, and 135g Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse-height spectra of gamma-energy versus beta-energy are obtained. The plastic scintillator spectrum in coincidence with the 31-keV X-rays from 131m Xe. 133m Xe, and 133g Xe is a complex mixture of conversion electrons and betas. A new technique to simultaneously measure the delayed coincidence (T 1/2 = 6.27 ns) between beta-particles from 133g Xe and conversion electrons depopulating the 81-keV state in 133 Cs is being developed. This technique allows separation of the 133g Xe beta spectrum from the conversion electrons due to 131m Xe and 133m Xe and uniquely quantifies all three nuclides. (author)

  5. Determination of 131m Xe and 133m Xe in the presence of 133gXe via combined beta-spectroscopy and delayed coincidence

    International Nuclear Information System (INIS)

    Reeder, Paul L.; Bowyer, Ted W.; McIntyre, Justin I.; Pitts, W K.

    2001-01-01

    The International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty will include measurements of Xe fission products. Pacific Northwest National Laboratory has developed an automated system for separating Xe from air which detects Xe fission products using a beta-gamma counting system for 131mXe, 133mXe, 133Xe, and 135Xe. Betas and conversion electrons are detected in a plastic scintillation cell containing the Xe sample. Gamma and X-rays are detected in a NaI(Tl) scintillation detector which surrounds the plastic scintillator sample cell. Two-dimensional pulse height spectra of gamma energy versus beta energy are obtained. The plastic scintillator spectrum in coincidence with the 31-keV X-rays from 131mXe. 133mXe, and 133Xe is a complex mixture of conversion electrons and betas. A new technique to simultaneously measure the delayed coincidence (t1/2 = 6.27 ns) between beta particles from 133Xe and conversion electrons depopulating the 81-keV state in 133Cs is being developed. This technique will allow separation of the 133Xe spectrum from the conversion electrons due to 131mXe and 133mXe and will uniquely quantify all three nuclides

  6. A method for the measurement of the intrinsic dead time of a counting system

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1989-01-01

    Equations are derived for (a) the determination of the intrinsic dead time of a counting system in the components preceding the paralysis unit which imposes the set dead time, and (b) a more accurate correction of count rates in a single-channel system, taking into account the extension of the set dead time by the intrinsic dead time. (author)

  7. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.

    Science.gov (United States)

    Klumpp, John; Brandl, Alexander

    2015-03-01

    A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.

  8. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    International Nuclear Information System (INIS)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro; Nakai, Katsuhiko

    1998-01-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  9. Design for measurement system of Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with the Ge detector

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuteru; Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Nakai, Katsuhiko

    1998-08-01

    The measurement system for Doppler broadening profiles with the coincidence technique using a NaI detector in colinear geometry with a Ge detector was developed. The principle of measurement system with the coincidence technique between the NaI detector and the Ge detector was described. Application of the system for the detection of vacancy-type defects introduced by electron irradiation in Czochralski-(Cz) grown Si was shown. Detail in the difference between the Doppler broadening profiles for Cz-Si and Si grown by the floating-zone method was also obtained. (author)

  10. An Optimized Design of Single-Channel Beta-Gamma Coincidence Phoswich Detector by Geant4 Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2011-01-01

    Full Text Available An optimized single-channel phoswich well detector design has been proposed and assessed in order to improve beta-gamma coincidence measurement sensitivity of xenon radioisotopes. This newly designed phoswich well detector consists of a plastic beta counting cell (BC404 embedded in a CsI(Tl crystal coupled to a photomultiplier tube. The BC404 is configured in a cylindrical pipe shape to minimise light collection deterioration. The CsI(Tl crystal consists of a rectangular part and a semicylindrical scintillation part as a light reflector to increase light gathering. Compared with a PhosWatch detector, the final optimized detector geometry showed 15% improvement in the energy resolution of a 131mXe 129.4 keV conversion electron peak. The predicted beta-gamma coincidence efficiencies of xenon radioisotopes have also been improved accordingly.

  11. Potassium analysis by beta counting using a Geiger-Mueller system

    International Nuclear Information System (INIS)

    Espana, E.; Beneitez, P.; Calderon, T.

    1993-01-01

    A technique for quantitative analysis of different soils, ceramics, feldspars and natural halide samples is presented, based on the measurement of β-activities using a Geiger-Mueller system. The system was calibrated with KCl, KC 8 H 5 O 4 , KNO 3 and K 2 SO 4 standards and a potassium content of 1% yields a net β-count rate (background subtracted) of about 55 cph. Precision values of less than ±0.4% K can be achieved in counting times of about 4 hours. The results agree with those obtained by means of other more common analytical methods such as flame photometry, atomic absorption and γ-spectrometry. In comparison with these methods, this approach is direct, precise and non-destructive, because the samples do not require prior treatment. (author) 16 refs.; 2 figs.; 6 tabs

  12. Performances evaluation of the coincidence detection on a gamma-camera

    International Nuclear Information System (INIS)

    Dreuille, O. de; Gaillard, J.F.; Brasse, D.; Bendriem, B.; Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.

    2000-01-01

    The performance of the VERTEX gamma-camera (ADAC) working in coincidence mode are investigated using a protocol derived from the NEMA and IEC recommendations. With a field of view determined by two rectangular detectors (50.8 cm x 40 cm) composed of NaI crystal, this camera allows a 3-D acquisition with different energy window configurations: photopeak-photopeak only (PP) and photopeak-photopeak + photopeak-Compton (PC). An energy resolution of 11% and a scatter fraction of 27% and 33% for the 3D-PP and 3D-PC mode respectively are the main significant results of our study. The spatial resolution equals 5.9 mm and the limit of the detectability ranges from 16 mm to 13 mm for a contrast of 2.5: as a function of the random estimation, the maximum of the Noise Equivalent Count rate varies from 3 kcps to 4.5 kcps for the PP mode and from 3.85 kcps to 6.1 kcps for the PC mode. These maxima are reached for a concentration of 8 kBq/ml for the PP mode and 5 kBq/ml for the PC mode. These values are compared with the results obtained by other groups for the VERTEX gamma camera and several dedicated PET systems. (authors)

  13. Remote system for counting of nuclear pulses; Sistema remoto de conteo de pulsos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Ingenieria Electronica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  14. Prospects in coincidence experiments

    International Nuclear Information System (INIS)

    Laget, J.M.

    1984-01-01

    The sensitivity of virtual photons to the local variations of the charge and magnetization densities is exploited to study the short-range part of the nucleon-nucleon interaction inside the nucleus. The possibility of varying energy, squared mass and longitudinal polarization of the photons independently enables us to disentangle the mechanisms related to the internal structure of the nucleon (e.g. quark interchange) and the contribution due to meson exchange. Coincidence experiments of the type (e,e'N) and (e,e'NN) are performed to suppress the meson contribution to the longitudinal part of the quasi-elastic peak. Four typical examples of coincidence experiments induced by virtual photons are discussed: experiments (1) on the spectroscopic structure of the quasi-elastic peak and the problem of deep lying hole states; (2) on the structure of the continuum; (3) on the low energy side of the quasi-elastic peak; and finally a three-arm coincidence experiment. (Auth.)

  15. Neutron coincidence counter for MOX fuel pins in storage trays: users' manual

    International Nuclear Information System (INIS)

    Cowder, L.; Menlove, H.

    1982-08-01

    The neutron coincidence counter for measurement of mixed-oxide fuel pins in storage trays is described. The special detector head has been designed so that the detectors, high-voltage junction boxes, and electronics are interchangeable with those of the high-level neutron coincidence counter system. This manual describes the system components and the operation and maintenance of the counter. The counter was developed at Los Alamos National Laboratory for in-plant inspection applications by the International Atomic Energy Agency

  16. It Takes Two – Coincidence coding within the dual olfactory pathway of the honeybee

    Directory of Open Access Journals (Sweden)

    Martin F. Brill

    2015-07-01

    Full Text Available To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g. in the visual system, increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrateinformation from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g. in auditory delay lines. Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs that transfer information from the primary olfactory centers, the antennal lobe (AL, to a multimodal integration center, the mushroom body (MB. PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code.

  17. Numerical coincidences and 'tuning' in cosmology

    OpenAIRE

    Rees, Martin J.

    2004-01-01

    Fred Hoyle famously drew attention to the significance of apparent coincidences in the energy levels of the carbon and oxygen nucleus. This paper addresses the possible implications of other coincidences in cosmology.

  18. Development of coincidence processing module for PEM

    International Nuclear Information System (INIS)

    Feng Baotong; Shuai Lei; Li Ke

    2011-01-01

    For the breast cancer diagnosis and therapy, a prototype of positron emission mammography (PEM) was developed in Institute of High Energy Physics, Chinese Academy of Sciences. In this paper, the design of coincidence processing module (CPM) for this PEM was presented. Both the hardware architecture and the software logic were introduced. In this design, the CPM used the Rocket IO fast interface in FPGA and fiber technology to acquire the preprocessed data from the continuous sampling module (CSM) and then selected the valid event with the coincidence timing window method, which was performed in the FPGA on the daughter board. The CPM transmits the processed data to host computer via gigabit Ethernet. The whole system was controlled by CAN bus. The primary tests indicate that the performance of this design is good. (authors)

  19. Development of counting system for wear measurements using Thin Layer Activation and the Wearing Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    França, Michel de A.; Suita, Julio C.; Salgado, César M., E-mail: mchldante@gmail.com, E-mail: suita@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper focus on developing a counting system for the Wearing Apparatus, which is a device previously built to generate measurable wear on a given surface (Main Source) and to carry the fillings from it to a filter (second source). The Thin Layer Activation is a technique used to produce activity on one of the Wearing Apparatus' piece, this activity is proportional to the amount of material worn, or scrapped, from the piece's surface. Thus, by measuring the activity on those two points it is possible to measure the produced wear. The methodology used in this work is based on simulations through MCNP-X Code to nd the best specifications for shielding, solid angles, detectors dimensions and collimation for the Counting System. By simulating several scenarios, each one different from the other, and analyzing the results in the form of Counts Per Second, the ideal counting system's specifications and geometry to measure the activity in the Main Source and the Filter (second source) is chosen. After that, a set of previously activated stainless steel foils were used to reproduce the real experiments' conditions, this real experiment consists of using TLA and the Wearing Apparatus, the results demonstrate that the counting system and methodology are adequate for such experiments. (author)

  20. Positron imaging system with improved count rate and tomographic capability

    International Nuclear Information System (INIS)

    1979-01-01

    A system with improved count rate capability for detecting the radioactive distribution of positron events within an organ of interest in a living subject is described. Objects of the invention include improving the scintillation crystal and pulse processing electronics, avoiding the limitations of collimators and provide an Arger camera positron imaging system that avoids the use of collimators. (U.K.)

  1. Portable counting system - 95/0743-1/6. User guide

    International Nuclear Information System (INIS)

    Campbell, J.T.

    1981-12-01

    The portable counting system 0743-1 is an instrument designed for battery or mains operation and for use with a detector assembly such as the 0744 alpha-drawer unit. The instrument, its use and operation are described and specifications given of the controls, the liquid crystal display, the input and the carrying case. (U.K.)

  2. System and method of liquid scintillation counting

    International Nuclear Information System (INIS)

    Rapkin, E.

    1977-01-01

    A method of liquid scintillation counting utilizing a combustion step to overcome quenching effects comprises novel features of automatic sequential introduction of samples into a combustion zone and automatic sequential collection and delivery of combustion products into a counting zone. 37 claims, 13 figures

  3. Application of plutonium inventory measurement system (PIMS) and temporary canister verification system (TCVS) at RRP

    International Nuclear Information System (INIS)

    Noguchi, Yoshihiko; Nakamura, Hironobu; Adachi, Hideto; Iwamoto, Tomonori

    2004-01-01

    In U-Pu co-denitration area at Rokkasho Reprocessing Plant (RRP), Plutonium Inventory Measurement System (PIMS) and Temporary Canister Verification System (TCVS) are installed to provide efficient and effective safeguards. PIMS measures Pu quantity inside pipes and vessels installed in glove boxes by total neutron counting method. PIMS consists of total 142 neutron detector attached on the wall and top of glove boxes and neutron count rates of each detectors are related to each other to calculate Pu quantity of each process areas. In this moment, inactive calibration using Cf-source was completed. On the other hand, TCVS measures Pu quantity of canisters inside temporary storage by coincidence counting method and it will be installed before the active test. These systems have monitoring function as additional measures. This paper describes specification, performance and measurement principles of PIMS and TCVS. (author)

  4. Detection and counting systems

    International Nuclear Information System (INIS)

    Abreu, M.A.N. de

    1976-01-01

    Detection devices based on gaseous ionization are analysed, such as: electroscopes ionization chambers, proportional counters and Geiger-Mueller counters. Scintillation methods are also commented. A revision of the basic concepts in electronics is done and the main equipment for counting is detailed. In the study of gama spectrometry, scintillation and semiconductor detectors are analysed [pt

  5. Radiation intensity counting system

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1982-01-01

    A method is described of excluding the natural dead time of the radiation detector (or eg Geiger-Mueller counter) in a ratemeter counting circuit, thus eliminating the need for dead time corrections. Using a pulse generator an artificial dead time is introduced which is longer than the natural dead time of the detector. (U.K.)

  6. Simulation of triple coincidences in PET

    International Nuclear Information System (INIS)

    Cal-González, J; Herranz, E; Vicente, E; Udias, J M; Lage, E; Dave, S R; Parot, V; Herraiz, J L; Moore, S C; Park, M-A

    2015-01-01

    Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (R T ), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β + γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner’s energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For

  7. A simple timestamping data acquisition system for ToF-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Mikko, E-mail: mikrossi@jyu.fi; Rahkila, Panu; Kettunen, Heikki; Laitinen, Mikko

    2015-03-15

    A new data acquisition system, ToF-DAQ, has been developed for a ToF-ERDA telescope and other ToF-E and ToF–ToF measurement systems. ToF-DAQ combines an analogue electronics front-end to asynchronous time stamped data acquisition by means of a FPGA device. Coincidences are sought solely in software based on the timestamps. Timestamping offers more options for data analysis as coincidence events can be built also in offline analysis. The system utilizes a National Instruments R-series FPGA device and a Windows PC as a host computer. Both the FPGA code and the host software were developed using the National Instruments LabVIEW graphical programming environment. Up to eight NIM ADCs can be handled by a single FPGA. The host computer and the FPGA can process total continuous count rates of over 750,000 counts/s with a timestamping resolution of 8.33 ns.

  8. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    Energy Technology Data Exchange (ETDEWEB)

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  9. In vivo counting of uranium

    International Nuclear Information System (INIS)

    Palmer, H.E.

    1985-03-01

    A state-of-the-art radiation detector system consisting of six individually mounted intrinsic germanium planar detectors, each 20 cm 2 by 13 mm thick, mounted together such that the angle of the whole system can be changed to match the slope of the chest of the person being counted, is described. The sensitivity of the system for counting uranium and plutonium in vivo and the precedures used in calibrating the system are also described. Some results of counts done on uranium mill workers are presented. 15 figs., 2 tabs

  10. Liquid scintillation counting efficiency in three photomultiplier systems. Pure electron capture

    International Nuclear Information System (INIS)

    Los Arcos, J. M.; Grau Carles, A.; Grau Malonda, A.

    1990-01-01

    The tables of counting efficiency as a function of the figure of merit for a liquid scintillation counting system working with three phototubes are presented. The evaluation has been carried out for a Toluene-based scintillator with 5, 10 and 15 ml column, and 19 different radionuclides decaying by pure electron capture: 37Ar 41Ca, 49V, 53 Mn, 55Fe, 59Ni, 68Ge 7iGe, 82Sr, 97Tc, 118Te, 131CS, 137La, 140Ca, 157Tb, 165Er, 193Pt, 194Hg, 205Pb. (Author) 22 refs

  11. A 500-MHz x-ray counting system with a silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2009-01-01

    In the present measurements using a Si-APD X-ray detector and a 500-MHz counting system, the maximum output rate of 3.3x10 8 s -1 was achieved for 8-keV X-rays in beamline BL-14A of the Photon Factory. A small Si-APD of 4-pF electric capacity was used as the detector device in order to output a pulse of a width shorter than 2 ns on the baseline. For processing the fast pulses, the discriminator and the scaler having a throughput of >500 MHz, were prepared. Since the acceleration frequency at the PF ring was 500.1 MHz and the empty-bunch spacing was 12/312 bunches per circumference, the expected maximum rate was 4.8x10 8s-1 according to the counting model for a pulsed photon source. The reason why the present system did not reach the expected value was the baseline shift at the amplifier outputs. The rise of +0.2 V was observed at a discriminator output of 3.3x10 8 s -1 , while the pulse height was lower than 0.2 V. The baseline shift was caused by an AC coupling circuit in the amplifier. If a DC coupling circuit can be used for the amplifier, instead of the AC coupling circuit, or an active adjustment to compensate the baseline shift is installed, the counting system will show an ideal response. Although the present system including NIM modules was not so compact, we would like to develop a new fast-counting circuit for a Si-APD array detector of more than 100 channels of small pixels, in near future. (author)

  12. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET

    Science.gov (United States)

    Toghyani, M.; Gillam, J. E.; McNamara, A. L.; Kuncic, Z.

    2016-08-01

    Current positron emission tomography (PET) systems use temporally localised coincidence events discriminated by energy and time-of-flight information. The two annihilation photons are in an entangled polarisation state and, in principle, additional information from the polarisation correlation of photon pairs could be used to improve the accuracy of coincidence classification. In a previous study, we demonstrated that in principle, the polarisation correlation information could be transferred to an angular correlation in the distribution of scattered photon pairs in a planar Compton camera system. In the present study, we model a source-phantom-detector system using Geant4 and we develop a coincidence classification scheme that exploits the angular correlation of scattered annihilation quanta to improve the accuracy of coincidence detection. We find a 22% image quality improvement in terms of the peak signal-to-noise ratio when scattered coincidence events are discriminated solely by their angular correlation, thus demonstrating the feasibility of this novel classification scheme. By integrating scatter events (both single-single and single-only) with unscattered coincidence events discriminated using conventional methods, our results suggest that Compton-PET may be a promising candidate for optimal emission tomographic imaging.

  13. Photoion spectroscopy of atoms using coincidence techniques

    International Nuclear Information System (INIS)

    Hayaishi, Tatsuji

    1990-01-01

    Interaction of atoms or molecules with photons causes many effects which are often obscured because of many decay paths from the event. To pick up an effect in the mixed-up ones, it is necessary to observe the decay path arising the effect alone. There is a coincidence technique in one of experimental means for the purpose of observing the decay path. In this article, two coincidence measurements are presented; a photoelectron-photoion coincidence technique and a threshold photoelectron-photoion coincidence technique. Furthermore, experimental facts of rare gases atoms obtained by the techniques are reviewed. (author)

  14. Design, fabrication and commissioning of motorized scanning bed mechanism for shadow shield whole body counting system

    International Nuclear Information System (INIS)

    Arun, B.; Varalakshimi, S.; Manohari, M.; Mathiyarasu, R.

    2012-01-01

    A new scanning bed mechanism for shadow shield counting system is designed, fabricated and commissioned at RSD, IGCAR. The present motorized scanning bed mechanism has varying scan speeds, state of art limit sensors, smooth bed movement, touch screen based software controlled operation parameters with UPS power back-up. In view of the improved personnel safety the entire system has been designed to operate with low voltage power supply (24V). The evaluation demonstrated that the incorporation of the new motorized scanning mechanism has not affected the counting performance of the shadow shield wholebody counting system. (author)

  15. Method and system of simulating nuclear power plant count rate for training purposes

    International Nuclear Information System (INIS)

    Alliston, W.H.; Koenig, R.H.

    1975-01-01

    A method and system are described for the real-time simulation of the dynamic operation of a nuclear power plant in which nuclear flux rate counters are provided for monitoring the rate of nuclear fission of the reactor. The system utilizes apparatus that includes digital computer means for calculating data relating to the rate of nuclear fission of a simulated reactor model, which rate is controlled in accordance with the operation of control panel devices. A digital number from the computer corresponding to the flux rate controls an oscillator driven counter means to produce a pulse after a predetermined count. This pulse controls an oscillator driven polynomial counter to count a random number that controls a third counter in accordance with pulse from the first counter to produce a random fission count for operating the meters. (U.S.)

  16. Soudan 2 muons in coincidence with BATSE bursts

    International Nuclear Information System (INIS)

    DeMuth, D.M.; Marshak, M.L.; Wagner, G.L.

    1994-01-01

    We explore the possibilities of statistically significant temporal and spatial coincidences between underground muons at Soudan 2 and Gamma Ray Bursts at the GRO-BATSE detector. Our search uses data from the April 91 to March 92 BATSE burst catalog to seek correlations within a 100 second window of coincidence. Sixteen of 180 BATSE triggers have temporally and spatially coincident muons in the Soudan 2 detector. We estimate the chance probability of each coincidence assuming the null hypothesis on the basis of a study of the multiplicities of spatially coincident muons observed over a two day period centered on the time of burst

  17. Optics study of liquid scintillation counting systems

    International Nuclear Information System (INIS)

    Duran Ramiro, M. T.; Garcia-Torano, E.

    2005-01-01

    Optics is a key issue in the development of any liquid scintillation counting (LSC) system. Light emission in the scintillating solution, transmission through the vial and reflector design are some aspects that need to be considered in detail. This paper describes measurements and calculations carried out to optimise these factors for the design of a new family of LSC counters. Measurements of the light distribution emitted by a scintillation vial were done by autoradiographs of cylindrical vials made of various materials and results were compared to those obtained by direct measurements of the light distribution made by scanning the vial with a photomultiplier tube. Calculations were also carried out to study the light transmission in the vial and the optimal design of the reflector for a system with one photomultiplier tube. (Author)

  18. How many fish in a tank? Constructing an automated fish counting system by using PTV analysis

    Science.gov (United States)

    Abe, S.; Takagi, T.; Takehara, K.; Kimura, N.; Hiraishi, T.; Komeyama, K.; Torisawa, S.; Asaumi, S.

    2017-02-01

    Because escape from a net cage and mortality are constant problems in fish farming, health control and management of facilities are important in aquaculture. In particular, the development of an accurate fish counting system has been strongly desired for the Pacific Bluefin tuna farming industry owing to the high market value of these fish. The current fish counting method, which involves human counting, results in poor accuracy; moreover, the method is cumbersome because the aquaculture net cage is so large that fish can only be counted when they move to another net cage. Therefore, we have developed an automated fish counting system by applying particle tracking velocimetry (PTV) analysis to a shoal of swimming fish inside a net cage. In essence, we treated the swimming fish as tracer particles and estimated the number of fish by analyzing the corresponding motion vectors. The proposed fish counting system comprises two main components: image processing and motion analysis, where the image-processing component abstracts the foreground and the motion analysis component traces the individual's motion. In this study, we developed a Region Extraction and Centroid Computation (RECC) method and a Kalman filter and Chi-square (KC) test for the two main components. To evaluate the efficiency of our method, we constructed a closed system, placed an underwater video camera with a spherical curved lens at the bottom of the tank, and recorded a 360° view of a swimming school of Japanese rice fish (Oryzias latipes). Our study showed that almost all fish could be abstracted by the RECC method and the motion vectors could be calculated by the KC test. The recognition rate was approximately 90% when more than 180 individuals were observed within the frame of the video camera. These results suggest that the presented method has potential application as a fish counting system for industrial aquaculture.

  19. Fast procedures for coincidence-summing correction in γ-ray spectrometry

    International Nuclear Information System (INIS)

    De Felice, Pierino; Angelini, Paola; Fazio, Aldo; Biagini, Roberto

    2000-01-01

    Simplified and fast procedures for coincidence-summing correction in γ-ray spectrometry were investigated. These procedures are based on the usual theoretical expressions of the correction factors, but differ in the determination of the total efficiency curve based on the following approximations: (a) replacement, below the knee efficiency value, of the total efficiency by the full-energy peak efficiency; and (b) use of linear interpolations (in log-log plot) between only two experimental points above the knee efficiency value; or (c) assumption of a peak-to-total efficiency ratio independent on the counting geometry; or (d) assumption of a constant relation between the peak-to-total efficiency ratios and the photoelectric-to-total cross section ratios. The above approximations were separately assumed for determination of the coincidence-summing correction factors for nuclides with complex decay scheme ( 133 Ba, 134 Cs, 152 Eu) and for 60 Co and 88 Y measured on a 15% relative efficiency p-type coaxial HPGe detector, for three source-detector geometries: point source placed on top of and at 10 cm from the detector window, and 1 l Marinelli beaker filled with aqueous solution. The results were compared with those based on more accurate experimental determinations of the total efficiency curve from measurements of standard sources of eight different single-γ-ray emitters. The usefulness of each simplified procedure is evaluated with respect to its accuracy and to the reduction of the number of standard sources and measurement time

  20. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  1. Reproduction of the coincidence effect in gamma ray spectrometry by using Monte Carlo method

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, J. K.; Lee, S. H.

    2001-01-01

    Scintillation detector such as NaI(TI), or semiconductor detector, such as HPGe, are used for Measurement/Assessment of the radiation type and radiation activity. The measured energy spectrum are used for measuring the radiation type and activity. Corrections for true coincidence due to emit more than 2 photons at the same time and random coincidence due to measuring system when increasing of the radiation intensity. For accurate assessment, measurement with adequate measure system is performed, and corrections for coincidence are performed in the hardware aspect and software aspect. In general, there are limitations or difficulties in measurement of radiation assessment, computational simulation is instead used. In simulation, it has much advantages than measurement in technically, timely, and financially, it is widely used instead of measurement. In this study, the method to reproduce of the coincidence effect was proposed by using monte carlo method

  2. Evaluation of a "Smart" Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    Poigné Axel

    2009-01-01

    Full Text Available Abstract We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  3. Instruction manual for operating the Sensys System for temporary traffic counts

    Science.gov (United States)

    2010-01-01

    This instruction manual provides information and the procedures for using the Sensys System, which was initially designed to operate in a server controlled network, for temporary traffic counts. The instructions will allow the user to fully understan...

  4. Correction of the counting up number by dead time in detector systems for radiograph images

    International Nuclear Information System (INIS)

    Cerdeira E, A.; Cicuttin, A.; Cerdeira, A.; Estrada, M.; Luca, A. de

    2002-01-01

    The effect of the dead time in a detection system by counting up of particles and the contribution of this error in the final image resolution is analysed. It is given a statistical criteria for the optimization of electronic parameters such as dead time and counting up memory which help in the implementation of these systems with the minimum necessary characteristics which satisfy the resolution requirements. (Author)

  5. The use of computed neutron coincidence counting with time interval analysis for the analysis of Fork-measurements on a fresh MOX-LWR fuel assembly under water

    Energy Technology Data Exchange (ETDEWEB)

    Baeten, P.; Bruggeman, M.; Carchon, R

    1998-06-01

    The objective of this study was to investigate the influence of different important parameters on measurement results for various fork-detectors. Computed Neutron Coincidence Counting (CNCC) with Time Interval Analysis (TIA) was used for this study. The performance of the electronics for the different fork-detectors was studied by investigating the deadtime perturbed zone of the Rossi-alpha distribution in TIA. The measurement revealed anomalies in the performance of the electronics of the IAEA BWR and LANL fork-detector. The IAEA PWR fork-detector functioned well and the deadtime parameter was calculated. The optimal setting for the pre delay was investigated and it was found that a pre delay of 10 micro seconds should be considered as an optimum between excluding from analysis data in the deadtime perturbed zone and keeping a high signal-to-noise ratio. For the shift register electronics used with the fork-detectors, a pre delay of only 4.5 micro seconds was used. The study of the pre delay and the deadtime showed that the calculated triples-rate is strongly dependent on these parameters. An accurate determination of the triple-rate in this type of measurements has proven to be quite difficult and requires proper operation of the electronics, a correct pre delay and an accurate deadtime correction formalism. By varying the boron concentration in water, the change of the decay time of the Rossi-alpha distribution was clearly observed. This change is due to the variation of the thermal multiplication. The variation of this decay time with the boron concentration proves that Boehnel's model for fast neutron multiplication is not valid under these measurement conditions and that a model for fast and thermal multiplication should be used in order to obtain unbiased measurement results. CNCC with TIA has proved to be a valuable tool in which parameter settings can be varied a posterori and the optimal setting can be determined for each measurement. Moreover, the

  6. The use of computed neutron coincidence counting with time interval analysis for the analysis of Fork-measurements on a fresh MOX-LWR fuel assembly under water

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.

    1998-06-01

    The objective of this study was to investigate the influence of different important parameters on measurement results for various fork-detectors. Computed Neutron Coincidence Counting (CNCC) with Time Interval Analysis (TIA) was used for this study. The performance of the electronics for the different fork-detectors was studied by investigating the deadtime perturbed zone of the Rossi-alpha distribution in TIA. The measurement revealed anomalies in the performance of the electronics of the IAEA BWR and LANL fork-detector. The IAEA PWR fork-detector functioned well and the deadtime parameter was calculated. The optimal setting for the pre delay was investigated and it was found that a pre delay of 10 micro seconds should be considered as an optimum between excluding from analysis data in the deadtime perturbed zone and keeping a high signal-to-noise ratio. For the shift register electronics used with the fork-detectors, a pre delay of only 4.5 micro seconds was used. The study of the pre delay and the deadtime showed that the calculated triples-rate is strongly dependent on these parameters. An accurate determination of the triple-rate in this type of measurements has proven to be quite difficult and requires proper operation of the electronics, a correct pre delay and an accurate deadtime correction formalism. By varying the boron concentration in water, the change of the decay time of the Rossi-alpha distribution was clearly observed. This change is due to the variation of the thermal multiplication. The variation of this decay time with the boron concentration proves that Boehnel's model for fast neutron multiplication is not valid under these measurement conditions and that a model for fast and thermal multiplication should be used in order to obtain unbiased measurement results. CNCC with TIA has proved to be a valuable tool in which parameter settings can be varied a posterori and the optimal setting can be determined for each measurement. Moreover, the

  7. Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system.

    Science.gov (United States)

    Naud, Richard; Houtman, Dave; Rose, Gary J; Longtin, André

    2015-11-01

    Information can be encoded in the temporal patterning of spikes. How the brain reads these patterns is of general importance and represents one of the greatest challenges in neuroscience. We addressed this issue in relation to temporal pattern recognition in the anuran auditory system. Many species of anurans perform mating decisions based on the temporal structure of advertisement calls. One important temporal feature is the number of sound pulses that occur with a species-specific interpulse interval. Neurons representing this pulse count have been recorded in the anuran inferior colliculus, but the mechanisms underlying their temporal selectivity are incompletely understood. Here, we construct a parsimonious model that can explain the key dynamical features of these cells with biologically plausible elements. We demonstrate that interval counting arises naturally when combining interval-selective inhibition with pulse-per-pulse excitation having both fast- and slow-conductance synapses. Interval-dependent inhibition is modeled here by a simple architecture based on known physiology of afferent nuclei. Finally, we consider simple implementations of previously proposed mechanistic explanations for these counting neurons and show that they do not account for all experimental observations. Our results demonstrate that tens of millisecond-range temporal selectivities can arise from simple connectivity motifs of inhibitory neurons, without recourse to internal clocks, spike-frequency adaptation, or appreciable short-term plasticity. Copyright © 2015 the American Physiological Society.

  8. Statistics of multi-tube detecting systems

    International Nuclear Information System (INIS)

    Grau Carles, P.; Grau Malonda, A.

    1994-01-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sume. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application. way

  9. Calibration of the Accuscan II In Vivo System for I-131 Thyroid Counting

    Energy Technology Data Exchange (ETDEWEB)

    Orval R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-131 thyroid counting. The source used for the calibration was an Analytics mixed gamma source 82834-121 distributed in an epoxy matrix in a Wheaton Liquid Scintillation Vial with energies from 88.0 keV to 1836.1 keV. The center of the detectors was position 64-feet from the vault floor. This position places the approximate center line of the detectors at the center line of the source in the thyroid tube. The calibration was performed using an RMC II phantom (Appendix J). Validation testing was performed using a Ba-133 source and an ANSI N44.3 Phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibrations including verification counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-131 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  10. Few remarks on the absolute counting of {beta} emitters using 4 {pi} counter; Quelques remarques sur la mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, B; Le Gallic, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This study looks to determinate the optimum experimental conditions which allow the best accuracy possible for the absolute counting of {beta} emitters when using a 4 {pi} counter. The study has been done with a 4 {pi} counter using source supports of 30 {mu}m thickness. The associated electronic circuit includes: high-voltage, a 1000 scale and a dead time preafier of 4x10{sup -4} {mu}s. In addition, a coincidence preamplifier - with 1 {mu}s resolution time - was added which permits to count the coincidence between the measuring channels. It compares the measurement accuracy and the absorption correction needed for different source supports including polymers thin films with and without metal coating. (M.P.)

  11. Calibration of the Accuscan II IN Vivo System for High Energy Lung Counting

    Energy Technology Data Exchange (ETDEWEB)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for high energy lung counting. The source used for the calibration was a NIST traceable lung set manufactured at the University of Cincinnati UCLL43AMEU & UCSL43AMEU containing Am-241 and Eu-152 with energies from 26 keV to 1408 keV. The lung set was used in conjunction with a Realistic Torso phantom. The phantom was placed on the RMC II counting table (with pins removed) between the v-ridges on the backwall of the Accuscan II counter. The top of the detector housing was positioned perpendicular to the junction of the phantom clavicle with the sternum. This position places the approximate center line of the detector housing with the center of the lungs. The energy and efficiency calibrations were performed using a Realistic Torso phantom (Appendix I) and the University of Cincinnati lung set. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for high energy lung counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  12. A simple method for calibration of Lucas scintillation cell counting system for measurement of 226Ra and 222Rn

    Directory of Open Access Journals (Sweden)

    N.K. Sethy

    2014-10-01

    Full Text Available Known quantity of radium from high grade ore solution was chemically separated and carefully kept inside the cavity of a Lucas Cell (LC. The 222Rn gradually builds up and attain secular equilibrium with its parent 226Ra. This gives a steady count after a suitable buildup period (>25 days. This secondary source was used to calibrate the radon counting system. The method is validated in by comparison with identical measurement with AlphaGuard Aquakit. The radon counting system was used to evaluate dissolved radon in ground water sample by gross alpha counting in LC. Radon counting system measures the collected radon after a delay of >180 min by gross alpha counting. Simultaneous measurement also carried out by AlphaGuard Aquakit in identical condition. AlphaGuard measures dissolved radon from water sample by constant aeration in a closed circuit without giving any delay. Both the methods are matching with a correlation coefficient of >0.9. This validates the calibration of Lucas scintillation cell counting system by designed encapsulated source. This study provides an alternative for calibration in absence of costly Radon source available in the market.

  13. Effect of counting system dead time on thyroid uptake measurements

    International Nuclear Information System (INIS)

    Simpkin, D.J.

    1984-01-01

    Equations are derived and the results of numerical calculations shown that illustrate the effect of counting system dead time on measured thyroid uptake of radioiodine. It is predicted that the observed uptake is higher than the true uptake due to system dead time. This is shown for both paralyzing and nonparalyzing dead time. The effect of increasing the administered activity is shown to increase the measured uptake, in a manner predicted by the paralyzable and nonparalyzable dead time models

  14. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    Science.gov (United States)

    Paschoa, Anselmo S.

    2001-06-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background.

  15. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    International Nuclear Information System (INIS)

    Paschoa, Anselmo S.

    2001-01-01

    A detection system for counting low levels of gamma radiation was built by upgrading an existing rectangular chamber made of 18 metric tonne of steel fabricated before World War II. The internal walls, the ceiling, and the floor of the chamber are covered with copper sheets. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow introduction of a NaI (Tl) crystal, or alternatively, a HPGe detector in its interior. This counting system is mounted inside the larger chamber, which in turn is located in a subsurface air-conditioned room. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass anteroom to decrease the air-exchange rate. Both sample and detector are housed inside the stainless steel cylinder. This cylinder is filled with hyper pure nitrogen gas, before counting a sample, to prevent radon coming into contact with the detector surface. As a consequence, the contribution of the 214 Bi photopeaks to the background gamma spectra is minimized. The reduction of the gamma radiation background near the detector facilitates measurement of naturally occurring radioactive materials (NORM), and/or technologically enhanced NORM (TENORM), which are usually at concentration levels only slightly higher than those typically found in the natural radioactive background. (author)

  16. Software design of automatic counting system for nuclear track based on mathematical morphology algorithm

    International Nuclear Information System (INIS)

    Pan Yi; Mao Wanchong

    2010-01-01

    The parameter measurement of nuclear track occupies an important position in the field of nuclear technology. However, traditional artificial counting method has many limitations. In recent years, DSP and digital image processing technology have been applied in nuclear field more and more. For the sake of reducing errors of visual measurement in artificial counting method, an automatic counting system for nuclear track based on DM642 real-time image processing platform is introduced in this article, which is able to effectively remove interferences from the background and noise points, as well as automatically extract nuclear track-points by using mathematical morphology algorithm. (authors)

  17. Resonant count diagram and solar g mode oscillations

    International Nuclear Information System (INIS)

    Guenther, D.B.; Demarque, P.

    1984-01-01

    Evidence is provided to support the hypothesis that, because of the particular frequency separations of the solar g modes, resonant three-wave interactions stimulate only a selected few g modes. A resonant count diagram was obtained by plotting the total number of possible resonant three-wave interactions or a given beat frequency against the inverse of the beat frequency (the beat period), within a given frequency tolerance. The 1 = 1, 2, 3, 4 g modes calculated by Christensen-Dalsgaard, Gough and Morgan (1979) for a standard model of the Sun were used. The diagram has a significant peak at 160 minutes as well as other peaks at longer periods. The g modes that Delache and Scherrer (1983) tentatively identified from the Crimea-Stanford data were also plotted. These modes were found to correspond with the other peaks in the diagram. This coincidence between the observed g modes and the peaks in the resonant count diagram suggest that the observed g modes do owe their observability to resonant three-wave interactions

  18. True coincidence summing correction determination for 214Bi principal gamma lines in NORM samples

    International Nuclear Information System (INIS)

    Haddad, Kh.

    2014-01-01

    The gamma lines 609.3 and 1,120.3 keV are two of the most intensive γ emissions of 214 Bi, but they have serious true coincidence summing (TCS) effects due to the complex decay schemes with multi-cascading transitions. TCS effects cause inaccurate count rate and hence erroneous results. A simple and easy experimental method for determination of TCS correction of 214 Bi gamma lines was developed in this work using naturally occurring radioactive material samples. Height efficiency and self attenuation corrections were determined as well. The developed method has been formulated theoretically and validated experimentally. The corrections problems were solved simply with neither additional standard source nor simulation skills. (author)

  19. Coincidence logic modules for criticality alarming

    International Nuclear Information System (INIS)

    Schaief, C.C. III.

    1977-04-01

    A coincidence Logic Module and a companion contact closure Relay Module utilizing the NIM Standard have been developed for criticality alarming. The units provide an ALARM whenever two or more out of N detectors become activated. In addition, an ALERT is generated whenever one or more detectors is activated or when certain electronic component failures occur. The number of detector inputs (N) can be expanded in groups of six by adding modules. Serial and parallel redundancy were used to reduce the probability of system failure

  20. Low gamma counting for measuring NORM/TENORM with a radon reducing system

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    2000-01-01

    A detection system for counting low levels of gamma radiation was developed by upgrading an existing whole body counter. The main shielding is a rectangular chamber made of 18 metric tons of steel fabricated before the World War II. The ceiling and floor are 0.20 m in thickness, and the walls 0.10 m. The internal walls, the ceiling and the floor of the chamber are covered with copper sheets 1.0 mm in thickness. The new detection system consists of a stainless steel hollow cylinder with variable circular apertures in the cylindrical wall and in the base, to allow NaI(Tl) and/or HPGe detectors in its interior. This counting system is mounted inside the larger shielding chamber, which in turn is located in a subsurface air conditioned room. The air exchange rate between the subsurface room and the exterior is kept to a minimum, to avoid large amounts of radon from outdoors to enter the subsurface room. The floor, the walls, and the ceiling of this subsurface room were painted with materials impermeable to radon gas. The access to the subsurface room is made from a larger entrance room through a tunnel plus a glass ante-room to decrease still further the air- exchange rate. The stainless steel hollow cylinder houses the sample to be measured and the detector. This cylinder can be filled with hyper pure nitrogen gas at a slighter positive pressure before counting a sample to prevent radon to enter the volume surrounding the detector. The low radon concentration near the detector minimizes the contribution of the 214 Bi photopeaks to the gamma spectra. The samples can be placed inside the cylinder in a variety of configurations. Spectra of selected gamma emitters were obtained with samples and detectors in several configurations. Gamma spectra were obtained for each of those configurations to illustrate the reduction the counting background. The reduction of gamma radiation background near the detector allows one to count naturally occurring radioactive materials (NORM

  1. Examining secular trend  and seasonality in count data using dynamic generalized linear modelling

    DEFF Research Database (Denmark)

    Lundbye-Christensen, Søren; Dethlefsen, Claus; Gorst-Rasmussen, Anders

    series regression model for Poisson counts. It differs in allowing the regression coefficients to vary gradually over time in a random fashion. Data  In the period January 1980 to 1999, 17,989 incidents of acute myocardial infarction were recorded in the county of Northern Jutland, Denmark. Records were......Aims  Time series of incidence counts often show secular trends and seasonal patterns. We present a model for incidence counts capable of handling a possible gradual change in growth rates and seasonal patterns, serial correlation and overdispersion. Methods  The model resembles an ordinary time...... updated daily. Results  The model with a seasonal pattern and an approximately linear trend was fitted to the data, and diagnostic plots indicate a good model fit. The analysis with the dynamic model revealed peaks coinciding with influenza epidemics. On average the peak-to-trough ratio is estimated...

  2. Development of portable Liquid Scintillation counters for on-site primary measurement of radionuclides using the Triple-to-Double Coincidence Ratio method

    International Nuclear Information System (INIS)

    Cassette, P.; Capogni, M.; De Felice, P.; Johansson, L.; Sephton, J.; Kossert, K.; Naehle, O.

    2013-06-01

    The Triple-to-Double Coincidence Ratio (TDCR) method in Liquid Scintillation counting (LSC) is a primary radionuclide standardization method widely used in National Metrology laboratories and was primarily developed for the activity measurement of beta emitters. It is based on liquid scintillation: the light is detected by three photomultipliers (PM) and the detection efficiency is evaluated by using a model which uses the ratio of triple-to-double coincidences between the PM tubes. Up to now, most of current TDCR systems were locally-made metrology instruments neither aimed at nor suitable for in-situ measurements. In the framework of the European Metrofission project, a work package was dedicated to the realisation of miniature self-calibrated primary TDCR systems, which are state-of-the-art, for use on-site. The challenge was to develop a versatile portable, table-top designed instrument, from this metrology device. This implied improvements for the miniaturisation of the detection chamber, for the miniaturisation of electronic modules by exploring the possibilities of digital treatment, and for the validation of models and extension of them to nuclides with special beta spectrum shapes, to nuclides with complex decay schemes including many gamma-rays and to nuclides with higher atomic number decaying by electron capture. Four prototypes of counters were built by the Metrofission partners ENEA (Italy), LNHB (France), NPL (UK) and PTB (Germany) using various technical approaches. The paper describes these prototypes and provides some details on the choice of the technical options concerning the design of the optical chamber, of the photodetectors and of the acquisition system. (authors)

  3. A flexible VME-based multiparametric apparatus for coincidence spectroscopy and investigation of parameters of detectors

    International Nuclear Information System (INIS)

    Jakubek, J.

    2000-01-01

    The methodology of Coincidence Instrumental Activation Analysis (CIAA) based on a three-parameter gamma-gamma coincidence spectrometer with two high-purity Ge detectors is presented. A flexible coincidence system was built on standard NIM spectrometric modules connected to a VME or CAMAC data acquisition system. The detailed setup of the system optimized for the maximum energy resolution, maximum data throughput (dead time correction, pile-up rejection) and maximum flexibility is described. The use of different data acquisition platforms is discussed (VME bus with several different controllers, CAMAC bus). The software developed for reading and basic processing of measured data is also described. The possibilities of off-line data evaluation are discussed. The system was tested with respect to its compliance with the criteria of the CIAA method. Some results of measurement by this method are also presented. The flexibility of the system is demonstrated on its ability to measure the time characteristics of different detectors. (author)

  4. Statistics of multi-tube detecting systems

    International Nuclear Information System (INIS)

    Grau Carles, P.; Grau Malonda, A.

    1994-01-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sum. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application way. (Author) 6 refs

  5. 4πβ(PS)–4πγ(GE) list-mode coincidence counter and its applications

    International Nuclear Information System (INIS)

    Yamada, T.; Kawada, Y.; Sato, Y.

    2016-01-01

    We developed a 4πβ–4πγ counter composed of a 4π plastic scintillation detector and a well-type Ge detector, employing digital coincidence counting and data storage in list-mode. In both of the β- and γ-channels, the amplified pulses from a linear amplifier feed the input channel of the digitizer directly via delay circuits. A signal from the peak-hold of each channel is fed to a sliding scale ADC (14 bits, 200 MHz clock) after peak detection and converted into 13 bit digital data, registered along with a time stamp and event channel allowing various data analysis to be implemented offline. When employing multiple gamma window settings, a weighted average of each apparent efficiency might be introduced to improve the efficiency functions. This idea was investigated along with reasonable estimates of the weighing factors, and activity measurements of 59 Fe using this system are presented. - Highlights: • A4πβ–4πγ system was developed, employing a well-type Ge-SSD and a plastic scintillator. • This system was employed to the measurement of 59 Fe with multiple γ-window settings. • An almost flat extrapolation curve could be obtained with appropriate weighting proecdures.

  6. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    Science.gov (United States)

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  7. Evaluation of a “Smart” Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  8. Coincidence Imaging and interference with coherent Gaussian beams

    Institute of Scientific and Technical Information of China (English)

    CAI Yang-jian; ZHU Shi-yao

    2006-01-01

    we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.

  9. Resolving time of scintillation camera-computer system and methods of correction for counting loss, 2

    International Nuclear Information System (INIS)

    Iinuma, Takeshi; Fukuhisa, Kenjiro; Matsumoto, Toru

    1975-01-01

    Following the previous work, counting-rate performance of camera-computer systems was investigated for two modes of data acquisition. The first was the ''LIST'' mode in which image data and timing signals were sequentially stored on magnetic disk or tape via a buffer memory. The second was the ''HISTOGRAM'' mode in which image data were stored in a core memory as digital images and then the images were transfered to magnetic disk or tape by the signal of frame timing. Firstly, the counting-rates stored in the buffer memory was measured as a function of display event-rates of the scintillation camera for the two modes. For both modes, stored counting-rated (M) were expressed by the following formula: M=N(1-Ntau) where N was the display event-rates of the camera and tau was the resolving time including analog-to-digital conversion time and memory cycle time. The resolving time for each mode may have been different, but it was about 10 μsec for both modes in our computer system (TOSBAC 3400 model 31). Secondly, the date transfer speed from the buffer memory to the external memory such as magnetic disk or tape was considered for the two modes. For the ''LIST'' mode, the maximum value of stored counting-rates from the camera was expressed in terms of size of the buffer memory, access time and data transfer-rate of the external memory. For the ''HISTOGRAM'' mode, the minimum time of the frame was determined by size of the buffer memory, access time and transfer rate of the external memory. In our system, the maximum value of stored counting-rates were about 17,000 counts/sec. with the buffer size of 2,000 words, and minimum frame time was about 130 msec. with the buffer size of 1024 words. These values agree well with the calculated ones. From the author's present analysis, design of the camera-computer system becomes possible for quantitative dynamic imaging and future improvements are suggested. (author)

  10. Catalyzing Transdisciplinarity: A Systems Ethnography of Cancer-Obesity Comorbidity and Risk Coincidence.

    Science.gov (United States)

    Graham, S Scott; Harley, Amy; Kessler, Molly M; Roberts, Laura; DeVasto, Dannielle; Card, Daniel J; Neuner, Joan M; Kim, Sang-Yeon

    2017-05-01

    Effectively addressing wicked health problems, that is, those arising from complex multifactorial biological and socio-economic causes, requires transdisciplinary action. However, a significant body of research points toward substantial difficulties in cultivating transdisciplinary collaboration. Accordingly, this article presents the results of a study that adapts Systems Ethnography and Qualitative Modeling (SEQM) in response to wicked health problems. SEQM protocols were designed to catalyze transdisciplinary responses to national defense concerns. We adapted these protocols to address cancer-obesity comorbidity and risk coincidence. In so doing, we conducted participant-observations and interviews with a diverse range of health care providers, community health educators, and health advocacy professionals who target either cancer or obesity. We then convened a transdisciplinary conference designed to catalyze a coordinated response. The findings offer productive insights into effective ways of catalyzing transdisciplinarity in addressing wicked health problems action and demonstrate the promise of SEQM for continued use in health care contexts.

  11. Evaluation of B10Plus+* proportional detectors for neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H.; Yoon, Seokryung [International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, (Austria)

    2015-07-01

    GE-Reuter-Stokes (GERS) has developed a new line of neutron proportional counters, the B10Plus+* proportional counter. The detector design is intended to serve as a cost-effective alternative to traditional {sup 3}He proportional counters in a variety of applications. The detector is a hybrid design 10B-lined tube optimized with the addition of a small quantity of 3He gas to improve the detector performance and efficiency. As a demonstration of the B10Plus+* detector, GERS has constructed a Uranium Neutron Collar (UNCL) system consisting of B-10Plus+* proportional counters. GERS has designed and built a demonstration UNCL system intended to match the performance of a Type-I UNCL design in Pressurized Water Reactor (PWR) geometry operating in thermal mode. GERS offered their system on loan to the International Atomic Energy Agency (IAEA) Safeguards Division of Technical and Scientific Services for an assessment of the detector technology and the demonstration system. We have characterized the demonstration UNCL system and compared its performance with a traditional Type-I UNCL design in regular use by the IAEA. This paper summarizes our findings and observations during the characterization and testing activity. (authors)

  12. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  13. Droplet-counting Microtitration System for Precise On-site Analysis.

    Science.gov (United States)

    Kawakubo, Susumu; Omori, Taichi; Suzuki, Yasutada; Ueta, Ikuo

    2018-01-01

    A new microtitration system based on the counting of titrant droplets has been developed for precise on-site analysis. The dropping rate was controlled by inserting a capillary tube as a flow resistance in a laboratory-made micropipette. The error of titration was 3% in a simulated titration with 20 droplets. The pre-addition of a titrant was proposed for precise titration within an error of 0.5%. The analytical performances were evaluated for chelate titration, redox titration and acid-base titration.

  14. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    Energy Technology Data Exchange (ETDEWEB)

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-11-15

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  15. Geometry-based multiplication correction for passive neutron coincidence assay of materials with variable and unknown (α,n) neutron rates

    International Nuclear Information System (INIS)

    Langner, D.G.; Russo, P.A.

    1993-02-01

    We have studied the problem of assaying impure plutonium-bearing materials using passive neutron coincidence counting. We have developed a technique to analyze neutron coincidence data from impure plutonium samples that uses the bulk geometry of the sample to correct for multiplication in samples for which the (α,n) neutron production rate is unknown. This technique can be applied to any impure plutonium-bearing material whose matrix constituents are approximately constant, whose self-multiplication is low to moderate, whose plutonium isotopic composition is known and not substantially varying, and whose bulk geometry is measurable or can be derived. This technique requires a set of reference materials that have well-characterized plutonium contents. These reference materials are measured once to derive a calibration that is specific to the neutron detector and the material. The technique has been applied to molten salt extraction residues, PuF 4 samples that have a variable salt matrix, and impure plutonium oxide samples. It is also applied to pure plutonium oxide samples for comparison. Assays accurate to 4% (1 σ) were obtained for impure samples measured in a High-Level Neutron Coincidence Counter II. The effects on the technique of variations in neutron detector efficiency with energy and the effects of neutron capture in the sample are discussed

  16. Monte Carlo simulation of the spectral response of beta-particle emitters in LSC systems

    International Nuclear Information System (INIS)

    Ortiz, F.; Los Arcos, J.M.; Grau, A.; Rodriguez, L.

    1992-01-01

    This paper presents a new method to evaluate the counting efficiency and the effective spectra at the output of any dynodic stage, for any pure beta-particle emitter, measured in a liquid scintillation counting system with two photomultipliers working in sum-coincidence mode. The process is carried out by a Monte Carlo simulation procedure that gives the electron distribution, and consequently the counting efficiency, at any dynode, in response to the beta particles emitted, as a function of the figure of merit of the system and the dynodic gains. The spectral outputs for 3 H and 14 C have been computed and compared with experimental data obtained with two sets of quenched radioactive standards of these nuclides. (orig.)

  17. Minority n out of m coincidence circuits for time-differential experiments with multi-detector arrays

    International Nuclear Information System (INIS)

    Braunsfurth, J.; Geske, K.

    1976-01-01

    Two n out of m minority coincidence circuits (n<=8, 15<=m<=31), employed for time-differential experiments are presented. Specifications like obtainable prompt coincidence resolution time, expandability to higher detector numbers m, implementation variants and their consequences, and some application modes are discussed. Hardware expenses on electronics for m-detector arrays usually rise nearly proportional to m factorial. In the coincidence system proposed here, the rise in hardware expenses can be reduced to slightly more than proportional to m, without sacrifice in experimental quality and flexibility. (Auth.)

  18. Low-level flow counting of liquid chromatography column eluates

    International Nuclear Information System (INIS)

    Harding, N.G.L.; Farid, Y.; Stewart, M.J.

    1982-01-01

    The principal parameters which determine the operation of a high-resolution, high-sensitivity radioactive flow monitor are described: a) Sample preparation to ensure adequate recovery of radiolabelled sample, metabolites and internal standard. b) The instrument background count rate, when no sample or radiolabel is present in the flow cell, is a function of shielding and a reduction in noise obtained with a coincidence time below one microsecond. c) The minimum detectable amount of label depends upon the machine background, HPLC eluent and scintillator flow, whether or not packed flow cells are used, flow cell geometry, and the scintillator used. d) Three types of flow cell have been designed to cover the majority of HPLC and isotope applications. e) The performance of solid and liquid scintillators. It is shown that an instrument has been designed taking account of these parameters. The resulting design satisfies present high sensitivity counting requirements and maintains the resolution of current HPLC procedures when detection is by simultaneous flow radioassay and by optical methods. (orig.)

  19. Development of a coincidence system for radio-nuclide standardization using surface barrier detectors

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1988-01-01

    A system for the standardization of alpha-gamma or electron-X radionuclide emitters has been developed in the present work. The system consists of one or two surface barrier detectors for alpha or electron detection which are coupled to thin-window NaI (T1) crystals suitable for low energy X or gamma ray detection. The performance of the system has been verified by means of the standardization of 241 Am, 137 Cs and 109 Cd solutions. The activity has been obtained using the extrapolation method applied to the 4Πα-γ and 2Πe c -X coincidence technique. The surface barrier detection efficiency was varied by placing absorbers over the radioactive sources or by changing the source to detector distance. The results were compared to those obtained using conventional absolute systems based on gas-flow and pressurized 4Π proportional counters, or using radioactive solutions standardized in international comparisons spondored by the Bureau International des Poids et Mesures. The expect and measured activities agree within the experimental uncertainties which were: 0.2 % for 241 Am, 0.7% for 137 Cs and 0.6% for 109 Cd. The ratio between the probabilities of (electron capture + internal conversion) and internal conversion for the K-shell of 109 Cd has been determined. The result is: 2.8883 ± 0.016. (author) [pt

  20. Protecting count queries in study design.

    Science.gov (United States)

    Vinterbo, Staal A; Sarwate, Anand D; Boxwala, Aziz A

    2012-01-01

    Today's clinical research institutions provide tools for researchers to query their data warehouses for counts of patients. To protect patient privacy, counts are perturbed before reporting; this compromises their utility for increased privacy. The goal of this study is to extend current query answer systems to guarantee a quantifiable level of privacy and allow users to tailor perturbations to maximize the usefulness according to their needs. A perturbation mechanism was designed in which users are given options with respect to scale and direction of the perturbation. The mechanism translates the true count, user preferences, and a privacy level within administrator-specified bounds into a probability distribution from which the perturbed count is drawn. Users can significantly impact the scale and direction of the count perturbation and can receive more accurate final cohort estimates. Strong and semantically meaningful differential privacy is guaranteed, providing for a unified privacy accounting system that can support role-based trust levels. This study provides an open source web-enabled tool to investigate visually and numerically the interaction between system parameters, including required privacy level and user preference settings. Quantifying privacy allows system administrators to provide users with a privacy budget and to monitor its expenditure, enabling users to control the inevitable loss of utility. While current measures of privacy are conservative, this system can take advantage of future advances in privacy measurement. The system provides new ways of trading off privacy and utility that are not provided in current study design systems.

  1. Reflected‑Point‑Reactor Kinetics Model for Neutron Coincidence Counting: Comments on the Equation for the Leakage Self‑Multiplication

    International Nuclear Information System (INIS)

    Croft, S.; McElroy, RD.; Favalli, A.; Hauck, D.; Henzlova, D.; Henzl, V.; Santi, PA.

    2015-01-01

    Passive neutron correlation counting is widely used, for example by international inspection agencies, for the non‑destructive assay of spontaneously fissile nuclear materials for nuclear safeguards. The mass of special nuclear material present in an item is usually estimated from the observed neutron counting rates by using equations based on mathematically describing the object as an isolated multiplying point‑like source. Calibration using representative physical standards can often adequately compensate for this theoretical oversimplification through the introduction and use of effective‑interpretational‑model‑parameters meaning that useful assay results are obtained. In this work we extend the point‑model treatment by including a simple reflector around the fissioning material. Specifically we show how the leakage self‑multiplication equation mathematically connects the traditional bare source and the reflected source cases. In doing so we explicitly demonstrate that although the presence of a simple reflector changes the leakage self‑multiplication the traditional bare‑item point model multiplicity equations retain the same mathematical form. Making and explaining this connection is important because it helps to explain and justify the practical success and use of the traditional point‑model equations even when the assumptions used to generate the key functional dependences are violated. We are not aware that this point has been recognized previously.

  2. High-level neutron coincidence counter maintenance manual

    International Nuclear Information System (INIS)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included

  3. High-level neutron coincidence counter maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Swansen, J.; Collinsworth, P.

    1983-05-01

    High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

  4. PC based alpha, beta and gamma counting system

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Gopalakrishnan, K.R.; Bairi, B.R.

    1992-01-01

    In the field of radiation protection and safety a large number of samples have to be assayed for estimation of their radioactivity at various stages in nuclear fuel. A PC based alpha, beta and gamma counting system has been designed for the above application. The system is fully automatic and requires minimum of operator intervention. The main units in the system are detector and pulse processing electronics, sample changer and assembly and IBM PC interface and supporting software. The main function of interface is to control the sample changer which is basically loading and unloading of sample, data acquisition and further processing by software. The pulses from detector are analysed in a pulse shape discriminator. A pulse identified as an alpha, beta or gamma event is converted to digital pulse. These digital pulses are accumulated in the three channels on PC interface each corresponding to alpha, beta and gamma. The sample movements are controlled by interface depending upon sample position. The software has been developed so as to maintain user friendliness and convenience of the operator. Various selection modes for parameters and operation of system provide lot of flexibility in operation of the system. (author). 1 fig

  5. A magnetic-lens - mini-orange coincidence spectrometer

    International Nuclear Information System (INIS)

    Bargholtz, C.; Holmberg, L.; Ruus, N.; Tegner, P.E.; Weiss, G.

    1997-04-01

    A coincidence spectrometer consisting of a Gerholm type magnetic lens and a permanent magnet mini-orange spectrometer is described. Electron-electron or electron-positron coincidences may be registered in various angular settings. The spectrometer has been developed mainly to search for anomalous contributions to Bhabha scattering or positrons and is at present used for such studies. 6 refs

  6. Study of die-away time for a slab type passive neutron detector system

    International Nuclear Information System (INIS)

    Muralidhar, S.; Gubbi, G.K.; Dange, S.P.; Ali, M.Y.; Tomar, B.S.; Basu, T.K.; Anand, R.P.

    2003-01-01

    Full text: A slab type passive neutron detector coincidence counting system has been fabricated to estimate the plutonium content in nuclear materials. The present work focuses on the measurement of the die-away time of the system. The results obtained by carrying out neutron counting experiments, using the slab detector and a PC-based data acquisition system, are compared to the die-away time estimated by using Monte Carlo N-particle Transport (MCNP) code for the detector configuration. These results are presented along with the parameters and method for measuring the die-away time both experimentally and theoretically. Results of this validity check are in good agreement

  7. Slow coincidences for CAMAC multiparameter analysis

    International Nuclear Information System (INIS)

    Akimov, Yu.K.; Kalinin, A.I.; Tissol'd, E.; Fromm, V.D.; Ekstein, P.

    1978-01-01

    A coincidence circuit with controlled parameters is described. The circuit has six coincidence inputs and one input for anticoincidences. A pulse duration in channels is changed from 0.25 to 5 μs and delay time, within 8 μs. The circuit is developed for multiparameter spectrometric analysis with the use of amplitude-digital and time-digital convertors. Its introduction permits one to diminish considerably the ''dead'' time of apparatus and to select rapidly and reliably strictly correlated digital information from convertors

  8. Design and manufacture of a three-counter channel system based on delayed coincidence principle using for 22'3Ra and 224Ra measurements

    International Nuclear Information System (INIS)

    Tuong Thi Thu Huong; Pham Ngoc Tuan; Dang Hong Ngoc Quy; Truong Van Dat; Tran Anh Khoi; Chau Thi Nhu Quynh

    2016-01-01

    The research group has designed and fabricated a radiation detection system for measuring low activities of 223 Ra and 224 Ra in natural waters based on a design of Giffin et al (1963). Samples are obtained by adsorbing 223 Ra and 224 Ra onto a column of MnO 2 coated fiber (Mn fiber). The short-lived Rn daughters of 223 Ra and 224 Ra which recoil from the Mn fiber are swept into a scintillation detector where alpha decays of Rn and Po occur. Signals from the detector are sent to a delayed coincidence circuit which discriminates decay of the 224 Ra daughters, 220 Ra and 216 Po, from decays of the 223 Ra daughters, 219 Ra and 215 Po. The main product of this project is a “Low Alpha counting system” based on digital technology. This system consists of some main electronic circuit such as amplifier, single channel analyzer, counters/timers, micro-processor, RS232 interfacing. Almost of mentioned-above components have been designed and fabricated using ISE 10.1 software toolkits from Xilinx. The application program for controlling and collecting data from the device is written in LabView. In comparison with conventional analog circuits, the design of this system is smaller and easy to use owing to being connected to personal computer through RS232 interface in order to data acquisition and processing. This is also a new trend in the field of development of nuclear equipment with the aim to simple design, cost-saving (Reuse of hardware components can further reduce the system development cost), flexible (arbitrarily adjust measurement parameters by setting parameters from software), user-Friendly Environment (program directly embedded into the FPGA). (author)

  9. PPO-ethanol system as wavelength shifter for the Cherenkov counting technique using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Takiue, M.; Fujii, H.; Ishikawa, H.

    1984-01-01

    2,5-diphenyloxazole (PPO) has been proposed as a wavelength shifter for Cherenkov counting. Since PPO is not incorporated with water, we have introduced the fluor into water in the form of micelle using a PPO-ethanol system. This technique makes it possible to obtain a high Cherenkov counting efficiency under stable sample conditions, attributed to the proper spectrometric features of the PPO. The 32 P Cherenkov counting efficiency (68.4%) obtained from this technique is 1.62 times as large as that measured with a conventional Cherenkov technique. (orig.)

  10. The design of systems for the determination of plutonium by passive neutron counting

    International Nuclear Information System (INIS)

    Hooton, B.W.

    1978-10-01

    The properties of moderators and other materials commonly used in systems for determination of plutonium by passive neutron counting have been investigated. The neutron flux from spontaneous fission and (α,n) reactions has been evaluated and the design characteristics of a number of systems have been determined by Monte Carlo tracking of neutrons. (author)

  11. Monte Carlo simulation of activity measurements by means of 4πβ-γ coincidence system

    International Nuclear Information System (INIS)

    Takeda, Mauro N.; Dias, Mauro S.; Koskinas, Marina F.

    2004-01-01

    The methodology for simulating all detection processes in a 4πβ-γ coincidence system by means of the Monte Carlo technique is described. The goal is to predict the behavior of the observed activity as a function of the 4πβ detector efficiency. In this approach, the information contained in the decay scheme is used for determining the contribution of all radiations emitted by the selected radionuclide, to the measured spectra by each detector. This simulation yields the shape of the coincidence spectrum, allowing the choice of suitable gamma-ray windows for which the activity can be obtained with maximum accuracy. The simulation can predict a detailed description of the extrapolation curve, mainly in the region where the 4πβ detector efficiency approaches 100%, which is experimentally unreachable due to self absorption of low energy electrons in the radioactive source substrate. The theoretical work is being developed with MCNP Monte Carlo code, applied to a gas-flow proportional counter of 4π geometry, coupled to a pair of NaI(Tl) crystals. The calculated efficiencies are compared to experimental results. The extrapolation curve can be obtained by means of another Monte Carlo algorithm, being developed in the present work, to take into account fundamental characteristics of a complex decay scheme, including different types of radiation and transitions. The present paper shows preliminary calculated values obtained by the simulation and compared to predicted analytical values for a simple decay scheme. (author)

  12. Determination of potassium in feldspars by beta counting using a GM multicounter system

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L; Mejdahl, V

    1985-01-01

    A gas flow multicounter system developed at Risoe National laboratory for low-level beta counting applications was adopted for measuring potassium in feldspars extracted from archaeological and geological materials, in connection with TL dating work. A guard counter reduces the background by using an anticoincidence technique. Calibration was accomplished by measuring KCl and a feldspar standard. A potassium content of 1% yields a net beta count rate (background subtracted) of about 40 c.p.h.; the background is around 15 c.p.h. The precision in repeated measurements is better than 2% and the estimated accuracy is about 3%.

  13. Neuro System Structure for Vehicle Recognition and Count in Floating Bridge Specific Conditions

    Directory of Open Access Journals (Sweden)

    Slobodan Beroš

    2012-10-01

    Full Text Available The paper presents the research of the sophisticated vehiclerecognition and count system based on the application of theneural network. The basic elements of neural network andadaptive logic network for object recognition are discussed. Theadaptive logic network solution ability based on simple digitalcircuits as crucial in real-time applications is pointed out. Thesimulation based on the use of reduced high level noise pictureand a tree 2. 7. software have shown excellent results. The consideredand simulated adaptive neural network based systemwith its good recognition and convergence is a useful real-timesolution for vehicle recognition and count in the floating bridgesevere conditions.

  14. A count rate model for PET and its application to an LSO HR PLUS scanner

    International Nuclear Information System (INIS)

    Moisan, C.; Rogers, J.G.; Douglas, J.L.

    1996-10-01

    We present a count rate model for PET. Considering a standard 20 x 20 cm phantom in the field-of-view of a cylindrical septaless tomograph, the model computes the acceptance to prompt and random events from simple geometric considerations. Dead time factors at all stages of a typical event acquisition architecture are calculated from specified processing clock cycles. Validations of the model's predictions against the measured performances of the ECAT-953B and the EXACT HR PLUS are presented. The model is then used to investigate the benefit of using detectors made of LSO in the EXACT HR PLUS scanner geometry. The results indicate that in replacing BGO by the faster LSO, one can count on an increase of the peak noise-equivalent-count rate by a factor 2.2. This gain will be achieved by using a 5 nsec coincidence window, buckets operating on 128 nsec clock cycle, and front-end data acquisition that can sustain a total rate of 2.9 MHz. (authors)

  15. Principle of coincidence method and application in activity measurement

    International Nuclear Information System (INIS)

    Li Mou; Dai Yihua; Ni Jianzhong

    2008-01-01

    The basic principle of coincidence method was discussed. The basic principle was generalized by analysing the actual example, and the condition in theory of coincidence method was brought forward. The cause of variation of efficiency curve and the effect of dead-time in activity measurement were explained using the above principle and condition. This principle of coincidence method provides the foundation in theory for activity measurement. (authors)

  16. High-level neutron coincidence counter (HLNCC): users' manual

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective 240 Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications

  17. Calibration of the Accuscan II In Vivo System for I-125 Thyroid Counting

    Energy Technology Data Exchange (ETDEWEB)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-125 thyroid counting. The source used for the calibration was a DOE manufactured Am-241/Eu-152 source contained in a 22 ml vial BEA Am-241/Eu-152 RMC II-1 with energies from 26 keV to 344 keV. The center of the detector housing was positioned 64 inches from the vault floor. This position places the approximate center line of the detector housing at the center line of the source in the phantom thyroid tube. The energy and efficiency calibration were performed using an RMC II phantom (Appendix J). Performance testing was conducted using source BEA Am-241/Eu-152 RMC II-1 and Validation testing was performed using an I-125 source in a 30 ml vial (I-125 BEA Thyroid 002) and an ANSI N44.3 phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-125 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  18. Coincidence studies with antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2010-02-01

    We present a short overview of a new method for calculating fully differential cross sections that is able to describe any aspect of coincidence measurements involving heavy projectiles. The method is based upon impact parameter close coupling with pseudostates. Examples from antiproton impact ionization are shown.

  19. Preverbal and verbal counting and computation.

    Science.gov (United States)

    Gallistel, C R; Gelman, R

    1992-08-01

    We describe the preverbal system of counting and arithmetic reasoning revealed by experiments on numerical representations in animals. In this system, numerosities are represented by magnitudes, which are rapidly but inaccurately generated by the Meck and Church (1983) preverbal counting mechanism. We suggest the following. (1) The preverbal counting mechanism is the source of the implicit principles that guide the acquisition of verbal counting. (2) The preverbal system of arithmetic computation provides the framework for the assimilation of the verbal system. (3) Learning to count involves, in part, learning a mapping from the preverbal numerical magnitudes to the verbal and written number symbols and the inverse mappings from these symbols to the preverbal magnitudes. (4) Subitizing is the use of the preverbal counting process and the mapping from the resulting magnitudes to number words in order to generate rapidly the number words for small numerosities. (5) The retrieval of the number facts, which plays a central role in verbal computation, is mediated via the inverse mappings from verbal and written numbers to the preverbal magnitudes and the use of these magnitudes to find the appropriate cells in tabular arrangements of the answers. (6) This model of the fact retrieval process accounts for the salient features of the reaction time differences and error patterns revealed by experiments on mental arithmetic. (7) The application of verbal and written computational algorithms goes on in parallel with, and is to some extent guided by, preverbal computations, both in the child and in the adult.

  20. Calculation of the n-th coincidences frequency

    International Nuclear Information System (INIS)

    Mercier, C.

    1959-01-01

    Events can occur randomly with a given frequency. Each event lasts a Θ-time. During this Θ-time other events can occur. A coincidence beginning of order n at a t-time is when an event occurs while n other events already occurred between t-Θ and t. In this work the frequency of coincidence beginnings with an order greater than or equal to n is established

  1. Quintessence, Cosmic Coincidence, and the Cosmological Constant

    International Nuclear Information System (INIS)

    Zlatev, I.; Wang, L.; Steinhardt, P.J.; Steinhardt, P.J.

    1999-01-01

    Recent observations suggest that a large fraction of the energy density of the Universe has negative pressure. One explanation is vacuum energy density; another is quintessence in the form of a scalar field slowly evolving down a potential. In either case, a key problem is to explain why the energy density nearly coincides with the matter density today. The densities decrease at different rates as the Universe expands, so coincidence today appears to require that their ratio be set to a specific, infinitesimal value in the early Universe. In this paper, we introduce the notion of a open-quotes tracker field,close quotes a form of quintessence, and show how it may explain the coincidence, adding new motivation for the quintessence scenario. copyright 1999 The American Physical Society

  2. The multichannel system of synchronous photon counting of range 50 ns - 100 ms

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, S M [and others

    1996-12-31

    A new type of the multichannel system of synchronous photon counting is designed. The recording past of the analyzer is described and the whole measurement process is considered. Frequency of the master generator is 75 MHz. 1 ref.; 2 figs.

  3. Identification and red blood cell automated counting from blood smear images using computer-aided system.

    Science.gov (United States)

    Acharya, Vasundhara; Kumar, Preetham

    2018-03-01

    Red blood cell count plays a vital role in identifying the overall health of the patient. Hospitals use the hemocytometer to count the blood cells. Conventional method of placing the smear under microscope and counting the cells manually lead to erroneous results, and medical laboratory technicians are put under stress. A computer-aided system will help to attain precise results in less amount of time. This research work proposes an image-processing technique for counting the number of red blood cells. It aims to examine and process the blood smear image, in order to support the counting of red blood cells and identify the number of normal and abnormal cells in the image automatically. K-medoids algorithm which is robust to external noise is used to extract the WBCs from the image. Granulometric analysis is used to separate the red blood cells from the white blood cells. The red blood cells obtained are counted using the labeling algorithm and circular Hough transform. The radius range for the circle-drawing algorithm is estimated by computing the distance of the pixels from the boundary which automates the entire algorithm. A comparison is done between the counts obtained using the labeling algorithm and circular Hough transform. Results of the work showed that circular Hough transform was more accurate in counting the red blood cells than the labeling algorithm as it was successful in identifying even the overlapping cells. The work also intends to compare the results of cell count done using the proposed methodology and manual approach. The work is designed to address all the drawbacks of the previous research work. The research work can be extended to extract various texture and shape features of abnormal cells identified so that diseases like anemia of inflammation and chronic disease can be detected at the earliest.

  4. The two plastic scintillator measuring system HBG-2

    International Nuclear Information System (INIS)

    Tran Manh Toan; Nguyen Trieu Tu

    1992-01-01

    The beta-gamma measuring system HBG-2 is described. It consist of: 1. Two 40mm Φ x 3mm plastic scintillators, a beta-filter, a shielded cell, and a coincidence circuit; 2. Four counting channels in which one is reversible. A device is capable of measuring low-level activity. Some special measuring methods provided by the equipment are presented, too. (author). 6 refs, 3

  5. Development of a scintillation flow-cell detection system for environmental restoration and waste management applications

    International Nuclear Information System (INIS)

    DeVol, T.A.; Branton, S.D.; Fjeld, R.A.

    1996-01-01

    A flow-cell detection system was developed utilizing a coincidence circuit and tested with BaF 2 , CaF 2 :Eu and scintillating glass. The coincidence detection system reduced the background from ∼200 cps to ∼0.5 cps. The detection efficiencies for these cells ranged from 0.38 to 0.66 for 45 Ca beta particles (E max = 0.257 MeV) and from 0.45 to 0.52 for 233 U alpha particles (E α = 4.8 MeV). The minimum detectable activity was calculated for a 30 s count time and determined to be in the range of 1-2 Bq

  6. Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvenskyy, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm2 of active detector area.

  7. 15 Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Sugimura, Shigeaki [Tokyo Denpa Co. Ltd., 82-5 Ueno, Ichinohe, Iwate 028-5321 (Japan); Endo, Haruyuki [Iwate Industrial Research Insutitute 3, 3-35-2 Shinden, Iioka, Morioka, Iwate 020-0852 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2012-01-15

    15 Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2 mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 1.95 mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15 min, and photon-counting CT was accomplished using gadolinium-based contrast media. - Highlights: Black-Right-Pointing-Pointer We developed a first-generation 15 Mcps photon-counting X-ray computed tomography (CT) system. Black-Right-Pointing-Pointer High-speed photon counting was carried out using a zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module in the X-ray CT system. Black-Right-Pointing-Pointer Tomography is accomplished by repeated translations and rotations of an object. Black-Right-Pointing-Pointer The minimum exposure time for obtaining a tomogram was 15 min. Black-Right-Pointing-Pointer The photon-counting CT was accomplished using gadolinium-based contrast media.

  8. LINKING THE COMMUNITY IN THE MIGRATORY RAPTOR BIRDS COUNTS (BIRDS: FALCONIFORM IN EASTERN CUBA

    Directory of Open Access Journals (Sweden)

    Naylien Barreda-Leyva

    2010-09-01

    Full Text Available Through interviews, workshops, conferences and sociocultural meeting, is carried out the linking of three communities from the high area of Gran Piedra to the studies and counts of migratory raptors birds developed in the east of Cuba. These small communities are near to one of the two points of count of migratory raptors of the region. During the interviews we could verify that some residents possessed basic knowledge on the raptors birds, but didn't know about the migration of these birds. 100 % of the interviewees coincided in that the main local problematic is the loss of birds of pen due to the attack of raptors, specifically the endemic Cuban threatened Accipitter gundlachi. The workshops were able to create spaces of exchange and reflection about the importance of the raptor’s conservation in the region. This linkage of cooperation and increasing awareness, allow an approaching between the communitarians and the researchers and volunteers that work in the counts of raptor birds in Cuba and the feedback of the scientific knowledge with the popular knowledge.

  9. Evaluating remotely sensed plant count accuracy with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers

    Science.gov (United States)

    Leiva, Josue Nahun; Robbins, James; Saraswat, Dharmendra; She, Ying; Ehsani, Reza

    2017-07-01

    This study evaluated the effect of flight altitude and canopy separation of container-grown Fire Chief™ arborvitae (Thuja occidentalis L.) on counting accuracy. Images were taken at 6, 12, and 22 m above the ground using unmanned aircraft systems. Plants were spaced to achieve three canopy separation treatments: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. Plants were placed on two different ground covers: black fabric and gravel. A counting algorithm was trained using Feature Analyst®. Total counting error, false positives, and unidentified plants were reported for images analyzed. In general, total counting error was smaller when plants were fully separated. The effect of ground cover on counting accuracy varied with the counting algorithm. Total counting error for plants placed on gravel (-8) was larger than for those on a black fabric (-2), however, false positive counts were similar for black fabric (6) and gravel (6). Nevertheless, output images of plants placed on gravel did not show a negative effect due to the ground cover but was impacted by differences in image spatial resolution.

  10. Determination of Potassium in Feldspars by Beta Counting Using a GM Multicounter System

    DEFF Research Database (Denmark)

    Bøtter-Jensen, Lars; Mejdahl, V.

    1985-01-01

    A gas flow multicounter system developed at Riso National Laboratory for low-level beta counting applications was adopted for measuring potassium in feldspars extracted from archaeological and geological materials, in connection with TL dating work. A guard counter reduces the background by using...

  11. A theoretical basis for the analysis of multiversion software subject to coincident errors

    Science.gov (United States)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques (known as fault-tolerant software) is an understanding of the impact of multiple joint occurrences of errors, referred to here as coincident errors. A theoretical basis for the study of redundant software is developed which: (1) provides a probabilistic framework for empirically evaluating the effectiveness of a general multiversion strategy when component versions are subject to coincident errors, and (2) permits an analytical study of the effects of these errors. An intensity function, called the intensity of coincident errors, has a central role in this analysis. This function describes the propensity of programmers to introduce design faults in such a way that software components fail together when executing in the application environment. A condition under which a multiversion system is a better strategy than relying on a single version is given.

  12. Using Compton scattering for random coincidence rejection

    International Nuclear Information System (INIS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  13. True-coincidence correction when using an LEPD for the determination of the lanthanides in the environment via k0-based INAA.

    Science.gov (United States)

    Freitas, M C; De Corte, F

    1994-01-01

    As part of a recent study on the environmental effects caused by the operation of a coal-fired power station at Sines, Portugal, k0-based instrumental neutron activation analysis (INAA) was used for the determination of the lanthanides (and also of tantalum and uranium) in plant leaves and lichens. In view of the accuracy and sensitivity of the determinations, it was advantageous to make use of a low-energy photon detector (LEPD). To begin with, in the present article, a survey is given of the former developments leading to user-friendly procedures for detection efficiency calibration of the LEPD and for correction for true-coincidence (cascade summing) effects. As a continuation of this, computer coincidence correction factors are now tabulated for the relevant low-energetic gamma-rays of the analytically interesting lanthanide, tantalum, and uranium radionuclides. Also the 140.5-keV line of 99Mo/99mTc is included, molybdenum being the comparator chosen when counting using an LEPD.

  14. A new 4π(LS)-γ coincidence counter at NCBJ RC POLATOM with TDCR detector in the beta channel.

    Science.gov (United States)

    Ziemek, T; Jęczmieniowski, A; Cacko, D; Broda, R; Lech, E

    2016-03-01

    A new 4π(LS)-γ coincidence system (TDCRG) was built at the NCBJ RC POLATOM. The counter consists of a TDCR detector in the beta channel and scintillation detector with NaI(Tl) crystal in the gamma channel. The system is equipped with a digital board with FPGA, which records and analyses coincidences in the TDCR detector and coincidences between the beta and gamma channels. The characteristics of the system and a scheme of the FPGA implementation with behavioral simulation are given. The TDCRG counter was validated by activity measurements on (14)C and (60)Co solutions standardized in RC POLATOM using previously validated methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Photoion Auger-electron coincidence measurements near threshold

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A.; Lindle, D.W.

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L 1 L 23 Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs

  16. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    International Nuclear Information System (INIS)

    El Kanawati, W.; Perot, B.; Carasco, C.; Eleon, C.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2011-01-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the 3 H(d,n) 4 H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  17. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    Energy Technology Data Exchange (ETDEWEB)

    El Kanawati, W. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Valkovic, V. [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia); Sudac, D.; Obhodas, J. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia)

    2011-10-21

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the {sup 3}H(d,n){sup 4}H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  18. Performance evaluation of BGO block detectors used in positron emission tomography and a coincidence system

    International Nuclear Information System (INIS)

    Kim, J. H.; Choi, Y.; Lim, K. C.; Lee, M. Y.; Woo, S. K.; Lee, K. H.; Kim, S. E.; Choi, Y. S.; Kim, B. T.

    1999-01-01

    We investigated the basic performances of the BGO block detectors, which is used in the GE Advance positron emission tomography. The block detector is composed of 36 small BGO crystals coupled to two 2-channel photomultiplier tubes. In this study, we measured the crystal map and the intrinsic energy resolution of the detector. The coincidence signals between the detectors were also obtained using F-18. The intrinsic energy resolution of the block detector was 69% FWHM at 140 keV and 33% FWHM at 511 keV. High quality crystal map and the coincidence signals between the detectors were successfully obtained. The timing resolution of the detectors are being measured. The results of this study demonstrate the feasibility of developing high performance positron emission tomography

  19. Photon counting detector for the personal radiography inspection system “SIBSCAN”

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.A.; Baru, S.E. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Grigoriev, D.N. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk 630073 (Russian Federation); Leonov, V.V. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Oleynikov, V.P. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Porosev, V.V., E-mail: porosev@inp.nsk.su [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Savinov, G.A. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation)

    2017-02-11

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  20. Photon counting detector for the personal radiography inspection system “SIBSCAN”

    International Nuclear Information System (INIS)

    Babichev, E.A.; Baru, S.E.; Grigoriev, D.N.; Leonov, V.V.; Oleynikov, V.P.; Porosev, V.V.; Savinov, G.A.

    2017-01-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  1. Design and development of multiple sample counting setup

    International Nuclear Information System (INIS)

    Rath, D.P.; Murali, S.; Babu, D.A.R.

    2010-01-01

    Full text: The analysis of active samples on regular basis for ambient air activity and floor contamination from radio chemical lab accounts for major chunk of the operational activity in Health Physicist's responsibility. The requirement for daily air sample analysis on immediate counting and delayed counting from various labs in addition to samples of smear swipe check of lab led to the urge for development of system that could cater multiple sample analysis in a time programmed manner on a single sample loading. A multiple alpha/beta counting system for counting was designed and fabricated. It has arrangements for loading 10 samples in slots in order, get counted in a time programmed manner with results displayed and records maintained in PC. The paper describes the design and development of multiple sample counting setup presently in use at the facility has resulted in reduction of man-hour consumption in counting and recording of the results

  2. Degree counting and Shadow system for Toda system of rank two: One bubbling

    Science.gov (United States)

    Lee, Youngae; Lin, Chang-Shou; Wei, Juncheng; Yang, Wen

    2018-04-01

    We initiate the program for computing the Leray-Schauder topological degree for Toda systems of rank two. This program still contains a lot of challenging problems for analysts. As the first step, we prove that if a sequence of solutions (u1k ,u2k) blows up, then one of hje ujk/∫Mhje ujk dvg, j = 1 , 2 tends to a sum of Dirac measures. This is so-called the phenomena of weak concentration. Our purposes in this article are (i) to introduce the shadow system due to the bubbling phenomena when one of parameters ρi crosses 4π and ρj ∉ 4 πN where 1 ≤ i ≠ j ≤ 2; (ii) to show how to calculate the topological degree of Toda systems by computing the topological degree of the general shadow systems; (iii) to calculate the topological degree of the shadow system for one point blow up. We believe that the degree counting formula for the shadow system would be useful in other problems.

  3. Coincidence-anticipation timing requirements are different in racket sports.

    Science.gov (United States)

    Akpinar, Selçuk; Devrilmez, Erhan; Kirazci, Sadettin

    2012-10-01

    The aim of this study was to compare the coincidence-anticipation timing accuracy of athletes of different racket sports with various stimulus velocity requirements. Ninety players (15 girls, 15 boys for each sport) from tennis (M age = 12.4 yr., SD = 1.4), badminton (M age = 12.5 yr., SD = 1.4), and table tennis (M age = 12.4 yr., SD = 1.2) participated in this study. Three different stimulus velocities, low, moderate, and high, were used to simulate the velocity requirements of these racket sports. Tennis players had higher accuracy when they performed under the low stimulus velocity compared to badminton and table tennis players. Badminton players performed better under the moderate speed comparing to tennis and table tennis players. Table tennis players had better performance than tennis and badminton players under the high stimulus velocity. Therefore, visual and motor systems of players from different racket sports may adapt to a stimulus velocity in coincidence-anticipation timing, which is specific to each type of racket sports.

  4. Track counting in radon dosimetry

    International Nuclear Information System (INIS)

    Fesenbeck, Ingo; Koehler, Bernd; Reichert, Klaus-Martin

    2013-01-01

    The newly developed, computer-controlled track counting system is capable of imaging and analyzing the entire area of nuclear track detectors. The high optical resolution allows a new analysis approach for the process of automated counting using digital image processing technologies. This way, higher exposed detectors can be evaluated reliably by an automated process as well. (orig.)

  5. Suitability study of using a coincidence monitor for room air radioactivity monitoring in a PET center

    International Nuclear Information System (INIS)

    Roellig, D.; Reichelt, C.; Iwatschenko-Borho, M.

    2001-01-01

    The application of radioactive nuclides in medicine may cause as well radioactive exposure of personnel (Medical Technical Assistants). In the present case the exposure of personnel in the area of medical positron-emission tomography (PET) within the Research Center of Rossendorf due to exhalation of the injected activity by the patient shall be investigated. For this purpose it is necessary to measure the activity concentration of the room air. Conventional methods such as collecting samples on special filters are not suitable due to the short half-life time of the used nuclides. Standard type continuous monitors are hardly suitable as well, because the injected activity of the patient and various radioactive sources required for the calibration of the PET-Camera produce an increased gamma background. In order to eliminate these disturbing influences a monitor has been constructed which uses CCM (cobalt coincidence method) developed by the company Thermo Eberline ESM. This method is specially suitable because upon each radioactive decay of PET nuclides positrons are emitted which in turn annihilate via the simultaneous emission of two 511 keV gamma quanta under an angle of 180 . The air to be measured is sucked through a cavity with two scintillation detectors on opposite sides. The coincident pulses produced by annihilating positrons inside the cavity are counted by a suitable electronic. Gamma quanta from outside the cavity can produce a pulse only in one detector and are rejected. Therefore no heavy lead shielding is required. Besides the mechanical construction of the monitor optimization and calibration for different PET-nuclides had to be performed. Special attention was paid to the sampling system. The air intake had to be close to the breathing zone of the MTA. The hose to the monitor had to be as short as possible. The target of the work was to design a model for an industrial monitor. (orig.) [de

  6. CDL, a Precise, Low-Cost Coincidence Detector Latch

    Directory of Open Access Journals (Sweden)

    Ralf Joost

    2015-12-01

    Full Text Available The electronic detection of the coincidence of two events is still a key ingredient for high-performance applications, such as Positron Emission Tomography and Quantum Optics. Such applications are demanding, since the precision of their calculations and thus their conclusions directly depend on the duration of the interval in which two events are considered coincidental. This paper proposes a new circuitry, called coincidence detector latch (CDL, which is derived from standard RS latches. The CDL has the following advantages: low complexity, fully synthesizable, and high scalability. Even in its simple implementation, it achieves a coincidence window width as short as 115 ps, which is more than 10 times better than that reported by recent research.

  7. Software correction of scatter coincidence in positron CT

    International Nuclear Information System (INIS)

    Endo, M.; Iinuma, T.A.

    1984-01-01

    This paper describes a software correction of scatter coincidence in positron CT which is based on an estimation of scatter projections from true projections by an integral transform. Kernels for the integral transform are projected distributions of scatter coincidences for a line source at different positions in a water phantom and are calculated by Klein-Nishina's formula. True projections of any composite object can be determined from measured projections by iterative applications of the integral transform. The correction method was tested in computer simulations and phantom experiments with Positologica. The results showed that effects of scatter coincidence are not negligible in the quantitation of images, but the correction reduces them significantly. (orig.)

  8. Experiments using coincidence methods

    International Nuclear Information System (INIS)

    Anwar Dhani.

    1978-01-01

    Experiments on γ spectroscopy using the simple coincidence techniques, including investigation of angular distribution of γ radiation from annihilation process in decay of Na 22 , γ - γ angular correlation technique in decay of Co 60 , decay scheme study of Bi 207 and life time measurement of nuclear Pb 207 excited state have been carried out. (author)

  9. Method for accounting for γ-γ-coincidences in compu-- ter reconstruction of energy level and γ-transition schemes

    International Nuclear Information System (INIS)

    Burmistrov, V.R.

    1979-01-01

    The principle and program of introduction of data on γ-γ- coincidences into the computer program are described. By analogy with the principle of accounting for γ-line intensities while constructing a system of levels according to the reference levels and γ-line spectrum, the ''leaving'' γ-transitions are introduced as an artificial level parameter. This parameter is a list of γ-lines leaving the given level or the lower levels bound with it. As a result of introducing such parameters, the accounting for the data on γ-γ-coincidences amounts to comparing two tables of numbers: a table of γ-line coincidences (an experimental one) and a table of ''leaving'' γ-transitions of every level. The program arranges the γ-lines in the preset system of equations with regard to the γ-line energies, their intensities and data on γ-γ- coincidences, and excludes consideration of the false levels. The calculation results are printed out in tables [ru

  10. Real-time passenger counting by active linear cameras

    Science.gov (United States)

    Khoudour, Louahdi; Duvieubourg, Luc; Deparis, Jean-Pierre

    1996-03-01

    The companies operating subways are very much concerned with counting the passengers traveling through their transport systems. One of the most widely used systems for counting passengers consists of a mechanical gate equipped with a counter. However, such simple systems are not able to count passengers jumping above the gates. Moreover, passengers carrying large luggage or bags may meet some difficulties when going through such gates. The ideal solution is a contact-free counting system that would bring more comfort of use for the passengers. For these reasons, we propose to use a video processing system instead of these mechanical gates. The optical sensors discussed in this paper offer several advantages including well defined detection areas, fast response time and reliable counting capability. A new technology has been developed and tested, based on linear cameras. Preliminary results show that this system is very efficient when the passengers crossing the optical gate are well separated. In other cases, such as in compact crowd conditions, reasonable accuracy has been demonstrated. These results are illustrated by means of a number of sequences shot in field conditions. It is our belief that more precise measurements could be achieved, in the case of compact crowd, by other algorithms and acquisition techniques of the line images that we are presently developing.

  11. Low-resource synchronous coincidence processor for positron emission tomography

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Guerra, Pedro; Santos, Andres

    2011-01-01

    We developed a new FPGA-based method for coincidence detection in positron emission tomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

  12. Absolute standardization of {sup 65}Zn through anti-coincidence method 4πβ-γ; Padronização absoluta do {sup 65}Zn pelo método de anticoincidência 4πβ-γ

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.R.L.; Silva, C.J. da; Delgado, J.U.; Silva, R.L. da; Poledna, R.; Iwahara, A., E-mail: aleiras@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Tavares, D.Y.S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The {sup 65}Zn solution was standardized using the absolute 4πβ(LS)-γ(NaI) anticoincidence counting method and beta efficiency extrapolation technique by the National Laboratory of Ionizing Radiation Metrology at the Institute of Radioprotection and Dosimetry (LNMRI/IRD). The result of the present standardization was consistent with the standardization previously performed by the coincidence counting method 4πβ(LS)-γ(NaI) in 2010. The combined uncertainty of the activity obtained was 0.37%, showing that the method is suitable for the standardization of {sup 65}Zn. (author)

  13. Feasibility of photon-counting K-edge imaging in X-ray and computed tomographic systems: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2011-01-01

    Conventional X-ray systems and X-ray computed tomography (CT) systems, which use detectors operated in the integrating mode, are not able to reflect spectral information because the detector output is proportional to the energy fluence integrated over the whole spectrum. Photon-counting detectors have been considered as alternative devices. These detectors can measure the photon energy deposited by each event and improve the image quality. In this study, we investigated the feasibility of K-edge imaging using a photon-counting detector and evaluated the capability of material decomposition in X-ray images. The geometries of X-ray imaging systems equipped with cadmium telluride (CdTe) detectors and phantoms consisting of different materials were designed using Geant4 Application for Tomographic Emission (GATE) version 6.0. To observe the effect of a discontinuity in the attenuation due to the K-edge of a high atomic number material, we chose the energy windows to be one below and one above the K-edge absorption energy of the target material. The contrast-to-noise ratios (CNRs) of the target materials were increased at selective energy levels above the K-edge absorption energy because the attenuation is more dramatically increased at energies above the K-edge absorption energy of the material than at energies below that. The CNRs for the target materials in the K-edge image were proportional to the material concentration. The results of this study show that K-edge imaging can be carried out in conventional X-ray systems and X-ray CT systems using CdTe photon-counting detectors and that the target materials can be separated from background materials by using K-edge imaging. The photon-counting detector has potential to provide improved image quality, and this study will be used as a basis for future studies on photon-counting X-ray imaging.

  14. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  15. Statistics of multi-tube detecting systems; Estadistica de sistemas de deteccion multitubo

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, P.; Grau Malonda, A.

    1994-07-01

    In this paper three new statistical theorems are demonstrated and applied. These theorems simplify very much the obtention of the formulae to compute the counting efficiency when the detection system is formed by several photomultipliers associated in coincidence and sum. These theorems are applied to several photomultiplier arrangements in order to show their potential and the application way. (Author) 6 refs.

  16. Development of standard ionization chamber counting system for activity measurements

    International Nuclear Information System (INIS)

    Pyun, Woong Beom; Lee, Hyun Koo; Lee, Hai Yong; Park, Tae Soon

    1998-01-01

    This study is to set up the activity measuring system using a 4π γ ionization chamber as used mainly in national standards laboratories that are responsible for radionuclide metrology. The software for automatic control between the electrometer and personal computer is developed using Microsoft visual basic 4.0 and IEEE488 Interface. The reproducibility of this 4π γ ionization chamber is about 0.02% and the background current is 0.054±0.024 pA. this 4π γ ionization chamber is calibrated by 6 standard gamma emitting radionuclides from KRISS. According to the result of this study, it is revealed that this 4π γ ionization chamber counting system can be used as a secondary standard instrument for radioactivity measurement

  17. Development of standard ionization chamber counting system for activity measurements

    CERN Document Server

    Pyun, W B; Lee, H Y; Park, T S

    1998-01-01

    This study is to set up the activity measuring system using a 4 pi gamma ionization chamber as used mainly in national standards laboratories that are responsible for radionuclide metrology. The software for automatic control between the electrometer and personal computer is developed using Microsoft visual basic 4.0 and IEEE488 Interface. The reproducibility of this 4 pi gamma ionization chamber is about 0.02% and the background current is 0.054+-0.024 pA. this 4 pi gamma ionization chamber is calibrated by 6 standard gamma emitting radionuclides from KRISS. According to the result of this study, it is revealed that this 4 pi gamma ionization chamber counting system can be used as a secondary standard instrument for radioactivity measurement.

  18. Differential coincidence circuit in the 10{sup -10} second region (1960); Circuit de coincidence differentiel dans le domaine de 10{sup -10} seconde (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Van Zurk, R [Commissariat a l' Energie Atomique, Lab. de Physique Nucleaire, Grenoble (France).Centre d' Etudes Nucleaires; [Grenoble-1 Univ., 38 (France); [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    A coincidence circuit of low resolution time using the differential coincidence Bay principle is described. It uses three 6BN6 tubes ordered to chronotron structure. Results with Radiotechnique 56 AVP photomultipliers and for {sup 60}Co {gamma}-{gamma} coincidences are 4,6.10{sup -10} s (full width at half maximum) if the efficiency is {epsilon} = 40 per cent and also 7,2.10{sup -10} s if {epsilon} = 85 per cent. (author) [French] Un circuit de coincidence differentiel du type de Bay, utilise en selecteur en temps a canal mobile, a ete construit pour la mesure des periodes {gamma} et des periodes d'annihilation du positon dans differents materiaux. Il comporte trois tubes 6BN6 disposes en structure chronotron. On a utilise les nouveaux photomultiplicateurs 56 AVP avec scintillateur plastique. Avec les coincidences {gamma}-{gamma} du {sup 60}Co, on obtient 2T 4,6.10{sup -10} s avec une efficacite de 40 pour cent et 2T = 7,2.10{sup -10} s avec une efficacite de 85 pour cent. (auteur)

  19. Performance evaluation of continuous blood sampling system for PET study. Comparison of three detector-systems

    CERN Document Server

    Matsumoto, K; Sakamoto, S; Senda, M; Yamamoto, S; Tarutani, K; Minato, K

    2002-01-01

    To measure cerebral blood flow with sup 1 sup 5 O PET, it is necessary to measure the time course of arterial blood radioactivity. We examined the performance of three different types of continuous blood sampling system. Three kinds of continuous blood sampling system were used: a plastic scintillator-based beta detector (conventional beta detector (BETA)), a bismuth germinate (BGO)-based coincidence gamma detector (Pico-count flow-through detector (COINC)) and a Phoswich detector (PD) composed by a combination of plastic scintillator and BGO scintillator. Performance of these systems was evaluated for absolute sensitivity, count rate characteristic, sensitivity to background gamnra photons, and reproducibility for nylon tube geometry. The absolute sensitivity of the PD was 0.21 cps/Bq for sup 6 sup 8 Ga positrons at the center of the detector. This was approximately three times higher than BETA, two times higher than COINC. The value measured with BETA was stable, even when background radioactivity was incre...

  20. Video Histories, Memories, and Coincidences

    DEFF Research Database (Denmark)

    Kacunko, Slavko

    2012-01-01

    Looping images allows us to notice things that we have never noticed before. Looping a small but exquisite selection of the video tapes of Marcel Odenbach, Dieter Kiessling and Matthias Neuenhofer may allow the discovering of Histories, Coincidences, and Infinitesimal Aesthetics inscribed...

  1. Correction for decay during counting in gamma spectrometry

    International Nuclear Information System (INIS)

    Nir-El, Y.

    2013-01-01

    A basic result in gamma spectrometry is the count rate of a relevant peak. Correction for decay during counting and expressing the count rate at the beginning of the measurement can be done by a multiplicative factor that is derived from integrating the count rate over time. The counting time substituted in this factor must be the live time, whereas the use of the real-time is an error that underestimates the count rate by about the dead-time (DT) (in percentage). This error of underestimation of the count rate is corroborated in the measurement of a nuclide with a high DT. The present methodology is not applicable in systems that include a zero DT correction function. (authors)

  2. A multiwire proportional counter for very high counting rates

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Guedes, G.P.; Tamura, E.; Pepe, I.M.; Oliveira, N.B.

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10 6 counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10 7 events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author)

  3. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  4. Coincident photoelectron spectroscopy on superconductors

    International Nuclear Information System (INIS)

    Voss, Stefan

    2011-01-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi 2 Sr 2 CaCu 2 O 8 from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  5. Differential coincidence circuit in the 10-10 second region (1960)

    International Nuclear Information System (INIS)

    Van Zurk, R.; Grenoble-1 Univ., 38; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    A coincidence circuit of low resolution time using the differential coincidence Bay principle is described. It uses three 6BN6 tubes ordered to chronotron structure. Results with Radiotechnique 56 AVP photomultipliers and for 60 Co γ-γ coincidences are 4,6.10 -10 s (full width at half maximum) if the efficiency is ε = 40 per cent and also 7,2.10 -10 s if ε = 85 per cent. (author) [fr

  6. Automatic classification of gammas-gamma coincidence matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J. M.; Gonzalez, J. A.

    1978-01-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a MULTI-8 minicomputer, is transferred to a new tape in 36 bit words, using the program LEC0M8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program CLAFI. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the UNIVAC 1106 computer of J.E.N. (Author) 4 refs

  7. Automatic classification of gamma-gamma coincidence matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.; Gonzalez Gonzalez, J.A.

    1978-01-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a Multi-8 minicomputer, is transferred to a new tape in 36 bit words, using the program Lecom8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program Clafi. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the Univac 1106 computer of J.E.N. (author)

  8. Identification of peaks in multidimensional coincidence {gamma}-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, Miroslav E-mail: fyzimiro@savba.sk; Kliman, Jan; Matousek, Vladislav; Veselsky, Martin; Turzo, Ivan

    2000-03-21

    In the paper a new algorithm to find peaks in two, three and multidimensional spectra, measured in large multidetector {gamma}-ray arrays, is derived. Given the dimension m, the algorithm is selective to m-fold coincidence peaks. It is insensitive to intersections of lower-fold coincidences, hereinafter called ridges.

  9. Identification of peaks in multidimensional coincidence γ-ray spectra

    International Nuclear Information System (INIS)

    Morhac, Miroslav; Kliman, Jan; Matousek, Vladislav; Veselsky, Martin; Turzo, Ivan

    2000-01-01

    In the paper a new algorithm to find peaks in two, three and multidimensional spectra, measured in large multidetector γ-ray arrays, is derived. Given the dimension m, the algorithm is selective to m-fold coincidence peaks. It is insensitive to intersections of lower-fold coincidences, hereinafter called ridges

  10. 15Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging.

    Science.gov (United States)

    Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-01-01

    15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Design and performance of an acquisition and control system for a positron camera with novel detectors

    International Nuclear Information System (INIS)

    Symonds-Tayler, J.R.N.; Reader, A.J.; Flower, M.A.

    1996-01-01

    A Sun-based data acquisition and control (DAQ) system has been designed for PETRRA, a whole-body positron camera using large-area BaF 2 -TMAE detectors. The DAQ system uses a high-speed digital I/O card (S16D) installed on the S-bus of a SPARC10 and a specially-designed Positron Camera Interface (PCI), which also controls both the gantry and horizontal couch motion. Data in the form of different types of 6-byte packets are acquired in list mode. Tests with a signal generator show that the DAQ system should be able to cater for coincidence count-rates up to 100 kcps. The predicted count loss due to the DAQ system is ∼13% at this count rate, provided asynchronous-read based software is used. The list-mode data acquisition system designed for PETRRA could be adapted for other 3D PET cameras with similar data rates

  12. Study of a 4{pi}{beta}-{gamma} coincidence system for absolute radionuclide activity measurement using plastic scintillators; Estudo de um sistema de coincidencias 4{pi}{beta}-{gamma} para a medida absoluta de atividade de radionuclideos empregando cintiladores plasticos

    Energy Technology Data Exchange (ETDEWEB)

    Piuvezam Filho, Helio

    2007-07-01

    The present work was intended to study a coincidence system 4{pi}(PS){beta}-{gamma} for absolute activity measurement using plastic scintillators in 4{pi} geometry. Along with experiments on the coincidence system, simulations were also performed applying the Monte Carlo Method, by means of codes PENELOPE and ESQUEMA. These simulations were performed in order to calculate the extrapolation curve of the coincidence system 4{pi}(PS){beta}-{gamma} and compare it to experimental data. A new geometry was proposed to the coincidence system adding up a second photomultiplier tube to the previous system for improving light collection from the plastic scintillator, as this system presented limitations in the minimum detected energy due to the presence of electronic noise and low gain. The results show that an improvement in the signal-to-noise ratio was obtained, as well as in the minimum detected energy. Moreover, there was an increase in the detection efficiency. With these modifications, it is now possible to calibrate radionuclides which emit low energy electrons or X-rays, increasing the number of radionuclides that can be standardized with this type of system.(author)

  13. Coincidence measurements in α/β/γ spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    International Nuclear Information System (INIS)

    Celis, B. de; Fuente, R. de la; Williart, A.; Celis Alonso, B. de

    2007-01-01

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for α/β/γ ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed α/β/γ field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of β particles in a plastic scintillator and γ rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF 2 (Eu) for β ray detection and NaI(Tl) for γ ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis

  14. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) an....../ppb. INTERPRETATION: Circulating T-lymphocyte levels may decline after surgery, regardless of implant type. Metal ions-particularly cobalt-may have a general depressive effect on T- and B-lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762.......BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA....... RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect...

  15. TasselNet: counting maize tassels in the wild via local counts regression network.

    Science.gov (United States)

    Lu, Hao; Cao, Zhiguo; Xiao, Yang; Zhuang, Bohan; Shen, Chunhua

    2017-01-01

    Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations. This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment. With 361 field images collected in four experimental fields across China between 2010 and 2015 and corresponding manually-labelled dotted annotations, a novel Maize Tassels Counting ( MTC ) dataset is created and will be released with this paper. To alleviate the in-field challenges, a deep convolutional neural network-based approach termed TasselNet is proposed. TasselNet can achieve good adaptability to in-field variations via modelling the local visual characteristics of field images and regressing the local counts of maize tassels. Extensive results on the MTC dataset demonstrate that TasselNet outperforms other state-of-the-art approaches by large margins and achieves the overall best counting

  16. TasselNet: counting maize tassels in the wild via local counts regression network

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2017-11-01

    Full Text Available Abstract Background Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations. Results This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment. With 361 field images collected in four experimental fields across China between 2010 and 2015 and corresponding manually-labelled dotted annotations, a novel Maize Tassels Counting (MTC dataset is created and will be released with this paper. To alleviate the in-field challenges, a deep convolutional neural network-based approach termed TasselNet is proposed. TasselNet can achieve good adaptability to in-field variations via modelling the local visual characteristics of field images and regressing the local counts of maize tassels. Extensive results on the MTC dataset demonstrate that TasselNet outperforms other state-of-the-art approaches by large

  17. A multiwire proportional counter for very high counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A F; Guedes, G P [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tamura, E [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Pepe, I M; Oliveira, N B [Bahia Univ., Salvador, BA (Brazil). Inst. de Fisica

    1997-12-01

    Preliminary measurements in a proportional counter with two independently counting wires showed that counting rates up to 10{sup 6} counts/s per wire can be reached without critical loss in the true versus measured linearity relation. Results obtained with a detector containing 30 active wires (2 mm pitch) are presented. To each wire is associated a fast pre-amplifier and a discriminator channel. Global counting rates in excess to 10{sup 7} events/s are reported. Data acquisition systems are described for 1D (real time) and 2D (off-line) position sensitive detection systems. (author) 13 refs., 6 figs.

  18. Systematic management of sealed source and nucleonic counting system in field service

    International Nuclear Information System (INIS)

    Mahadi Mustapha; Mohd Fitri Abdul Rahman; Jaafar Abdullah

    2005-01-01

    PAT group have received a lot of service from the oil and gas plant. All the services use sealed source and nucleonic counting system. This paper described the detail of management before going to the field service. This management is important to make sure the job is smoothly done and safe to the radiation worker and public. Furthermore this management in line with the regulation from LPTA. (Author)

  19. Interpretation of galaxy counts

    International Nuclear Information System (INIS)

    Tinsely, B.M.

    1980-01-01

    New models are presented for the interpretation of recent counts of galaxies to 24th magnitude, and predictions are shown to 28th magnitude for future comparison with data from the Space Telescope. The results supersede earlier, more schematic models by the author. Tyson and Jarvis found in their counts a ''local'' density enhancement at 17th magnitude, on comparison with the earlier models; the excess is no longer significant when a more realistic mixture of galaxy colors is used. Bruzual and Kron's conclusion that Kron's counts show evidence for evolution at faint magnitudes is confirmed, and it is predicted that some 23d magnitude galaxies have redshifts greater than unity. These may include spheroidal systems, elliptical galaxies, and the bulges of early-type spirals and S0's, seen during their primeval rapid star formation

  20. EcoCount

    Directory of Open Access Journals (Sweden)

    Phillip P. Allen

    2014-05-01

    Full Text Available Techniques that analyze biological remains from sediment sequences for environmental reconstructions are well established and widely used. Yet, identifying, counting, and recording biological evidence such as pollen grains remain a highly skilled, demanding, and time-consuming task. Standard procedure requires the classification and recording of between 300 and 500 pollen grains from each representative sample. Recording the data from a pollen count requires significant effort and focused resources from the palynologist. However, when an adaptation to the recording procedure is utilized, efficiency and time economy improve. We describe EcoCount, which represents a development in environmental data recording procedure. EcoCount is a voice activated fully customizable digital count sheet that allows the investigator to continuously interact with a field of view during the data recording. Continuous viewing allows the palynologist the opportunity to remain engaged with the essential task, identification, for longer, making pollen counting more efficient and economical. EcoCount is a versatile software package that can be used to record a variety of environmental evidence and can be installed onto different computer platforms, making the adoption by users and laboratories simple and inexpensive. The user-friendly format of EcoCount allows any novice to be competent and functional in a very short time.

  1. Limit of sensitivity of low-background counting equipment

    International Nuclear Information System (INIS)

    Homann, S.G.

    1991-01-01

    The Hazards Control Department's Radiological Measurements Laboratory (RML) analyzes many types of sample media in support of the Laboratory's health and safety program. The Department has determined that the equation for the minimum limit of sensitivity, MDC(α,β) = 2.71 + 3.29 (r b t s ) 1/2 is also adequate for RML counting systems with very-low-background levels. This paper reviews the normal distribution case and address the special case of determining the limit of sensitivity of a counting system when the background count rate is well known and small. In the latter case, we must use an exact test procedure based on the binomial distribution. However, the error in using the normal distribution for calculating a detection system's limit of sensitivity is not significant even as the total observed number of counts approaches or equals zero. 2 refs., 4 figs

  2. 'TrueCoinc' software utility for calculation of the true coincidence correction

    International Nuclear Information System (INIS)

    Sudar, S.

    2002-01-01

    The true coincidence correction plays an important role in the overall accuracy of the γ ray spectrometry especially in the case of present-day high volume detectors. The calculation of true coincidence corrections needs detailed nuclear structure information. Recently these data are available in computerized form from the Nuclear Data Centers through the Internet or on a CD-ROM of the Table of Isotopes. The aim has been to develop software for this calculation, using available databases for the levels data. The user has to supply only the parameters of the detector to be used. The new computer program runs under the Windows 95/98 operating system. In the framework of the project a new formula was prepared for calculating the summing out correction and calculation of the intensity of alias lines (sum peaks). The file converter for reading the ENDSF-2 type files was completed. Reading and converting the original ENDSF was added to the program. A computer accessible database of the X rays energies and intensities was created. The X ray emissions were taken in account in the 'summing out' calculation. Calculation of the true coincidence 'summing in' correction was done. The output was arranged to show independently two types of corrections and to calculate the final correction as multiplication of the two. A minimal intensity threshold can be set to show the final list only for the strongest lines. The calculation takes into account all the transitions, independently of the threshold. The program calculates the intensity of X rays (K, L lines). The true coincidence corrections for X rays were calculated. The intensities of the alias γ lines were calculated. (author)

  3. RBC count

    Science.gov (United States)

    ... by kidney disease) RBC destruction ( hemolysis ) due to transfusion, blood vessel injury, or other cause Leukemia Malnutrition Bone ... slight risk any time the skin is broken) Alternative Names Erythrocyte count; Red blood cell count; Anemia - RBC count Images Blood test ...

  4. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods.

    Science.gov (United States)

    Scare, J A; Slusarewicz, P; Noel, M L; Wielgus, K M; Nielsen, M K

    2017-11-30

    Fecal egg counts are emphasized for guiding equine helminth parasite control regimens due to the rise of anthelmintic resistance. This, however, poses further challenges, since egg counting results are prone to issues such as operator dependency, method variability, equipment requirements, and time commitment. The use of image analysis software for performing fecal egg counts is promoted in recent studies to reduce the operator dependency associated with manual counts. In an attempt to remove operator dependency associated with current methods, we developed a diagnostic system that utilizes a smartphone and employs image analysis to generate automated egg counts. The aims of this study were (1) to determine precision of the first smartphone prototype, the modified McMaster and ImageJ; (2) to determine precision, accuracy, sensitivity, and specificity of the second smartphone prototype, the modified McMaster, and Mini-FLOTAC techniques. Repeated counts on fecal samples naturally infected with equine strongyle eggs were performed using each technique to evaluate precision. Triplicate counts on 36 egg count negative samples and 36 samples spiked with strongyle eggs at 5, 50, 500, and 1000 eggs per gram were performed using a second smartphone system prototype, Mini-FLOTAC, and McMaster to determine technique accuracy. Precision across the techniques was evaluated using the coefficient of variation. In regards to the first aim of the study, the McMaster technique performed with significantly less variance than the first smartphone prototype and ImageJ (psmartphone and ImageJ performed with equal variance. In regards to the second aim of the study, the second smartphone system prototype had significantly better precision than the McMaster (psmartphone system were 64.51%, 21.67%, and 32.53%, respectively. The Mini-FLOTAC was significantly more accurate than the McMaster (psmartphone system (psmartphone and McMaster counts did not have statistically different accuracies

  5. Monte Carlo simulation of β γ coincidence system using plastic scintillators in 4π geometry

    Science.gov (United States)

    Dias, M. S.; Piuvezam-Filho, H.; Baccarelli, A. M.; Takeda, M. N.; Koskinas, M. F.

    2007-09-01

    A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, has been applied for simulating a 4 πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4 π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60Co and 133Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4 πβ(PC)-γ coincidence system.

  6. Double counting in LDA + DMFT-The example of NiO

    Energy Technology Data Exchange (ETDEWEB)

    Karolak, M., E-mail: mkarolak@physnet.uni-hamburg.d [I. Institut fuer Theoretische Physik, Universitaet Hamburg, Jungiusstrasse 9, D-20355 Hamburg (Germany); Ulm, G.; Wehling, T. [I. Institut fuer Theoretische Physik, Universitaet Hamburg, Jungiusstrasse 9, D-20355 Hamburg (Germany); Mazurenko, V. [Theoretical Physics and Applied Mathematic Department, Urals State Technical University, 620002, Mira street 19, Yekaterinburg (Russian Federation); Poteryaev, A. [Institute of Metal Physics, Russian Academy of Sciences, 620041 Yekaterinburg GSP-170 (Russian Federation); Lichtenstein, A. [I. Institut fuer Theoretische Physik, Universitaet Hamburg, Jungiusstrasse 9, D-20355 Hamburg (Germany)

    2010-07-15

    An intrinsic issue of the LDA + DMFT approach is the so called double counting of interaction terms. How to choose the double-counting potential in a manner that is both physically sound and consistent is unknown. We have conducted an extensive study of the charge-transfer system NiO in the LDA + DMFT framework using quantum Monte Carlo and exact diagonalization as impurity solvers. By explicitly treating the double-counting correction as an adjustable parameter we systematically investigated the effects of different choices for the double counting on the spectral function. Different methods for fixing the double counting can drive the result from Mott insulating to almost metallic. We propose a reasonable scheme for the determination of double-counting corrections for insulating systems.

  7. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    Science.gov (United States)

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  8. Loss-Free Counting with Digital Signal Processors

    International Nuclear Information System (INIS)

    Markku Koskelo; Dave Hall; Martin Moslinger

    2000-01-01

    Loss-free-counting (LFC) techniques have frequently been used with traditional analog pulse processing systems to compensate for the time or pulses lost when a spectroscopy system is unavailable (busy) for processing an accepted pulse. With the availability of second-generation digital signal processing (DSP) electronics that offer a significantly improved performance for both high and low count rate applications, the LFC technique has been revisited. Specific attention was given to the high and ultra-high count rate behavior, using high-purity germanium (HPGe) detectors with both transistor reset preamplifiers (TRP) and conventional RC preamplifiers. The experiments conducted for this work show that the known LFC techniques further benefit when combined with modern DSP pulse shaping

  9. Systemic Autoimmune, Rheumatic Diseases and Coinciding Psoriasis: Data from a Large Single-Centre Registry and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Anna Bazsó

    2015-01-01

    Full Text Available Psoriasis is a systemic immune-inflammatory disease characterized by chronic or recurrent skin symptoms, psoriatic arthritis, enthesopathy, and uveitis. Psoriasis has recently been published to appear with various autoimmune disorders, but the coexistence has been systematically reviewed by only few studies until now. In the present study, charts and electronic database of 4344 patients with various systemic autoimmune disorders, under regular medical control at our department, were reviewed retrospectively searching for association with psoriasis. Hereby, we demonstrate 25 psoriatic patients coinciding with various systemic autoimmune diseases. The coexistence of psoriasis and autoimmune diseases resulted in the worsening of the clinical outcome of the autoimmune diseases as indicated by higher frequency and dosages of glucocorticoid use, need for biologicals, and other comorbidities. These results suggest common environmental and genetic background as well as therapeutic possibilities in the future.

  10. Interaction of multicharged ions with molecules (CO2, C60) by coincident electron spectroscopy

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    2001-01-01

    First results for the investigation of electron capture processes in collisions between multicharged ions and molecule targets using electron spectroscopy in coincidence with charged fragments, are presented. It is shown that a much more detailed investigation of the capture reaction can be achieved using molecular instead of heavy atomic targets provided that an analysis of the target dissociation is made. The collisional systems 18 O 8+ +Ar, CO 2 and C 60 have been studied at 80 keV. Non coincident electron spectra as well as first results of double or triple coincidence experiments are discussed. Kinetic energy distributions of the C n + fragments (n=1 to 8) produced in multiple capture processes from C 60 target are given. A detailed investigation of the double capture process with CO 2 molecule allows the measurement of kinetic energy release distributions (KERD) which characterize the dissociation of CO 2 2+ molecular ions; our results are found to be very similar to those measured in double photoionisation experiments. (orig.)

  11. Computerized radioautographic grain counting

    International Nuclear Information System (INIS)

    McKanna, J.A.; Casagrande, V.A.

    1985-01-01

    In recent years, radiolabeling techniques have become fundamental assays in physiology and biochemistry experiments. They also have assumed increasingly important roles in morphologic studies. Characteristically, radioautographic analysis of structure has been qualitative rather than quantitative, however, microcomputers have opened the door to several methods for quantifying grain counts and density. The overall goal of this chapter is to describe grain counting using the Bioquant, an image analysis package based originally on the Apple II+, and now available for several popular microcomputers. The authors discuss their image analysis procedures by applying them to a study of development in the central nervous system

  12. The Cognitive Advantages of Counting Specifically: A Representational Analysis of Verbal Numeration Systems in Oceanic Languages.

    Science.gov (United States)

    Bender, Andrea; Schlimm, Dirk; Beller, Sieghard

    2015-10-01

    The domain of numbers provides a paradigmatic case for investigating interactions of culture, language, and cognition: Numerical competencies are considered a core domain of knowledge, and yet the development of specifically human abilities presupposes cultural and linguistic input by way of counting sequences. These sequences constitute systems with distinct structural properties, the cross-linguistic variability of which has implications for number representation and processing. Such representational effects are scrutinized for two types of verbal numeration systems-general and object-specific ones-that were in parallel use in several Oceanic languages (English with its general system is included for comparison). The analysis indicates that the object-specific systems outperform the general systems with respect to counting and mental arithmetic, largely due to their regular and more compact representation. What these findings reveal on cognitive diversity, how the conjectures involved speak to more general issues in cognitive science, and how the approach taken here might help to bridge the gap between anthropology and other cognitive sciences is discussed in the conclusion. Copyright © 2015 Cognitive Science Society, Inc.

  13. Shielding correction to bodywork of in-situ object counting system

    International Nuclear Information System (INIS)

    Feng Tiancheng; Chen Wei; Long Bin; Su Chuanying; Wu Rui; Jia Mingyan; Cheng Jianping

    2009-01-01

    This paper presents the methods of experiment and calculation for shielding correction to the bodywork of in-situ object counting system (ISOCS) using a plane source of 152 Eu. The shielding correction coefficients were obtained in the conditions that the HPGe detector of BE5030 with the collimators of 50 mm-90 degree, 50 mm-30 degree or 50 mm-180 degree, and the detector distance 58.2 cm from ground surface. The relationships between the shielding correction coefficients and γ-ray energies were fitted by the least square method, for the shielding correction calculation of any energy within 122-1 408 keV by interpolation. (authors)

  14. An automatic counting and recording system (1963); Ensemble de comptage a enregistrement automatique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-09-15

    An automatic control, counting and programing system for the collection of single crystal diffractometry data was designed by the author for a neutron diffractometer in 1958 at C.E.N - Grenoble. A part of the whole instrument, 'The Automatic Counting and Recording System', is described in this paper. Its applications are numerous and extensive, e.g.: the system has been designed for neutron diffractometer, but it can easily be adapted either for use with X-rays or measurement of mean life in {beta} decay analysis. (author) [French] Un ensemble automatique de telecommande, comptage et programmation pour la diffractometrie a cristal unique a ete etudie et realise par l'auteur pour la diffraction des neutrons en 1958 au C.E.N - Grenoble. Le present rapport decrit a ''l'Ensemble de Comptage a Enregistrement Automatique'' qui est une partie de l'appareillage complet. Ses applications sont nombreuses et peuvent s'etendre a de nouveaux domaines. En effet cet ensemble qui a ete etudie pour fonctionner avec un diffractometre a neutron, peut facilement s'adapter a la technique de diffraction des rayons X ou par exemple a celle de decroisasnce d'activite {beta}. (auteur)

  15. Multiple capture investigated by coincident electron spectroscopy in X7++Ar, at 70 keV

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.

    1999-01-01

    The multiple electron capture in N 7+ + Ar and F 7+ (1s 2 ) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus's model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N 7+ + Ar collisions. (orig.)

  16. Automation of Sample Transfer and Counting on Fast Neutron ActivationSystem

    International Nuclear Information System (INIS)

    Dewita; Budi-Santoso; Darsono

    2000-01-01

    The automation of sample transfer and counting were the transfer processof the sample to the activation and counting place which have been done byswitch (manually) previously, than being developed by automaticallyprogrammed logic instructions. The development was done by constructed theelectronics hardware and software for that communication. Transfer timemeasurement is on seconds and was done automatically with an error 1.6 ms.The counting and activation time were decided by the user on seconds andminutes, the execution error on minutes was 8.2 ms. This development systemwill be possible for measuring short half live elements and cyclic activationprocesses. (author)

  17. Automated uranium analysis by delayed-neutron counting

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Loevborg, L.; Christiansen, E.M.

    1980-10-01

    Automated uranium analysis by fission-induced delayed-neutron counting is described. A short description is given of the instrumentation including transfer system, process control, irradiation and counting sites, and computer operations. Characteristic parameters of the facility (sample preparations, background, and standards) are discussed. A sensitivity of 817 +- 22 counts per 10 -6 g U is found using irradiation, delay, and counting times of 20 s, 5 s, and 10 s, respectively. Presicion is generally less than 1% for normal geological samples. Critical level and detection limits for 7.5 g samples are 8 and 16 ppb, respectively. The importance of some physical and elemental interferences are outlined. Dead-time corrections of measured count rates are necessary and a polynomical expression is used for count rates up to 10 5 . The presence of rare earth elements is regarded as the most important elemental interference. A typical application is given and other areas of application are described. (auther)

  18. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  19. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  20. Counting statistics in low level radioactivity measurements fluctuating counting efficiency

    International Nuclear Information System (INIS)

    Pazdur, M.F.

    1976-01-01

    A divergence between the probability distribution of the number of nuclear disintegrations and the number of observed counts, caused by counting efficiency fluctuation, is discussed. The negative binominal distribution is proposed to describe the probability distribution of the number of counts, instead of Poisson distribution, which is assumed to hold for the number of nuclear disintegrations only. From actual measurements the r.m.s. amplitude of counting efficiency fluctuation is estimated. Some consequences of counting efficiency fluctuation are investigated and the corresponding formulae are derived: (1) for detection limit as a function of the number of partial measurements and the relative amplitude of counting efficiency fluctuation, and (2) for optimum allocation of the number of partial measurements between sample and background. (author)

  1. Development of Simultaneous Beta-and-Coincidence-Gamma Imager for Plant Imaging Research

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuan-Chuan [Washington Univ., St. Louis, MO (United States). School of Medicine

    2016-09-30

    The goal of this project is to develop a novel imaging system that can simultaneously acquire beta and coincidence gamma images of positron sources in thin objects such as leaves of plants. This hybrid imager can be used to measure carbon assimilation in plants quantitatively and in real-time after C-11 labeled carbon-dioxide is administered. A better understanding of carbon assimilation, particularly under the increasingly elevated atmospheric CO2 level, is extremely critical for plant scientists who study food crop and biofuel production. Phase 1 of this project is focused on the technology development with 3 specific aims: (1) develop a hybrid detector that can detect beta and gamma rays simultaneously; (2) develop an imaging system that can differentiate these two types of radiation and acquire beta and coincidence gamma images in real-time; (3) develop techniques to quantify radiotracer distribution using beta and gamma images. Phase 2 of this project is to apply technologies developed in phase 1 to study plants using positron-emitting radionuclide such as 11C to study carbon assimilation in biofuel plants.

  2. Determination of the absolute activity by the coincidences 4πβ-γ method

    International Nuclear Information System (INIS)

    Urcelay Silva, A.J.

    1975-01-01

    The 4π beta-gamma coincidence method for absolute determination of activities is extremely important in the production of high-precision radioactive sources. By means of this method it is possible to obtain absolute measurements of decay to within 0.1%. Thanks to the high efficiency of the 4π counter, most of the corrections required - background, random coincidences, dead time, decay scheme and detector efficiency - are small. The paper describes the experimental set-up showing the pulses in the two branches of the system, together with the conditions under which the 4πbeta flux detector functions. To determine whether the system was functioning satisfactorily, the activity of four cobalt-60 standards (supplied by the International Bureau of Weights and Measures based at Sevres in France) was determined and the differences obtained were less than 0.5% with respect to the certificates accompanying the sources. Alterations to the flux detector are suggested so that higher accuracy may be obtained. (author)

  3. Counting and classifying attractors in high dimensional dynamical systems.

    Science.gov (United States)

    Bagley, R J; Glass, L

    1996-12-07

    Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.

  4. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  5. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  6. The development of neutron activation, sample transportation and γ-ray counting routine system for numbers of geological samples

    International Nuclear Information System (INIS)

    Shibata Shin-nosuke; Tanaka, Tsuyoshi; Minami, Masayo

    2001-01-01

    A new gamma-ray counting and data processing system for non-destructive neutron activation analysis has been set up in Radioisotope Center in Nagoya University. The system carry out gamma-ray counting, sample change and data processing automatically, and is able to keep us away from parts of complicated operations in INAA. In this study, we have arranged simple analytical procedure that makes practical works easier than previous. The concrete flow is described from the reparation of powder rock samples to gamma-ray counting and data processing by the new INAA system. Then it is run over that the analyses used two Geological Survey of Japan rock reference samples JB-1a and JG-1a in order to evaluate how the new analytical procedure give any speediness and accuracy for analyses of geological materials. Two United States Geological Survey reference samples BCR-1 and G-2 used as the standard respectively. Twenty two elements for JB-1a and 25 elements for JG-1a were analyzed, the uncertainty are <5% for Na, Sc, Fe, Co, La, Ce, Sm, Eu, Yb, Lu, Hf, Ta and Th, and of <10% for Cr, Zn, Cs, Ba, Nd, Tb and U. This system will enable us to analyze more than 1500 geologic samples per year. (author)

  7. Methematical model of a neutron counting system used for the characteristics control of spontaneously fissioning material

    International Nuclear Information System (INIS)

    Bessis, J.

    1986-09-01

    Methods are described for calculating the probabilities, p(m), of detection of m neutrons, inside a split millisecond counting gate, m varying from zero to some units. At the present stage, these methods suppose the source to be very small. Using the generating function concept, they concern both possible modes of the counting system, for opening gates, i.e.: 1) Trigger pulses randomly with regard to the emitted neutrons, 2) Trigger pulses from the detected neutrons themselves. Computed values are finally compared to the measured ones. This comparison seems to be very favourable, since the respective deviations are often lower than 1 % [fr

  8. Neutron coincidence counting based on time interval analysis with dead time corrected one and two dimensional Rossi-alpha distributions: an application for passive neutron waste assay

    International Nuclear Information System (INIS)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1996-03-01

    The report describes a new neutron multiplicity counting method based on Rossi-alpha distributions. The report also gives the necessary dead time correction formulas for the multiplicity counting method. The method was tested numerically using a Monte Carlo simulation of pulse trains. The use of this multiplicity method in the field of waste assay is explained: it can be used to determine the amount of fissile material in a waste drum without prior knowledge of the actual detection efficiency

  9. Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    International Nuclear Information System (INIS)

    Kivimaeki, A.; Alvarez-Ruiz, J.; Coreno, M.; Simone, M. de; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M.

    2010-01-01

    Low-energy photoelectron-vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s -1 → 2p -1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO + ions into O + + N* or N + + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission.

  10. Homicides by Police: Comparing Counts From the National Violent Death Reporting System, Vital Statistics, and Supplementary Homicide Reports.

    Science.gov (United States)

    Barber, Catherine; Azrael, Deborah; Cohen, Amy; Miller, Matthew; Thymes, Deonza; Wang, David Enze; Hemenway, David

    2016-05-01

    To evaluate the National Violent Death Reporting System (NVDRS) as a surveillance system for homicides by law enforcement officers. We assessed sensitivity and positive predictive value of the NVDRS "type of death" variable against our study count of homicides by police, which we derived from NVDRS coded and narrative data for states participating in NVDRS 2005 to 2012. We compared state counts of police homicides from NVDRS, Vital Statistics, and Federal Bureau of Investigation Supplementary Homicide Reports. We identified 1552 police homicides in the 16 states. Positive predictive value and sensitivity of the NVDRS "type of death" variable for police homicides were high (98% and 90%, respectively). Counts from Vital Statistics and Supplementary Homicide Reports were 58% and 48%, respectively, of our study total; gaps varied widely by state. The annual rate of police homicide (0.24/100,000) varied 5-fold by state and 8-fold by race/ethnicity. NVDRS provides more complete data on police homicides than do existing systems. Expanding NVDRS to all 50 states and making 2 improvements we identify will be an efficient way to provide the nation with more accurate, detailed data on homicides by law enforcement.

  11. Serum Copper Level Significantly Influences Platelet Count, Lymphocyte Count and Mean Cell Hemoglobin in Sickle Cell Anemia

    Directory of Open Access Journals (Sweden)

    Okocha Chide

    2015-12-01

    Full Text Available Background Changes in serum micro nutrients levels affect a number of critically important metabolic processes; these could potentially influence blood counts and ultimately disease presentation in patients with sickle cell anemia (SCA. Objectives To evaluate the influence of serum micro-nutrients levels; zinc, copper, selenium and magnesium on blood counts in steady state SCA patients. Methods A cross sectional study that involved 28 steady state adult SCA subjects. Seven milliliters (mls of blood was collected; 3 mls was for hemoglobin electrophoresis and full blood count determination while 4 mls was for measurement of serum micro nutrients levels, by the atomic absorption spectrophotometry. Correlation between serum micro-nutrient levels and blood counts was done by the Pearson’s linear regression. Ethical approval was obtained from the institutional review board and each participant gave informed consent. All data was analyzed by SPSS software version 20. Results There was a significant correlation between serum copper levels and mean cell hemoglobin (MCH, platelet and lymphocyte counts (r = 0.418; P = 0.02, r = -0.376; P = 0.04 and r = -0.383; P = 0.04, respectively. There were no significant correlations between serum levels of other micro nutrients (selenium, zinc and magnesium and blood counts. Conclusions Copper influences blood count in SCA patients probably by inducing red cell haemolysis, oxidant tissue damage and stimulating the immune system.

  12. Optimized coincidence Doppler broadening spectroscopy using deconvolution algorithms

    International Nuclear Information System (INIS)

    Ho, K.F.; Ching, H.M.; Cheng, K.W.; Beling, C.D.; Fung, S.; Ng, K.P.

    2004-01-01

    In the last few years a number of excellent deconvolution algorithms have been developed for use in ''de-blurring'' 2D images. Here we report briefly on one such algorithm we have studied which uses the non-negativity constraint to optimize the regularization and which is applied to the 2D image like data produced in Coincidence Doppler Broadening Spectroscopy (CDBS). The system instrumental resolution functions are obtained using the 514 keV line from 85 Sr. The technique when applied to a series of well annealed polycrystalline metals gives two photon momentum data on a quality comparable to that obtainable using 1D Angular Correlation of Annihilation Radiation (ACAR). (orig.)

  13. Electron irradiation effect of polyurethane using coincidence doppler-broadening spectroscopy

    International Nuclear Information System (INIS)

    Yang, D.J.; Zhang, J.D.; Leung, J.K.C.; Beling, C.D.; Liu, L.B.

    2006-01-01

    Full text: To understand the electron irradiation effects on polymer, polyether-urethane (ETPU) samples of 2m m in thickness and 1 0 m m in diameter were irradiated by a 1.8M eV electron beam with beam current of 3 ma at room temperature. The irradiated doses are 5 kGy, 10 kGy, 15 kGy, 30 kGy, 100 kGy and 150 kGy. ETPU was manufactured by mixing PTMG-100, TDI-100 and MOCA. The momentum density distributions (MMDs) of electrons taking part in the annihilation processes of positron-electron pairs in ETPU have been measured by coincidence Doppler-broadening spectroscopy (CDBS). By presenting the ratio of the counts in every channel of the measured CDB spectrum to the corresponding counts from a reference spectrum (pristine ETPU), we observed that the change in MMDs is not significant for doses lower than 10 kGy. However, high momentum part of MMDs exhibit an obvious decrease for dose exceeding 15 kGy and then slowly down to steady with doses until 150 kGy. This valley occurs at around 15 x1 0 3m οc and is well known as oxygen-specific, indicative of a less positron trapping by oxygen atoms in some samples of higher dose radiation. It is postulated that the radiation will break the crosslinkings, allowing the trace water and oxygen molecules to be released from the sample surface. Excess NCO groups in ETPU would crosslink with urethane and urea groups to produce allophanate and biuret groups. After receiving a certain amount of electron irradiation, crosslinked allophanate and biuret groups would produce degradation. Thus, residual water and oxygen trapped in ETPU by the crosslinking would diffuse out. However, the irradiation doses up to 150 kGy in this experiment are still not large enough to induce strong degradation of urethane and urea groups

  14. Simplified detection system for neuroreceptor studies in the human brain

    International Nuclear Information System (INIS)

    Bice, A.N.; Wagner, H.N. Jr.; Frost, J.J.

    1986-01-01

    A simple, inexpensive dual-detector system has been developed for measurement of positronemitting receptor-binding drugs in the human brain. This high efficiency coincidence counting system requires that only a few hundred microcuries of labeled drug be administered to the subject, thereby allowing for multiple studies without an excessive radiation dose. Measurement of the binding of [11C]carfentanil, a high affinity synthetic opiate, to opiate receptors in the presence and in the absence of a competitive opiate antagonist indicates the potential utility of this system for estimating different degrees of receptor occupation in the human brain

  15. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  16. An automatic counting and recording system (1963); Ensemble de comptage a enregistrement automatique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-09-15

    An automatic control, counting and programing system for the collection of single crystal diffractometry data was designed by the author for a neutron diffractometer in 1958 at C.E.N - Grenoble. A part of the whole instrument, 'The Automatic Counting and Recording System', is described in this paper. Its applications are numerous and extensive, e.g.: the system has been designed for neutron diffractometer, but it can easily be adapted either for use with X-rays or measurement of mean life in {beta} decay analysis. (author) [French] Un ensemble automatique de telecommande, comptage et programmation pour la diffractometrie a cristal unique a ete etudie et realise par l'auteur pour la diffraction des neutrons en 1958 au C.E.N - Grenoble. Le present rapport decrit a ''l'Ensemble de Comptage a Enregistrement Automatique'' qui est une partie de l'appareillage complet. Ses applications sont nombreuses et peuvent s'etendre a de nouveaux domaines. En effet cet ensemble qui a ete etudie pour fonctionner avec un diffractometre a neutron, peut facilement s'adapter a la technique de diffraction des rayons X ou par exemple a celle de decroisasnce d'activite {beta}. (auteur)

  17. Coincidence imaging of polyatomic molecules via laser-induced Coulomb explosion

    International Nuclear Information System (INIS)

    Gagnon, J; Corkum, P B; Bhardwaj, V R; Lee, Kevin F; Rayner, D M

    2008-01-01

    We extend laser-induced Coulomb explosion imaging to retrieve the structure of the five-atom dichloromethane (CH 2 Cl 2 ) molecule by developing coincidence imaging and geometry optimization techniques. By detecting all five atoms in coincidence, we show that, from the measured velocity vectors, the geometry of the molecules can be reconstructed.

  18. Rejection of randomly coinciding events in Li{sub 2}{sup 100}MoO{sub 4} scintillating bolometers using light detectors based on the Neganov-Luke effect

    Energy Technology Data Exchange (ETDEWEB)

    Chernyak, D.M.; Danevich, F.A. [Institute for Nuclear Research, Kyiv (Ukraine); Dumoulin, L.; Marcillac, P. de; Marnieros, S.; Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Giuliani, A.; Mancuso, M. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); DISAT, Universita dell' Insubria, Como (Italy); Nones, C. [CEA Saclay, DSM/IRFU, Gif-sur-Yvette (France); Poda, D.V. [Institute for Nuclear Research, Kyiv (Ukraine); CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay (France); Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); INFN, Rome (Italy)

    2017-01-15

    Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate {sup 100}Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double-beta decay of {sup 100}Mo in enriched Li{sub 2}{sup 100}MoO{sub 4} detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of ∝750 on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of ∝6 x 10{sup -5} counts/(keV.kg.y), to the background counting rate in the region of interest for a large volume (∝90 cm{sup 3}) Li{sub 2}{sup 100}MoO{sub 4} detector. This background level is very encouraging in view of a possible use of the Li{sub 2}{sup 100}MoO{sub 4} solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project. (orig.)

  19. Counting systems in wavelength and energy dispersive spectrometry: the principle and how to check and to adjust

    International Nuclear Information System (INIS)

    Maurice, Francoise

    1978-03-01

    The purpose of this report is to define the optimum operating conditions of the whole counting systems in wavelength dispersive spectrometry (mostly used in conjunction with electron microprobes) and in energy dispersive spectrometry (more often connected to scanning electron microscopes). For both these techniques, the principle of the detector and its attached counting electronics is recalled; a check list is then given for verifying the qualities of the apparatus and detecting the defects; finally the best operating conditions are defined as essential in an analytical instrument whose reliability has to be perfect [fr

  20. Design of a coincidence processing board for a dual-head PET scanner for breast imaging

    International Nuclear Information System (INIS)

    Martinez, J.D.; Toledo, J.; Esteve, R.; Sebastia, A.; Mora, F.J.; Benlloch, J.M.; Fernandez, M.M.; Gimenez, M.; Gimenez, E.N.; Lerche, Ch.W.; Pavon, N.; Sanchez, F.

    2005-01-01

    This paper describes the design of a coincidence processing board for a dual-head Positron Emission Tomography (PET) scanner for breast imaging. The proposed block-oriented data acquisition system relies on a high-speed DSP processor for fully digital trigger and on-line event processing that surpasses the performance of traditional analog coincidence detection systems. A mixed-signal board has been designed and manufactured. The analog section comprises 12 coaxial inputs (six per head) which are digitized by means of two 8-channel 12-bit 40-MHz ADCs in order to acquire the scintillation pulse, the charge division signals and the depth of interaction within the scintillator. At the digital section, a state-of-the-art FPGA is used as deserializer and also implements the DMA interface to the DSP processor by storing each digitized channel into a fast embedded FIFO memory. The system incorporates a high-speed USB 2.0 interface to the host computer

  1. Determination of true coincidence correction factors using Monte-Carlo simulation techniques

    Directory of Open Access Journals (Sweden)

    Chionis Dionysios A.

    2014-01-01

    Full Text Available Aim of this work is the numerical calculation of the true coincidence correction factors by means of Monte-Carlo simulation techniques. For this purpose, the Monte Carlo computer code PENELOPE was used and the main program PENMAIN was properly modified in order to include the effect of the true coincidence phenomenon. The modified main program that takes into consideration the true coincidence phenomenon was used for the full energy peak efficiency determination of an XtRa Ge detector with relative efficiency 104% and the results obtained for the 1173 keV and 1332 keV photons of 60Co were found consistent with respective experimental ones. The true coincidence correction factors were calculated as the ratio of the full energy peak efficiencies was determined from the original main program PENMAIN and the modified main program PENMAIN. The developed technique was applied for 57Co, 88Y, and 134Cs and for two source-to-detector geometries. The results obtained were compared with true coincidence correction factors calculated from the "TrueCoinc" program and the relative bias was found to be less than 2%, 4%, and 8% for 57Co, 88Y, and 134Cs, respectively.

  2. Study on the eγ coincidences in the 169Lu decay

    International Nuclear Information System (INIS)

    Batsev, S.; Bonch-Osmolovskaya, N.A.; Budzyak, A.; Kuznetsov, V.V.; Usmanov, R.R.

    1979-01-01

    The 169 Lu→ 169 Yb decay scheme was analyzed on the basis of measurements of eγ coincidence. The 169 Lu sources were obtained by irradiating a tantalum target by 660 MeV protons. The eγ-coincidence spectra were measured by an ironless β-spectrometer with a toroidal magnetic field and a detector. The γ-ray and eγ-coincidence spectra were processed by a computer. The results of processing the 169 Lu coincidence spectra are tabulated. No excited states of 169 Yb not confirmed by γγ and eγ coincidences (except for the head level of the 3/2 + (651) 720 keV band) remain in the 169 Lu decay scheme proposed. Weak transitions with the total intensity of no more than 3.3% per a 169 Lu decay have remained unarranged, they should discharge weakly excited levels of 169 Yb. Probabilities of the 169 Yb level population per a 169 Lu decay and the corresponding values of probabilities of transitions in them are presented. As a whole, the 169 Lu decay scheme involves 60 levels, 31 states of them are new

  3. Tower counts

    Science.gov (United States)

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  4. Field test and calibration of neutron coincidence counters for high-mass plutonium samples

    International Nuclear Information System (INIS)

    Menlove, H.O.; Dickinson, R.J.; Douglas, I.

    1987-02-01

    Five different neutron coincidence systems were evaluated and calibrated for high-mass PuO 2 samples. The samples were from 2 to 7.2 kg of PuO 2 in mass, with a large range of burnup. This report compares the equipment and the results, with an evaluation of deadtime and multiplication corrections

  5. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Dalal, Neal; Abazajian, Kevork; Jenkins, Elizabeth; Manohar, Aneesh V.

    2001-01-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem -- why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t) . We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments

  6. Photon counting and fluctuation of molecular movement

    International Nuclear Information System (INIS)

    Inohara, Koichi

    1978-01-01

    The direct measurement of the fluctuation of molecular motions, which provides with useful information on the molecular movement, was conducted by introducing photon counting method. The utilization of photon counting makes it possible to treat the molecular system consisting of a small number of molecules like a radioisotope in the detection of a small number of atoms, which are significant in biological systems. This method is based on counting the number of photons of the definite polarization emitted in a definite time interval from the fluorescent molecules excited by pulsed light, which are bound to the marked large molecules found in a definite spatial region. Using the probability of finding a number of molecules oriented in a definite direction in the definite spatial region, the probability of counting a number of photons in a definite time interval can be calculated. Thus the measurable count rate of photons can be related with the fluctuation of molecular movement. The measurement was carried out under the condition, in which the probability of the simultaneous arrival of more than two photons at a detector is less than 1/100. As the experimental results, the resolving power of photon-counting apparatus, the frequency distribution of the number of photons of some definite polarization counted for 1 nanosecond are shown. In the solution, the variance of the number of molecules of 500 on the average is 1200, which was estimated from the experimental data by assuming normal distribution. This departure from the Poisson distribution means that a certain correlation does exist in molecular movement. In solid solution, no significant deviation was observed. The correlation existing in molecular movement can be expressed in terms of the fluctuation of the number of molecules. (Nakai, Y.)

  7. A practical method for determining γ-ray full-energy peak efficiency considering coincidence-summing and self-absorption corrections for the measurement of environmental samples after the Fukushima reactor accident

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi, E-mail: shizuma@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Oba, Yurika; Takada, Momo [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan)

    2016-09-15

    A method for determining the γ-ray full-energy peak efficiency at positions close to three Ge detectors and at the well port of a well-type detector was developed for measuring environmental volume samples containing {sup 137}Cs, {sup 134}Cs and {sup 40}K. The efficiency was estimated by considering two correction factors: coincidence-summing and self-absorption corrections. The coincidence-summing correction for a cascade transition nuclide was estimated by an experimental method involving measuring a sample at the far and close positions of a detector. The derived coincidence-summing correction factors were compared with those of analytical and Monte Carlo simulation methods and good agreements were obtained. Differences in the matrix of the calibration source and the environmental sample resulted in an increase or decrease of the full-energy peak counts due to the self-absorption of γ-rays in the sample. The correction factor was derived as a function of the densities of several matrix materials. The present method was applied to the measurement of environmental samples and also low-level radioactivity measurements of water samples using the well-type detector.

  8. Technical Note: Comparison of first- and second-generation photon-counting slit-scanning tomosynthesis systems.

    Science.gov (United States)

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.

  9. Influence of materials and counting-rate effects on 3He neutron spectrometry

    International Nuclear Information System (INIS)

    Evans, A.E.

    1984-01-01

    The high energy resolution of the Cuttler-Shalev 3 He neutron spectrometer causes spectral measurements with this instrument to be strongly susceptible to artifacts caused by the presence of scattering or absorbing materials in or near the detector or the source, and to false peaks generated by pileup coincidences of the rather long-risetime pulses from the detector. These effects are particularly important when pulse-height distributions vary over several orders of magnitude in count rate versus channel. A commercial pile-up elimination circuit greatly improves but does not eliminate the pileup problem. Previously reported spurious peaks in the pulse-height distributions from monoenergetic neutron sources have been determined to be due to the influence of the iron in the detector wall. 6 references, 9 figures

  10. Standardization of I-125. Sum-Peak Coincidence Counting

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2011-01-01

    I-125 is a nuclide which presents difficulties for standardization. The sum-peak method is one of the procedures used to standardize this radionuclide. Initially NaI (Tl)detectors and then the semiconductor detectors with higher resolution have been used.This paper describes the different methods based on the sum-peak procedure and the different expressions used to calculate the activity are deduced. We describe a general procedure for obtaining all of the above equations and many more. We analyze the influence of uncertainties in the used parameters in the uncertainty of the activity. We give a complete example of the transmission of uncertainty and the effects of correlations in the uncertainty of the activity of the sample. High-resolution spectra show an unresolved doublet of 62.0 keV and 62.8 keV. The paper presents two approaches to solve this problem. One is based on the calculation of area ratio and the sum of peak areas obtained from atomic and nuclear data, in the other we modify the equations so that the sum of the peak areas doublet, rather than its components, is present. (Author) 19 refs.

  11. Standardization of I-125. Sum-Peak Coincidence Counting

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2011-07-01

    I-125 is a nuclide which presents difficulties for standardization. The sum-peak method is one of the procedures used to standardize this radionuclide. Initially NaI (Tl)detectors and then the semiconductor detectors with higher resolution have been used.This paper describes the different methods based on the sum-peak procedure and the different expressions used to calculate the activity are deduced. We describe a general procedure for obtaining all of the above equations and many more. We analyze the influence of uncertainties in the used parameters in the uncertainty of the activity. We give a complete example of the transmission of uncertainty and the effects of correlations in the uncertainty of the activity of the sample. High-resolution spectra show an unresolved doublet of 62.0 keV and 62.8 keV. The paper presents two approaches to solve this problem. One is based on the calculation of area ratio and the sum of peak areas obtained from atomic and nuclear data, in the other we modify the equations so that the sum of the peak areas doublet, rather than its components, is present. (Author) 19 refs.

  12. Low γ activity measurement of meteorites using HPGe–NaI detector system

    Energy Technology Data Exchange (ETDEWEB)

    Colombetti, P. [Dipartimento di Fisica dell' Università di Torino (Italy); Osservatorio Astrofisico di Torino – INAF, Torino (Italy); Taricco, C., E-mail: carla.taricco@unito.it [Dipartimento di Fisica dell' Università di Torino (Italy); Osservatorio Astrofisico di Torino – INAF, Torino (Italy); Bhandari, N. [Basic Sciences Research Institute, Navrangpura, Ahmedabad (India); Sinha, N. [Department of Science, Wentworth Institute of Technology, Boston (United States); Di Martino, M.; Cora, A. [Osservatorio Astrofisico di Torino – INAF, Torino (Italy); Vivaldo, G. [Dipartimento di Fisica dell' Università di Torino (Italy)

    2013-08-01

    The radioactivity in natural samples like cosmogenic isotopes in meteorites, in Moon samples, in earth and ice in Antarctica, produced by protons, neutrons, μ mesons and other charged particles, is very low, usually below 0.001 disintegration per minute per gram. Therefore, very special techniques are required, particularly if the sample cannot be destroyed for chemical separation and system must have possibility of counting large amount of sample. For this purpose we have developed a highly selective Ge–NaI coincidence spectrometer, operating in the underground Laboratory of Monte dei Cappuccini (INAF) in Torino. We have then improved it by developing a multiparametric acquisition system, which allows better selectivity of the coincidence windows (e.g., in meteorites, to disentangle cosmogenic {sup 44}Ti signal from overlapping {sup 214}Bi, originated by naturally occurring {sup 238}U). Applications of this system to the study of meteorites (chondrite, achondrite and iron samples) are described.

  13. Counting and Surveying Homeless Youth: Recommendations from YouthCount 2.0!, a Community-Academic Partnership.

    Science.gov (United States)

    Narendorf, Sarah C; Santa Maria, Diane M; Ha, Yoonsook; Cooper, Jenna; Schieszler, Christine

    2016-12-01

    Communities across the United States are increasing efforts to find and count homeless youth. This paper presents findings and lessons learned from a community/academic partnership to count homeless youth and conduct an in depth research survey focused on the health needs of this population. Over a 4 week recruitment period, 632 youth were counted and 420 surveyed. Methodological successes included an extended counting period, broader inclusion criteria to capture those in unstable housing, use of student volunteers in health training programs, recruiting from magnet events for high risk youth, and partnering with community agencies to disseminate findings. Strategies that did not facilitate recruitment included respondent driven sampling, street canvassing beyond known hotspots, and having community agencies lead data collection. Surveying was successful in gathering data on reasons for homelessness, history in public systems of care, mental health history and needs, sexual risk behaviors, health status, and substance use. Youth were successfully surveyed across housing types including shelters or transitional housing (n = 205), those in unstable housing such as doubled up with friends or acquaintances (n = 75), and those who were literally on the streets or living in a place not meant for human habitation (n = 140). Most youth completed the self-report survey and provided detailed information about risk behaviors. Recommendations to combine research data collection with counting are presented.

  14. Characterization Of The Alpha/Beta Counting System Type MPC 9400 And Its Utilization

    International Nuclear Information System (INIS)

    Makhsum; Sutarman; Fikri, Hanif; Handoko, Djati

    2000-01-01

    Have been carried out the experiment to determine the operation voltage, instrument stability, counting efficiency, figure of merit, and minimum detectable activity. This instrument used to count gross alpha and gross beta. This instrument belongs good stability at the confidence level of 95 % and the background count that was 0,144 cpm for alpha and 22,65 cpm for beta. The counting efficiency was 27,41 % (electrodeposition of Am-241), 6,57 % (deposition of Am-241), 51,82 % (deposition of Sr-90). The limit of detectable activity was 1,04 x 10 exp.-2 Bq (electrodeposition of Am-241), 4,35 x 10 exp.-2 Bq (% deposition of Sr 90)

  15. Coincident-inclusive electrofission angular correlations

    International Nuclear Information System (INIS)

    Arruda Neto, J.D.T.

    1983-08-01

    A method for the joint analysis of coincident and inclusive electrofission data, in order to minimize effects of the model dependence of data interpretation, is developed. Explicit calculations of the (e,e'f) angular correlations are presented. The potentialities of the method to the study of sub- and near-barrier properties of the fission process, and to the study of the giant resonances fission mode, are discussed. (Author) [pt

  16. Validation of the sperm class analyser CASA system for sperm counting in a busy diagnostic semen analysis laboratory.

    Science.gov (United States)

    Dearing, Chey G; Kilburn, Sally; Lindsay, Kevin S

    2014-03-01

    Sperm counts have been linked to several fertility outcomes making them an essential parameter of semen analysis. It has become increasingly recognised that Computer-Assisted Semen Analysis (CASA) provides improved precision over manual methods but that systems are seldom validated robustly for use. The objective of this study was to gather the evidence to validate or reject the Sperm Class Analyser (SCA) as a tool for routine sperm counting in a busy laboratory setting. The criteria examined were comparison with the Improved Neubauer and Leja 20-μm chambers, within and between field precision, sperm concentration linearity from a stock diluted in semen and media, accuracy against internal and external quality material, assessment of uneven flow effects and a receiver operating characteristic (ROC) analysis to predict fertility in comparison with the Neubauer method. This work demonstrates that SCA CASA technology is not a standalone 'black box', but rather a tool for well-trained staff that allows rapid, high-number sperm counting providing errors are identified and corrected. The system will produce accurate, linear, precise results, with less analytical variance than manual methods that correlate well against the Improved Neubauer chamber. The system provides superior predictive potential for diagnosing fertility problems.

  17. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  18. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...

  19. A coincidence study between photo- and Auger electrons

    International Nuclear Information System (INIS)

    Ricz, S.; Koever, A.; Varga, D.; Molnar, J.; Aksela, S.; Jurvansuu, M.

    2000-01-01

    Complete text of publication follows. The investigation of double differential cross sections of photon induced Auger electrons provides very sensitive method for studying the rearrangement process, especially when the angular correlation between photo- and Auger electrons is also studied. Such type of measurements could reveal a new aspect in studying the electron-electron, hole-electron and photoelectron - Auger electron interactions. It enables one to separate the overlapping Auger lines belonging to different initial holes. The traditional coincidence measurement is very time consuming and causes serious calibration problems. In order to overcome these experimental difficulties a new electron-spectrometer (ESA-22) was developed in ATOMKI, Debrecen in cooperation with the Electron spectroscopy group of University of Oulu, Finland. The analyzer consists of a spherical and a cylindrical part. It is very similar to the ESA-21 analyzer. The main differences is that the focal ring can be set different diameters thus either a series of channel detectors can be used to detect the electrons at different angles or a position sensitive channel plate can be applied for simultaneous angular recording of electrons. Furthermore the outer sphere and cylinder are cut into two parts so the spectrometer is capable to analyze two independent angularly resolved electron spectra (in the 0 deg - 180 deg region) at different energy regions, simultaneously. A special electronic control and data handling electronics and software was worked out to control the analyzer. The first results were presented in. In the last year the ESA-22 electron-spectrometer was transported to the I411 beam line of MAX-II synchrotron in Lund, Sweden. The advanced properties of the spectrometer was investigated by measuring coincidences between the photoelectrons originated from the Ar L 3 subshell and the Ar Auger electrons in the 203-207 eV energy region. Fig. 1 shows the single and the coincidence spectra

  20. On the structure of the set of coincidence points

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, A V [Peoples Friendship University of Russia, Moscow (Russian Federation); Gel' man, B D [Voronezh State University (Russian Federation)

    2015-03-31

    We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least n points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.

  1. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  2. Multiple capture investigated by coincident electron spectroscopy in X{sup 7+}+Ar, at 70 keV

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Universite Paul Sabatier, Toulouse (France). Lab. Collisions-Agregats-Reactivite

    1999-11-01

    The multiple electron capture in N{sup 7+} + Ar and F{sup 7+}(1s{sup 2}) + Ar systems is investigated at 70 keV with a new electron-recoil ion charge coincidence experiment. The whole electron energy range has been studied. Up to six electrons are found to be captured into autoionizing states. The recoil ion charge distribution associated with the emission of electrons is similar for both systems and found to be in good agreement with the prediction of Niehaus`s model roughly adapted to take into account autoionizing cascades. New findings for the coincident double and triple captures are briefly discussed. A capture of an inner L-shell electron of Ar into the K-shell of the projectile is also observed in N{sup 7+} + Ar collisions. (orig.) 10 refs.

  3. Importance of interpolation and coincidence errors in data fusion

    Directory of Open Access Journals (Sweden)

    S. Ceccherini

    2018-02-01

    Full Text Available The complete data fusion (CDF method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  4. Importance of interpolation and coincidence errors in data fusion

    Science.gov (United States)

    Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana

    2018-02-01

    The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.

  5. Constructing coincident indices of economic activity for the Latin American economy

    Directory of Open Access Journals (Sweden)

    João Victor Issler

    2013-03-01

    Full Text Available This paper has three main contributions. The first is to propose an individual coincident indicator for the following Latin American countries: Argentina, Brazil, Chile, Colombia and Mexico. In order to obtain similar series to those traditionally used in business-cycle research in constructing coincident indices (output, sales, income and employment we were forced to back-cast several individual country series which were not available in a long time-series span. The second contribution is to establish a chronology of recessions for these countries, covering the period from 1980 to 2012 on a monthly basis. Based on this chronology, the countries are compared in several respects. The final contribution is to propose an aggregate coincident indicator for the Latin American economy, which weights individual-country composite indices. Finally, this indicator is compared with the coincident indicator (The Conference Board - TCB of the U.S. economy. We find that the U.S. indicator Granger-causes the Latin American indicator in statistical tests

  6. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  7. Airborne LIDAR borsight error calibration based on surface coincide

    International Nuclear Information System (INIS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Li, Dong; Qi, Zengying; Qiu, Wen; Tan, Junxiang

    2014-01-01

    Light Detection and Ranging (LIDAR) is a system which can directly collect three-dimensional coordinate information of ground point and laser reflection strength information. With the wide application of LIDAR system, users hope to get more accurate results. Boresight error has an important effect on data accuracy and thus, it is thought that eliminating the error is very important. In recent years, many methods have been proposed to eliminate the error. Generally, they can be categorized into tie point method and surface matching method. In this paper, we propose another method called try value method based on surface coincide that is used in actual production by many companies. The method is simple and operable. Further, the efficacy of the method was demonstrated by analyzing the data from Zhangye city

  8. Preliminary characterization of a single photon counting detection system for CT application

    International Nuclear Information System (INIS)

    Belcari, N.; Bisogni, M.G.; Carpentieri, C.; Del Guerra, A.; Delogu, P.; Panetta, D.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2007-01-01

    The aim of this work is to evaluate the capability of a single photon counting acquisition system based on the Medipix2 read-out chip for Computed Tomography (CT) applications in Small Animal Imaging. We used a micro-focus X-ray source with a W anode. The detection system is based on the Medipix2 read-out chip, bump-bonded to a 1 mm thick silicon pixel detector. The read-out chip geometry is a matrix of 256x256 cells, 55 μmx55 μm each. This system in planar radiography shows a good detection efficiency (about 70%) at the anode voltage of 30 kV and a good spatial resolution (MTF=10% at 16.8 lp/mm). Starting from these planar performances we have characterized the system for the tomography applications with phantoms. We will present the results obtained as a function of magnification with two different background medium compositions. The effect of the reconstruction algorithm on image quality will be also discussed

  9. Rapid radiometric detection of microbial contamination using 14C-glucose and standard liquid scintillation counting system

    International Nuclear Information System (INIS)

    Joshi, S.H.; Kamble, S.B.; Pilkhwal, N.S.; Ramamoorthy, N.

    1998-01-01

    A simple and rapid method for detection of microbial contamination based on quantitation of 14 CO 2 released during metabolism of 14 C-Glucose by microorganisms is reported. Liquid scintillation counting system (LSCS) with a modified sample preparation method was utilised. The scintillator was impregnated on Whatman-1 paper on which 14 CO 2 evolved during metabolism could be absorbed. The important parameters of counting such as efficiency, position sensitivity and geometry as well as effect of NaOH quantity and of microbial load on detection period were studied. The efficiency of radioactivity assay was 18±2.8 %. Contamination of the order of 5-10 organism/ml of product could be detected in about 24 hours. (author)

  10. A study of pile-up in integrated time-correlated single photon counting systems.

    Science.gov (United States)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  11. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    Science.gov (United States)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  12. Data process of liquid scintillation counting

    International Nuclear Information System (INIS)

    Ishikawa, Hiroaki; Kuwajima, Susumu.

    1975-01-01

    The use of liquid scintillation counting system has been significantly spread because automatic sample changers and printers have recently come to be incorporated. However, the system will be systematized completely if automatic data processing and the sample preparation of radioactive materials to be measured are realized. Dry or wet oxidation method is applied to the sample preparation when radioactive materials are hard to dissolve into scintillator solution. Since these several years, the automatic sample combustion system, in which the dry oxidation is automated, has been rapidly spread and serves greatly to labor saving. Since the printers generally indicate only counted number, data processing system has been developed, and speeded up calculating process, which automatically corrects quenching of samples for obtaining the final radioactivity required. The data processing system is roughly divided into on-line and off-line systems according to whether computers are connected directly or indirectly, while its hardware is classified to input, calculating and output devices. Also, the calculation to determine sample activity by external standard method is explained. (Wakatsuki, Y.)

  13. Studies on the true coincidence correction in measuring filter samples by gamma spectrometry

    CERN Document Server

    Lian Qi; Chang Yong Fu; Xia Bing

    2002-01-01

    The true coincidence correction in measuring filter samples has been studied by high efficiency HPGe gamma detectors. The true coincidence correction for a specific three excited levels de-excitation case has been analyzed, and the typical analytical expressions of true coincidence correction factors have been given. According to the measured relative efficiency on the detector surface with 8 'single' energy gamma emitters and efficiency of filter samples, the peak and total efficiency surfaces are fitted. The true coincidence correction factors of sup 6 sup 0 Co and sup 1 sup 5 sup 2 Eu calculated by the efficiency surfaces agree well with experimental results

  14. Coincidence detection of photons of 511 keV from positon annihilation on a conventional gamma camera: optimization and analysis of potentialities

    International Nuclear Information System (INIS)

    Brasse, David

    1999-01-01

    The feasibility of acquiring clinical oncology studies on a gamma camera designed for the imaging of low energy single photons was investigated. The first prototype used two Nal(Tl) detectors of 40 cm by 30 cm with a 3/8 inch height and the second prototype was equipped with two large Nal(Tl) detectors of 40 cm by 54 cm with a 4/8 inch height. The optimization of such devices was mainly an optimization of the count rates obtained for reconstruct an image as a function of the angular axial aperture of the projections, with and without axial collimators. This optimization was performed experimentally using an anthropomorphic whole body phantom and the noise equivalent count rate as the figure of merit. An original correction for the random coincidences was also designed in order to optimize the contrast recovery and the contrast to noise ratio of small tumors (16 mm and 19 mm diameter). Finally, the optimal dose of FDG that can be injected to the subjects for an acquisition of that machine was determined and data acquired on an ECAT HR+ were compared with those acquired on the gamma camera for five subjects. (author) [fr

  15. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.

    Science.gov (United States)

    Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S

    2017-09-01

    This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high

  16. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. II. Analysis and applications

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We use an analytical theory of noisy Poisson processes, developed in the preceding companion publication, to compare coincidence and covariance measurement approaches in photoelectron and -ion spectroscopy. For non-unit detection efficiencies, coincidence data acquisition (DAQ) suffers from false coincidences. The rate of false coincidences grows quadratically with the rate of elementary ionization events. To minimize false coincidences for rare event outcomes, very low event rates may hence be required. Coincidence measurements exhibit high tolerance to noise introduced by unstable experimental conditions. Covariance DAQ on the other hand is free of systematic errors as long as stable experimental conditions are maintained. In the presence of noise, all channels in a covariance measurement become correlated. Under favourable conditions, covariance DAQ may allow orders of magnitude reduction in measurement times. Finally, we use experimental data for strong-field ionization of 1,3-butadiene to illustrate how fluctuations in experimental conditions can contaminate a covariance measurement, and how such contamination can be detected.

  17. Correction for intrinsic and set dead-time losses in radioactivity counting

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1992-12-01

    Equations are derived for the determination of the intrinsic dead time of the components which precede the paralysis unit in a counting system for measuring radioactivity. The determination depends on the extension of the set dead time by the intrinsic dead time. Improved formulae are given for the dead-time correction of the count rate of a radioactive source in a single-channel system. A variable in the formulae is the intrinsic dead time which is determined concurrently with the counting of the source. The only extra equipment required in a conventional system is a scaler. 5 refs., 2 tabs., 21 figs

  18. Benjamin Thompson, Count Rumford Count Rumford on the nature of heat

    CERN Document Server

    Brown, Sanborn C

    1967-01-01

    Men of Physics: Benjamin Thompson - Count Rumford: Count Rumford on the Nature of Heat covers the significant contributions of Count Rumford in the fields of physics. Count Rumford was born with the name Benjamin Thompson on March 23, 1753, in Woburn, Massachusetts. This book is composed of two parts encompassing 11 chapters, and begins with a presentation of Benjamin Thompson's biography and his interest in physics, particularly as an advocate of an """"anti-caloric"""" theory of heat. The subsequent chapters are devoted to his many discoveries that profoundly affected the physical thought

  19. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  20. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory

    Science.gov (United States)

    Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.

    2018-06-01

    Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations