WorldWideScience

Sample records for coiled tubing installation

  1. A novel method for coiled tubing installation

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Peter J. [2H Offshore, Houston, TX (United States); Tibbetts, David [Aquactic Engineering and Construction Ltd., Aberdeen (United Kingdom)

    2009-12-19

    Installation of flexible pipe for offshore developments is costly due to the physical cost of the flexible pipe, expensive day rates and the availability of suitable installation vessels. Considering the scarcity of flexible pipe in today's increasingly demanding and busy market, operators are seeking a cost effective solution for installing piping in a range of water depths using vessels which are readily on hand. This paper describes a novel approach to installing reeled coiled tubing, from 1 inch to 5 inch diameter, from the back of a small vessel in water depths from 40 m up to around 1000 m. The uniqueness of the system is the fact that the equipment design is modular and compact. This means that when disassembled, it fits into standard 40 ft shipping containers, and the size allows it to be installed on even relatively small vessels of opportunity, such as anchor handling or installation vessels, from smaller, and cheaper quay side locations. Such an approach is the ideal solution to the problem faced by operators, in that it allows the installation of cheaper, readily available coiled tubing, from cost-effective vessels, which do not need to transit to a pick up the system. (author)

  2. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    Energy Technology Data Exchange (ETDEWEB)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  3. Dryout in sodium-heated helically-coiled steam generator tubes

    International Nuclear Information System (INIS)

    Tomita, Y.; Kosugi, T.; Kubota, J.; Nakajima, K.; Tsuchiya, T.

    1984-01-01

    Experimental research on the dryout phenomenon in sodium heated, helically coiled steam generator tubes was carried out. The fluctuation of the tube wall temperature caused by dryout was measured with thermocouples installed in the center of the tube wall. Empirical correlations of dryout quality were developed as functions of critical heat flux, water mass velocity and saturation pressure. These correlations confirmed that the design criterion of the MONJU steam generator was reasonable. (author)

  4. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  5. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  6. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  7. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined

  8. Composite Coiled Tubing for Extended Reach in Horizontal Oil Wells

    DEFF Research Database (Denmark)

    Costache, Andrei; Berggreen, Christian

    2017-01-01

    Conventional steel coiled tubing cannot reach along the entire length of very long horizontal oil wells. A lighter and more buoyant coiled tube is made possible using composite materials. The high stiffness to weight ratio of fiber reinforced polymers, coupled with a lower coefficient of friction......, has the potential of greatly extending the reach in horizontal oil wells. This study shows how to design composite coiled tubing and gives a comprehensive discussion about the most influential parameters. Several solutions, using glass-fiber and carbon are considered. Finite element models are used...

  9. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  10. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  11. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  12. Toroid field coil shear key installation study, DOE task No. 22

    International Nuclear Information System (INIS)

    Jones, C.E.; Meier, R.W.; Yuen, J.L.

    1995-01-01

    Concepts for fitting and installation of the scissor keys, triangular keys, and truss keys in the ITER Toroidal Field (TF) Coil Assembly were developed and evaluated. In addition, the process of remote removal and replacement of a failed TF coil was considered. Two concepts were addressed: central solenoid installed last (Naka Option 1) and central solenoid installed first (Naka Option 2). In addition, a third concept was developed which utilized the favorable features of both concepts. A time line for installation was estimated for the Naka Option 1 concept

  13. Development of a helical-coil double wall tube steam generator for 4S reactor

    International Nuclear Information System (INIS)

    Kitajima, Yuko; Maruyama, Shigeki; Jimbo, Noboru; Hino, Takehisa; Sato, Katsuhiko

    2011-01-01

    The 4S, Super-Safe Small and Simple, is a small-sized sodium-cooled fast reactor. A fast reactor usually uses sodium as a coolant to transfer heat from core to turbine/generator system. The heat of the intermediate heat transport system and that of the water stream systems are exchanged by the steam generator (SG) tubes. If the tube failure occurs, a sodium/water reaction could be occurred. To prevent the reaction and enhance safety, a helical-coil-type double wall tube with wire mesh interlayer and continuous monitoring systems of tube failure are applied to the SG of the 4S. The development and general features of this type double wall tube were described in Ref. 1) and Ref. 2). Those paper summarized following results; The tubes studied in these references were straight type. To establish this SG, development of manufacturing method of helical-coil-type double wall tube and validation of the tube failure monitoring system are needed. In this study, three demonstration tests have been performed; welding test of the double wall tube to manufacture the tubes with 70-80m length, assembling test of the helical-coil tube, and confirmation test of the tube processing system using the fabricated helical-coil tubes. As a result, following technologies have been successfully established. (1) Development of the welding techniques for manufacturing of the helical-coil-type double wall tube with wire mesh interlayer. (2) The confirmation test for manufacturing the helical coil tube of the SG. (author)

  14. On Eddy current examination (ECE) of Incoloy 800 SG tube using OD encircling and ID bobbin coil

    International Nuclear Information System (INIS)

    Kapoor, K.; Sunder Krishna, K.; Bakshu, S.A.

    2015-01-01

    The purpose of this paper is to present and compare the results of ECE carried out on steam generator tubes from OD side and ID side. During the manufacturing of the tubes Eddy current testing is being carried out using OD encircling probe as per ASTM E 571. Here the purpose of the test is to capture the manufacturing defects. The parameters of the test are optimized to achieve best sensitivity to this requirement. These tubes are then installed in the steam generator and once again ECE is carried out during installation (pre-service inspection-PSI) and during in-service inspection (ISI) by using ID bobbin coil. These tests are carried out as per ASME section V article 8 appendix 1. Here the purpose of the test is to detect wall thinning, dent, pits etc due to operation and to locate these defects (OD side or ID side). Here the operating parameters are optimized for phase separation of defects from OD and ID. These parameters are quite different from those used during the manufacturing ECE. Interpretation of the signals detected in PSI/ISI in must be done with care to correlate with defect indications detected during manufacturing. In the present study, tubes with certain manufacturing defects, detected with OD encircling test were subjected to ID bobbin coil examination. Also certain tubes with signal picked up during test from ID were examined by using the OD encircling probe. This comparison of the results provides a clear picture about the sensitivity and deficiency of the either type of test. (author)

  15. Eddy-current testing of nuclear fuel cladding tubes using tilted encircling coil system, 1

    International Nuclear Information System (INIS)

    Yin, Renzhong; Sekine, Kazuyoshi; Shimizu, Hisaji; Tsukui, Kazushige; Urata, Megumu.

    1989-01-01

    The eddy current testing method with external encircling-coils has been widely used as a standard technique for inspection of defects in irradiated zircaloy cladding tubes. In this inspection, the systematic procedure to reliably characterize defects is required. This paper describes the newly developed external tilted encircling-coil system, in which the coil axis is inclined by an angle α to the sample tube axis, for reliable determination of the sort, location and size of defects. As the results of experimental work concerning some kinds of artificial defects in zircaloy cladding tubes using newly designed tilted coil system, an adaptable general-procedure for characterization of defects has been proposed. Furthermore, it has been confirmed that in the case of smaller tilt angles of coil, the signal-to noise ratio for defect response in this coil system is approximately equal to that of ordinary encircling coil system. (author)

  16. Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes

    International Nuclear Information System (INIS)

    Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.

    2007-01-01

    The paper presents an analysis of the flow mechanisms in tubes with wire coils using hydrogen bubble visualization and PIV techniques. Results have been contrasted with experimental data on pressure drop. The relation between the observed flow patterns and the friction factor has been analysed. The experimental analysis that has been carried out allows one to state that at low Reynolds numbers (Re < 400) the flow in tubes with wire coils is basically similar to the flow in smooth tubes. At Reynolds numbers between 500 and 700 and in short pitch wire coils a recirculating flow appears. The insertion of wires coils in a smooth tube accelerates significantly the transition to turbulence. This is produced at Reynolds numbers between 700 and 1000 depending on the wire pitch

  17. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Aly, Wael I.A.

    2014-01-01

    Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for

  18. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  19. From Empress to Emmen: Canadian-developed coil tubing technology gains international recognition

    Energy Technology Data Exchange (ETDEWEB)

    Ross, E.

    2004-03-01

    The evolution of the Canadian-developed Drilling Using Coiled Tubing (DUCT) technology is traced from its humble beginnings in the 1970s when it was used as small-diameter tubing for gas lift wells, evolving over time to larger tubing and complex job designs involving sophisticated modelling and planning. Today the technology can be found in underbalanced drilling projects as far east as offshore Holland. Underbalanced drilling can help operators achieve optimum well production by reducing the risk of reservoir damage from the influx of fluids, chemicals and formation solids into a porous formation. Using coiled tubing can ensure a consistent bottomhole pressure with no forced surging on the reservoir because there are no connections to be made and the circulation is continuous. Reservoir temperature and hydrocarbons continue to be the great challenges to the bottomhole assembly (BHA) and the positive displacement motor (PDM), but suppliers have been able to develop PDMs that can handle higher temperatures in the presence of hydrocarbons. With regard to future applications, coiled tubing drilling also appears to have a growing market for offshore re-entries using slim-hole drilling, due primarily to its lower transportation cost. 1 fig.

  20. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  1. Biocide-mediated corrosion of coiled tubing.

    Science.gov (United States)

    Sharma, Mohita; An, Dongshan; Liu, Tao; Pinnock, Tijan; Cheng, Frank; Voordouw, Gerrit

    2017-01-01

    Coiled tubing corrosion was investigated for 16 field water samples (S5 to S20) from a Canadian shale gas field. Weight loss corrosion rates of carbon steel beads incubated with these field water samples averaged 0.2 mm/yr, but injection water sample S19 had 1.25±0.07 mm/yr. S19 had a most probable number of zero acid-producing bacteria and incubation of S19 with carbon steel beads or coupons did not lead to big changes in microbial community composition. In contrast other field water samples had most probable numbers of APB of 102/mL to 107/mL and incubation of these field water samples with carbon steel beads or coupons often gave large changes in microbial community composition. HPLC analysis indicated that all field water samples had elevated concentrations of bromide (average 1.6 mM), which may be derived from bronopol, which was used as a biocide. S19 had the highest bromide concentration (4.2 mM) and was the only water sample with a high concentration of active bronopol (13.8 mM, 2760 ppm). Corrosion rates increased linearly with bronopol concentration, as determined by weight loss of carbon steel beads, for experiments with S19, with filtered S19 and with bronopol dissolved in defined medium. This indicated that the high corrosion rate found for S19 was due to its high bronopol concentration. The corrosion rate of coiled tubing coupons also increased linearly with bronopol concentration as determined by electrochemical methods. Profilometry measurements also showed formation of multiple pits on the surface of coiled tubing coupon with an average pit depth of 60 μm after 1 week of incubation with 1 mM bronopol. At the recommended dosage of 100 ppm the corrosiveness of bronopol towards carbon steel beads was modest (0.011 mm/yr). Higher concentrations, resulting if biocide is added repeatedly as commonly done in shale gas operations, are more corrosive and should be avoided. Overdosing may be avoided by assaying the presence of residual biocide by HPLC

  2. Metal diffusion from furnace tubes depends on location

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    Studies of metal samples from an ethylene furnace on the Texas Gulf Coast, using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX), reveal preferential diffusion of chromium, titanium, and aluminum in the coil wall to the surfaces of the tube where they form metal oxides. These elements are gradually depleted from the tube wall. Complicated surface reactions that include the formation of several metal oxides, metal sulfides, and metal-catalyzed coke also occur. Several mechanisms can be postulated as to how metal fines or compounds are formed and transferred in the coil and transfer lines exchanger (TLX) of ethylene units. These surface reactions directly or indirectly affect coke formation in the tube. Finally, creep in the coils is likely a factor in promoting corrosion. Such creep is promoted by variable temperature-time patterns to which a coil is exposed during pyrolysis, and then decoking. Periods of stress and compression occur in the coil walls. Knowledge of the diffusion and reactions that take place can result in better furnace operations and decoking procedures to extend the life of the furnace tubes. In this second installment of a four-part series, photomicrographs of four pyrolysis tube samples from the ethylene furnace indicate that significant differences existed between the outer surfaces, inner surfaces, and cross-sectional areas of the samples. The first installment of the series dealt with coke

  3. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  4. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore.

    Science.gov (United States)

    Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.

  5. Completion of the ITER central solenoid model coils installation

    International Nuclear Information System (INIS)

    Tsuji, H.

    1999-01-01

    The short article details how dozens of problems, regarding the central solenoid model coils installation, were faced and successfully overcome one by one at JAERI-Naga. A black and white photograph shows K. Kwano, a staff member of the JAERI superconducting magnet laboratory, to be still inside the vacuum tank while the lid is already being brought down..

  6. Forced convective boiling of water inside helically coiled tube. Characteristics of oscillation of dryout point

    International Nuclear Information System (INIS)

    Nagai, Niro; Sugiyama, Kenta; Takeuchi, Masanori; Yoshikawa, Shinji; Yamamoto, Fujio

    2006-01-01

    The helically coiled tube of heat exchanger is used for the evaporator of prototype fast breeder reactor 'Monju'. This paper aims at the grasp of two-phase flow phenomena of forced convective boiling of water inside helical coiled tube, especially focusing on oscillation phenomena of dryout point. A glass-made helically coiled tube was used to observe the inside water boiling behavior flowing upward, which was heated by high temperature oil outside the tube. This oil was also circulated through a glass made tank to provide the heat source for water evaporation. The criterion for oscillation of dryout point was found to be a function of inlet liquid velocity and hot oil temperature. The observation results suggest the mechanism of dryout point oscillation mainly consists of intensive nucleate boiling near the dryout point and evaporation of thin liquid film flowing along the helical tube. In addition, the oscillation characteristics were experimentally confirmed. As inlet liquid velocity increases, oscillation amplitude also increases but oscillation cycle does not change so much. As hot oil temperature increases, oscillation amplitude and cycle gradually decreases. (author)

  7. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  8. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  9. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  10. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

  11. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil

    Science.gov (United States)

    Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.

    2018-03-01

    In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.

  12. High temperature technological heat exchangers and steam generators with helical coil assembly tube bundle

    International Nuclear Information System (INIS)

    Korotaev, O.J.; Mizonov, N.V.; Nikolaevsky, V.B.; Nazarov, E.K.

    1990-01-01

    Analysis of thermal hydraulics characteristics of nuclear steam generators with different tube bundle arrangements and waste heat boilers for ammonia production units was performed on the basis of operating experience results and research and development data. The present report involves the obtained information. The estimations of steam generator performances and repair-ability are given. The significant temperature profile of the primary and secondary coolant flows are attributed to all steam generator designs. The intermediate mixing is found to be an effective means of temperature profile overcoming. At present the only means to provide an effective mixing in heat exchangers of the following types: straight tubes, field tubes, platen tubes and multibank helical coil tubes (with complicated bend distribution along their length) are section arrangements in series in conjunction with forced and natural mixing in connecting lines. Development of the unificated system from mini helical coil assemblies allows to design and manufacture heat exchangers and steam generators within the wide range of operating conditions without additional expenses on the research and development work

  13. An assessment of heat transfer models of water flow in helically coiled tubes based on selected experimental datasets

    International Nuclear Information System (INIS)

    Gou, Junli; Ma, Haifu; Yang, Zijiang; Shan, Jianqiang

    2017-01-01

    Highlights: •A review of heat transfer characteristics for water flow in helically coiled tubes are conducted. •An assessment of heat transfer models under different heat transfer modes in helically coiled tubes are performed. •This work could provide references for the use of the correlations and for further studies. -- Abstract: This paper presents an assessment of the heat transfer models under different heat transfer modes for water flow in helically coiled tubes based on the compiled datasets from the reviewed literatures. For single phase flow, most of the correlations of the heat transfer coefficient can fit well to the experiments. The correlations of Xin-Ebadian, Dravid and Kalb-Seader for laminar flow and those of Seban-McLaughlim, Mori-Nakayama, Xin-Ebadian, Hardik, Rogers-Mayhew, Mikaila-Poskas and El-Genk-Schriener for turbulent flow are recommended. For flow boiling heat transfer, Steiner-Taborek correlation could be utilized to predict the boiling heat transfer coefficients in helically coiled tubes for a relatively wide range of parameters. For dryout quality, the correlations of Hwang et al. and Santini et al. give relatively better predictions than others. However, more accurate correlations for flow boiling heat transfer coefficient and dryout quality need to be developed based on further investigations with wider parameter ranges in the future. The present work could provide references for the investigators for future uses of those correlations and for performing further investigations on the heat transfer characteristics of water flow in helically coiled tubes.

  14. Preliminary project of installation for separation tubes tests-ITTS

    International Nuclear Information System (INIS)

    Rocha, Z.

    1984-01-01

    A consolidation of actual ideas about installation, entitled ''Installation to separation tubes tests-ITTS'', expected to CDTN is presented. The project bases, the testing to be realized, the procedures to be obeyed during the operation, the components and the space required by installation and auxiliary equipments, the presumable origin of components (nacional and international), including a preliminary list of building and operation costs are described. (author) [pt

  15. Coiled-tubing fracturing of coal seams on the Vermejo Park Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, K.

    2003-06-01

    Coiled-tubing (CT) fracturing currently is used to stimulate the Vermejo and Raton coal seams on the Vermejo Park Ranch in northern New Mexico. The CT fracturing process increased the number of stimulation stages from 4 to 18 per well. CT fracturing results in more accurate proppant placement and more effective stimulation of the producing zones.

  16. Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition

    International Nuclear Information System (INIS)

    Satapathy, Ashok K.

    2009-01-01

    In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.

  17. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    Science.gov (United States)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  18. Hybrid friction diffusion bonding of 316L stainless steel tube-to-tube sheet joints for coil-wound heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Haneklaus, Nils; Cionea, Cristian; Reuven, Rony; Frazer, David; Hosemann, Peter; Peterson, Per F. [Dept of Nuclear Engineering, University of California, Berkeley (United States)

    2016-11-15

    Hybrid friction diffusion bonding (HFDB) is a solid-state bonding process first introduced by Helmholtz-Zentrum Geesthacht to join aluminum tube-to-tube sheet joints of Coil-wound heat exchangers (CWHE). This study describes how HFDB was successfully used to manufacture 316L test samples simulating tube-to-tube sheet joints of stainless steel CWHE for molten salt coolants as foreseen in several advanced nuclear- and thermal solar power plants. Engineering parameters of the test sample fabrication are presented and results from subsequent non-destructive vacuum decay leak testing and destructive tensile pull-out testing are discussed. The bonded areas of successfully fabricated samples as characterized by tube rupture during pull-out tensile testing, were further investigated using optical microscopy and scanning electron microscopy including electron backscatter diffraction.

  19. Installation of groundwater observation tubes OL-PVP30-35 at Olkiluoto in Eurajoki 2009

    International Nuclear Information System (INIS)

    Toropainen, V.

    2009-10-01

    In order to widen the Posivas groundwater monitoring network at Olkiluoto, Suomen Malmi Oy (Smoy) to install eight new groundwater observation tubes. The identification numbers of the groundwater observation tubes are OL-PVP30, OL-PVP31A and 31B, OL-PVP32, OL-PVP33, OL-PVP34A and 34B and OL-PVP35. The observation tubes were installed between January 28th and February 17th in 2009. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (n 90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits. Monitoring pipes (PVC, n 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is one or two metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes. In addition to the installation of the tubes, the work included observation of soil/drill cuttings quality during drilling, time-penetration measurements and water level measurements after installation. (orig.)

  20. Friction pressure drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Nariai, Hideki; Kobayashi, Michiyuki; Matsuoka, Takeshi.

    1982-01-01

    Two-phase friction pressure drop and heat transfer coefficients in a once-through steam generator with helically coiled tubes were investigated with the model test rig of an integrated type marine water reactor. As the dimensions of the heat transfer tubes and the thermal-fluid conditions are almost the same as those of real reactors, the data applicable directly to the real reactor design were obtained. As to the friction pressure drop, modified Kozeki's prediction which is based on the experimental data by Kozeki for coiled tubes, agreed the best with the experimental data. Modified Martinelli-Nelson's prediction which is based on Martinelli-Nelson's multiplier using Ito's equation for single-phase flow in coiled tube, agreed within 30%. The effect of coiled tube on the average heat transfer coefficients at boiling region were small, and the predictions for straight tube could also be applied to coiled tube. Schrock-Grossman's correlation agreed well with the experimental data at the pressures of lower than 3.5 MPa. It was suggested that dryout should be occurred at the quality of greater than 90% within the conditions of this report. (author)

  1. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  2. Coil supporting device for a nuclear fusion device

    International Nuclear Information System (INIS)

    Kuno, Kazuo.

    1976-01-01

    Object: To reduce a thermal stress of a coil such as a magnetic limiter to minimize stress acting on a protective tube of the coil. Structure: A coil within a protective tube has its outer periphery surrounded and supported by a heat-resisting material such as ceramic at more than two positions suitably spaced lengthwise of a coil conductor, and heat insulating members are interposed between both sides of the coil and the protective tube so that it may be retained with respect to the width of the coil. Further, a heat-resisting resilient member is inserted in a clearance between an outer circumference and an inner circumference of the coil to allow a radial displacement of the coil. As a result, elongation of the coil due to thermal expansion may be escaped at the aforesaid two supports to reduce thermal stress of the coil and protective tube to support the coil within the protective tube in positively heat-resisting and insulating manner. (Kamimura, M.)

  3. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2018-03-31

    This project developed an alternative design for heat exchangers for application to heating supercritical carbon dioxide (S-CO2) or air for power conversion. We have identified an annular coiled tube bundle configuration–where hot sodium enters tubes from multiple vertical inlet manifold pipes, flows in a spiral pattern radially inward and downward, and then exits into an equal number of vertical outlet manifold pipes–as a potentially attractive option. The S-CO2 gas or air flows radially outward through the tube bundle. Coiled tube gas heaters (CTGHs) are expected to have excellent thermal shock, long-term thermal creep, in-service inspection, and reparability characteristics, compared to alternative options. CTGHs have significant commonality with modern nuclear steam generators. Extensive experience exists with the design, manufacture, operation, in-service inspection and maintenance of nuclear steam generators. The U.S. Nuclear Regulatory Commission also has extensive experience with regulatory guidance documented in NUREG 0800. CTGHs leverage this experience and manufacturing capability. The most important difference between steam generators and gas-Brayton cycles such as the S-CO2 cycle is that the heat exchangers must operate with counter flow with high effectiveness to minimize the pinch-point temperature difference between the hot liquid coolant and the heated gas. S-CO2-cycle gas heaters also operate at sufficiently elevated temperatures that time dependent creep is important and allowable stresses are relatively low. Designing heat exchangers to operate in this regime requires configurations that minimize stresses and stress concentrations. The cylindrical tubes and cylindrical manifold pipes used in CTGHs are particularly effective geometries. The first major goal of this research project was to develop and experimentally validate a detailed, 3-D multi-phase (gas-solid-liquid) heat transport model for

  4. Empirical Correlation of the Morphology of Coiled Carbon Nano tubes with Their Response to Axial Compression

    International Nuclear Information System (INIS)

    Barber, J.R.; Boyles, J.S.; Bottomley, L.A.; Ferri, A.A.

    2014-01-01

    The mechanical response of thirteen different helical multi-walled carbon nano coils to axial compression is reported. Each nano coil was attached to the apex of a cantilever probe tip; its dimensions and orientation relative to the tip apex were determined with scanning electron microscopy. The atomic force microscope was employed to apply a cyclic axial load on the nano coil. Its mechanical response was determined by simultaneous collection of the thermal resonance frequency, displacement, and oscillation amplitude of the cantilever-nano tube system in real time. Depending upon compression parameters, each coil underwent buckling, bending, and slip-stick motion. Characteristic features in the thermal resonance spectrum and in the force and oscillation amplitude curves for each of these responses to induced stress are presented. Following compression studies, the structure and morphology of each nano coil were determined by transmission electron microscopy. The compression stiffness of each nano coil was estimated from the resonant frequency of the cantilever at the point of contact with the substrate surface. From this value, the elastic modulus of the nano coil was computed and correlated with the coiled carbon nano tube’s morphology.

  5. What we don't know may hurt us: urinary drainage system tubing coils and CA-UTIs-A prospective quality study.

    Science.gov (United States)

    Kubilay, Zeynep; Archibald, Lennox K; Kirchner, H Lester; Layon, A Joseph

    2013-12-01

    Catheter-associated urinary tract infections account for >30% of infections in acute care hospitals. We hypothesized that coiling of/kinks in the indwelling urinary bladder catheter (IUBC) drainage bag tubing would increase the occurrence of infection/bacteriuria. Ninety-one patient events were evaluated over 60 days. All outcome variables trended with greater frequency among those with a coil in the IUBC tubing; only fever (temperature > 38.1°C) correlated significantly between groups (P = .003). If IUBC is unavoidable, strategies such as keeping collection bag below the level of bladder and avoiding any coiling in the drainage system should be employed. Further study of these phenomena is needed. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  7. Acute abdomen due to ovarian congestion caused by coiling of the fallopian tube accompanied by paratubal cyst around the utero-ovarian ligament.

    Science.gov (United States)

    Kim, Juyoung; Park, Daehyun; Han, Won Bo; Jeong, Hyangjin; Park, Youngse

    2014-07-01

    Torsion of uterine adnexa is an important cause of acute abdominal pain in females. The main organ which can cause torsion is the ovaries, but torsions of the fallopian tube, subserosal myoma, paratubal cyst, and even the uterine body have been reported. The incidence of isolated fallopian tubal torsion is very rare. Even more rarely, it can coil around nearby organs such as the utero-ovarian ligament, showing similar clinical manifestations with those of adnexal torsion. We experienced an extremely rare case of acute abdomen induced by ovarian congestion triggered by the fallopian tube accompanying a paratubal cyst coiling around the utero-ovarian ligament. The right paratubal cyst was misinterpreted as being part of a cystic component of the left ovary on preoperative sonographic examination, and the coiling of the right fallopian tube accompanying the paratubal cyst was misdiagnosed as torsion of the right ovary. We report this rare case with a brief literature review.

  8. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  9. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290

    International Nuclear Information System (INIS)

    Zhou, Guobing; Zhang, Yufeng

    2010-01-01

    This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7-6.7% lower cooling capacity and 12.1-12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed.

  10. Theoretical and computational studies of entangled rod-coil block copolymer diffusion

    Science.gov (United States)

    Wang, Muzhou; Alexander-Katz, Alfredo; Olsen, B. D.

    2012-02-01

    Despite continued interest in the thermodynamics of rod-coil block copolymers for functional nanostructured materials in organic electronics and biomaterials, relatively few studies have investigated the dynamics of these systems which are important for understanding diffusion, mechanics, and self-assembly kinetics. Here, the diffusion of coil-rod-coil block copolymers through entangled melts is simulated using the Kremer-Grest molecular dynamics model, demonstrating that the mismatch between the curvature of the rod and coil blocks results in dramatically slower reptation through the entanglement tube. For rod lengths near the tube diameter, this hindered diffusion is explained by a local curvature-dependent free energy penalty produced by the curvature mismatch, resulting in a rough energy surface as the rod moves along the tube contour. Compared to coil homopolymers which reptate freely along the tube, rod-coil block copolymers undergo an activated diffusion process which is considerably slower as the rod length increases. For large rods, diffusion of the rod through the tube only occurs when the coil blocks occupy straight entanglement tubes, which requires ``arm retraction'' as the dominant relaxation mechanism.

  11. Levenberg-Marquardt application to two-phase nonlinear parameter estimation for finned-tube coil evaporators

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available A procedure for calculation of refrigerant mass flow rate is implemented in the distributed numerical model to simulate the flow in finned-tube coil dry-expansion evaporators, usually found in refrigeration and air-conditioning systems. Two-phase refrigerant flow inside the tubes is assumed to be one-dimensional, unsteady, and homogeneous. In the model the effects of refrigerant pressure drop and the moisture condensation from the air flowing over the external surface of the tubes are considered. The results obtained are the distributions of refrigerant velocity, temperature and void fraction, tube-wall temperature, air temperature, and absolute humidity. The finite volume method is used to discretize the governing equations. Additionally, given the operation conditions and the geometric parameters, the model allows the calculation of the refrigerant mass flow rate. The value of mass flow rate is computed using the process of parameter estimation with the minimization method of Levenberg-Marquardt minimization. In order to validate the developed model, the obtained results using HFC-134a as a refrigerant are compared with available data from the literature.

  12. Numerical simulation and experimental validation of coiled adiabatic capillary tubes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)

    2007-04-15

    The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)

  13. Acute abdomen due to ovarian congestion: a fallopian tube accompanied by a paratubal cyst, coiling tightly round the ovary.

    Science.gov (United States)

    Kaido, Yoshitaka; Kikuchi, Akihiko; Kanasugi, Tomonobu; Fukushima, Akimune; Sugiyama, Toru

    2013-01-01

    We experienced an unreported rare case with an adnexal mass causing severe acute abdomen during pregnancy. A 30-year-old Japanese pregnant woman was transported to our hospital for her right lower abdominal pain at 30 weeks of gestation. Magnetic resonance imaging and ultrasound demonstrated a cyst measuring 3-4 cm in diameter adjacent to the right ovary, and a parovarian cyst was considered to be the most probable diagnosis. We strongly suspected torsion of the ovarian pedicle or fallopian tube in conjunction with her clinical symptoms. Laparotomy revealed that the elongated right fallopian tube accompanied by a paratubal cyst was coiling tightly 2.5 times round the right ovary, causing apparent congestion and enlargement of the right ovary. Soon after we released the congested right ovary from the coiling of the fallopian tube, the congestion subsided. The postoperative course was favorable, and pregnancy and delivery were uneventful. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  14. The design of the SULTAN inner coil

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Spoorenberg, C.J.G.

    1981-12-01

    The background field of the first phase of the test facility SULTAN will be generated by two concentric solenoids: a 6 Tesla outer coil with a free bore of 1.3 m and an inner coil for increasing the field to 8 Tesla. The free bore (cold) will be 1.055 m. The final design of the 8 Tesla inner coil is described. The coil will operate at an overall current density of 23 x 10 6 A/m 2 . It will be cooled directly by forced flow supercritical helium. A hollow conductor is applied, composed of a rectangular copper tube and a 16 strands Rutherford cable, soldered on one side of the tube. The copper tube will be cold worked to cope with the high stress level (165 MPa). The design base (field and stress analysis, cooling, stability), the mechanical design and the instrumentation will be specified. The design and construction of the coil is a part of the collaboration between ECN and Holec Transformer Group

  15. Research on the Heating of Deicing Fluid in a New Reshaped Coiled Tube

    Directory of Open Access Journals (Sweden)

    Mengli Wu

    2017-01-01

    Full Text Available Aircraft ground deicing operation is significant to ensure civil flight safety in winter. Helically coiled tube is the important heat exchanger in Chinese deicing fluid heating system. In order to improve the deicing efficiency, the research focuses on heat transfer enhancement of deicing fluid in the tube. Based on the field synergy principle, a new reshaped tube (TCHC is designed by ring-rib convex on the inner wall. Deicing fluid is high viscosity ethylene-glycol-based mixture. Because of the power function relation between high viscosity and temperature, viscosity has a negative influence on heat transfer. The number of ring-ribs and inlet velocity are two key parameters to the heat transfer performance. For both water and ethylene glycol, the outlet temperature rises when the number of ring-ribs increases to a certain limit. However, the increasing of velocity reduces heating time, which results in lower outlet temperature. The heating experiment of the original tube is conducted. The error between experiment and simulation is less than 5%. The outlet temperature of TCHC increases by 3.76%. As a result, TCHC efficiently promotes the coordination of velocity and temperature fields by changing the velocity field. TCHC has enhanced heat transfer of high viscosity deicing fluid.

  16. An analysis of signal characteristics due to coil-gap variation of ECT bobbin probe for steam generation tube

    International Nuclear Information System (INIS)

    Nam, Min Woo; Cho, Chan Hee; Jee, Dong Hyun; Jung, Jee Hong; Lee, Hee Jong

    2006-01-01

    The bobbin probe technique is basically one of the important ECT methods for the steam generator tube integrity assesment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, geometry and operation frequencies, and has an important effect on examination results. In this study, the relationship between electric characteristic changes and differential coil gap variation has been investigated to optimize the ECT signal characteristics of the bobbin probe. With the results from this study, we have elucidated that the optimum coil gap is 1.2 - 1.6 mm that give the best result for O.D. volumetric defects in ASME calibration standards.

  17. Experimental investigation of the reverse heat transfer of R134a flow through non-adiabatic coiled capillary tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zareh, Masoud; Heidari, Mohammad Ghorbani [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-07-15

    This research represents an experimental investigation of the metastable flow and re-condensation phenomenon through non-adiabatic lateral helical capillary tubes and suction tube heat exchanger. The results show that mass flux ratio has a vital role: It affects metastable flow and also reverse heat transfer phenomenon through non-adiabatic helical capillary tube. Therefore, by increasing of the mass flux ratio, the rate of heat transfer between them decreases. In contrast to the strong rate condition of heat transfer between them, reverse heat transfer or re-condensation maybe happen. Moreover, experimental results show that for R134 flow with mass flux ratio more than 57.84, metastable flow exists in non-adiabatic capillary tube with 0.9144 mm inner diameter, 30 mm coil diameter, 6.18 m length, 4 mm inner diameter of compressor suction tube.

  18. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Science.gov (United States)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  19. Depicting mass flow rate of R134a /LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system using artificial neural network approach

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-07-01

    In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.

  20. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.

    1999-07-01

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  1. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Directory of Open Access Journals (Sweden)

    Hussain Alamin

    2016-01-01

    Full Text Available Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  2. Instrumentation and test of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J.A.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1985-01-01

    Just before Christmas 1983 the fabrication of the Swiss LCT-coil was finished. Tests at ambient temperature were performed on the factory site and after delivery in Oak Ridge. To avoid an undesirable delay of the rescheduled Partial-Array Test it was agreed to install the coil without its superconducting bus. In July 1984 the Swiss LCT-coil was successfully cooled down to LHe temperature together with the other two fully installed coils. Besides the cooling system, the instrumentation, measured parameters of the coil and some preliminary results obtained during the ongoing Partial-Array Test are presented

  3. Opposed slant tube diabatic sorber

    Science.gov (United States)

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  4. Bender/Coiler for Tubing

    Science.gov (United States)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  5. In-tube flow boiling of R-407C and R-407C/oil mixtures. Part 1: Microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Zuercher, O; Thome, J R; Favrat, D

    1999-07-01

    In-tube evaporation tests for R-407C and R-407C/oil are reported for a microfin tube. The tests were run at a nominal inlet pressure of 645 kPa (93.5 psia) at mass velocities of 100, 200 and 300 kg/(m{sup 2}{center{underscore}dot}s) (20.5, 41, and 61 lb/s{center{underscore}dot}ft{sup 2}) over nearly the entire vapor quality range. At similar operating conditions, pure R-407C performed similarly to previous pure R-134a tests at the highest mass velocity, but lower than R-134a for the other mass velocities. Any amount of oil tended to decrease local R-407C microfin heat transfer coefficients, especially at high vapor qualities were degradations of as much as 50% or more occurred. Two-phase pressure drops were increased by the presence of oil, especially at high vapor qualities. Buildup of the local oil mass fraction in the microfin test sections was observed at high vapor qualities, together with the formation of slowly flowing viscous liquid films, a phenomenon that became more acute at lower mass velocities.

  6. Thru-tubing inflatable workover systems

    International Nuclear Information System (INIS)

    Coronado, M.P.; Mody, R.K.; Craig, G.C.

    1991-01-01

    Recent technological advances in inflatable packing element design has allowed non-conventional workover techniques to be accomplished through the production tubing. The improved capabilities of these elements, coupled with new tool designs allowing workovers to be completed with coiled tubing or electric wireline, has seen growing applications. These workovers include, selective and zonal chemical treatments, temporary and permanent plugback operations, intermediate zone blankoff, production and injection flow profile modifications and formation fracturing. They are completed without pulling the production tubing from the well, and thus do not require a rig on the well. Since these tools are snubbed in the well with coiled tubing or electric wireline, thus eliminating the need to kill the well, heavy weight kill fluids, which may cause formation damage, are not required. These tools have been designed to operate with hydraulic pressure and workstring tension within the coiled tubing limitations. This paper outlines the development of these Thru-tubing systems and application techniques that have been developed as a result of their field use. It discusses case histories of applications using this technology and the resulting increase in well performance. This paper also describes auxiliary equipment that has been developed to allow these tool systems to be used safely on coiled tubing and electric wireline

  7. Numerical simulation of thermal-dynamic characteristics through a helical coiled tube with annular cross section for laminar flow

    International Nuclear Information System (INIS)

    Wu Shuangying; Chen Sujun; Li Yourong; Li Longjian

    2009-01-01

    A numerical method for simulating three-dimensional laminar forced convective heat transfer in a helical coiled passage with annular cross section under uniform wall temperature condition is presented. The helical coiled passage is fabricated by bending a 0.03 m inner diameter and 0.05 m outer diameter straight tube into a helical-coil of two turns. The results presented in this paper cover a Reynolds number range of 200 ∼ 1000, a pitch range of 0.1 ∼ 0.2 and a curvature ratio range of 0.1 ∼ 0.3. The numerical computations reveal the development and distribution of heat transfer and flow fields in the helical coiled passage when the inner annular wall is heated and the outer annular wall is insulated. In addition, the effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor, average Nusselt number at different axial cross-section have been discussed. The results show that the secondary flow is weak and can be neglected at the entrance region, but the effect of the secondary flow is enhanced, the maximum velocity perpendicular to axial cross section shifts toward the outer side of helical coiled passage. Furthermore, the average Nusselt number and friction factor at every different axial location present different characteristics when the Reynolds number, curvature ratio and pitch change. Compared with the curvature ratio, the pitch has relatively little influence on the heat transfer and flow performance. (authors)

  8. Installation of groundwater observation tubes OL-PVP39 - 40 and drilling of shallow drillhole OL-PP90 at Olkiluoto in Eurajoki 2013

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2013-11-15

    In order to extend the groundwater monitoring network at Olkiluoto, Posiva Oy contracted Suomen Malmi Oy (Smoy) to install new groundwater observation tubes to two locations and to drill one shallow drillhole with a standpipe. The identification numbers of the groundwater observation tubes are OL-PVP39, OL-PVP40A and 40B, and the shallow drillhole is named OL-PP90. The observation tubes were installed and the shallow hole drilled between July 29th and August 6th in 2013. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (v 90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits and T76-equipment for drilling the shallow hole. Monitoring pipes (PVC, v 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is two or three metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes and the shallow drillholes. In addition to the installation of the tubes, the work included water level measurements after installation. The core samples of the shallow drillhole were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. (orig.)

  9. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  10. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni

    2005-01-01

    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  11. Slip-spring model of entangled rod-coil block copolymers

    Science.gov (United States)

    Wang, Muzhou; Likhtman, Alexei E.; Olsen, Bradley D.

    2015-03-01

    Understanding the dynamics of rod-coil block copolymers is important for optimal design of functional nanostructured materials for organic electronics and biomaterials. Recently, we proposed a reptation theory of entangled rod-coil block copolymers, predicting the relaxation mechanisms of activated reptation and arm retraction that slow rod-coil dynamics relative to coil and rod homopolymers, respectively. In this work, we introduce a coarse-grained slip-spring model of rod-coil block copolymers to further explore these mechanisms. First, parameters of the coarse-grained model are tuned to match previous molecular dynamics simulation results for coils, rods, and block copolymers. For activated reptation, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the entanglement tube of randomly varying curvature created by the coil ends. The effect of these barriers on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential. Finally, we analyze the crossover between the two mechanisms. The resulting dynamics from both mechanisms acting in combination is faster than from each one individually.

  12. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  13. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  14. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  15. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  16. Installation of groundwater observation tubes OL-PVP36-38 and drilling of shallow drillholes OL-PP70-71 at Olkiluoto in Eurajoki 2011

    International Nuclear Information System (INIS)

    Toropainen, V.

    2012-05-01

    In order to widen the groundwater monitoring network at Olkiluoto, Posiva Oy contracted Suomen Malmi Oy (Smoy) to install new groundwater observation tubes to three locations and to drill two shallow drillholes with standpipes. The identification numbers of the groundwater observation tubes are OL-PVP36, OL-PVP37A, 37B, 37C, OL-PVP38A, 38B, 38C and 38D, and the shallow drillholes are named OL-PP70 and OL-PP71. The observation tubes were installed and the shallow holes drilled between September 22nd and October 12th in 2011. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits and T76-equipment for drilling the shallow holes. Monitoring pipes (PVC, 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is two metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes and the shallow drillholes. In addition to the installation of the tubes, the work included water level measurements after installation. The core samples of the shallow drillholes were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. (orig.)

  17. Installation of groundwater observation tubes OL-PVP36-38 and drilling of shallow drillholes OL-PP70-71 at Olkiluoto in Eurajoki 2011

    Energy Technology Data Exchange (ETDEWEB)

    Toropainen, V. [Suomen Malmi Oy, Espoo (Finland)

    2012-05-15

    In order to widen the groundwater monitoring network at Olkiluoto, Posiva Oy contracted Suomen Malmi Oy (Smoy) to install new groundwater observation tubes to three locations and to drill two shallow drillholes with standpipes. The identification numbers of the groundwater observation tubes are OL-PVP36, OL-PVP37A, 37B, 37C, OL-PVP38A, 38B, 38C and 38D, and the shallow drillholes are named OL-PP70 and OL-PP71. The observation tubes were installed and the shallow holes drilled between September 22nd and October 12th in 2011. The drilling rig used in the installation work was a GM-200 rig. Drilling equipment consisted of casing tubes (90/77 mm) with drilling bit, 55 mm geo rods and 64 mm drilling bits and T76-equipment for drilling the shallow holes. Monitoring pipes (PVC, 60/52 mm) were lowered into the holes inside the casings. The monitoring pipes consist of a lower section of riser pipe, a middle section of screen pipe and an upper section of riser pipe. The screen pipe slot size is 0.3 mm and the length of the screen section is two metres. Protective stainless steel covers with lock-up caps were installed around the monitoring tubes and the shallow drillholes. In addition to the installation of the tubes, the work included water level measurements after installation. The core samples of the shallow drillholes were logged and reported by geologist. Geological logging included the following parameters: lithology, foliation, fracture parameters, fractured zones, core loss, weathering, fracture frequency, RQD and rock quality. (orig.)

  18. Effect of plasma current breakaway on the operating stability of the superconducting coil of the toroidal magnetic field in the T-10M installation

    International Nuclear Information System (INIS)

    Kostenko, A.I.; Kravchenko, M.Yu.; Monoszon, N.A.; Trokhachev, G.V.

    1979-01-01

    The method and calculation results of stability of a superconducting coil of the toroidal magnetic field in the T-10M installation to plasma current breakaway are presented. The calculations were performed for two values of the magnetic field induction in the centre of the plasma cross section: 3.5 and 5 T. The calculation of energy losses and heating of the superconducting coil was performed assuming the plasma current in case of breakaway decreases to zero with an infinite rate, so that the estimations obtained are maxiaum. It is shown that in case of 3.5 T induction the superconducting coil exhibits resistance to plasma current breakaways, and in case of 5 T it is necessary to use electromagnetic screening to provide stability

  19. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  20. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  1. Helical coil alignment in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Cole, M.J.; Johnson, R.L.; Nelson, B.E.; Warwick, J.E.; Whitson, J.C.

    1985-01-01

    This paper presents a brief overview of the helical coil design concept, detailed descriptions of the method for installation and alignment, and discussions of segment installation and alignment equipment. Alignment is accomplished by optical methods using electronic theodolites connected to a microcomputer to form a coordinate measurement system. The coordinate measurement system is described in detail, along with target selection and fixturing for manipulation of the helical coil segments during installation. In addition, software is described including vendor-supplied software used in the coordinate measurement system and in-house-developed software used to calibrate segment and positioning fixture motion. 2 refs., 8 figs

  2. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    Science.gov (United States)

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  3. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  4. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  5. Manufacture of EAST VS In-Vessel Coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Du, Shijun; Jin, Huan; Yu, Min; Han, Qiyang; Wan, Jiansheng; Liu, Bin; Qiao, Jingchun; Liu, Xiaochuan; Li, Chang; Cai, Denggang; Tong, Yunhua

    2013-01-01

    Highlights: • ITER like Stainless Steel Mineral Insulation Conductor (SSMIC) used for EAST Tokamak VS In-Vessel Coil manufacture first time. • Research on SSMIC fabrication was introduced in detail. • Two sets totally four single-turn VS coils were manufactured and installed in place symmetrically above and below the mid-plane in the vacuum vessel of EAST. • The manufacture and inspection of the EAST VS coil especially the joint for the SSMIC connection was described in detail. • The insulation resistances of all the VS coils have no significant reduction after endurance test. -- Abstract: In the ongoing latest update round of EAST (Experimental Advanced Superconducting Tokamak), two sets of two single-turn Vertical Stabilization (VS) coils were manufactured and installed symmetrically above and below the mid-plane in the vacuum vessel of EAST. The Stainless Steel Mineral Insulated Conductor (SSMIC) developed for ITER In-Vessel Coils (IVCs) in Institute of Plasma Physics, Chinese Academy of Science (ASIPP) was used for the EAST VS coils manufacture. Each turn poloidal field VS coil includes three internal joints in the vacuum vessel. The middle joint connects two pieces of conductor which together form an R2.3 m arc segment inside the vacuum vessel. The other two joints connect the arc segment with the two feeders near the port along the toroidal direction to bear lower electromagnetic loads during operation. Main processes and tests include material performances checking, conductor fabrication, joint connection and testing, coil forming, insulation performances measurement were described herein

  6. Applications of rotary jetting tool with coiled tubing offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Ricardo; Almeida, Victor; Mendez, Alfredo; Dean, Greg [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    It is well known that offshore operators are continuously looking for alternatives to reduce rig time, especially when it comes to work over operations due to high costs. The introduction of a Rotary Jetting Tool (RJT) in conjunction with coiled tubing was successfully tested and proved to be a better alternative not only because of its efficiency but also due to a reduction in the time of intervention operations. The RJT was created to remove scales and well obstructions by utilization of stress-cycling jetting. Stress cycling is a jetting mechanism that consists of pressuring and energizing fluid against a material. This mechanism breaks scales or obstructions and vibrates proppants in gravel pack completions. The RJT is composed of turbines that generate spinning and magnets that control the rotation. Most fluids used in the oil industry for remedial operations are compatible with this tool, hence its wide range of applications. This paper will present case histories that vary from hydrate and scale removal, and matrix stimulations including cleaning of gravel pack completions. The usage of this RJT has demonstrated effectiveness as a new alternative to improve well production and reduce rig time when compared to other methods commonly used in the area. (author)

  7. Estimation of performance of a J-T refrigerators operating with nitrogen-hydrocarbon mixtures and a coiled tubes-in-tube heat exchanger

    Science.gov (United States)

    Satya Meher, R.; Venkatarathnam, G.

    2018-06-01

    The exergy efficiency of Joule-Thomson (J-T) refrigerators operating with mixtures (MRC systems) strongly depends on the choice of refrigerant mixture and the performance of the heat exchanger used. Helically coiled, multiple tubes-in-tube heat exchangers with an effectiveness of over 96% are widely used in these types of systems. All the current studies focus only on the different heat transfer correlations and the uncertainty in predicting performance of the heat exchanger alone. The main focus of this work is to estimate the uncertainty in cooling capacity when the homogenous model is used by comparing the theoretical and experimental studies. The comparisons have been extended to some two-phase models present in the literature as well. Experiments have been carried out on a J-T refrigerator at a fixed heat load of 10 W with different nitrogen-hydrocarbon mixtures in the evaporator temperature range of 100-120 K. Different heat transfer models have been used to predict the temperature profiles as well as the cooling capacity of the refrigerator. The results show that the homogenous two-phase flow model is probably the most suitable model for rating the cooling capacity of a J-T refrigerator operating with nitrogen-hydrocarbon mixtures.

  8. TFTR Inner Support Structure final assembly and installation

    International Nuclear Information System (INIS)

    Rocco, R.E.; Brown, G.; Carglia, G.; Heitzenroeder, P.; Koenig, F.; Mookerjee, S.; Raugh, J.

    1983-01-01

    The Inner Support Structure (ISS) of the TFTR provides a specific level of restraint to the net centering force and overturning moment produced by the Toroidal Field (TF) coils and to the vertical forces produced by the Inner Poloidal Field (PF) coils. This is accomplished consistent with the need for four radial dielectric breaks running the entire length of the ISS to prevent eddy current loops. A brief description of the major components, method of manufacture and material selection of the ISS and PF coils is presented. Particular attention is given to the integration of the PF coils and the ISS components into the total assembly and the installation of strain gauges and crack monitors on the ISS. The requirements of no gaps at the interfaces of the ISS teeth at all three horizontal planes is discussed. The problem encountered with achieving the no gap requirement and the successful resolution of this problem, including its impact on installation of the ISS, is also discussed. The installation of the ISS, including setting in position, preloading with TF coil clips, and final tensioning of the tension bars is discussed. A brief description of the lower and upper lead stem splicing operation is presented. Subsequent to the final assembly, electrical tests were performed prior to and after installation on the TFTR machine. An overview of the tests and their results is presented

  9. Internal trim coils for CBA superconducting magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Aronson, S.; Cottingham, J.G.; Garber, M.; Hahn, H.; Sampson, W.B.

    1983-01-01

    In order to correct iron saturation effects and shape the beam working line, superconducting trim coils have been constructed, which operate inside the main coils. Detailed studies of mechanical properties, quench behavior, fields produced, and hysteresis have lead to the production of accelerator-quality coils generating the required-strength harmonics up to cos (7theta). These are routinely installed in CBA main magnets and operate at 80% of short sample with negligible training in an ambient field of more than 5.3T

  10. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  11. Design features of the KSTAR in-vessel control coils

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.K. [National Fusion Research Institute (NFRI), 52 Yeoeun-dong, Yusung-ku, Daejeon, 305-333 (Korea, Republic of)], E-mail: hkkim@nfri.re.kr; Yang, H.L.; Kim, G.H.; Kim, Jin-Yong; Jhang, Hogun; Bak, J.S.; Lee, G.S. [National Fusion Research Institute (NFRI), 52 Yeoeun-dong, Yusung-ku, Daejeon, 305-333 (Korea, Republic of)

    2009-06-15

    In-vessel control coils (IVCCs) are to be used for the fast plasma position control, field error correction (FEC), and resistive wall mode (RWM) stabilization for the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The IVCC system comprises 16 segments to be unified into a single set to achieve following remarkable engineering advantages; (1) enhancement of the coil system reliability with no welding or brazing works inside the vacuum vessel, (2) simplification in fabrication and installation owing to coils being fabricated outside the vacuum vessel and installed after device assembly, and (3) easy repair and maintenance of the coil system. Each segment is designed in 8 turns coil of 32 mm x 15 mm rectangular oxygen free high conductive copper with a 7 mm diameter internal coolant hole. The conductors are enclosed in 2 mm thick Inconel 625 rectangular welded vacuum jacket with epoxy/glass insulation. Structural analyses were implemented to evaluate structural safety against electromagnetic loads acting on the IVCC for the various operation scenarios using finite element analysis. This paper describes the design features and structural analysis results of the KSTAR in-vessel control coils.

  12. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger

    Science.gov (United States)

    Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan

    2018-06-01

    Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.

  13. Design and fabrication of the active feedback control coils for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Du Shijun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)], E-mail: dsj@ipp.ac.cn; Liu Xufeng [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)

    2008-10-15

    As the active feedback control coils are located inside vacuum vessel, a reasonable design is important not only for safe operation of the coils but also for reliable operation of EAST (Experimental Advanced Superconducting Tokamak). There are some different characteristics from other coils in the design and fabrication of the coils, such as the insulation structure bearing the high baking temperature, the insulation joint with special flexible structure and the brazing method of the large size conductor inside vacuum vessel. All joints of coils are located outside the vacuum vessel for providing more connection. The conductors of the coils are designed inside the stainless steel tube and actively water cooled to prevent overheating. The ceramic rings with fiberglass tapes are used to separate the conductors and the steel tube. This insulation structure adopted in the coils can bear the high baking temperature of the vacuum vessel and its details are given in the paper. For protecting the hermetic and insulating property of the insulation joint, the small bellows is located on insulation joints to eliminate the forces on the insulator. In the fabrication, the coils are built in sections and then assembled together to form whole coils inside the vacuum vessel. The 8 kHz frequency induction heater is used to braze the conductors for cutting short brazing time and reducing heating area. The electromagnetic loads acting on the current leaders, the electrical parameters of the coil and the coil temperature are also analyzed in this paper.

  14. Design and fabrication of the active feedback control coils for EAST

    International Nuclear Information System (INIS)

    Du Shijun; Liu Xufeng

    2008-01-01

    As the active feedback control coils are located inside vacuum vessel, a reasonable design is important not only for safe operation of the coils but also for reliable operation of EAST (Experimental Advanced Superconducting Tokamak). There are some different characteristics from other coils in the design and fabrication of the coils, such as the insulation structure bearing the high baking temperature, the insulation joint with special flexible structure and the brazing method of the large size conductor inside vacuum vessel. All joints of coils are located outside the vacuum vessel for providing more connection. The conductors of the coils are designed inside the stainless steel tube and actively water cooled to prevent overheating. The ceramic rings with fiberglass tapes are used to separate the conductors and the steel tube. This insulation structure adopted in the coils can bear the high baking temperature of the vacuum vessel and its details are given in the paper. For protecting the hermetic and insulating property of the insulation joint, the small bellows is located on insulation joints to eliminate the forces on the insulator. In the fabrication, the coils are built in sections and then assembled together to form whole coils inside the vacuum vessel. The 8 kHz frequency induction heater is used to braze the conductors for cutting short brazing time and reducing heating area. The electromagnetic loads acting on the current leaders, the electrical parameters of the coil and the coil temperature are also analyzed in this paper.

  15. An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique

    Science.gov (United States)

    Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.

    2018-05-01

    To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.

  16. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P

    1997-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  17. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P.

    1996-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  18. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  19. Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube

    Science.gov (United States)

    Alok, Praveen; Sahu, Debjyoti

    2018-02-01

    Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.

  20. Upgrade of DC power supply system in ITER CS model coil test facility

    International Nuclear Information System (INIS)

    Shimono, Mitsugu; Uno, Yasuhiro; Yamazaki, Keita; Kawano, Katsumi; Isono, Takaaki

    2014-03-01

    Objective of the ITER CS Model Coil Test Facility is to evaluate a large scale superconducting conductor for fusion using the Central Solenoid (CS) Model Coil, which can generate a 13T magnetic field in the inner bore with a 1.5 m diameter. The facility is composed of a helium refrigerator / liquefier system, a DC power supply system, a vacuum system and a data acquisition system. The DC power supply system supplies currents to two superconducting coils, the CS Model Coil and an insert coil. A 50-kA DC power supply is installed for the CS Model Coil and two 30 kA DC power supplies are installed for an insert coil. In order to evaluate superconducting performance of a conductor used for ITER Toroidal Field (TF) coils whose operating current is 68 kA, the line for an insert coil is upgraded. A 10 kA DC power supply was added, DC circuit breakers were upgraded, bus bars and current measuring instrument were replaced. In accordance to the upgrade, operation manual was revised. (author)

  1. Sleeving repair of heat exchanger tubes

    International Nuclear Information System (INIS)

    Street, Michael D.; Schafer, Bruce W.

    2000-01-01

    Defective heat exchanger tubes can be repaired using techniques that do not involve the cost and schedule penalties of component replacement. FTI's years of experience repairing steam generator tubes have been successfully applied to heat exchangers. Framatome Technologies heat exchanger sleeves can bridge defective areas of the heat exchanger tubes, sleeves have been designed to repair typical heat exchanger tube defects caused by excessive tube vibration, stress corrosion cracking, pitting or erosion. By installing a sleeve, the majority of the tube's heat transfer and flow capacity is maintained and the need to replace the heat exchanger can be delayed or eliminated. Both performance and reliability are improved. FTI typically installs heat exchanger tube sleeves using either a roll expansion or hydraulic expansion process. While roll expansion of a sleeve can be accomplished very quickly, hydraulic expansion allows sleeves to be installed deep within a tube where a roll expander cannot reach. Benefits of FTI's heat exchanger tube sleeving techniques include: - Sleeves can be positioned any where along the tube length, and for precise positioning of the sleeve eddy current techniques can be employed. - Varying sleeve lengths can be used. - Both the roll and hydraulic expansion processes are rapid and both produce joints that do not require stress relief. - Because of low leak rates and speed of installations, sleeves can be used to preventatively repair likely-to-fail tubes. - Sleeves can be used for tube stiffening and to limit leakage through tube defects. - Because of installation speed, there is minimal impact on outage schedules and budgets. FTI's recently installed heat exchanger sleeving at the Kori-3 Nuclear Power Station in conjunction with Korea Plant Service and Engineering Co., Ltd. The sleeves were installed in the 3A and 3B component cooling water heat exchangers. A total of 859 tubesheet and 68 freespan sleeves were installed in the 3A heat

  2. This immortal coil? New CT rigs duel against singles

    Energy Technology Data Exchange (ETDEWEB)

    Creighton, J.

    1998-12-01

    New competition to conventional single rigs that have changed little in the last four decades face new competition from next-generation coiled tubing (CT) units which have multi-function capabilities, ranging from driving onto leases, drilling and setting surface case to cementing. Several of these new units are ready to challenge the conventional single rigs. Their ability to perform at high penetration rates (up to twice what single rigs can do) is expected to significantly cut drill time, with corresponding cost savings for both contractors and operators. Serval Corporation and Fleet Coiled Services are just two of the drilling service companies that have launched new shallow grass roots coiled tubing drilling units recently, gambling that the new technology will win over conventional methods hands down. Some major companies, like Fracmaster Ltd. and NOWSCO Well Service Ltd., have targeted the re-entry and horizontal markets, a much more difficult technical challenge, sinking billions of dollars of research and development money into advancing the most technically difficult applications of coil technology.

  3. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    Science.gov (United States)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  4. Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation

    International Nuclear Information System (INIS)

    Adamowski, A.; Gagny; Gallet, G.; Lhermitte, J.; Monne, M.; Vautherot, G.

    1984-01-01

    Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation. The apparatus comprises a telescopic arm supported via a ball and socket joint from a support mounted in or near an access aperture in a chamber at one end of the steam generator. A probe guide is carried by a carriage pivotally mounted at the other end of the telescopic arm. The carriage includes an endless belt having a series of spaced projections which engage into the ends of the tubes, the projections being spaced by a distance equal to the tube pitch or a multiple thereof. The belt is driven by a stepping motor in order to move the carriage and place the probe guide opposite different ones of the tubes

  5. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  6. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  7. Requirements for qualification of manufacture of the ITER Central Solenoid and Correction Coils

    Energy Technology Data Exchange (ETDEWEB)

    Libeyre, Paul, E-mail: paul.libeyre@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Li, Hongwei [ITER China, 15B Fuxing Road, Beijing 100862 (China); Reiersen, Wayne [US ITER Project Office, 1055 Commerce Park Dr., Oak Ridge, TN 37831 (United States); Dolgetta, Nello; Jong, Cornelis; Lyraud, Charles; Mitchell, Neil; Laurenti, Adamo [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Sgobba, Stefano [CERN, CH-1211 Genève 23 (Switzerland); Turck, Bernard [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Martovetsky, Nicolai; Everitt, David; Freudenberg, K.; Litherland, Steve; Rosenblad, Peter [US ITER Project Office, 1055 Commerce Park Dr., Oak Ridge, TN 37831 (United States); Smith, John; Spitzer, Jeff [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Wei, Jing; Dong, Xiaoyu; Fang, Chao [ASIPP, Shushan Hu Road 350, Hefei, Anhui 230031 (China); and others

    2015-10-15

    Highlights: • A manufacturing line is installed for the ITER Correction Coils. • A manufacturing line is under installation for the ITER Central Solenoid. • Qualification of the manufacturing procedures has started for both manufacturing lines and acceptance criteria set. • Winding procedure of Correction Coils is qualified. - Abstract: The manufacturing line of the ITER Correction Coils (CC) at ASIPP in Hefei (China) was completed in 2013 and the manufacturing line of the ITER Central Solenoid (CS) modules is under installation at General Atomic premises in Poway (USA). In both cases, before starting production of the first coils, qualification of the manufacturing procedures is achieved by the construction of a set of mock-ups and prototypes to demonstrate that design requirements defined by the ITER Organization are effectively met. For each qualification item, the corresponding mock-ups are presented with the tests to be performed and the related acceptance criteria. The first qualification results are discussed.

  8. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  9. Field installation and maintenance

    International Nuclear Information System (INIS)

    Prebble, R.E.

    1981-01-01

    The use of a neutron moisture meter for the determination of the water content of soil necessitates the installation of an access tube down which the probe can be lowered. Errors in neutron count rate will be introduced if water enters the air gap between a loose fitting tube and the soil. Errors may also be caused by changes in the soil structure resulting from the techniques for soil removal and from driving the access hole. Access tube materials and dimensions, methods of installation and maintenance of the site are discussed

  10. Process for installing tubes in a steam generator

    International Nuclear Information System (INIS)

    Boula, G.; George, A.

    1988-01-01

    This process consists essentially to introduce the tubes by planar layers, to place antivibration bars above the layer and tensioning the bars with forces perpendicular to the layer, to check the play between the bars and the tubes and to replace the tubes beyond tolerance by other tubes [fr

  11. Manufacture of mineral-insulated conductor for ITER prototype ELM and VS coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Jin, Huan; Yu, Min; Han, Qiyang; Ling, Feng; Kalish, Michael

    2015-01-01

    Highlights: • Compaction method is successfully developed for MIC manufacture. • Manufactured MICs show well controlled outer diameter and good electrical properties. • Insulation resistance of all the MICs is higher than 100 GΩ@DC 2500 V. - Abstract: An ITER Organization (IO) Task Agreement (TA) “Final Design and Prototyping of the ITER In-Vessel Coils (IVC) and Feeders” is almost finished by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). ITER IVCs consist of edge-localized mode (ELM) and vertical stabilization (VS) coils. One prototype Mid-ELM coil complete with 19 brackets brazed with the conductors and one prototype 120° section of upper VS coil with structural components brazed to the conductors have been fabricated. Compaction method is developed successfully for the mineral-insulated conductor (MIC) manufacture. Approximate 110 m Inconel 625 jacket MICs for Mid-ELM prototype coil and 80 m stainless steel 316L jacket MICs for VS prototype coil were manufactured. Most of the copper tubes used for the MICs fabrication failed the ultrasonic testing (UT), but the jacket tubes have good passing rate. Manufacture processes and inspection for the MICs are presented in this paper

  12. Manufacture of mineral-insulated conductor for ITER prototype ELM and VS coil

    Energy Technology Data Exchange (ETDEWEB)

    Long, Feng, E-mail: longf@ipp.ac.cn [Institute of Plasma Physics of Chinese Academy of Sciences, Hefei 230031 (China); Wu, Yu; Jin, Huan; Yu, Min; Han, Qiyang; Ling, Feng [Institute of Plasma Physics of Chinese Academy of Sciences, Hefei 230031 (China); Kalish, Michael [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2015-06-15

    Highlights: • Compaction method is successfully developed for MIC manufacture. • Manufactured MICs show well controlled outer diameter and good electrical properties. • Insulation resistance of all the MICs is higher than 100 GΩ@DC 2500 V. - Abstract: An ITER Organization (IO) Task Agreement (TA) “Final Design and Prototyping of the ITER In-Vessel Coils (IVC) and Feeders” is almost finished by Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). ITER IVCs consist of edge-localized mode (ELM) and vertical stabilization (VS) coils. One prototype Mid-ELM coil complete with 19 brackets brazed with the conductors and one prototype 120° section of upper VS coil with structural components brazed to the conductors have been fabricated. Compaction method is developed successfully for the mineral-insulated conductor (MIC) manufacture. Approximate 110 m Inconel 625 jacket MICs for Mid-ELM prototype coil and 80 m stainless steel 316L jacket MICs for VS prototype coil were manufactured. Most of the copper tubes used for the MICs fabrication failed the ultrasonic testing (UT), but the jacket tubes have good passing rate. Manufacture processes and inspection for the MICs are presented in this paper.

  13. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  14. Trim coil power supplies

    International Nuclear Information System (INIS)

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  15. Study on Pole Arrangement of the CEDM Coils

    International Nuclear Information System (INIS)

    Park, Jin Seok; Lee, Myoung Goo; Kim, Hyun Min; Cho, Yeon Ho; Choi, Taek Sang

    2013-01-01

    The coil stack assembly is important for reliable operation of the CEDM, there have been efforts to improve the design by optimizing the design parameters such as dimensions and winding turns. However, magnetic forces of the CEDM can also change by different pole arrangement even if their design parameters are the same. Since the latch coil and lift coil are installed connected to each other, they produce magnetically coupled field when they are energized at the same time. This coupling field can affect the magnetic force of the CEDM significantly. In this paper, coil pole arrangement effects are studied. Electro-magnetic analysis is performed for the different pole arrangements of the CEDM coils to calculate the magnetic forces. Pole arrangement effects on magnetic forces were studied by static analysis of the CEDM magnetic field. Magnetic forces were calculated and compared for the two different pole arrangements of the coils. The results show that the magnetic poles of the lift coil and latch coil shall be arranged to have the same magnetic pole direction to achieve higher magnetic force

  16. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Acute abdomen due to ovarian congestion caused by coiling of the fallopian tube accompanied by paratubal cyst around the utero-ovarian ligament

    OpenAIRE

    Kim, Juyoung; Park, Daehyun; Han, Won Bo; Jeong, Hyangjin; Park, Youngse

    2014-01-01

    Torsion of uterine adnexa is an important cause of acute abdominal pain in females. The main organ which can cause torsion is the ovaries, but torsions of the fallopian tube, subserosal myoma, paratubal cyst, and even the uterine body have been reported. The incidence of isolated fallopian tubal torsion is very rare. Even more rarely, it can coil around nearby organs such as the utero-ovarian ligament, showing similar clinical manifestations with those of adnexal torsion. We experienced an ex...

  18. Graphene-coated coupling coil for AC resistance reduction

    Science.gov (United States)

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  19. Eddy-current inspection of ferromagnetic tubing using pulsed magnetic saturation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C V; Deeds, W E

    1986-07-01

    A pulsed eddy-current system has been designed and developed for nondestructive evaluation of 2.25Cr-1Mo steam generator tubing from the bore side. Since the tubing is ferromagnetic, a large current pulse is sent through a driver coil to produce magnetic saturation all the way through the tube wall. A pickup coil produces an output pulse that is dependent upon the tube properties as well as the driving pulse. The output pulse heights at selected times are used as data that are computer-correlated with calibration data taken from machined standards. Performance data, circuit diagrams, and computer programs are given for the system, which has been demonstrated to detect small flaws located near the outside of a thick ferromagnetic tube.

  20. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    Science.gov (United States)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  1. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  2. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  3. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  4. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    Science.gov (United States)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  5. Cytokines levels, Severity of acute mucositis and the need of PEG tube installation during chemo-radiation for head and neck cancer - a prospective pilot study

    International Nuclear Information System (INIS)

    Meirovitz, Amichay; Kuten, Michal; Billan, Salem; Abdah-Bortnyak, Roxolyana; Sharon, Anat; Peretz, Tamar; Sela, Mordechai; Schaffer, Moshe; Barak, Vivian

    2010-01-01

    The purpose of this pilot study was to detect a correlation between serum cytokine levels and severity of mucositis, necessitating installation of a percutaneous endoscopic gastrostomy tube (PEG) in head and neck (H&N) cancer patients receiving combined chemo-radiation therapy. Fifteen patients with H&N epithelial cancer were recruited to this study. All patients received radiotherapy to the H&N region, with doses ranging from 50-70 Gy. Chemotherapy with cisplatin, carboplatin, 5-fluorouracil and taxanes was given to high-risk patients, using standard chemotherapy protocols. Patients were evaluated for mucositis according to WHO common toxicity criteria, and blood samples were drawn for inflammatory (IL-1, IL-6, IL-8, TNF-α) and anti-inflammatory (IL-10) cytokine levels before and during treatment. A positive correlation was found between IL-6 serum levels and severity of mucositis and dysphagia; specifically, high IL-6 levels at week 2 were correlated with a need for PEG tube installation. A seemingly contradictory correlation was found between low IL-8 serum levels and a need for a PEG tube. These preliminary results, indicating a correlation between IL-6 and IL-8 serum levels and severity of mucositis and a need for a PEG tube installation, justify a large scale study

  6. Electromagnetic results of the Japanese LCT coil's domestic test

    International Nuclear Information System (INIS)

    Nishi, Masataka; Okuno, Kiyoshi; Takahashi, Yoshikazu; Tsuji, Hiroshi; Ando, Toshinari; Shimamoto, Susumu

    1984-01-01

    The domestic test of the Japanese LCT coil was carried out in 1982. During this test, the coil was charged up to the single coil's 100% state (10.22kA, 6.4T, 106MJ) four times and experienced no quenche. at the 100% charging state, coil stability was tested by using heaters installed in the conductor. A half turn length normal zone (about 5 m) generated by heaters was spontenously disappeared in 2 second. This normalized zone included the highest magnetic field position. The transport current which gives the stable limit is extraporated to be about 12.5kA at 8T by this test result. The dump test was carried out also from the 100% charging state. At that time, about 90% of the coil's stored energy was extracted by the dump resistor and the coil was not damaged. (author)

  7. Dryout occurrence in a helically coiled steam generator for nuclear power application

    Directory of Open Access Journals (Sweden)

    Santini L.

    2014-03-01

    Full Text Available Dryout phenomena have been experimentally investigated in a helically coiled steam generator tube. The experiences carried out in the present work are part of a wide experimental program devoted to the study of a GEN III+ innovative nuclear power plant [1].The experimental facility consists in an electrically heated AISI 316L stainless steel coiled tube. The tube is 32 meters long, 12.53 mm of inner diameter, with a coil diameter of 1m and a pitch of 0.79 m, resulting in a total height of the steam generator of 8 meters. The thermo-hydraulics conditions for dryout investigations covered a spectrum of mass fluxes between 199 and 810 kg/m2s, the pressures ranges from 10.7 to 60.7 bar, heat fluxes between 43.6 to 209.3 kW/m2.Very high first qualities dryout, between 0.72 and 0.92, were found in the range of explored conditions, comparison of our results with literature available correlations shows the difficulty in predicting high qualities dryout in helical coils., immediately following the heading. The text should be set to 1.15 line spacing. The abstract should be centred across the page, indented 15 mm from the left and right page margins and justified. It should not normally exceed 200 words.

  8. Coil development for the quasi-poloidal stellarator project

    International Nuclear Information System (INIS)

    Nelson, B.E.; Berry, L.A.; Cole, M.J.; Fogarty, P.J.; Freudenberg, K.; Hirshman, S.P.; Lyon, J.F.; Spong, D.A.; Strickler, D.J.; Williamson, D.; Benson, R.D.; Lumsdaine, A.; Madhukar, M.; Parang, M.; Shannon, T.; Dahlgren, F.; Heitzenroeder, P.; Neilson, G.H.; Goranson, P.; Hargrove, T.; Jones, G.; Lovett, G.

    2005-01-01

    , vacuum canning studies, and fabrication of a full scale-prototype modular coil. One of the most critical issues is the cooling of the winding pack because of space constraints, variable conductor behavior, coolant effectiveness, complex electrical circuits, impregnation issues, vacuum can conductance, possibility of welding/brazing damage, and the extremely complex conductor leads interface and connection. Two possible conductor cooling concepts are being evaluated: (1) an internally cooled conductor having a copper tube filled with a Pb-Bi filler imbedded in the conductor cable to avoid crimping during winding, and (2) an externally cooled winding pack using copper cladding inboard and copper chill plates outboard of the pack. The internally cooled conductor concept is attractive due to a much more effective, active cooling of the conductor than the copper cladding/chill plates allow, resulting in up to a factor of 5 faster cooldown between shots. Issues being studied are the effect of the increased conductor stiffness on winding the coil, evacuating the filler material in the coolant tube after the initial potting step, and separating the cooling tube from the conductor at the electrical connection interface. Four- turn test coils are being tested for mechanical properties (cyclic loading for fatigue properties), thermal properties (conductivity), and tensile properties (stiffness and strength). (author)

  9. A Conceptual Design Study for the Error Field Correction Coil Power Supply in JT-60SA

    International Nuclear Information System (INIS)

    Matsukawa, M.; Shimada, K.; Yamauchi, K.; Gaio, E.; Ferro, A.; Novello, L.

    2013-01-01

    This paper describes a conceptual design study for the circuit configuration of the Error Field Correction Coil (EFCC) power supply (PS) to maximize the expected performance with reasonable cost in JT-60SA. The EFCC consists of eighteen sector coils installed inside the vacuum vessel, six in the toroidal direction and three in the poloidal direction, each one rated for 30 kA-turn. As a result, star point connection is proposed for each group of six EFCC coils installed cyclically in the toroidal direction for decoupling with poloidal field coils. In addition, a six phase inverter which is capable of controlling each phase current was chosen as PS topology to ensure higher flexibility of operation with reasonable cost.

  10. Design Of JET ELM Control Coils For Operation At 350 C

    International Nuclear Information System (INIS)

    Zatz, I.J.; Baker, R.; Brooks, A.; Cole, M.; Neilson, G.H.; Lowry, C.; Mardenfeld, M.; Omran, H.; Thompson, V.; Todd, T.

    2010-01-01

    A study has confirmed the feasibility of designing, fabricating and installing resonant magnetic field perturbation (RMP) coils in JET1 with the objective of controlling edge localized modes (ELM). A system of two rows of in-vessel coils, above the machine midplane, has been chosen as it not only can investigate the physics of and achieve the empirical criteria for ELM suppression, but also permits variation of the spectra allowing for comparison with other experiments. These coils present several engineering challenges. Conditions in JET necessitate the installation of these coils via remote handling, which will impose weight, dimensional and logistical limitations. And while the encased coils are designed to be conventionally wound and bonded, they will not have the usual benefit of active cooling. Accordingly, coil temperatures are expected to reach 350 C during bakeout as well as during plasma operations. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical coils. This has necessitated the use of an alternative copper alloy conductor C18150 (CuCrZr). More importantly, an alternative to epoxy had to be found. An R and D program was initiated to find the best available insulating and bonding material. The search included polyimides and ceramic polymers. The scope and status of this R and D program, as well as the critical engineering issues encountered to date are reviewed and discussed.

  11. Numerical investigation of heat transfer and entropy generation of laminar flow in helical tubes with various cross sections

    International Nuclear Information System (INIS)

    Kurnia, Jundika C.; Sasmito, Agus P.; Shamim, Tariq; Mujumdar, Arun S.

    2016-01-01

    Highlights: • Heat transfers of helical coiled tube with several cross section profiles are evaluated. • Helical tubes offer higher heat transfer and lower entropy generation. • Square cross-section generates the highest entropy, followed by ellipse and circular. • Study could serve as a guideline in designing an efficient helical tube heat exchanger. - Abstract: This study evaluates heat transfer performance and entropy generation of laminar flow in coiled tubes with various cross-sections geometries i.e. circular, ellipse and square, relatives to the straight tubes of similar cross-sections. A computational fluid dynamics model is developed and validated against empirical correlations. Good agreement is obtained within range of Reynolds and Dean numbers considered. Effect of geometry, wall temperature, Reynolds number and heating/cooling mode were examined. To evaluate the heat transfer performance of the coiled tube configurations, a parameter referred as Figure of Merit (FoM) is defined as the ratio heat transfer rate to the required pumping power. In addition, exergy analysis is carried out to examine the inefficiency of the coiled tube configurations. The results indicate that coiled tubes provide higher heat transfer rate. In addition, it was found to be more efficient as reflected by lower entropy generation as compared to straight tubes. Among the studied cross-section, square cross-section generates the highest entropy, followed by ellipse and circular counterpart. Entropy production from heat transfer contribution is two order-of-magnitude higher than that of entropy contribution from viscous dissipation. Cooling case produces slightly higher entropy than heating counterpart. Finally, this study can provide practical guideline to design more efficient coiled heat exchanger.

  12. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  13. Mechanical behavior of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Acerbi, E; Alessandria, F; Berthier, R; Broggi, F; Daël, A; Dudarev, A; Mayri, C; Miele, P; Reytier, M; Rossi, L; Sorbi, M; Sun, Z; ten Kate, H H J; Vanenkov, I; Volpini, G

    2002-01-01

    The ATLAS B0 model coil has been developed and constructed to verify the design parameters and the manufacture techniques of the Barrel Toroid coils (BT) that are under construction for the ATLAS Detector. Essential for successful operation is the mechanical behavior of the superconducting coil and its support structure. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce in the model coil the electromagnetic forces of the BT coils when assembled in the final Barrel Toroid magnet system. The model coil is extensively equipped with mechanical instrumentation to monitor stresses and force levels as well as contraction during a cooling down and excitation up to nominal current. The installed set up of strain gauges, position sensors and capacitive force transducers is presented. Moreover the first mechanical results in terms of expected main stress, strain and deformation values are presented based on detailed mechanical analysis of the design. (7 refs).

  14. Eddy current test of fin tubes for a heat exchanger

    International Nuclear Information System (INIS)

    KIm, Young Joo; Lee, Se Kyung; Chung, Min Hwa

    1992-01-01

    Eddy current probes were designed for the test of fin tubes. Fin tubes, often used for heat exchangers, have uneven outer and inner surfaces to enhance the heat emission. The surface roughness make it difficult to detect flaws employing eddy current test(ECT). In order to overcome the difficulties we performed two types of works, one is the delopment of ECT probes, and the other is the signal processing including fast Fourier transform and digital filtering. In the development of ECT probes, we adopted empirical design method. Our ECT probes for fin tubes are inside diameter type. And we are specially concerned about geometric features such as the widths of the coils composing an ECT probe. We fabricated four probes with various coil widths. Eddy current test was performed using those ECT probes on specimens with artificial flaws. After analyzing the output signals, we found that, in order for the effective testing, the width of a coil should be determined considering the pitch of the fins of a tube. And we also learned that the frequency filtering could improve the s/n ratio.

  15. Development of Evaluation Technology for Detection of Axial Crack at Eggcrate Intersection of Steam Generator Tube

    International Nuclear Information System (INIS)

    Choi, Myung Sik; Hur, Do Haeng; Kim, Kyung Mo; Han, Jung Ho; Lee, Deok Hyun; Song, Myung Ho

    2011-01-01

    The occurrence of outer diameter (OD) axial stress corrosion crack at egg crate intersection of steam generator tube in operating power plant is inspected primarily by the eddy current test using bobbin coil probe. Therefore, the characteristics of the bobbin coil signal from the axial crack at egg crate intersection of steam generator tube should be understood for the accurate and earlier detection of the crack. In this study, the mockup assembly simulating the steam generator tube with OD axial stress corrosion crack and tube support egg crate was manufactured, and the characteristics of bobbin coil eddy current signal was examined in order to extract the improved evaluation technique for the detection of the crack

  16. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  17. Improved separation with the intermittently pressed tubing of multilayer coil in type-I counter-current chromatography.

    Science.gov (United States)

    Yang, Yi; Yang, Jiao; Fang, Chen; Wang, Jihui; Gu, Dongyu; Tian, Jing; Ito, Yoichiro

    2018-05-25

    The intermittently pressed tubing was introduced in type-I counter-current chromatographic system as the separation column to improve the separation performance in the present study. The separations were performed with two different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW) and hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMW) using dipeptides and DNP-amino acids as test samples, respectively. The chromatographic performance was evaluated in terms of retention of the stationary phase (Sf), theoretical plate (N) and peak resolution (Rs). In general, the type-I planetary motion with the multilayer coil of non-modified standard tubing can yield the best separation at a low revolution speed of 200 rpm with lower flow rate. The present results with intermittently pressed tubing indicated that the performance was also optimal at the revolution speed of 200 rpm where the lower flow rate was more beneficial to retention of stationary phase and resolution. In the moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1 M hydrochloric acid (1:1:1:1, v/v), DNP-amino acids were separated with Rs at 1.67 and 1.47, respectively, with 12.66% of stationary phase retention at a flow rate of 0.25 ml/min. In the polar solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v), dipeptide samples were resolved with Rs at 2.18 and 18.75% of stationary phase retention at a flow rate of 0.25 ml/min. These results indicate that the present system substantially improves the separation efficiency of type-I counter-current chromatographic system. Published by Elsevier B.V.

  18. An experimental study of ECT for fin-type copper alloy tubes

    International Nuclear Information System (INIS)

    Lee, Hyung Joon; Lee, Jeong Soon; Sung, Je Joong; Park, Cheon Woong; Suh, Dong Man; Yu, Taek In

    2002-01-01

    Eddy current detecting probes with inner and encircling coils were designed for the fin-type tubes that have uneven outer and inner surface to enhance the efficiency of heat emission. As the uneven surface of them, it is difficult to detect flaws in the tubes by eddy current test. In this paper, standard and artificial specimens with flaws for the different types of the tubes were manufactured. Eddy current test was performed with the designed probes, which have inner and encircling coils, for the prepared specimens. From the signals of the eddy current detecting probes, the phase and amplitude variation were analyzed and the best conditions of the flaw detection for the tubes were found.

  19. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  20. Flow-induced vibration of steam generator helical tubes subjected to external liquid cross flow and internal two-phase flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2005-01-01

    Full text of publication follows: This paper addresses the potential flow-induced vibration problems in a helically-coiled tube steam generator of integral-type nuclear reactor, of which the tubes are subjected to liquid cross flow externally and multi-phase flow externally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helical type tubes with various conditions, a finite element analysis code is used. Based on the results of both helical coiled tube steam generator thermal-hydraulic and coiled tube modal analyses, turbulence-induced vibration and fluid-elastic instability analyses are performed. And then the potential for damages on the tubes due to either turbulence-induced vibration or fluid-elastic instability is assessed. In the assessment, special emphases are put on the detailed investigation for the effects of support conditions, coil diameter, and helix pitch on the modal, vibration amplitude and instability characteristics of tubes, from which a technical information and basis needed for designers and regulatory reviewers can be derived. (authors)

  1. Optimum fluid design for drilling and cementing a well drilled with coil tubing technology

    Energy Technology Data Exchange (ETDEWEB)

    Swendsen, O.; Saasen, A.; Vassoy, B. [Statoil (Norway); Skogen, E.; Mackin, F.; Normann, S. H.

    1998-12-31

    The strategy, design and drilling fluid and cementing operations in the first two wells drilled with coil tubing technology in the Gullfaks field in the Tampen Spur Area of the Norwegian sector of the North Sea are discussed. The drilling fluid use was a solids-free potassium formate/polymer brine-based fluid with a density of 1,50-1.56 g/cc, with flow properties characterized by very low fluid loss due to high extensional viscosity, a low viscosity at all shear rates, and a low degree of shear-thinning. The low viscous drilling fluid is considered to have been the major contributing factor in achieving excellent hole cleaning, no differential sticking, successful setting of cement kick-off plugs, problem-free running of the liner, and excellent zonal isolation when cementing the liner. These experiences led the authors to conclude that it is possible to formulate a brine-based solids-free drilling fluid with low viscosity and fluid loss properties for most formation pressure regimes, and that such a drilling fluid is well suited to drilling highly deviated slim hole wells where hole cleaning and differential sticking present special challenges. 12 refs., 2 tabs., 3 figs.

  2. Current control system for superconducting coils of LHD

    International Nuclear Information System (INIS)

    Chikaraishi, H.; Yamada, S.; Inoue, T.

    1996-01-01

    This paper introduce a coil current control system of the LHD. The main part of this system consists of two VME based real time computers and a risc based work station which are connected by optical fiber link. In this computer system, a coil current controller for steady state operation of LHD which based on a state variable control theory is installed. Also advanced current control scheme, which are now developing for dynamic current control in phase II operation of LHD, are introduced. (author)

  3. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-01-01

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H + ] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  4. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    International Nuclear Information System (INIS)

    Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

    1987-09-01

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb 3 Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm 3 of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm 3 of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes

  5. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

  6. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  7. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  8. Quench performance of a 4-m long Nb3Sn shell-type dipole coil

    International Nuclear Information System (INIS)

    Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2008-01-01

    Fermilab has finished the first phase of Nb 3 Sn technology scale up by testing 2-m and 4-m long shell-type dipole coils in a 'magnetic mirror' configuration. The 2-m long coil, made of Powder-in-Tube (PIT) Nb 3 Sn strand, reached its short sample limit at a field level of 10 T. The 4-m long coil, made of advanced Nb 3 Sn strand based on the Restack Rod Process (RRP) of 108/127 design, has been recently fabricated and tested. Coil test results at 4.5 K and 2.2 K are reported and discussed

  9. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian

    2017-10-01

    This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation

  10. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  11. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  12. Diagnosis of 3-dimensional geometry and stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Lee, D.H.; Choi, M.S.; Hur, D.H.; Kim, K.M.; Han, J.H.; Song, M.H.

    2015-01-01

    Most of the corrosive degradations in steam generator tubes of nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, an expansion transition, u-bend, dent, bulge, etc. Therefore, accurate information on a geometric anomaly (precursor of degradation) in a tube is a prerequisite to the activity of pre- and in-service non destructive inspection for a precise and earlier detection of a defect in order to prevent a failure during an operation, and also for a root cause analysis of a failure. In this paper, a new diagnostic eddy current probe technology which has simultaneous dual function of a 3-dimensional geometry measurement and defect detection in steam generator tube is introduced. The D-Probe is a rotary type eddy current coil probe equipped with 3 different eddy current coil units (surface riding type plus-point and pancake coils for defect detection, and non-surface riding type shielded high frequency pancake coil for tube profile measurement). A specific data analysis software has been developed. By comparing the eddy current data from the defect with those from the geometric changes, the relationship between the degradation and geometric changes can be revealed. Also, it supplies information on tube location at which defect is most probable and thus, a more efficient detection of earlier degradation. The use of D-probe and analysis software has been demonstrated for steam generator tubes with various geometric anomalies in manufacturing and operating nuclear power plants

  13. Combination of helical ferritic-steel inserts and flux-tube-expansion divertor for the heat control in tokamak DEMO reactor

    International Nuclear Information System (INIS)

    Takizuka, T.; Tokunaga, S.; Hoshino, K.; Shimizu, K.; Asakura, N.

    2015-01-01

    Edge localized modes (ELMs) in the H-mode operation of tokamak reactors may be suppressed/mitigated by the resonant magnetic perturbation (RMP), but RMP coils are considered incompatible with DEMO reactors under the strong neutron flux. We propose an innovative concept of the RMP without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed field is naturally formed in the axisymmetric toroidal field through the helical ferritic steel inserts (FSIs). When ELMs are avoided, large stationary heat load on divertor plates can be reduced by adopting a flux-tube-expansion (FTE) divertor like an X divertor. Separatrix shape and divertor-plate inclination are similar to those of a simple long-leg divertor configuration. Combination of the helical FSIs and the FTE divertor is a suitable method for the heat control to avoid transient ELM heat pulse and to reduce stationary divertor heat load in a tokamak DEMO reactor

  14. Application of high-temperature superconducting coil for internal ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: ogawa@ppl.k.u-tokyo.ac.jp; Morikawa, Junji [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan); Mito, Toshiyuki [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Yanagi, Nagato [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Iwakuma, Masataka [Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    A high-temperature superconducting (HTS) coil is applied for plasma confinement devices, where plasma is confined with a magnetic field of a floating HTS coil. The internal coil device mini-RT with a BSCCO tape has been constructed, in which the coil major radius and magnetomotive force are 0.15 m and 50 kA, respectively. The coil is cooled to 20 K with a helium gas by using a demountable transfer tube and check valve system. The coil current is directly excited by the external power supply with demountable electrodes. To reduce the heat load, the electrodes were cooled with liquid nitrogen. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured by laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded in levitating the HTS coil during 1 h with accuracy of less than 20 {mu}m. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. At the floating condition of the HTS coil, a high-density plasma with more than 10{sup 17} m{sup -3}, which is higher than the cut-off density of a 2.45 GHz microwave, has been produced. A new device RT-1 with a major radius of 0.25 m and a magnetomotive force of 250 kA is under construction, and a persistent current has been demonstrated. The feasibility on YBCO tape is briefly discussed.

  15. Microstructures and superconducting properties of Y-Ba-Cu and Bi-Sr-Ca-Cu oxide wires and coils prepared by the explosive compaction technique

    International Nuclear Information System (INIS)

    Hagino, S.; Suzuki, M.; Takeshita, T.; Takashima, K.; Tonda, H.

    1989-01-01

    It has been shown that explosive compaction technique can be used to densify metal, and ceramics powders and their mixtures. The authors discuss how they applied this technique to produce silver sheathed superconducting oxide wires and coils (Y-B-Cu-O and Bi-Sr-Ca-Cu-O). The wires and coils to be compacted were placed into metal tube and the tube was filled with SiC powder as a pressure propagating medium and the tube was compacted by a cylindrically axisymmetric method. The wires and coils compacted were then heat-treated in order to improve grain boundary connections of superconducting oxide crystalline grains. The oxide cores heat-treated were seen to be very dense, and a part of a Y-Ba-Cu oxide coil which was heat-treated optimally was found to have a critical current density higher than 13,000A/cm 2 at 77K

  16. Quench performance of a 4-m long Nb3Sn shell-type dipole coil

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab

    2008-08-01

    Fermilab has finished the first phase of Nb{sub 3}Sn technology scale up by testing 2-m and 4-m long shell-type dipole coils in a 'magnetic mirror' configuration. The 2-m long coil, made of Powder-in-Tube (PIT) Nb{sub 3}Sn strand, reached its short sample limit at a field level of 10 T. The 4-m long coil, made of advanced Nb{sub 3}Sn strand based on the Restack Rod Process (RRP) of 108/127 design, has been recently fabricated and tested. Coil test results at 4.5 K and 2.2 K are reported and discussed.

  17. Tubing cutter for tight spaces

    Science.gov (United States)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  18. Optimization of multiwire coil ends having 45 degree bends

    International Nuclear Information System (INIS)

    Morgan, G.H.

    1989-01-01

    Multiwire is the name of a proprietary process for affixing small diameter wires to a flat substrate using digitally controlled machinery. It is currently being used to wind trim coils for the SSC dipoles on a flexible substrate which is wrapped around the beam tube. It is proposed for making multipole coils for the Corrector, a regular arc magnet in each half-cell of the Relativistic Heavy Ion Collider (RHIC). The current Multiwire process does not permit a change in direction of the wire other than 45 degree. The present paper answers the question of whether the 45 degree bends in the flattened coil can be located along straight lines in such a way as to eliminate or reduce higher harmonics in the ends. The more general question of bends located along curves is not addressed

  19. Optimization of multiwire coil ends having 45 degree bends

    International Nuclear Information System (INIS)

    Morgan, G.H.

    1988-01-01

    Multiwire is the name of a proprietary process for affixing small diameter wires to a flat substrate using digitally controlled machinery. It is currently being used to wind trim coils for the SSC dipoles on a flexible substrate which is wrapped around the beam tube. It is proposed for making multipole coils for the Corrector, a regular arc magnet in each half-cell of the Relativistic Heavy Ion Collider (RHIC). The current Multiwire process does not permit a change in direction of the wire other than 45 degree. The present paper answers the question of whether the 45 degree bends in the flattened coil can be located along straight lines in such a way as to eliminate or reduce higher harmonics in the ends. The more general question of bends located along curves is not addressed. 3 refs., 3 figs., 2 tabs

  20. Design developments for the ITER in-Vessel equilibrium pick-up Coils and Halo current Sensors

    International Nuclear Information System (INIS)

    Chitarin, G; Grando, L.; Pomaro, N.; Peruzzo, S.; Taccon, C.

    2006-01-01

    The ITER magnetic diagnostics must provide essential information to be used both for plasma diagnostic purposes, and as feedback signals for the machine control loops. Some of the sensors have to be installed in a hostile environment characterized by severe neutron irradiation and plasma heat loads, which can reduce the sensor lifetime (due to mechanical and electrical damage) and also generate undesired DC signals, which might compromise the accuracy of the measurements obtained by time-integration. The paper is focused on the design development and optimization of a typical in-vessel tangential pick-up Coil. The work is aimed to achieve the required measurement precision in spite of Radiation Induced Electromotive Force (RIEMF) and Radiation Induced Thermo-Electric Sensitivity (RITES), which have recently been documented to take place in Mineral Insulated Cables (MIC). To this purpose, a substantial reduction of the thermal gradient and the maximum temperature due to nuclear heating in the pick-up coils is considered necessary. Within the limits of several heavy engineering constraints, a new concept of magnetic pick up coil has been developed. A winding made of a ceramic-coated conductor (instead of a MIC) and '' impregnated '' with ceramic filler is proposed. Different material choices for the coil support structure have been investigated. Similar issues are related to the Halo Sensor design. The possibility of replacing the circular tubes used as support of the Rogowski coils with a ceramic support in order to avoid the non-linear effect of the magnetic material has also been studied. The replacement of the MIC of the winding with a ceramic-coated wire is also investigated in order to increase of the effective area of the sensor. The paper includes also a critical review of each stage of the measurement chain (probes, cabling, conditioning electronics and data acquisition) in order to assess the compliance with the overall system precision that is required for

  1. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-01-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators

  2. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Science.gov (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  3. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  4. Multifrequency eddy current testing of helical tubes of steam generators

    International Nuclear Information System (INIS)

    Pigeon, M.; David, B.

    1983-06-01

    In the event of a water-sodium reaction in a steam-generator of a fast breeder reactor, it is necessary to test the tubes close to the leak to evaluate the damage. In SUPERPHENIX, the tubes are about 100m long and are coiled on a dead body. This report describes the equipment and the technic to test such tubes with multifrequency eddy current technics [fr

  5. Cooling a solar telescope enclosure: plate coil thermal analysis

    Science.gov (United States)

    Gorman, Michael; Galapon, Chriselle; Montijo, Guillermo; Phelps, LeEllen; Murga, Gaizka

    2016-08-01

    The climate of Haleakalā requires the observatories to actively adapt to changing conditions in order to produce the best possible images. Observatories need to be maintained at a temperature closely matching ambient or the images become blurred and unusable. The Daniel K. Inouye Solar Telescope is a unique telescope as it will be active during the day as opposed to the other night-time stellar observatories. This means that it will not only need to constantly match the ever-changing temperature during the day, but also during the night so as not to sub-cool and affect the view field of other telescopes while they are in use. To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project's purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil's thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn't to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing. The test rig performance showing a 23% margin

  6. Precision heat forming of tetrafluoroethylene tubing

    Science.gov (United States)

    Ruiz, W. V.; Thatcher, C. S. (Inventor)

    1981-01-01

    An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process.

  7. NET model coil test possibilities in the TOSKA TWIN configuration

    International Nuclear Information System (INIS)

    Gruenhagen, A.; Heller, R.; Herz, W.; Hofmann, A.; Jentzsch, K.; Kapulla, H.; Kneifel, B.; Komarek, P.; Lehmann, W.; Maurer, W.; Ulbricht, A.; Vogt, A.; Zahn, G.

    1989-07-01

    This report continues an earlier one on the possibilities of NET model coil testing in the TOSKA Upgrade facility at KfK. The investigation of a 'Cluster Test Facility' and a 'Solenoid Test Facility' is followed by the investigation of two further test arrangements. They are called 'Twin Configurations'. One common feature of both arrangements is that the EURATOM-LCT-coil delivers a background magnetic field. This coil should be operated at a temperature of 1.8 K and an enhanced current up to 20 kA compared to the LCT test where 3.5 K and up to 16 kA were the operating conditions. In one configuration the NET model test coil is adjacent to the LCT coil (ATC = Adjacent Twin Configuration), in the other one the NET model coil is inserted into the bore of LCT coil (ITC = Inserted Twin Configuration) either upright or with a 60 0 C slope. The configurations are investigated with respect to their electromagnetic mechanical and thermo-hydraulic properties. The requirements for the necessary mechanical support structure of the LCT coil were computed. Installation and cooling of the whole system were discussed. The time schedule and the costs for the test facility modification were estimated. Advantages and disadvantages for the configurations were discussed with respect to feasibility of the test arrangement and operation. (orig.) [de

  8. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  9. Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Mokamati, S.V.; Prasad, R.C.

    2003-01-01

    In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)

  10. Non-destructive evaluation of stream generator tubes and pressure tubes from the PHWR reactors, using the rotating magnetic field method

    International Nuclear Information System (INIS)

    Premel, D.; Placko, D.; Grimberg, R.; Savin, A.

    2001-01-01

    This work presents a new type of eddy current transducer with a rotating magnetic field devoted to the inspection of steam generator tubes and pressure tubes from the PHWR reactors. A theoretical model has been developed that permits the calculations of the emf induced in the reception coils in the presence of the copper or magnetite deposits, anti-vibration railing and garter springs. (authors)

  11. An anti vimentin antibody promotes tube formation

    DEFF Research Database (Denmark)

    Jørgensen, Mathias Lindh; Møller, Carina Kjeldahl; Rasmussen, Lasse

    2017-01-01

    antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration...... or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D...

  12. Inspection and repair of steam generator tubing with a robot

    International Nuclear Information System (INIS)

    Boehm, H.H.; Foerch, H.

    1985-01-01

    During inspection and repair of steam generator tubing, radiation exposure to personnel is an unrequested endowment. To combat this intrinsic handicap, a robot has been designed for deployment in all operations inside the steam generator water chamber. This measure drastically reduces entering time and also improves inspection capabilities with regard to the accuracy and reproduction of the desired tube address. The inherent flexibility of the robot allows for performing various inspection and repair techniques: eddy-current testing of tubing; ultrasonic testing of tubing; visual examination of tube ends; profilometry measurements; tube plugging; plug removal; tube extraction; sleeving of tubes; tube end repair; chemical cleaning; and thermal treatment. Plant experience has highlighted the following features of the robot: 1) short installation and demounting periods; 2) installation independent of manhole location; 3) installation possible from outside the steam generator; 4) only one relocation required to address all the tube positions; 5) fast and highly accurate positioning; 6) operational surveillance not required; and 7) drastic reduction of radiation exposure to personnel during repair work

  13. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  14. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2015-07-16

    Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase

  15. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions

    Science.gov (United States)

    Elshazly, K. M.; Sakr, R. Y.; Ali, R. K.; Salem, M. R.

    2017-06-01

    This work investigated experimentally the thermal performance of shell and coil heat exchanger with different coil torsions (λ) for γ-Al2O3/water nanofluid flow. Five helically coiled tube (HCT) with 0.0442 ≤ λ ≤ 0.1348 were tested within turbulent flow regime. The average size of γ-Al2O3 particles is 40 nm and volume concentration (φ) is varied from 0 to 2%. Results showed that reducing coil torsion enhances the heat transfer rate and increases HCT-friction factor (fc). Also, it is noticed that HCT average Nusselt number (Nut) and fc of nanofluids increase with increasing γ-Al2O3 volume concentration. The thermal performance index, TPI = (ht,nf/ht,bf)/(ΔPc,nf/ΔPc,bf). increases with increasing nanoparticles concentration, coil torsion, HCT-side inlet temperature and nanofluid flow rate. Over the studied range of HCT-Reynolds number, the average value of TPI is of 1.34 and 2.24 at φ = 0.5% and φ = 2%, respectively. The average value of TPI is of 1.64 at λ = 0.0442 while its average value at λ = 0.1348 is of 2.01. One of the main contributions is to provide heat equipments designers with Nut and fc correlations for practical configurations shell and coil heat exchangers with a wide range of nanofluid concentration.

  16. Industrial engineering studies for the manufacture of the ITER PF coils

    International Nuclear Information System (INIS)

    Libeyre, P.; Decool, P.; Guerin, O.; Perrella, M.; Bourquard, A.

    2007-01-01

    Industrial studies have been carried out in Europe to prepare the manufacture of the five poloidal field (PF) coils, which will be manufactured on the ITER site. A first study, carried out by Ansaldo Superconduttori, addressed the manufacturing sequence, assuming the manufacture of the PF coils inside the two buildings which will further host the cryogenic system. A second study, carried out by Alstom investigated how to achieve the manufacture of some crucial points. A new layout of the manufacturing line was proposed, aiming at manufacture of the PF2-6 coils within 36 months. A recent study performed by Alstom, assumes the manufacture of the PF coils in a single dedicated building, releasing so the constraint of meeting the deadline fixed in ITER reference scheme by the starting point of installation of the cryogenic components

  17. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  18. Study of a Coil Heat Exchanger with an Ice Storage System

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-12-01

    Full Text Available In this study, a coil heat exchanger with an ice storage system is analyzed by theoretical analysis, numerical analysis, and experimental analysis. The dynamic characteristics of ice thickness variation is studied by means of unstable heat conduction theory in cylindrical coordinates, and the change rule of the ice layer thickness is obtained. The computational fluid dynamics method is employed to simulate the flow field and ice melting process of the coil heat exchanger. The effect of the agitator height on the flow characteristics and heat transfer characteristics is investigated. The numerical results show that the turbulence intensity of the fluid near the wall of the heat exchanger is the largest with an agitator height of 80 mm. Furthermore, the process of ice melting is analyzed. The ice on the outer side of the evaporator tube close to the container wall melts faster than the inner side and this agrees well with the experimental result. The experimental study on the process of the operational period and deicing of the coil heat exchanger is conducted and the temperature variation curves are obtained by the arrangement of thermocouples. It is found that the temperature of the evaporating tube increases with increasing height in the process of ice storage.

  19. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  20. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  1. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied

  2. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  3. Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System

    Science.gov (United States)

    Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.

    2008-03-01

    Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design

  4. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Gherbanovschi, N.; Tanasa, M.; Stoican, O.

    2002-01-01

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  5. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  6. Dynamic Models of Heating and Cooling Coils with One—Dimensional Air Distribution

    Institute of Scientific and Technical Information of China (English)

    WangZijie; G.Krauss

    1993-01-01

    This paper presents the simulation models of the plate-fin,air-to-water(or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying colis in the HVAC(Heating,Ventilation and AIr-Conditioning)systems.The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid.The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes,They can also be used to optimize the structres of such coils.The models are based on principal laws of teat and mass conservation and fluid mechanics.They are transparent and easy to use.In our work,a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique.Therefore we can conveniently simulate the coils with different structures and different geometric parameters.Two modular programs TRNSYS(Transient System Simulation)and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified.The coil elements and a real coil were simulated.The results were compared with the data offered by the manufacturer(company SOFICA) and also with those obtained using critical methods such as NTU method ,etc.and good agreement is attained.

  7. Turbulence induced Fretting-wear characteristics of steam generator helical tubes

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Kim, Hho Jung; Yune, Young Gill; Yu, Seon Oh

    2005-01-01

    This study addresses safety assessment of the potential for fretting-wear damages on steam generator helical tubes due to turbulence-induced vibration in operating nuclear power plants. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Special emphases are put on the effects of coil diameter and the number of turns on the modal and fretting wear characteristics of tubes. Also, investigated are the effects of external pressure on the tube modal characteristics as well as the effects of turbulence induced vibration on the fretting-wear characteristics of tubes

  8. A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils

    International Nuclear Information System (INIS)

    Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.

    1996-01-01

    Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)

  9. Adaptation, testing and application of the two-dimensional FE computer program system for steam generator tube testing

    International Nuclear Information System (INIS)

    Betzold, K.

    1987-01-01

    The 2d-FE computing program system, taken over by EPRI, is used for the improvement of the eddy current test of steam generator heating tubes. The investigations focus on test tasks in the area of the tube plate and the scrap mark; among them: accumulation of mud in the cracking area and above the tube plate; circulating slots with and without accumulation of mud. The interaction of the factors of influence given by the test object and the parameters selectable by the tester as for example coil length and base space for absolute coils and differential coils as well as test frequencies are calculated and the form of the signal locus curves and the dynamic curves are listed in a sample catalogue. It is demonstrated with selected examples that the sample catalogue contributes to the test-specific design of the coil and to the choice of the test frequencies; interpretation of measured signals; deepening of the knowledge of the physical processe in eddy current tests. (orig./HP) [de

  10. Application of HTSC coils for mitigation of VDE during a major disruption

    International Nuclear Information System (INIS)

    Yamada, T.; Uchimoto, T.; Miya, K.; Nakamura, Y.

    1998-01-01

    The authors proposed the new method to control plasma position passively with use of high Tc superconducting coils (HTSCs). HTSCs are robust against the thermal disturbance, so that they can be installed in the vicinity of plasmas. In this study, we examine that the VDEs during disruptions can be mitigated or not by using HTSC coils as a stabilizer. Shape and profile of plasmas will change considerably during a disruption, so that the linearized model cannot be applied to this problem. Tokamak Simulation Code (TSC) is employed to evaluate the stabilizing effect of HTSC during a major disruption. The configuration of International Thermonuclear Experimental Reactor (ITER) is taken as an example for numerical analyses. The result of simulations using linear model agreed with that of TSC computation. The results of the simulation show that VDEs during disruptions are mitigated due to the stabilizing effect of HTSC. The vertical instability growth rate is improved if HTSC coils are installed on the backplate. The electromagnetic forces on HTSCs during a disruption were also estimated. A design to accommodate these forces is possible without any difficulty. (author)

  11. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  12. Annular gap measurement between pressure tube and calandria tube by eddy current technique

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.

    1992-01-01

    In pressurised heavy water reactor (PHWR) major distinguishing feature is that there are number of identical fuel channels in the reactor core. Each channel consists of pressure tube of Zr-2.5 Nb or zircaloy-2 through which high temperature, high pressure primary coolant is passing. The pressure tube contains fuel. Surrounding the pressure tube there is low pressure, cool heavy water (moderator). The moderator is thermally separated from coolant by the tube which is nominally concentric with pressure tube called calandria tube. There are four garter springs in the annular gap between pressure tube and calandria tube. During the life of the reactor there are number of factors by which the pressure tube sags, most important factors are irradiation creep, thermal creep, fuel load etc. Because of the sag of pressure tube it can touch the calandria tube resulting in formation of cold spot. This leads to hydrogen concentration at that spot by which the material at that place becomes brittle and can lead to catastrophic failure of pressure tube. There is no useful access for measurement of annular gap either through the gas annular space or from exterior of calandria tube. So the annular gap was measured from inside surface of pressure tube which is accessible. Eddy current technique was used for finding the gap. The paper describe the details of split coil design of bobbin probe, selection of operating point on normalised impedance diagram by choosing frequency. Experimental results on full scale mock up, and actual gap measurement in reactor channel, are also given. (author). 7 figs

  13. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    International Nuclear Information System (INIS)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo; Min, Kyong Mahn

    2013-01-01

    of domestic OPR-1000 were found by Eddy Current Testing(ECT) and those abnormally greater defects were not expected considering the known growth rate of the wear defects. To obtain the precise depth and profile of the wear defect, specific wear scar standard tube containing a variety of wear depth was fabricated and Bobbin coils and MRPC R (Motorized Rotating Pancake Coils) were applied to the STD tube and subsequently the SG tubes were examined by those probes

  14. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [Korea Hydro and Nuclear Power Co. Ltd, Daejeon (Korea, Republic of); Min, Kyong Mahn [Universal Monitoring and Inspection Inc., Daejeon (Korea, Republic of)

    2013-10-15

    tubes of domestic OPR-1000 were found by Eddy Current Testing(ECT) and those abnormally greater defects were not expected considering the known growth rate of the wear defects. To obtain the precise depth and profile of the wear defect, specific wear scar standard tube containing a variety of wear depth was fabricated and Bobbin coils and MRPC{sup R} (Motorized Rotating Pancake Coils) were applied to the STD tube and subsequently the SG tubes were examined by those probes.

  15. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  16. Modeling of an once through helical coil steam generator of a superheated cycle for sizing analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sik; Sim, Yoon Sub; Kim, Eui Kwang [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A thermal sizing code, named as HSGSA (Helical coil Steam Generator Sizing Analyzer), for a sodium heated helical coil steam generator is developed for KALIMER (Korea Advanced LIquid MEtal Reactor) design. The theoretical modeling of the shell and tube sides is described and relevant correlations are presented. For assessment of HSGSA, a reference plant design case is compared to the calculational outputs from HSGSA simulation. 9 refs., 6 figs. (Author)

  17. Manufacturing process for cylindrical ceramic tubes with localized imprints and device for application of this process

    International Nuclear Information System (INIS)

    1985-01-01

    This invention involves a process for manufacturing permeable cylindrical ceramic tubes with localized relief such as annular, spiral or simple coiled or double crossed coils or even stipple imprints on their internal face. It is known that one of the techniques for the separation of the mixture of gases with close molecular masses is gaseous diffusion. According to this technique, the gas mixture is circulated under pressure inside tubes constituted by a microporous wall. These tubes, according to a known technique, are constituted by a macroporous ceramic tube, generally called a support, covered on the inside with a microporous layer deposited on this interior wall. The unit constituted by the tube itself or the ''support'' and the microporous layer makes it possible to adapt the total porosity of the covered tube or ''barrier'' in order to obtain an optimal coefficient of gas separation. This technique is used specifically for separation of two gases corresponding to various isotopes of the same simple body. 6 figs

  18. Slice of the LHC prototype beam tubes in dipole magnet

    CERN Multimedia

    1995-01-01

    A slice of the LHC accelerator prototype beam tubes surrounded by magnets. The LHC will accelerate two proton beams in opposite directions. The high bending and accelerating fields needed can only be reached using superconductors. At very low temperatures superconductors have no electrical resistance and therefore no power loss. The LHC will be the largest superconducting installation ever built, a unique challenge for CERN and its industrial partners. About dipole magnets: There will be 1232 dipole magnets in the LHC, used to guide the particles around the 27 km ring. Dipole magnets must have an extremely uniform field, which means the current flowing in the coils has to be very precisely controlled. Nowhere before has such precision been achieved at such high currents. The temperature is measured to five thousandths of a degree, the current to one part in a million. The current creating the magnetic field will pass through superconducting wires at up to 12 500 amps, about 30 000 times the current flowing ...

  19. Energy and exergy analyses of an ice-on-coil thermal energy storage system

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Erek, Aytunç; Dincer, Ibrahim

    2011-01-01

    In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. -- Highlights: ► A comprehensive study on energy and exergy analyses of an ice-on-coil TES system. ► Determination of irreversibilities and their potential sources. ► Evaluation of both energy and exergy efficiencies and their comparisons.

  20. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  1. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  2. Nb3Sn accelerator magnet technology scale up based on cos-theta coils

    International Nuclear Information System (INIS)

    Nobrega, F.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Fermilab

    2006-01-01

    After successful testing of a 1 m long dipole mirror magnet and three dipole models based on two-layer Nb 3 Sn coils, Fermilab has started a Nb 3 Sn technology scale-up program using the dipole mirror design and the developed Nb 3 Sn coil fabrication technology based on the wind-and-react method. The scale-up will be performed in several steps starting from a 2 m long coil made of Powder-in-Tube (PIT) strand. This will be followed by 4 m long Nb 3 Sn coils made of PIT and RRP strands that will be fabricated into dipole mirror magnets and tested. This paper presents a summary of Fermilab's wind-and-react short model program. It includes details on the 2 m and 4 m long, 2 layer Nb 3 Sn dipole mirror magnet design, mechanical structure, and fabrication infrastructure

  3. Nb3Sn accelerator magnet technology scale up based on cos-theta coils

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, F.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    After successful testing of a 1 m long dipole mirror magnet and three dipole models based on two-layer Nb{sub 3}Sn coils, Fermilab has started a Nb{sub 3}Sn technology scale-up program using the dipole mirror design and the developed Nb{sub 3}Sn coil fabrication technology based on the wind-and-react method. The scale-up will be performed in several steps starting from a 2 m long coil made of Powder-in-Tube (PIT) strand. This will be followed by 4 m long Nb{sub 3}Sn coils made of PIT and RRP strands that will be fabricated into dipole mirror magnets and tested. This paper presents a summary of Fermilab's wind-and-react short model program. It includes details on the 2 m and 4 m long, 2 layer Nb{sub 3}Sn dipole mirror magnet design, mechanical structure, and fabrication infrastructure.

  4. Plastic Tubing and Maple Syrup Quality

    Science.gov (United States)

    Russell S. Walters; Harry W. Yawney

    1978-01-01

    Maple syrup made from sap collected using improperly or carelessly installed plastic pipelines varied more in color from day to day, and was more often darker in color, than sap collected from either the property installed pipeline or clean, frequently emptied galvanized buckets. Use of both properly installed tubing and buckets, following recommended procedures,...

  5. Acoustic emission measurement on large scale coils at JAERI

    International Nuclear Information System (INIS)

    Yoshida, K.; Hattori, Y.; Nishi, M.F.; Shimamoto, S.; Tsuji, H.

    1986-01-01

    The objective of acoustic emission measurement at Japan Atomic Energy Research Institute (JAERI) is an establishment of a general diagnostic method for superconducting magnet systems. Output of strain and displacement gages can not cover a whole system in monitoring premonitory phenomena of a magnet system s failure, because these sensors are mounted on points and therefore localized. Acoustic emissions can be transmitted to sensors through structural materials without electrical noise. Monitoring of acoustic emission will be one of the methods to predict a serious failure of magnet systems in a vacuum vessel. For this purpose, several sensors were installed on the Japanese LCT coil and the Test Module Coil (TMC). Some of acoustic activity was similar as seen in these coils. The correlation between voltage spikes and acoustic events is excellent during single coil charging mode, but poorer during out of plane force mode. There are no indicative acoustical phenomena before a magnet quench or during normal zone generation. The conditioning of acoustic events and voltage spikes can be seen after any cooling down. The localization of electrical insulation damage with the acoustic emission technique is one of its most useful applications

  6. Mass and heat transfer at the outer surface of helical coils under single and two phase flow

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.

    2016-01-01

    Highlights: • The work aims to develop reactors which need rapid temperature control. • Mass and heat transfer at the outer surface of helical coils was studied experimentally. • The experiments were conducted under gas sparing, single and two phase flow. • Variables were helical tube diameter, physical properties, and gas and liquid velocity. • Results verification in terms of natural convection and surface renewal mechanism was explained. - Abstract: The mass transfer behavior of the outer surface of vertical helical coil was studied by the electrochemical technique under single phase flow, gas sparging and two phase flow. Variables studied were helical tube diameter, physical properties of the solution, solution velocity and superficial gas velocity. The mass transfer data were correlated by dimensionless equations. Mass transfer enhancement ratio in case of two phase flow ranged from 1.1 to 4.9 compared to single phase flow. Implication of the results for the design and operation of helical coil reactors used to conduct L–S exothermic diffusion controlled reactions which need rapid temperature control were outlined. In this case the inner coil surface will act as a cooler while the outer surface will act a reaction surface. Immobilized enzyme catalyzed biochemical reactions where heat sensitive materials may be involved represent an example for the reactions which can employ the helical coil reactor. Also the importance of the results in the design of and operation of diffusion controlled membrane processes which employ helical coil membrane was noted. In view of the analogy between heat and mass transfer the possibility of using the results in the design and operation of helical coil heat exchangers was highlighted.

  7. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  8. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Hogan, K; Fagnard, J-F; Wéra, L; Vanderheyden, B; Vanderbemden, P

    2015-01-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-T c bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  9. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  10. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  11. Scale Thickness Measurement of Steam Generator Tubing Using Eddy Current Signal of Bobbin Coil

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Um, Ki Soo; Kim, Jae Dong

    2012-01-01

    Steam generator is one of the major components of nuclear power plant and steam generator tubes are the pressure boundary between primary and secondary side, which makes them critical for nuclear safety. As the operating time of nuclear power plant increases, not only damage mechanisms but also scaled deposits on steam generator tubes are known to be problematic causing tube support flow hole blockage and heat fouling. The ability to assess the extent and location of scaled deposits on tubes became essential for management and maintenance of steam generator and eddy current bobbin data can be utilized to measure thickness of scale on tubes. In this paper, tube reference standards with various thickness of scaled deposit has been set up to provide information about the overall deposit condition of steam generator tubes, providing essential tool for steam generator management and maintenance to predict and prevent future damages. Also, methodology to automatically measure scale thickness on tubes has been developed and applied to field data to estimate overall scale amount.

  12. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  13. Thermal tests of large recirculation cooling installations for nuclear power plants

    Science.gov (United States)

    Balunov, B. F.; Lychakov, V. D.; Il'in, V. A.; Shcheglov, A. A.; Maslov, O. P.; Rasskazova, N. A.; Rakhimov, R. Z.; Boyarov, R. A.

    2017-11-01

    The article presents the results from thermal tests of some recirculation installations for cooling air in nuclear power plant premises, including the volume under the containment. The cooling effect in such installations is produced by pumping water through their heat-transfer tubes. Air from the cooled room is blown by a fan through a bundle of transversely finned tubes and is removed to the same room after having been cooled. The finning of tubes used in the tested installations was made of Grade 08Kh18N10T and Grade 08Kh18N10 stainless steels or Grade AD1 aluminum. Steel fins were attached to the tube over their entire length by means of high-frequency welding. Aluminum fins were extruded on a lathe from the external tube sheath into which a steel tube had preliminarily been placed. Although the fin extrusion operation was accompanied by pressing the sheath inner part to the steel tube, tight contact between them over the entire surface was not fully achieved. In view of this, the air gap's thermal resistance coefficient was introduced in calculating the heat transfer between the heat-transferring media. The air gap average thickness was determined from the test results taking into account the gap variation with temperature due to different linear expansion coefficients of steel and aluminum. These tests, which are part of the acceptance tests of the considered installations, were carried out at the NPO TsKTI test facility and were mainly aimed at checking if the obtained thermal characteristics were consistent with the values calculated according to the standard recommendations with introduction, if necessary, of modifications to those recommendations.

  14. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  15. Quality assurance aspects of the major procurements for the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Thompson, P.B.; Ryan, T.L.; Queen, C.C.; Halstead, E.L.; Murphy, J.L.; Wood, R.J.

    1983-01-01

    The Large Coil Test Facility (LCTF) project is comprised of the test stand, supporting cryogenic systems, instrumentation, data acquisition, and utilities necessary for testing the large superconducting coils of the Large Coil Program (LCP). A significant portion of the facility hardware has been obtained through procurement actions with industrial suppliers. This paper addresses the project's experience in formulation and execution of quality assurance (QA) actions relative to several of the major items procured. Project quality assurance planning and specific features related to procurement activities for several of the more specialized test facility components are described. These component procurements include: (1) the coil test stand's major structural item (the bucking post) purchased from foreign industry; (2) fabrication and testing of high-current power supplies; (3) industrial fabrication of specialized instrumentation (voltage-tap signal conditioning modules); and (4) fabrication, installation, and testing of the liquid helium piping system

  16. Behavior in exploitation of gas-lift installations with differential valves. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bodea, I; Truica, V

    1969-07-01

    In this second installment, charts of casing and tubing pressure are shown to illustrate how they can be used as diagnostic tools, both for continuous and intermittent gas-lift installations. The desirable conditions for continuous gas lift are constant casing and tubing pressures; for intermittent gas lift, cycles of equal length and intensity. After discussion of the possible flow regimes in the production tubing, it is shown that pressure gradient and temperature measurements can also be used as diagnostic tools. The basic rules for designing a continuous flow gas-lift installation by multipoint injection are given. Application of these principles in several wells has resulted in an increase in the oil production rate, a decrease in the gas requirement, and a reduction in the frequency of well pulling jobs. A well-designed installation can be expected to function trouble- free for 2 to 4 yr.

  17. Development of a 3D electromagnetic model for eddy current tubing inspection application to steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Pichenot, G.; Premel, D.; Sollier, T. [CEA Saclay, DRT/DECS, 91 - Gif-sur-Yvette (France)

    2003-10-01

    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws. (authors)

  18. Requirements for accuracy of superconducting coils in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K; Yanagi, N; Ji, H; Kaneko, H; Ohyabu, N; Satow, T; Morimoto, S; Yamamoto, J; Motojima, O [National Inst. for Fusion Science, Chikusa, Nagoya (Japan); LHD Design Group

    1993-01-01

    Irregular magnetic fields resonate with the rational surface of the magnetic confinement systems, form magnetic islands and ergodic layers, and destruct the plasma confinement. To avoid this confinement destruction the requirement of an accuracy of 10[sup -4] in the magnetic field is adopted as the magnetic-accuracy design criterion for the LHD machine. Following this criterion the width of the undesirable magnetic island is kept less than one tenth of the plasma radius. The irregular magnetic field from the superconducting (SC) helical and poloidal coils is produced by winding irregularity, installing irregularity, cooling-down deformations and electromagnetic deformations. The local irregularities such as feeders, layer connections, adjacent-conductor connections of the coils also produce an error field. The eddy currents on the supporting shell structure of SC coils, the cryostat, etc. are also evaluated. All irregular effects are analyzed using Fourier decomposition and field mapping methods for the LHD design, and it is confirmed that the present design of the superconducting coil system satisfies the design criterion for these field irregularities. (orig.).

  19. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils

    Science.gov (United States)

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-01-01

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906

  20. Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2016-06-01

    Full Text Available Worldwide interest in low grade heat valorization using organic Rankine cycle (ORC technologies has increased significantly. A new small-scale ORC with a net capacity of 3 kW was efficiently integrated with a concentrated solar power technology for electricity generation. The excess heat source from Photovoltaic (PV collectors with a maximum temperature of 100 °C was utilized through a supercritical heat exchanger that uses R-404A as working medium. By ensuring supercritical heat transfer leads to a better thermal match in the heat exchanger and improved overall cycle efficiency. A helical coil heat exchanger was designed by using heat transfer correlations from the literature. These heat transfer correlations were derived for different conditions than ORCs and their estimated uncertainty is ~20%. In order to account for the heat transfer correlation uncertainties this component was oversized by 20%. Next, a prototype was built and installed in an integrated concentrated photovoltaic/thermal (CPV/T/Rankine system. The results from the measurements show that for better estimation of the sizing of the heat exchanger a more accurate correlation is required in order to design an optimal configuration and thus employ cheaper components.

  1. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  2. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  3. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  4. Experimental Research of Dynamic Instabilities in the Presence of Coiled Wire Inserts on Two-Phase Flow

    Science.gov (United States)

    Omeroglu, Gokhan; Comakli, Omer; Karagoz, Sendogan; Sahin, Bayram

    2013-01-01

    The aim of this study is to experimentally investigate the effect of the coiled wire insertions on dynamic instabilities and to compare the results with the smooth tube for forced convection boiling. The experiments were conducted in a circular tube, and water was used as the working fluid. Two different pitch ratios (H/D = 2.77 and 5.55) of coiled wire with circular cross-sections were utilised. The constant heat flux boundary condition was applied to the outer side of the test tube, and the constant exit restriction was used at the tube outlet. The mass flow rate changed from 110 to 20 g/s in order to obtain a detailed idea about the density wave and pressure drop oscillations, and the range of the inlet temperature was 15–35°C. The changes in pressure drop, inlet temperature, amplitude, and the period with mass flow rate are presented. For each configuration, it is seen that density wave and pressure drop oscillations occur at all inlet temperatures. Analyses show that the decrease in the mass flow rate and inlet temperature causes the amplitude and the period of the density wave and the pressure drop oscillations to decrease separately. PMID:23365547

  5. Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles

    CERN Document Server

    Billan, J; Buzio, M; D'Angelo, G; Deferne, G; Dunkel, O; Legrand, P; Rijllart, A; Siemko, A; Sievers, P; Schloss, S; Walckiers, L

    2000-01-01

    We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic ...

  6. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  7. Methodology for failure assessment of SMART SG tube with once-through helical-coiled type

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Shin Beom; Cho, Doo Ho; Chang, Yoon Suk

    2010-09-01

    In this research project, existing integrity evaluation method for SMART steam generator tube with crack-like flaw was reviewed to determine subject analysis model and investigate possibility of failure under crack closure behavior. Furthermore, failure pressure estimation was proposed for SMART steam generator tubes containing wear-type defects. For each subject, the following issues are addressed: 1. Determination of subject analysis model for SMART SG tube contaning crack-like flaw 2. Applicability review on existing integrity evaluation method and investigation of failure possibility for SMART SG tube containing crack-like flaw 3. Development of failure pressure estimation model for SMART SG tube with wear type defect It is anticipated that if the technologies developed in this study are applied, structural integrity can be estimated accurately

  8. Temperature control of thermal-gas-dynamical installation in cleaning oil-well tubes

    Science.gov (United States)

    Penner, V. A.; Martemyanov, D. B.; Pshenichnikova, V. V.

    2017-08-01

    The article provides the study results of cleaning oil-well tubes, the oil-well tube failure reasons for service by their types have been considered. The chemical method of cleaning oil-well tubes as the least expensive has been reviewed when acid solution moves to the interptube space mixing up with oil and liquidates paraffin and pitches deposits on the internal pipe surface. Except the chemical method of pipes cleaning the mechanical one was considered as well. Also the disadvantages -such as the low productivity of cleaning and design complexity- of this deposits removal method on the internal oil-well tube surface have been considered. An effective method for cleaning oil-well tubing from paraffin and pitches by the thermodynamic plant based on the aircraft engine has been introduced for the first time. The temperature distribution graph in the gas stream at the engine output has been given.

  9. The Cause of an Eddy Current Signal Noise from a Steam Generator Tube and its Effect on the Detectability of a Crack

    International Nuclear Information System (INIS)

    Lee, Deok Hyun; Choi, Myung Sik; Hur, Do Haeng; Kim, Kyung Mo; Han, Jung Ho

    2008-01-01

    An eddy current inspection has been applied for a pre-service and in-service examination of a steam generator in nuclear power plants. The experience from the inspection of steam generators showed that many plants had an excessive number of tubes with eddy current noise signals over several hundreds, which originated from manufacturing anomalies. The plants in U.S suffered significant downstream inspection costs, history reviews, and diagnostic testing because some signals resembled flaws and others masked a flaw. These lessens learned resulted in issuing the guidelines for steam generator tubing specifications and repair, in order to reduce the number of anomalous signals in the tubes and also to provide the requirement of a signal to noise ratio by applying a field type examination with bobbin coil eddy current probes at a manufacturing process. Besides the noise signals of a bobbin coil eddy current probe from manufacturing anomalies, the excessive background noise of the rotating coil eddy current probe signal is frequently observed from a tube and it negatively affects the detection and sizing estimate of a defect. Since the inspection intervals are being extended up to 60 months for the more recent steam generator of corrosion resistant alloy 690TT tubing, the detection of an earlier crack and an accurate sizing are becoming more important in the activity of a non-destructive examination. In this study, the cause of an eddy current signal noise of a rotating coil probe from a steam generator tube was examined and its influence on the detectability of a crack was analyzed

  10. Research Of The Efficiency Of The Wireless Power Transfer With The Employment Of DD Inductance Coils

    Directory of Open Access Journals (Sweden)

    Krainyukov Alexander

    2015-12-01

    Full Text Available The paper is devoted to using of DD inductance coils for the wireless power transfer. The aim of the given research is to determine influence of the parameters of resonance transformer on the efficiency of the wireless power transfer with the use of the DD inductance coils. Experimental installation of the wireless power transfer by a resonance inductive method was constructed. Experiments were performed with it help. Research results show influence of the distance between the coils of inductance, of the resonance transformer frequency, of the storage source voltage and of the temperature conditions on the efficiency of the wireless power transfer.

  11. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  12. Square through tube

    International Nuclear Information System (INIS)

    Akita, Junji; Honma, Toei.

    1975-01-01

    Object: To provide a square through tube involving thermal movement in pipelines such as water supply pump driving turbine exhaust pipe (square-shaped), which is wide in freedom with respect to shape and dimension thereof for efficient installation at site. Structure: In a through tube to be airtightly retained for purpose of decontamination in an atomic power plant, comprising a seal rubber plate, a band and a bolt and a nut for securing said plate, the seal rubber plate being worked into the desired shape so that it may be placed in intimate contact with the concrete floor surface by utilization of elasticity of rubber, thereby providing airtightness at a corner portion of the square tube. (Kamimura, M.)

  13. Analysis and test to predict the fatigue life of the ISX-B toroidal field coils' finger joints

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Ojalvo, I.U.; Raynor, G.E.; Zatz, I.J.; Johnson, N.E.; Walls, J.C.; Nelson, B.E.; Cain, W.D.; Walstrom, P.L.; Pearce, J.W.

    1979-01-01

    A new and more rigorous structural evaluation of the ISX toroidal field (TF) coil fingers joints was undertaken to assess the effects of high-/beta/ operation of ISX-B. A new poloidal field (PF) coil set which allows high-/beta/ operation and produces larger out-of-plane loads on the TF coils was installed as part of the change to ISX-B. It was determined that the iron core significantly affects the out-of-plane load distribution and forces were calculated using the GFUN-3D code which considers 3-D iron core effects. These loads were applied to a half-symmetric finite element NASTRAN code model in which the TF coils were modeled as a string of beam elements. 8 refs

  14. The development of magnetic field measurement system for drift-tube linac quadrupole

    Science.gov (United States)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  15. Completed installations and the individual commissioning of the KSTAR MG system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Eom, Dae-young; Lee, Woo-Jin; Kong, Jong-Dea; Joung, Nam-Young; Kim, Yang-Soo; Kwon, Myeun [National Fusion Research Institute, 169-148 Gwahangno, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Jang, Eun; Han, Chul-Woo; Lee, Sel-Ki; Kim, Gwang-Seon; Maeng, Jae-Hoon [Vitzrotech Co., Ltd, 605-2 Seonggok-dong, Danwon-gu, Ansan, Gyeonggi-do 425-833 (Korea, Republic of)

    2014-04-15

    Highlights: • All components of the MG system were made from each professional supplier and installed completely in the NFRI site. • The building and the overhead crane which need to install the MG system, were built in two sections. One is for the bearing, rotor and stator and the other section is for the VVVF and excitation system. • The dummy coil testing will commence in July 2013 and the comprehensive performance test of MG will be tested from August when the MPS commissioning is processing with superconducting coil. - Abstract: Peak power of 200 MVA is required in order to achieve the goal within a long pulse scenario for the final operation of the Korean Superconducting Tokamak Advanced Research (KSTAR). The available grid power is only 100 MVA at the National Fusion Research Institute (NFRI) site. Motor generator (MG) was considered as a method of resolving such problems. The design of the KSTAR MG system was completed in July 2010 and individual devices were produced by relevant manufacturers. The installation of individual devices was completed in December 2012. Specifically, the stator and rotor were assembled at the site due to their large size and weight. The bearings, variable voltage variable frequency (VVVF) and excitation systems were transported and installed on site after being manufactured externally. The building used for MG installation was built in 2011. With the building designed for ease of installation, an overhead crane was designed to allow access to the loading bay. In this paper, we discuss the installation of the MG system and the construction of the building suitable for installation of individual devices. In addition, performance on the test results of individual devices is also discussed.

  16. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  17. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  18. Angular detector of defects in a metallic tube by eddy currents

    International Nuclear Information System (INIS)

    Broudeur, R.

    1990-01-01

    The angular detector of defects in a metallic tube has two centering pieces for the clad positioning on both sides of a backing ring of the measuring coil. The inner diameter of the backing ring and the diameter of the centering pieces are in the ratio 4/3±0.6/3 and their axis are eccentric. This setting over associated at the guiding piece of the sheath in rotation gives at the measuring coil a functioning as a ponctual probe [fr

  19. Secondary side corrosion in steam generator tubes: lessons learned in France from the in-service inspection results

    International Nuclear Information System (INIS)

    Comby, R.

    1997-01-01

    Non-destructive testing (NDT) has proved to be very important in the maintenance of steam generator tubing. This is particularly true in the case of secondary side corrosion, because this type of degradation leads to various morphologies which are often complex (intergranular attack) (IGA), intergranular stress corrosion cracking (IGSCC), or a mixture of both. Their detection and characterization by the usual NDT techniques have been achieved through numerous laboratory studies, which were conducted in order to determine the performance and limitations of NDT. Pulled tube examination in a hot laboratory was very valuable, for both NDT and fracture mechanics aspects. The eddy current bobbin coil probe, used for multipurpose inspection of tubes, allows the detection of IGA-SCC at the tube support plate elevation. In France, the use of rotating probes is not required for that type of degradation, since the repair criterion is based on bobbin coil results only. The bobbin coil is also used for detection of IGSCC occurring in free spans, within sludge deposits. The eddy current rotating probe allows, in that case, characterization of main cracks. Concerning the outer diameter initiated circumferential cracks which occur at the top of the tube sheet, only the rotating probe is used. An ultrasonic (UT) inspection was performed several times, in order to obtain information on UT capabilities. The goal of tube inspection is obviously knowledge of the status of steam generators, but also to follow up degradations and to estimate their revolution, and to verify the beneficial effect of some corrective measures, e.g. boric acid injection. (orig.)

  20. Field application. Selective stimulation of reservoirs or perforated intervals with use of coiled tubing equipped with real-time data communication system in combination with straddle packer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Oberascher, R.; Breimer, G. [GDF SUEZ E and P Deutschland GmbH, Lingen (Germany); Jonge, R.M. de [Baker Hughes (Netherlands)

    2013-08-01

    In two German gas wells a decline in production and wellhead pressures had been observed. Production logging data obtained by PLT surveys were evaluated, which showed that certain intervals within the reservoir section did not contribute, or showed a restricted contribution to the overall gas production. The restricted contribution was suspected to be caused by near-wellbore damage. To restore or enhance the production of the perforated intervals an acid treatment was considered in these wells in order to remove skin damage. To restore or enhance the production of the wells, an acid treatment of the perforated intervals was designed. For obtaining the required selective placement of the acid across the zones of interest, the use of coiled tubing (CT) in combination with a resettable straddle packer assembly was selected. The accuracy of the setting depth of the straddle packer was a critical issue for the execution of the well intervention operations. In order to obtain the required depth accuracy, the CT string was equipped with an intelligent CT communication system, which transfers real-time downhole data to surface. For the first time, a reservoir stimulation project was executed by combining CT equipped with a real-time data communication system (TeleCoil) and the Inflatable Straddle Acidizing Packer (ISAP) assembly. Inside the CT an encapsulated monoconductor cable was installed to transmit real-time data from the CT Bottom Hole Assembly (BHA) to surface. The BHA consists of a Casing Collar Locator (CCL) and downhole pressure and temperature gauges. Due to the protective jacket of the monoconductor cable, there are no restrictions in the use of different fluids in combination with the system. Information provided by the CCL monitoring tool ensures accurate depth correlations, whereas differential pressure measurements from the down-hole pressure gauges provide positive information about the setting and sealing conditions of the straddle packer assembly. The

  1. The application of micro-coil NMR probe technology to metabolomics of urine and serum

    International Nuclear Information System (INIS)

    Grimes, John H.; O’Connell, Thomas M.

    2011-01-01

    Increasing the sensitivity and throughput of NMR-based metabolomics is critical for the continued growth of this field. In this paper the application of micro-coil NMR probe technology was evaluated for this purpose. The most commonly used biofluids in metabolomics are urine and serum. In this study we examine different sample limited conditions and compare the detection sensitivity of the micro-coil with a standard 5 mm NMR probe. Sample concentration is evaluated as a means to leverage the greatly improved mass sensitivity of the micro-coil probes. With very small sample volumes, the sensitivity of the micro-coil probe does indeed provide a significant advantage over the standard probe. Concentrating the samples does improve the signal detection, but the benefits do not follow the expected linear increase and are both matrix and metabolite specific. Absolute quantitation will be affected by concentration, but an analysis of relative concentrations is still possible. The choice of the micro-coil probe over a standard tube based probe will depend upon a number of factors including number of samples and initial volume but this study demonstrates the feasibility of high-throughput metabolomics with the micro-probe platform.

  2. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  3. Frictional pressure drop of steam-water two-phase flow in helical coils with small helix diameter of HTR-10

    International Nuclear Information System (INIS)

    Bi Qincheng; Chen Tingkuan; Luo Yushan; Zheng Jianxue

    1996-01-01

    Experiments of steam-water two-phase flow frictional pressure drop through five vertically and horizontally positioned helical coils were carried out in the high pressure steam water test loop of Xi'an Jiaotong University. Two kinds of tube with inner diameters of 10 mm and 12 mm were used to form the coils. The helix diameter was 115 mm with coil pitch 22.5 mm. The experimental conditions were: pressure p = 4-14 MPa, mass velocity G = 400-2000 kg/(m 2 ·s), and inner wall heat flux q = 0-750 kW/m 2 . Theoretical analysis with a semi-empirical correlation was made to predict the two-phase flow fictional pressure drop through these kinds of helical coils

  4. Design Concept of Array ECT Sensor for Steam Generator Tubing Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Tae Hun; Yoo, Hyun Ju [Korea Hydro and Nuclear Power Co. Ltd. CRI, Daejeon (Korea, Republic of)

    2015-05-15

    The eddy current testing, which is one of the nondestructive examination methods, is widely used for the inspection of heat exchangers including steam generator tubing in the nuclear power plant. It uses electromagnetic induction to detect flaws in conductive materials. Two types of eddy current probes are conventionally used for the inspection of steam generator tubing according to the main purpose. One is the bobbin probe technology and the other is the rotating probe. During the inspection, they have restrictions for the flaw detection or the inspection speed. An array probe can be alternative to the bobbin and rotating probes. The design concept of array coils with high sensitivity is described in this paper. It is expected that the eddy current testing using this type of array sensors may provide high detectability and resolution for flaws in steam generator tubing. Eddy current technology has some barriers for the inspection of steam generator tubing in the nuclear power plant. Bobbin probes offer poor circumferential crack detection and rotating probes are time and money consuming due to the mechanical rotation. Array probe inspection technique can replace bobbin and rotating probe techniques due to its sensitivity for flaw detection and inspection speed. In general, circular-shaped coils are considered in an array eddy current probe.

  5. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  6. SPIRAL COUNTER-CURRENT CHROMATOGRAPHY OF SMALL MOLECULES, PEPTIDES AND PROTEINS USING THE SPIRAL TUBING SUPPORT ROTOR

    OpenAIRE

    Knight, Martha; Finn, Thomas M.; Zehmer, John; Clayton, Adam; Pilon, Aprile

    2011-01-01

    An important advance in countercurrent chromatography (CCC) carried out in open flow-tubing coils, rotated in planetary centrifuges, is the new design to spread out the tubing in spirals. More spacing between the tubing was found to significantly increase the stationary phase retention, such that now all types of two-phase solvent systems can be used for liquid-liquid partition chromatography in the J-type planetary centrifuges. A spiral tubing support (STS) frame with circular channels was c...

  7. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  8. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  9. Recent developments in plugging of steam generator tubes

    International Nuclear Information System (INIS)

    Buhay, S.; Abucay, R.C.

    1995-01-01

    Mechanical Plugging capability has been developed for Bruce Nuclear Generating Station (BNGS) steam generator (SG) tubes and Darlington Nuclear Generating Station (DNGS) SG tubes and tubesheet holes. The plug concept was a modified ABB/Combustion Engineering Inconel 690 plug with a nickel band, rolled into the tube or tubesheet hole from the primary side of the tubesheet. The qualification program included analytical justification of the plug body and experimental testing to verify the leak tightness of the rolled joint under conditions which meet or exceed all service or design requirements. Tools and procedures were developed and tested for manual and remote/robotic installation and removal of the mechanical plugs. Additionally, tools and procedures were developed to plug tubes/tubesheet holes at DNGS in the event the steam generator is recalled to service to act as a heat sink. A crew of Ontario Hydro personnel were trained and qualified for the installation of mechanical plugs for permanent and recall applications. During the DNGS Unit 4 spring 1995 outage, 6 tubes were plugged and the 'Recall Plugging Capability' was deployed and ready for use during a primary side SG tube removal. The mechanical plugs were installed manually with a typical 3 minute/plug in-bowl duration time with an average radiation dose of 12.5 mrem per plug. This compares favourably with manual plug welding during the same outage in the same SG bowl at approximately 15-30 minutes/plug in-bowl duration with an average radiation dose of 117 mrem/plug. (author)

  10. Some aspects of the design of the ITER NBI Active Correction and Compensation Coils

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Javier, E-mail: javier.alonso@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Barrera, Germán; Cabrera, Santiago; Rincón, Esther; Ríos, Luis; Soleto, Alfonso [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; Graceffa, Joseph; Shah, Darshan; Urbani, Marc [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Water cooled coil design. • Magnetic shielding of the plasma heating Neutral Beam Injection System. • Active coils for magnetic field compensation. - Abstract: The neutral beam system for ITER consists of two heating and current drive injectors plus a diagnostic neutral beam injector. The proposed physical plant layout allows for a possible third heating injector to be installed later. For correct operation of the beam source, and to avoid deflections of the charged fraction of the beam, the magnetic field along the beam path must be very low. To minimize the stray ITER field in critical areas (ion source, acceleration grids, neutralizer, residual ion dump), a Magnetic Field Reduction System will envelop the beam vessels and the high voltage transmission lines to ion source. This whole system comprises the Passive Magnetic Shield, a set of thick steel plates, and the Active Correction and Compensation Coils, a set of coils carrying currents which depend on the tokamak stray field. This paper describes the status of the coil design, terminals and support structures, as well as a description of the calculations carried out. Most coils are suitable for removal from their final position to be replaced in case of a fault. Conclusions of the chosen design highlight the strategy for the system feasibility.

  11. Power inverter design for ASDEX Upgrade saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Teschke, M., E-mail: teschke@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Suttrop, W.; Rott, M. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-10-15

    Highlights: ► A cost effective inverter topology for AUG's 16 in-vessel saddle coils has been found. ► Use of commercially available power modules is possible. ► Exchange of reactive power between multiple inverters is possible. ► Influence of electromagnetic noise to AUG's diagnostics was measured. ► Gas insulation of electric feed through significantly depends on magnetic fields. It is protected by fast turn-off circuit. -- Abstract: A set of 16 in-vessel saddle coils has been installed in the ASDEX Upgrade (AUG) experiment since the end of 2011 [1]. To achieve full performance, it is necessary to operate them with alternating current (AC) of arbitrary waveforms. To generate spatially resolved magnetic fields, it is required to allocate separate power inverters to every single coil. Therefore, different topologies are analyzed and compared. Studies of the commutation behavior of power stages, different pulse width modulation (PWM) schemes and single-phase-to-earth fault detection are executed. Experiments to evaluate the electromagnetic interference (EMI) of possible inverter topologies on the AUG diagnostics are done as well. A special focus is put on the feasibility of analyzed topologies using industrially available and fully assembled “power modules” to minimize development effort and costs.

  12. Sodium flow distribution test of the air cooler tubes

    International Nuclear Information System (INIS)

    Uchida, Hiroyuki; Ohta, Hidehisa; Shimazu, Hisashi

    1980-01-01

    In the heat transfer tubes of the air cooler which is installed in the auxiliary core cooling system of the fast breeder prototype plant reactor ''Monju'', sodium freezing may be caused by undercooling the sodium induced by an extremely unbalanced sodium flow in the tubes. Thus, the sodium flow distribution test of the air cooler tubes was performed to examine the flow distribution of the tubes and to estimate the possibility of sodium freezing in the tubes. This test was performed by using a one fourth air cooler model installed in the water flow test facility. As the test results show, the flow distribution from the inlet header to each tube is almost equal at any operating condition, that is, the velocity deviation from normalized mean velocity is less than 6% and sodium freezing does not occur up to 250% air velocity deviation at stand-by condition. It was clear that the proposed air cooler design for the ''Monju'' will have a good sodium flow distribution at any operating condition. (author)

  13. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  14. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    Science.gov (United States)

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  15. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  16. Updating the Design of the Poloidal Field Coils for the ITER Magnet System

    International Nuclear Information System (INIS)

    Yoshida, K.; Takahashi, Y.; Mitchell, N.; Jong, C.; Bessette, D.

    2006-01-01

    be disconnected and by-passed. This implies that the remaining pancakes are operated at a higher current as the backup mode. Since all PF coils include 8 double pancakes the backup mode involves operation at a current which is 8/7 of the nominal current. Jumpers are pre-installed on the coil surface to allow this reconnection with a minimum of works in the cryostat and the conductor is designed with an extra margin. (author)

  17. Measurement of heating coil temperature for e-cigarettes with a "top-coil" clearomizer.

    Science.gov (United States)

    Chen, Wenhao; Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A; Kumagai, Kazukiyo

    2018-01-01

    To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a "top-coil" clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3-6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such "top-coil" clearomizers. This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the

  18. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  19. Application of superconducting coils to VAR control in electric power systems: a proposal

    International Nuclear Information System (INIS)

    Boenig, H.J.; Hassenzahl, W.V.

    1979-11-01

    During the last eight years, static VAR-control systems with thyristor-controlled, room-temperature reactors have been used in electrical systems for voltage control and system stabilization. In this proposal, we describe a new static VAR-control system that uses an asymmetrically controlled Graetz bridge and a superconducting dc coil. Preliminary studies indicate that the proposed system will have lower overall losses and that its capital cost and electrical characteristics are comparable to those of a conventional system. Three- and four-year programs for developing the electronic circuitry and superconducting coils for VAR control, culminating in the installation and testing of an approx. 40-MVAR system, are proposed

  20. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  1. Development of intelligent Eddy Current Testing (ECT) system for PWR steam generator tube inspection

    International Nuclear Information System (INIS)

    Kawata, K.; Kawase, N.; Kurokawa, M.; Asada, Y.

    2005-01-01

    The intelligent ECT system was developed for the inspection of heat transfer tubes of the steam generator of the PWR plant. It consists of intelligent probe, data acquisition unit and data analysis system. The probe combines 24 channels inclined lay out drive coils and thin film pick-up coils with built-in electric circuits to provide high inspection capability equivalent to rotating coil ECT and high-speed inspection equivalent to conventional bobbin coil ECT. The advanced data analysis system that has filtering and automatic analysis functions is also developed to enable fast and precise analysis of large volume inspection data. The system was qualified by confirmation tests in FY 2003 to show thinned thickness sizing accuracy within ± 5%. (T. Tanaka)

  2. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  3. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  4. Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser

    Science.gov (United States)

    Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro; Shigemori, Keisuke; Hironaka, Youichiro; Johzaki, Tomoyuki; Sunahara, Atsushi; Yamamoto, Naoji; Nakashima, Hideki; Watanabe, Tsuguhiro; Shiraga, Hiroyuki; Nishimura, Hiroaki; Azechi, Hiroshi

    2013-01-01

    Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 μm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 μm, and 5 × 1016 W/cm2). PMID:23378905

  5. Design of the ITER high-frequency magnetic diagnostic coils

    International Nuclear Information System (INIS)

    Toussaint, M.; Testa, D.; Baluc, N.; Chavan, R.; Fournier, Y.; Lister, J.B.; Maeder, T.; Marmillod, P.; Sanchez, F.; Stoeck, M.

    2011-01-01

    This paper is an overview of work carried out on the design of the ITER high-frequency magnetic diagnostic coil (HF sensor). In the first part, the ITER requirements for the HF sensor are presented. In the second part, the ITER reference design of the HF sensor has been assessed and showed some potential weaknesses, which led us to the conclusion that alternative designs could usefully be examined. Several options have been explored, and are presented in the third part: (a) direct laser cutting a metallic tube, (b) stacking of plane windings manufactured from a tungsten plate by electrical discharge machining, (c) coil using the conventional spring manufacture. In the fourth part, sensors using the low temperature co-fired ceramic technology (LTCC) are presented: (d) monolithic 1D magnetic flux sensors based on LTCC technology, and (e) monolithic 3D magnetic flux sensors based on the same LTCC technology. The solution which showed the best results is the monolithic 3D magnetic flux sensor based on LTCC.

  6. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  7. On random pressure pulses in the turbine draft tube

    Science.gov (United States)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  8. NCSX Trim Coil Design

    International Nuclear Information System (INIS)

    Kalish, M.; Brooks, A.; Rushinski, J.; Upcavage, R.

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure

  9. Evaluation of mechanical integrity for helical coil hold-down spring of PLUS7TM fuel

    International Nuclear Information System (INIS)

    Choi, Ki Sung; Kim, Yong Hwan; Kwon, Jung Tack; Kim, Kyu Tae

    2004-01-01

    Nuclear fuel assembly is subject to hydraulic forces generated by primary coolant flow during reactor operation. These forces may be sufficient to overcome the fuel assembly weight thereby allowing the fuel assembly to lift off of its support. To provide a positive hold-down margin against the upward coolant flow forces, helical coil springs or leaf springs are installed in the fuel assemblies. An advanced fuel for Korean Standard Nuclear Power Plants (KSNP), PLUS7 fuel has developed to get the thermal margin increase, failure free and high seismic resistance, etc. And the new designed helical coil hold-down spring was introduced into PLUS7 fuel assembly. The purpose of this paper is to evaluate the mechanical integrity for the helical coil hold-down spring of PLUS7 fuel assembly

  10. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  11. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  12. The Pre-compression System of the Toroidal Field Coils in ITER

    International Nuclear Information System (INIS)

    Knaster, J.; Jong, C.; Vollmann, T.; Ferrari, M.

    2006-01-01

    The Toroidal Field (TF) coils of ITER will undergo out-of-plane forces caused by the machine poloidal fields required to maintain the toroidal stability of the plasma. These forces will be supported against overturning moments by links between the coils. In turn, these links consist of the Inner Intercoil Structure (IIC), which are composed by 2 sets of 4 poloidal shear keys inserted in slots between adjacent coils placed at the top and bottom part of the inboard leg, and the Outer Intercoil Structure (OIS) formed by 4 bands of shear panels at the outboard leg. The magnetic forces during energization of ITER would cause at IIC locations a toroidal gap between adjacent TF coils of 0.35 mm; during plasma operation this value could reach >1 mm causing a loosening of the keys and intensifying stress concentrations. This undesired effect will be suppressed by the application of a centripetal force of 70 MN per coil (35 MN at both the bottom and top part of the inboard leg of each of the 18 TF coils) that will be provided by 2 sets of 3 fibre-glass epoxy composite rings submitted to a toroidal hoop force of 100 MN per set. The calculated maximum stress in the rings will occur during the installation phase at room temperature, where the maximum radial elongation (∼ 25 mm) is required, and it will be less than 30% of its ultimate stress. The imposed elongation to reach that force and the lower Young modulus of the composite compared with the stainless steel one will ease component tolerances and/or settlement effects in the final assembly. (author)

  13. Numerical and Experimental Study on a Model Draft Tube with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Tian Xiaoqing

    2013-01-01

    Full Text Available A model water turbine draft tube containing vortex generators (VG was studied. Numerical simulations were performed to investigate 55 design variations of the vortex generators in a draft tube. After analyzing the shapes of streamlines and velocity distributions in the tube and comparing static pressure recovery coefficients (SPRC in different design variations, an optimum vortex generator layout, which can raise SPRC of the draft tube by 4.8 percent, was found. To verify the effectiveness of the vortex generator application, a series of experiments were carried out. The results show that by choosing optimal vortex generator parameters, such as the installation type, installation position, blade-to-blade distance, and blade inclination angle, the draft tube equipped vortex generators can effectively raise their SPRC andworking stability.

  14. Persistent current analysis of superconducting coils in a linear synchronous motor for maglev passenger transport system. Fujoshiki tetsudoyo linear doki motor ni okeru teijisoku mode chodendo coil denryu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Azusawa, T [Toshiba Corp., Tokyo (Japan)

    1994-05-20

    The simple analysis method of persistent current induced in on-board superconducting coils was proposed for the vehicle of a superconducting magnetically-suspended train which is running in the magnetic field generated by armature coil current of a linear synchronous motor installed along a guideway, and the performance of the method is discussed through calculation based on typical models. As fluctuation of persistent current due to running was calculated with various parameter values under a normal running condition, fluctuation of persistent current induced was less then 1% of an initial magnetomotive force, having no adverse effect on the stability and reliability of superconducting magnets. Electromagnetic forces under a normal running condition could be predicted accurately enough by relatively easy-to-calculate constant current mode analysis. Double-layered armature coils were preferred to single-layered ones to enhance the stability of superconducting magnets by reducing fluctuation of persistent current. 10 refs., 8 figs., 1 tab.

  15. Steam generator tube support plate degradation in French plants: maintenance strategy

    International Nuclear Information System (INIS)

    Gauchet, J.-P.; Gillet, N.; Stindel, M.

    1998-01-01

    This paper reports on the degradations of Steam Generator (SG) Tube Support Plates (TSPs) observed in French plants and the maintenance strategy adopted to continue operating the plant without any decrease of the required safety level. Only drilled carbon steel TSPs of early SGs are affected. Except the particular damage of the TSP8 of FESSENHEIM 2 caused by chemical cleaning procedures implemented in 1992, two main problems were observed almost exclusively on the upper TSP: Ligaments ruptured near the aseismic block located at 215 degrees. This degradation is perfectly detectable by bobbin coil inspection. It occurs very early in the life of the SG as can be seen from the records of previous inspections and no evolution of the signals was observed. This damage can be detected for 51M model SGs on several sites; Wastage of the ligaments resulting in enlargement of flow holes with in some cases complete consumption of a ligament. This damage was only observed for SGs of at GRAVELINES. This damage evolved cycle after cycle. Detailed studies were performed to analyze tubing behavior when a tube is not supported by the upper TSP because of missing ligaments. These studies evaluated the risk of vibratory instability, the behavior of both the TSP and the tubing in case of a seismic event or a LOCA and finally the behavior of the TSP in case of a Steam Line Break. Concerning vibratory instability it was possible to define zones where stability could not be demonstrated. Dampine, cables and sentinel plugs were then used when necessary to eliminate the risk of Steam Generator Tube Rupture (SGTR). For accidental conditions, it could be shown that no unacceptable damage occurs and that the core cooling function of the SG is always maintained if some tubes are plugged. From this analysis, It was possible to define the inspection programs for the different plants taking into account the specific situation of each plant regarding the damages detected. These programs include

  16. Influence of increasing phosphate/silikate contents on the pitting and general corrosion of galvanized steel tubing and the corrosion of copper in warm water mixed installation systems

    International Nuclear Information System (INIS)

    Ehreke, J.; Stichel, W.

    1989-01-01

    In hot tap water (65 0 C) the influence of a mixture of phosphate/silicate inhibitor on the general, the pitting and the galvanic corrosion of galvanized steel tubes and the general corrosion of copper in mixed installations of both metals was investigated. Increasing concentration of inhibitors descreases the general corrosion rate of galvanized steel and copper. A worth mentioning reduction of pitting and galvanic corrosion of steel could be reached only with high concentrations of 5 mg/l P 2 O 5 and 30 mg/l SiO 2 . Galvannealed tubes are much more sensitive to pitting corrosion than galvanized ones. Referring to this they could not be inhibited. (orig.) [de

  17. The Effect of Condensate Inundation on Steam Condensation Heat Transfer to Wire-Wrapped Tubing.

    Science.gov (United States)

    1983-06-01

    my Thesis Advisor, for his support and patient guidance throughout the project. My sincere appreciation to Dr. A.S. Wanniarachchi, my Second Reader...and perforated tube installation. The tubes were positioned using nylon tube sheets that were attached to the exterior of the condenser end plates. To...Co Tco #5 014 Tt 015 Tsat 016 Tcond 017 T 018 vap 53 IV. PROCEDURES A. INSTALLATION AND OPERATING PROCEDURES 1. 2-r-eparat inDfCndes ubu Prior to

  18. Transfer of hydrogen and helium through corrugated, flexible tubes

    International Nuclear Information System (INIS)

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  19. Horn installed in CNGS tunnel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The horn is installed for the CERN Neutrinos to Gran Sasso (CNGS) project. Protons collide with a graphite target producing charged particles that are focussed by the magnetic field in the horn. These particles will then pass into a decay tube where they decay into neutrinos, which travel towards a detector at Gran Sasso 732 km away in Italy.

  20. Inner surface modification of a tube by magnetic glow-arc plasma source ion implantation

    International Nuclear Information System (INIS)

    Zhang Guling; Chinese Academy of Sciences, Beijing; Wang Jiuli; Feng Wenran; Chen Guangliang; Gu Weichao; Niu Erwu; Fan Songhua; Liu Chizi; Yang Size; Wu Xingfang

    2006-01-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved. (authors)

  1. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Science.gov (United States)

    Zhang, Gu-Ling; Wang, Jiu-Li; Wu, Xing-Fang; Feng, Wen-Ran; Chen, Guang-Liang; Gu, Wei-Chao; Niu, Er-Wu; Fan, Song-Hua; Liu, Chi-Zi; Yang, Si-Ze

    2006-05-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  2. Effect of Tube Pitch on Pool Boiling Heat Transfer of Vertical Tube Bundle

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2016-01-01

    Summarizing the previous results it can be stated that heat transfer coefficients are highly dependent on the tube pitch and the heat flux of the relevant tube. The published results are mostly about the horizontal tubes. However, there are many heat exchangers consisting of vertical tubes like AP600. Therefore, the focus of the present study is an identification of the effects of a tube pitch as well as the heat flux of a relevant tube on the heat transfer of a tube bundle installed vertically. When the heat flux is increased many bubbles are generating due to the increase of the nucleation sites. The bubbles become coalescing with the nearby bubbles and generates big bunches of bubbles on the tube surface. This prevents the access of the liquid to the surface and deteriorates heat transfer. The bubble coalescence is competing with the mechanisms enhancing heat transfer. The pitch was varied from 28.5 mm to 95 mm and the heat flux of the nearby tube was changed from 0 to 90kW/m"2. The enhancement of the heat transfer is clearly observed when the heat flux of the nearby tube becomes larger and the heat flux of the upper tube is less than 40kW/m"2. The effect of the tube pitch on heat transfer is negligible as the value of DP/ is increased more than 4.

  3. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  4. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  5. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  6. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  7. Coiled-coil forming peptides for the induction of silver nanoparticles

    International Nuclear Information System (INIS)

    Božič Abram, Sabina; Aupič, Jana; Dražić, Goran; Gradišar, Helena; Jerala, Roman

    2016-01-01

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  8. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  9. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  10. Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis.

    Science.gov (United States)

    Espagne, Eric; Vasnier, Christelle; Storlazzi, Aurora; Kleckner, Nancy E; Silar, Philippe; Zickler, Denise; Malagnac, Fabienne

    2011-06-28

    We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC.

  11. Improvement of an installation to generate shock waves

    Energy Technology Data Exchange (ETDEWEB)

    1974-04-29

    An installation to generate a shock wave in a fluid layer is described. A water projectile is moved at a high velocity. It leaves behind an underpressure in which the adjacent water implodes, therby generating the desired shock wave. The installation is characterized by a tube-shaped hull in which a piston can move freely. One side of the hull is connected to the pressure-generator chamber of the piston. (6 claims)

  12. Conception of Brownian coil

    OpenAIRE

    Zhang, Jiayuan

    2018-01-01

    This article proposes a conception of Brownian coil. Brownian coil is a tiny coil with the same size of pollen. Once immersed into designed magnetic field and liquid, the coil will be moved and deformed macroscopically, due to the microscopic thermodynamic molecular collisions. Such deformation and movement will change the magnetic flux through the coil, by which an ElectroMotive Force (EMF) is produced. In this work, Brownian heat exchanger and Brownian generator are further designed to tran...

  13. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  14. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  15. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  16. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  17. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  18. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    Science.gov (United States)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  19. The pre-compression system of the toroidal field coils in ITER

    International Nuclear Information System (INIS)

    Knaster, J.; Ferrari, M.; Jong, C.; Vollmann, T.

    2007-01-01

    The toroidal field (TF) coils of ITER will undergo out-of-plane forces caused by the poloidal fields required to confine the plasma. These forces will be supported against overturning moments by links between the coils. In turn, these links consist of the inner intercoil structure (IIC), which is composed of two pairs (placed at the top and bottom part of the inboard leg) of four sets of poloidal shear keys inserted in slots between adjacent coils, and the outer intercoil structure (OIS) formed by four bands of shear panels on the outboard leg. The magnetic forces during energization of ITER would cause at IIC locations at toroidal gap between adjacent TF coils of 0.35 mm; during plasma operation this value could reach >1 mm causing a loosening of the keys and intensifying stress concentrations. This undesired effect will be suppressed by the application of a centripetal force of 70 MN/coil (35 MN at both the bottom and top part of the inboard leg of each of the 18 TF coils) that will be provided by two sets of three glass fibre/epoxy composite rings submitted to a toroidal hoop force of 100 MN/set. The calculated maximum stress in the rings will occur during the installation phase at room temperature, where the maximum radial elongation (∼25 mm) is required, and it reaches 1/5 of the composite presently estimated ultimate stress. The imposed elongation to reach that force and the lower Young's modulus of the composite compared with that of stainless steel will ease component tolerances and/or settlement effects in the final assembly. The paper describes the evolution in the design of the pre-compression system, from the conceptual phase when two circular cross-sections rings were considered to the present definitive one with three rectangular cross-section rings

  20. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 0 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs

  1. A level switch with a sound tube

    OpenAIRE

    赤池, 誠規

    2017-01-01

    Level switches are sensor with an electrical contact output at a specific liquid, powder or bulk level. Most of traditional level switches are not suitable for harsh environments. The level switch in this study connects a loudspeaker on top end of the sound tube. When liquid, powder or bulk closes bottom end of the sound tube, the level switch turns on. The level switch is suitable for harsh environments and easy to install. The aim of this study is to propose a level switch with a sound tube...

  2. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  3. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  4. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-15

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  5. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  6. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  7. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  8. Performance of coils wound from long lengths of surface-coated, reacted, BSCCO-2212 conductor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.S.; Hazelton, D.W.; Gardner, M.T. [Intermagnetics General Corp., Latham, NY (United States)] [and others

    1996-10-01

    React-before-wind surface-coated BSCCO-2212 is being established as a relatively low cost HTS conductor for practical applications. Quality tape is presently being manufactured in 450-500m lengths at a cost estimated to be 1/3-1/5 of the industry costs of BSCCO-2223 powder-in-tube tape. Robust, mechanically sound coils for applications ranging from NMR insert magnets to transformer windings are being made from this BSCCO-2212 tape. The coils have performed consistently through test and thermal cycling without degradation and as projected from short sample measurements. A hybrid approach, which uses mainly BSCCO- 2212 augmented by BSCCO-2223 conductor in the high radial field end regions, is expected to halve magnet system costs.

  9. Material reliability of Ni alloy electrodeposition for steam generator tube repair

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Kim, Myong Jin; Kim, Joung Soo; Kim, Hong Pyo

    2007-01-01

    Due to the occasional occurrences of Stress Corrosion Cracking (SCC) in steam generator tubing (Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube dose not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electroforming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a Primary Water Stress Corrosion Cracking (PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance

  10. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2002-04-01

    Full Text Available Abstract Background Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. Results We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. Conclusion Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

  11. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  12. Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation

    Science.gov (United States)

    Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.

  13. Using magnetic coils to produce periodically applied forces to maintain the high speed movement of bodies and vehicles, particularly in tubes evacuated of air

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    An arrangement is described in which a body is accelerated or maintained in motion along a track that passes through a number of annular electromagnet coils, the length of the body being substantially less than the distance between two adjacent coils. A series if electronmagnetically produced force pulses is applied to the body as it passes through successive coils, by the use of an automatic switch operated by the body. Control is provided so that each coil is de-energized at or before maximum magnetic flux linkage is attained between coil and body, the arrangement being such that the body is accelerated into the coil, but leaves it at a much reduced flux linkage. The possible uses of such an arrangement are mentioned: these include the acceleration of bullets, incorporating D and T in pellet form in their concave noses, to obtain a nuclear fusion reaction. (U.K.)

  14. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  15. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  16. Impact of plasma tube wall thickness on power coupling in ICP sources

    International Nuclear Information System (INIS)

    Nawaz, Anuscheh; Herdrich, Georg

    2009-01-01

    The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.

  17. An innovative design for using flexible printed coils for magnetostrictive-based longitudinal guided wave sensors in steel strand inspection

    International Nuclear Information System (INIS)

    Tse, P W; Liu, X C; Wang, X J; Liu, Z H; Wu, B; He, C F

    2011-01-01

    Magnetostrictive sensors (MsSs) that can excite and receive guided waves are commonly used in detecting defects that may occur in cables and strands for supporting heavy structures. A conventional MsS has a hard sensing coil that is wound onto a bobbin with electric wires to generate the necessary dynamic magnetic field to excite the desired guided waves. This tailor-made hard coil is usually bulky and is not flexible enough to fit steel strands of various sizes. The conventional MsS also cannot be mounted to any steel strand that does not have a free end to allow the bobbin to pass through the structure of the tested strand. Such inflexibilities limit the use of conventional MsSs in practical situations. To solve these limitations, an innovative type of coil, called a flexible printed coil (FPC), which is made out of flexible printed film, has been designed to replace the inflexible hard coil. The flexible structure of the FPC ensures that the new MsS can be easily installed on and removed from steel strands with different diameters and without free ends. Moreover, the FPC-based MsS can be wrapped into multiple layers due to its thin and flexible design. Although multi-layer FPC creates a minor asymmetry in the dynamic magnetic field, the results of finite element analysis and experiments confirm that the longitudinal guided waves excited by a FPC-based MsS are comparable to those excited by a conventional hard coil MsS. No significant reduction in defect inspection performance was found; in fact, further advantages were identified when using the FPC-based MsS. When acting as the transmitter, the innovative FPC-based MsS can cover a longer inspection length of strand. When acting as the receiver, the FPC-based MsS is more sensitive to smaller defects that are impossible to detect using a hard coil MsS. Hence, the multi-layer FPC-based MsS has great potential for replacing the conventional hard coil MsS because of its convenient installation, and ease of fitting to

  18. Feasibility evaluations for the integration of laser butt welding of tubes in industrial pipe coil production lines

    Science.gov (United States)

    Penasa, Mauro; Colombo, Enrico; Giolfo, Mauro

    1994-09-01

    Due to the good performance shown by laser welded joints, to the quality and repeatability achievable by this welding technique and to its high process productivity, a feature inherent to the laser technology which, together with its high flexibility, allows different operations to be performed by a single source, consistent savings in a production line may be obtained. Therefore laser welding techniques may be of high relevance for industrial applications, provided that a sufficient attention is paid to avoiding a low utilization time to the operating laser source. The paper describes a feasibility study for the integration of a laser source as an automatic unit for circumferential butt welding of tubes in production lines of pipe coils, just before the cold bending station. Using a 6 kW CO2 source, thickness ranging from 3.5 to 11.2 mm in carbon, low alloyed Cr-Mo and austenitic stainless steels, have been successfully welded. Cr-Mo steels require on line preheating treatment, which however can be achieved by laser defocused passes just before welding. The results of the preliminary qualification performed on laser welded joints of the involved topologies of product (materials, diameters and thicknesses) are described together with technological tests required for approval: laser circumferential butt welding of tubes has proven to be effective, with satisfactory and repeatable results and good joint performances. An exhaustive comparison with current welding techniques (TIG, MIG) is then carried out, along with a detailed analysis of the potential advantages and benefits which may be expected by using the laser welding technique, as well as with a first estimation of the investments and running costs. Since laser productivity is saturated only at a rough 35% during the year, an accurate analysis of other possible applications and of a possible lay out of a laser working cell integrated in the factory production lines is performed. Usually little attention is

  19. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  20. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  1. Electrical design of the BUSSARD inverter system for ASDEX upgrade saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Teschke, Markus, E-mail: teschke@ipp.mpg.de; Arden, Nils; Eixenberger, Horst; Rott, Michael; Suttrop, Wolfgang

    2015-10-15

    Highlights: • A cost effective inverter topology for AUG's 16 in-vessel saddle coils has been found. • Use of commercially available power modules is possible. • A NPC-like topology of the power stage is realized in a modular way. • The high-speed controllers and PWM engines are realized on Linux-based systems. • First experimental results of AUG plasma shots are presented. - Abstract: A set of 16 in-vessel saddle coils is installed in the ASDEX Upgrade (AUG) nuclear fusion experiment for mitigation of edge localized modes (ELM) and feedback control of resistive wall modes (RWM). The coils were driven by DC current only during previous campaigns. Now, a new inverter system “BUSSARD” (German abbr. for “Bayerischer Umrichter, schnell schaltend für AUGs rasche Drehfelder”, translated: “bavarian fast switching inverter for AUG's fast rotating fields”) is built for the experiment. A four-phase system has been assembled to simultaneously operate up to 4 groups of coils consisting of up to 4 serial-connected coils each. The maximum current is 1.3 kA with a ripple in the range of 7% and the frequency is variable between DC and approx. 100 Hz. The switching frequency is variable between approximately 3 and 10 kHz. As a first application, rotating fields are generated. The system can be enhanced in two stages to 16-phase operation with a bandwidth of 500 Hz and a 24 phase system with a bandwidth of up to 3 kHz.

  2. Staking solutions to tube vibration problems (developed by Technos et Compagnie - FRANCE)

    International Nuclear Information System (INIS)

    Hewitt, E.W.; Bizard, A.; Horn, M.J.

    1989-01-01

    Electric generating plant steam surface condensers have been prone to vibration induced tube failures. One common and effective method for stopping this vibration has been to insert stakes into the bundle to provide additional support. Stakes have been fabricated of a variety of rigid and semi-rigid materials of fixed dimensions. Installation difficulties and problems of incomplete tube support have been associated with this approach. New developments in the application of plastic technology has offered another approach. Stakes made of plastic tubes which are flattened, by evacuation, at the time of manufacture may now be easily inserted into the tube bundle. After insertion, the vacuum is released and the memory of the plastic causes the stakes to expand and assume their original form. The spring force of the plastic cradles the adjacent condenser tubes and stops the vibration. Developed for Electricite de France (EDF), the stakes are currently installed in 19 units of the French utility system, and two units in the United States

  3. An Analysis of Design Characteristics of ECT Bobbin Probe for S/G Tube

    International Nuclear Information System (INIS)

    Nam, Min-Woo; Cho, Chan-Hee; Jee, Dong-Hyun; Jung, Jee-Hong; Lee, Hee-Jong

    2006-01-01

    The bobbin probe technique is basically one of the important ECT methods for the steam generator tube integrity assessment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, geometry and operation frequencies, and has an important effect on examination results. In this study, the relationship between electric characteristic changes and differential coil gap variation has been investigated to optimize the ECT signal characteristics of the bobbin probe. With the results from this study, we have elucidated that the optimum coil gap is 1.2 - 1.6mm that give the best result for O.D. volumetric defects in ASME calibration standards

  4. An Analysis of the Guided Wave Patterns in a Small-bore Titanium Tube by a Magnetostrictive Sensor Technique

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Kim, Shin

    2007-01-01

    The presence of damage or defects in pipes or tubes is one of the major problems in nuclear power plants. However, in many cases, it is difficult to inspect all of them by the conventional ultrasonic methods, because of their geometrical complexity and inaccessibility. The magnetostrictive guided wave technique has several advantages for practical applications, such as a 100- percent volumetric coverage of a long segment of a structure, a reduced inspection time and its cost effectiveness, as well as its' relatively simple structure. One promising feature of the magnetostrictive sensor technique is that the wave patterns are relatively clear and simple compared to the conventional piezoelectric ultrasonic transducer. If we can characterize the evolution of the defect signals, it can be a promising tool for a structural health monitoring of pipes for a long period as well as the identification of flaws. An in-bore guided wave probe was developed for an application to small bore heat exchanger tubes. The magnetostrictive probe installed on the hollow cylindrical waveguide generates and detects torsional waves in the waveguide. This waveguide is expanded by the draw bar to create an intimate mechanical contact between the waveguide and the inside surface of the tube being tested. In this paper, we analyzed the wave patterns reflected from various artificial holes in a titanium tube, which is used in the condenser in a nuclear power plant. The torsional guided waves were generated and received by a coil and a DC magnetized nickel strip as well as an inbore guided wave probe. The wave patterns from various defects were compared with two different sensor techniques and a detectable limit of the defected was estimated

  5. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  6. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs

  7. Natural gas fuelling stations installation code

    Energy Technology Data Exchange (ETDEWEB)

    Barrigar, C; Burford, G; Adragna, M; Hawryn, S

    2004-07-01

    This Canadian Standard applies to natural gas fuelling stations that can be used for fleet and public dispensing operations. This document is divided into 11 sections that address the scope of the Standard; definitions and reference publications; general requirements; compressors; storage; dispensing; flow control devices; storage vessel dispatch and receiving; design, installation and testing of piping, tubing and fittings; and installation of vehicle refuelling appliances (VRAs) connected to storage piping. The most recent revision to the Standard includes requirements for indoor fuelling of natural gas vehicles. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2004. tabs., figs.

  8. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    International Nuclear Information System (INIS)

    Pal, A M; Bhattacharya, S; Biswas, S; Basu, S; Pal, R

    2014-01-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere

  9. CT ESP for Yme, Converting the Yme field offshore Norway from a conventional rig-operated field to CT-operated for workover and drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Baklid, A.; Apeland, O. J.; Teigen, A. S. [Statoil (Norway)

    1998-12-31

    Conventional tubing deployed electrical submersible pump (ESP) was the original choice as the artificial lift method for the Yme field offshore Norway. Several operational problems experienced over the past two years, such as formation damage, complicated and costly workovers and limited access to the reservoir, combined with revised field requirements and a reevaluation of artificial lift methods resulted in a change in completion philosophy. Following these reassessments coiled tubing ESPs utilizing internal power cable were installed and became the preferred method. This paper provides an assessment of the value of installing CT-ESP in a live well, and describes the system design for a true underbalanced CT-ESP installation. Well control and barrier philosophy during installation, production and workover mode is also evaluated. 2 refs., 3 tabs., 5 figs.

  10. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  11. Cable testing for Fermilab's high field magnets using small racetrack coils

    International Nuclear Information System (INIS)

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.I.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Yamada, R.; Zlobin, A.V.

    2004-01-01

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb 3 Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable

  12. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  13. Evaluation of the inner wall axial cracks of steam generator tubes by eddy current test

    International Nuclear Information System (INIS)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Doek Hyun; Han, Jung Ho

    2001-01-01

    For the enhancement of ECT reliability on the primary water stress corrosion cracks of nuclear steam generator tubes, it is important to comprehend the signal characteristics on crack morphology and to select an appropriate probe type. In this paper, the sizing accuracy and the detectability for the inner wall axial cracks of tubes were quantitatively evaluated using the electric discharge machined notches and the corrosion cracks which were developed on the operating steam generator tubes. The difference of eddy current signal characteristics between pancake and axial coil were also investigated. The results obtained from this study provide a useful information for more precise evaluation on the inner wall axial cracks of steam generator tubes.

  14. Feasibility studies on plasma vertical position control by ex-vessel coils in ITER-like tokamak fusion reactors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Sugihara, Masayoshi; Shimomura, Yasuo

    1993-01-01

    Feasibility of the plasma vertical position control by control coils installed outside the vacuum vessel (ex-vessel) in a tokamak fusion reactor is examined for an ITER-like device. When a pair of ex-vessel control coils is made of normal conductor material and located near the outmost superconducting (SC) poloidal field (PF) coils, the applied voltage of several hundred volts on the control coils is the maximum allowable value which is limited by the maximum allowable induced voltage and eddy current heating on the SC PF coils, under the conditions that the SC PF coils are connected in series and a partitioning connection is employed for each of these PF coils. A proportional and derivative (PD) controller with and without voltage limitation has been employed to examine the feasibility. Indices of settling time and overshoot are introduced to measure the controllability of the control system. Based on these control schemes and indices, higher elongation (κ=2) and moderate elongation (κ=1.6) plasmas are examined for normal and deteriorated (low beta value and peaked current profile) plasma conditions within the restriction of applied voltage and current of control coils. The effect of the time constant of the passive stabilizer is also examined. The major results are: (1) A plasma with an elongation of 2.0 inevitably requires a passive stabilizer close to the plasma surface, (2) in case of a higher elongation than κ=2, even the ex-vessel control coil system is marginally controllable under normal plasma conditions, while it is difficult to control the deteriorated plasma conditions, (3) the time constant of the passive stabilizer is not an essential parameter for the controllability, (4) when the elongation is reduced down to 1.6, the ex-vessel control coil system can control the plasma even under deteriorated plasma conditions. (orig.)

  15. Is the cooling of coils of pulsed accelerators profitable?

    International Nuclear Information System (INIS)

    Neyret, G.; Parain, J.; Schnuriger, J.C.

    1960-05-01

    In this report, the authors recall how metal resistivity decreases at low temperatures, and give some indications about the power and price of cryogenic installations. They report the study of the cooling of coils in accelerators displaying an alternate gradient with a 15 GeV energy, with or without a magnetic circuit in iron. They establish that cooling does not result in a decrease in the cost price for an hour of operation. They also state that it is not even sure that this cooling would result in a dimension reduction while increasing the maximum achievable induction [fr

  16. CFD Analysis of The Hydraulic Turbine Draft Tube to Improve System Efficiency

    Directory of Open Access Journals (Sweden)

    Chakrabarty Spandan

    2016-01-01

    Full Text Available Demand of the power is increasing day by day with the development of the science and technology. Development of the renewable energy sector has become essential issue at the present situation due to the limited source of the non-renewable energy. Hydro energy power generation sector is superior over the other renewable sector due to the high efficiency, ability to continuous generation and low generation cost. In India a great amount of the power generation is taken care by the hydro power system but still some more potential have unexplored. The efficiency improvement of the hydro turbine system can be done for the new installation or installed system by the improvement in component level. The system can be installed by the state of the art equipment, like modern inlet guide vane (IGV control system, improved design of the runner, IGV system, draft tube, penstock to reduce the loss, hence improve the efficiency. The energy recovery in the draft tube depends on the design of draft tube. In the present work the optimized design of the draft tube shape through computational fluid dynamics (CFD simulation has been carried out in ANSYS FLUENT platform. The design objective of the draft tube is to reduce the flow loss and improve the energy recovery, hence to improve the efficiency.

  17. Split coil made of (RE)BCO pancake coils for IC(B) anisotropy measurements of superconductors

    International Nuclear Information System (INIS)

    Frolek, L; Pardo, E; Gömöry, F; Šouc, J; Pitel, J

    2014-01-01

    Measurement of the I c (B) anisotropy is standard characterization of superconducting tapes, wires or cables. This contribution presents a split coil consisting on two superconducting pancake coils in order to generate the magnetic field necessary for this kind of measurement. Both coils were made using (RE)BCO – based second generation (2G) coated conductor tape with cross section 0.1 mm × 12 mm. The individual turns of the tape were insulated by a fiberglass tape without impregnation. These coils have identical inner and outer diameter and number of turns. Their inner and outer diameters are 50 mm and 80 mm, respectively, and they have 62 turns. The length of conductor in each coil is approximately 13 m. The distance between both pancake coils is 22 mm. Individual coils and the complete split coil were characterized in liquid nitrogen bath. Their parameters, like the critical currents, E(I) characteristics and magnetic field of complete split coil, were measured and interpreted. The split coil can be used up to magnetic fields of 210 mT. The length between the potential taps on the sample can be up to 20 mm, while the magnetic field decrease is lower than 1% on this length.

  18. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.

    Science.gov (United States)

    Kreplak, L; Doucet, J; Briki, F

    2001-04-15

    Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.

  19. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  20. Wellbore manufacturing processes for in situ heat treatment processes

    Science.gov (United States)

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  1. Assembly, installation and commissioning of the new halo current sensors system for JET

    International Nuclear Information System (INIS)

    Peruzzo, S.; Fullard, K.; Grando, L.; Huntley, S.; Lam, N.; Pomaro, N.; Riccardo, V.; Sonato, P.

    2007-01-01

    This paper presents the status of the halo current sensors (HCS) diagnostic enhancement project for JET. The HCS system includes four sets of probes located in four octants equally spaced along the toroidal coordinate, with a total of 24 Rogowski coils and 5 toroidal field pick-up coils. These sensors are meant to provide a measurement of the current flowing through each single tile of the upper dump plate and an estimate of the total poloidal halo current flowing through the first wall structures. The HCS system was installed in the JET vacuum vessel in March 2005 during the 2004/2005 shutdown and the acquisition of signals started during the restart phase of the machine in autumn 2005. This paper firstly summarises the critical aspects encountered during the final phase of the procurement of the system and the in-vessel installation, which was accomplished using the remote handling system. The paper then focuses on the analysis and interpretation of the data collected during the functional commissioning of the new system, carried out during the restart phase of the machine preceding the experimental campaigns

  2. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  3. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  4. Mechanical strength evaluation of the glass base material in the JRR-3 neutron guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-02-01

    The lifetime of the thermal neutron guide tube installed JRR-3 was investigated after 6 years from their first installation. And it was confirmed that a crack had been piercing into the glass base material of the side plate of the neutron guide tube. The cause of the crack was estimated as a static fatigue of the guide tube where an inside of the tube had been evacuated and stressed as well as an embrittlement of the glass base material by gamma ray irradiation. In this report, we evaluate the mechanical strength of the glass base material and estimate the time when the base material gets fatigue fracture. Furthermore, we evaluate a lifetime of the neutron guide tube and confirm the validity of update timing in 2000 and 2001 when the thermal neutron guide tubes T1 and T2 were exchanged into those using the super mirror. (author)

  5. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  6. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  7. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  8. Quench detector for large pulsed coils and quench analysis for the LASL/Westinghouse 20 MJ coil

    International Nuclear Information System (INIS)

    Hennessy, M.J.; Heintz, A.W.; Eckels, P.W.

    1981-01-01

    A detection scheme has been devised for use in the test of the 20 Mj Induction Heating Coil. This scheme allows the sensing of plus or minus voltages less than 320 mv resistive in magnitude in coils which will have inductive voltage components as high as /plus or minus/2.5 kv. The network which achieves this sensitivity is stable to less than 12.8 ppm. This method adopted involves the bucking out of the inductive voltage with two secondary co-wound flux sensing coils tapped at locations adjacent to voltage taps in the main superconducting coil. The detection scheme is recommended if large ripple or control voltages exist subsequent to the coil pulse. The most severe event which might quench the coil and/or damage the winding is exposure of the coil to gaseous cooling through lack of proper liquid level control. The detection scheme will protect the coil against this and other abnormal conditions that could damage the coil

  9. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  10. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  11. Ultrasonic measurement of gap between calandria tube and liquid injection shutdown system tube in PHWR

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Sohn, Seok Man; Lee, Jun Shin; Lee, Sun Ki; Lee, Jong Po

    2001-01-01

    Sag of CT or liquid injection shutdown system tubes in pressurized heavy water reactor is known to occur due to irradiation creep and growth during plant operation. When the sag of CT is big enough, the CT tube possibly comes in contact with liquid injection shutdown system tube (LIN) crossing beneath the CT, which subsequently may prevent the safe operation. It is therefore necessary to check the gap between the two tubes in order to confirm no contacts when using a proper measure periodically during the plant life. An ultrasonic gap measuring probe assembly which can be fed through viewing port installed on the calandria was developed and utilized to measure the sags of both tubes in a pressurized heavy water reactor in Korea. It was found that the centerlines of CT and LIN can be precisely detected by ultrasonic wave. The gaps between two tubes were easily obtained from the relative distance of the measured centerline elevations of the tubes. But the measured gap data observed at the viewing port were actually not the data at the crossing point of CT and LIN. To get the actual gap between two tubes, mathematical modeling for the deflection curves of two tubes was used. The sags of CT and LIN tubes were also obtained by comparison of the present centerlines with the initial elevations at the beginning of plant operation. The gaps between two tubes in the unmeasurable regions were calculated based on the measurement data and the channel power distribution

  12. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  13. Signal Characteristics of Eddy Current Test for Intergranular Attack of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Hur, Do Haeng; Cho, Se Gon; Yim, Chang Jae

    2002-01-01

    Because intergranular attack (IGA), one of the localized corrosion forms occurring on steam generator tubes, can not be fabricated by an electric discharge machining method, there are few data for the eddy current test (ECT) characteristics of IGA. In this paper, the characteristics of eddy current signals are evaluated using nonexpanded tubes with IGA defects formed in 0.1 M sodium tetrathionate solution at 40 .deg. C. The detectability and sizing accuracy of IGA were discussed in terms of the coil type and frequency of the ECT probes

  14. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  15. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure.

    Science.gov (United States)

    Parry, David A D; Fraser, R D Bruce; Squire, John M

    2008-09-01

    alpha-Helical coiled coils are remarkable for the diversity of related conformations that they adopt in both fibrous and globular proteins, and for the range of functions that they exhibit. The coiled coils are based on a heptad (7-residue), hendecad (11-residue) or a related quasi-repeat of apolar residues in the sequences of the alpha-helical regions involved. Most of these, however, display one or more sequence discontinuities known as stutters or stammers. The resulting coiled coils vary in length, in the number of chains participating, in the relative polarity of the contributing alpha-helical regions (parallel or antiparallel), and in the pitch length and handedness of the supercoil (left- or right-handed). Functionally, the concept that a coiled coil can act only as a static rod is no longer valid, and the range of roles that these structures have now been shown to exhibit has expanded rapidly in recent years. An important development has been the recognition that the delightful simplicity that exists between sequence and structure, and between structure and function, allows coiled coils with specialized features to be designed de novo.

  16. Severe complications caused by dissolution of latex with consequent self-disintegration of esophageal plastic tubes.

    Science.gov (United States)

    Löser, C

    2000-09-01

    A case of decisive material degeneration of an esophageal Celestin tube is described: a 50-year-old man with adenocarcinoma of the distal esophagus received a Celestin tube for palliative endoscopic treatment and 8 months later presented with suddenly occurring complete dysphagia. Dissolution of the latex layer in the proximal as well as the distal part of the tube had caused self-disintegration of the Celestin tube and had liberated the monofilament nylon coil which completely obstructed the lumen of the tube. Endoscopic tube removal was only possible by careful attachment of a balloon catheter and peroral extraction after insufflation with contrast medium up to 5 atm. A Medline-based review of the literature revealed different but predominantly severe complications (perforation, hemorrhage, obstruction, and peritonitis) based on material fatigue of the latex layer in esophageal Celestin tubes. At least 6 months after placement of a Celestin tube, regular fluoroscopic controls should be performed to detect early disintegration of the tube. Indication for the placement of Celestin tubes in patients with benign esophageal strictures and longer life expectancy should be assessed very critically.

  17. Wastage of Steam Generator Tubes by Sodium-Water Reaction

    International Nuclear Information System (INIS)

    Jeong, Ji Young; Kim, Jong Man; Kim, Tae Joon; Choi, Jong Hyeun; Kim, Byung Ho; Lee, Yong Bum; Park, Nam Cook

    2010-01-01

    The Korea Advanced LIquid MEtal Reactor (KALIMER) steam generator is a helical coil, vertically oriented, shell-and-tube type heat exchanger with fixed tube-sheet. The conceptual design and outline drawing of the steam generator are shown in Figure 1. Flow is counter-current, with sodium on the shell side and water/steam on the tube side. Sodium flow enters the steam generator through the upper inlet nozzles and then flows down through the tube bundle. Feedwater enters the steam generator through the feedwater nozzles at the bottom of steam generator. Therefore, if there is a hole or a crack in a heat transfer tube, a leakage of water/steam into the sodium may occur, resulting in a sodium-water reaction. When such a leak occurs, so-called 'wastage' is the result which may cause damage to or a failure of the adjacent tubes. If a steam generator is operated for some time in this condition, it is possible that it might create an intermediate leak state which would then give rise to the problems of a multi-target wastage in a very short time. Therefore, it is very important to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. For this, multi-target wastage tests for modified 9Cr-1Mo steel tube bundle by intermediate leaks are being prepared

  18. P-shaped Coiled Stator Ultrasound Motor for Rotating Intravascular Surgery Device

    Directory of Open Access Journals (Sweden)

    Toshinobu ABE

    2015-01-01

    Full Text Available The primary focus of this paper is the development of an ultra-miniature ultrasound motor for use in the human blood vessel. Since the size of the drive source for rotating the atherectomy device and intravascular ultrasonography system are large currently in practical use, it is installed outside the body, and the rotational power for the atherectomy device and intravascular ultrasonography system are transmitted through the long tortuous blood vessel. Such systems suffer from the problem that the rotation becomes non-uniform, and the problem that the available time is limited. We have therefore developed a P-shaped coiled stator ultrasound motor as a miniature ultrasound motor for rotating the ultrasound sensor for use in blood vessels in order to solve these problems. In this paper, we describe measurement of the torque, revolution speed, output power, efficiency, and particle motion on acoustic waveguide of the P-shaped coiled stator ultrasound motor.

  19. A study on the operation analysis of the power conditioning system with real HTS SMES coil

    International Nuclear Information System (INIS)

    Kim, A.R.; Jung, H.Y.; Kim, J.H.; Ali, Mohd. Hasan; Park, M.; Yu, I.K.; Kim, H.J.; Kim, S.H.; Seong, K.C.

    2008-01-01

    Voltage sag from sudden increasing loads is one of the major problems in the utility network. In order to compensate the voltage sag problem, power compensation devices have widely been developed. In the case of voltage sag, it needs an energy source to overcome the energy caused by voltage sag. According as the SMES device is characterized by its very high response time of charge and discharge, it has widely been researched and developed for more than 20 years. However, before the installation of SMES into utility, the system analysis has to be carried out with a certain simulation tool. This paper presents a real-time simulation algorithm for the SMES system by using the miniaturized SMES model coil whose properties are same as those of real size SMES coil. With this method, researchers can easily analyse the performance of SMES connected into utility network by abstracting the properties from the real modeled SMES coil and using the virtual simulated power network in RSCAD/RTDS

  20. A new accelerator tube and column for a horizontal 8 MV tandem

    International Nuclear Information System (INIS)

    Sundquist, M.L.; Rathmell, R.D.; Raatz, J.E.

    1990-01-01

    A horizontal 8 MV tandem is being installed in an existing tank at Kyoto University in Japan. This NEC Model 8UDH is the largest horizontal Pelletron constructed to date. The terminal is charged by two Pelletron chains. The acceleration tube is a metal and ceramic construction made into tube sections with a length of 30 cm each. This tube design adds 27% more live ceramic than in the standard NEC tube design, which had heated apertures in 5 cm long shorted regions every 20 cm. The column structure and tube design are reviewed. (orig.)

  1. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  2. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  3. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  4. Seismic analysis of ITER fourth PF (Poloidal Field Coil) feeder

    International Nuclear Information System (INIS)

    Liu, Sumei; Chen, Wei; Song, Yuntao; Ni, Xiaojun; Wang, Zhongwei; Chen, Yonghua; Gong, Chenyu

    2014-01-01

    The ITER feeder systems connect the ITER magnet systems located inside the main cryostat to the cryo-plant, power-supply and control system interfaces outside the cryostat. The main purpose of the feeders is to convey the cryogenic supply and electrical power to the coils as well as house the instrumentation wiring. The PF busbar which carries 52 kA current will suffer from high Lorentz force due to the background magnetic field inspired by the coils and the self-field between every pair of busbars. Except their mechanical strength and thermal insulation performance must be achieved, the dynamic mechanism on PF structure should be assessed. This paper presents the simulation and seismic analysis on ITER 4th PF feeder including the Coil Terminal Box and S-bend Box (CTB and SBB), the Cryostat Feed-through (CFT), the In-Cryostat-Feeder (ICF), especially for the ground supports and main outer-tube firstly. This analysis aims to study seismic resistance on system design under local seismograms with floor response spectrum, the structural response vibration mode and response duration results of displacement, membrane stress, and bending stress on structure under different directions actuating signals were obtained by using the single-seismic spectrum analysis and Dead Weight analysis respectively. Based on the simulative and analytical results, the system seismic resistance and the integrity of the support structure in the 4th PF feeder have been studied and the detail design confirmed

  5. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  6. Evaluation of Eddy Current Signals from the Inner Wall Axial Cracks of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Choi, Myung Sik; Hur, Do Haeng; Lee, Doek Hyun; Han, Jung Ho; Park, Jung Am

    2001-01-01

    For the enhancement of ECT reliability on the primary water stress corrosion cracks of nuclear steam generator tubes, of which the occurrence is on the increase, it is important to comprehend the signal characteristics on crack morphology and to select an appropriate probe type. In this paper, the sizing accuracy and the detectability for the inner wall axial cracks of tubes were quantitatively evaluated using the following specimens: the electric discharge machined notches and the corrosion cracks which were developed on the operating steam generator tubes. The difference of eddy current signal characteristics between pancake and axial coil were also Investigated. The results obtained from this study provide a useful information for more precise evaluation on the inner wall axial tracks oi steam generator tubes

  7. Equilibrium field coil concepts for INTOR

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values

  8. Fabrication of a segmented composite stainless steel-alumina discharge tube for a theta-pinch coil

    International Nuclear Information System (INIS)

    Dickinson, J.M.; Stoddard, S.D.; Muller, J.F.

    1975-11-01

    An 80-mm-diam segmented discharge tube that simulated in a simplified way the blanket and first wall of the Reference Theta-Pinch Reactor (RTPR) has been constructed. The segments were fabricated by plasma-arc spraying an alumina coating on tubular stainless steel trapezoids. These were laid up to form a cylinder that was contained in a fully dense alumina vacuum tube. The fabrication processes are discussed in detail

  9. A Barrel IFR Instrumented With Limited Streamer Tubes for BABAR Experiment

    International Nuclear Information System (INIS)

    Andreotti, M.; Ferrara U.; INFN, Ferrara

    2006-01-01

    The new barrel Instrumented Flux Return (IFR) of BABAR detector will be reported here. Limited Streamer Tubes (LSTs) have been chosen to replace the existing RPCs as active elements of the barrel IFR. The layout of the new detector will be discussed: in particular, a cell bigger than the standard one has been used to improve efficiency and reliability. The extruded profile is coated with a resistive layer of graphite having a typical surface resistivity between 0.2 and 0.4 MOhm/square. The tubes are assembled in modules and installed in 12 active layers of each sextant of the IFR detector. R and D studies to choose the final design and Quality Control procedure adopted during the tube production will be briefly discussed. Finally the performances of installed LSTs into 2/3 of IFR after 8 months of operations will be reported

  10. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  11. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  12. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    Science.gov (United States)

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a

  13. Eddy current inspection of tubing

    International Nuclear Information System (INIS)

    Bauza, J. L. R.; Herrero, J.; Diaz, J.

    1966-01-01

    The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)

  14. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  15. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    International Nuclear Information System (INIS)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-01-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length

  16. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  17. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  18. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  19. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  20. Comparison of the association of sac growth and coil compaction with recurrence in coil embolized cerebral aneurysms.

    Directory of Open Access Journals (Sweden)

    Anna L Hoppe

    Full Text Available In recurrent cerebral aneurysms treated by coil embolization, coil compaction is regarded as the presumptive mechanism. We test the hypothesis that aneurysm growth is the primary recurrence mechanism. We also test the hypothesis that the coil mass will translate a measurable extent when recurrence occurs.An objective, quantitative image analysis protocol was developed to determine the volumes of aneurysms and coil masses during initial and follow-up visits from 3D rotational angiograms. The population consisted of 15 recurrence and 12 non-recurrence control aneurysms initially completely coiled at a single center. An investigator sensitivity study was performed to assess the objectivity of the methods. Paired Wilcoxon tests (p<0.05, one-tailed were performed to assess for aneurysm and coil growth. The translation of the coil mass center at follow-up was computed. A Mann Whitney U-Test (p<0.05, one-tailed was used to compare translation of coil mass centers between recurrence and control subjects.Image analysis protocol was found to be insensitive to the investigator. Aneurysm growth was evident in the recurrence cohort (p=0.003 but not the control (p=0.136. There was no evidence of coil compaction in either the recurrence or control cohorts (recurrence: p=0.339; control: p=0.429. The translation of the coil mass centers was found to be significantly larger in the recurrence cohort than the control cohort (p=0.047.Aneurysm sac growth, not coil compaction, was the primary mechanism of recurrence following successful coil embolization. The coil mass likely translates to a measurable extent when recurrence occurs and has the potential to serve as a non-angiographic recurrence marker.

  1. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  2. Fabrication of applicator system of miniature X-ray tube based on carbon nanotubes for a skin cancer therapy

    International Nuclear Information System (INIS)

    Park, Han Beom; Kim, Hyun Jin; Lee, Ju Hyuk; Ha, Jun Mok; Cho, Sung Oh

    2016-01-01

    A miniature X-ray tube is a small X-ray generation device generally with a diameter of less than 10 mm. Because of the feasible installation in a spatially constrained area and the possibility of electrical on/off control, miniature X-ray tubes can be widely used for nondestructive X-ray radiography, hand held X-ray spectrometers, electric brachytherapy, and interstitial or intracavitary radiation therapy or imaging with the substitution of radioactive isotopes. Miniature X-ray tubes have been developed mostly using thermionic electron sources or secondary X-ray emission. The X-ray tube show excellent field emission properties and good X-ray spectrum. Also, the flattening filter was made to irradiate uniformly. The X-ray dose radial uniformities between installed flattening filter and non-installed flattening filter were measured. When flattening filter is equipped, X-ray uniformity was improved from higher than 20% to lower than 10%. As a result, the fabricated applicator system of the miniature X-ray tube using optimized flattening filter exhibited fairly excellent properties

  3. Metallurgical problems in the exchange tube of a fast reactor steam generator

    International Nuclear Information System (INIS)

    Coriou, M.; Champeix, L.; Weisz, M.

    1980-10-01

    The design of the 1200 MWe Super Phenix power station steam generators is based on the following principles: once through helical tube exchangers which can be completely drained on the sodium side; the single wall exchange tubes are accessible to Foucault current testing during shutdowns. The authors explain the reasons for selecting the 800 Alloy for the exchange tubes. This choice was borne out by the results of several years of studies in the following areas: 6000 test hours with a 45 MWe model; corrosion test under stress in a water-steam and sodium plus caustic soda environment; resistance to creep and fatigue (effects of ageing and annealing, of the chemical compound); industrial feasibility, fabrication, utilization, bending, coiling, welding, testing. Concurrently, the EMl2 qualification finalizing has been pursued for the same application [fr

  4. The design construction and installation of the helical winding for the CLEO stellarator

    International Nuclear Information System (INIS)

    Hunt, R.R.; Bayes, D.V.

    1979-03-01

    The CLEO stellarator has a torus 900mm major radius and 166mm minor radius, fitted externally with a 7 field period, l = 3, 120kAT helical winding of 179mm mean radius. The winding and torus have to withstand the large forces produced by the interaction of the current flowing in the winding with the toroidal magnetic field of 2 tesla produced by 24 coils spaced around the torus. To allow the torus to be divided the winding has to be split requiring a total of 240 demountable current-carrying joints at the torus vacuum joint positions. The design, development, manufacture, installation and operation of the helical winding is discussed. From the early development stages to installation took four years. When completed this was the largest installation of its type in Europe. (author)

  5. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  6. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    Science.gov (United States)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  7. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.

    Science.gov (United States)

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Girard, Olivier; Darrasse, Luc

    2007-09-01

    Signal-to-noise ratio improvement is of major importance to achieve microscopic spatial resolution in magnetic resonance experiments. Magnetic resonance imaging of small animals is particularly concerned since it typically requires voxels of less than (100 microm)(3) to observe the small anatomical structures having size reduction by a factor of more than 10 as compared to human being. The signal-to-noise ratio can be increased by working at high static magnetic field strengths, but the biomedical interest of such high-field systems may be limited due to field-dependent contrast mechanisms and severe technological difficulties. An alternative approach that allows working in clinical imaging system is to improve the sensitivity of the radio-frequency receiver coil. This can be done using small cryogenically operated coils made either of copper or high-temperature superconducting material. We report the technological development of cryo-cooled superconducting coils for high-resolution imaging in a whole-body magnetic resonance scanner operating at 1.5 T. The technological background supporting this development is first addressed, including HTS coil design, simulation tools, cryogenic mean description and electrical characterization procedure. To illustrate the performances of superconducting coils for magnetic resonance imaging at intermediate field strength, in-vivo mouse images of various anatomic sites acquired with a 12 mm diameter cryo-cooled superconducting coil are presented.

  8. Characteristics of the JRR-3M neutron guide tubes

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Ichikawa, Hiroki; Kawabata, Yuji.

    1993-01-01

    Large scale neutron guide tubes have been installed in the upgraded JRR-3 (Japan Research Reactor No.3, JRR-3M). The total length of the guide tubes is 232m. The neutron fluxes and spectra were measured at the end of the neutron guide tubes. The neutron fluxes of thermal neutron guide tubes with characteristic wavelength of 2A are 1.2 x 10 8 n/cm 2 · s. The neutron fluxes of cold guide tubes are 1.4 x 10 8 n/cm 2 · s with characteristic wavelength of 4A and 2.0 x 10 8 n/cm 2 · s with 6A when the cold neutron source is operated. The neutron spectra measured by time-of-flight method agree well with their designed ones. (author)

  9. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  10. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.

    2016-11-01

    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  11. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  12. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  13. N Reactor pressure tube 1350 postirradiation examination

    International Nuclear Information System (INIS)

    Cook, D.J.

    1977-01-01

    The N Reactor pressure tubes were fabricated from Zircaloy-2 primarily due to the excellent corrosion resistance, low neutron absorption, and high strength properties of this alloy. Irradiation damage mechanisms increase the strength and decrease the ductility of the Zircaloy-2. Irradiation data available at the time the tubes were installed indicated that fast neutron irradiation damage mechanisms would not decrease the ductility to unacceptable levels over the estimated plant life of 25 to 30 years. However, because the tubes are a primary coolant system component and only limited data are available on irradiation effects at high fluences, a Postirradiation Examination (PIE) program was developed to assure that service factors do not compromise pressure tube integrity essential to reactor safety. The PIE program requires that a pressure tube be periodically removed from the reactor for destructive testing. The N Reactor Technical Specifications specify that the frequency of pressure tube removal and examination be based upon the previous PIE test results. Four pressure tubes were examined before tube 1350, and the test results were summarized in individual reports. PIE results on tube 1350 were summarized along with the test results on the previous four tubes in a previous report. The purpose of this report is to present in detail the results on PIE of pressure tube 1350, and, in particular, document the technique by which the fracture toughness of the pressure tube was determined

  14. Completion of installation of DT and RPC chambers before Cosmic Challenge

    CERN Multimedia

    Mimmo Dattola

    2006-01-01

    All the drift tube ("DT") and resistive plate chambers ("RPC") packages foreseen to be installed in the central barrel ring ("YB0") before the magnet test have been installed (some are missing in the photograph but have since been installed). These silver-coloured rectangular boxes in the gaps between the steel of the rings (red in the image) detect muons. Chambers for Sectors 4 and 5 (sector 1 is at the 9 o'clock position and the counting is clockwise) as well as a couple of chambers in the support "feet" (sectors 9 and 11) will be installed after the magnet test. Chambers for sectors 1 and 7 will be installed in the underground cavern ("UXC") - the latter will be in the places used for the lifting and lowering of the ring.

  15. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1978-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started in aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pulsed coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  16. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1977-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started an aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pusled coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  17. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    International Nuclear Information System (INIS)

    Steen, M. van den; Maeseneer, M. de; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M.

    2003-01-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR

  18. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain.

    Science.gov (United States)

    Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G

    1997-06-15

    Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C

  19. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2003-10-01

    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  20. Investigating the road surface effect to the fatigue life of an automotive coil spring

    Science.gov (United States)

    Putra, T. E.; Husaini

    2018-05-01

    This work aims to estimate the life of a coil spring considering road surface profiles. Strain signals were measured by installing a strain gage at the highest stress location of the coil spring and then driving the vehicle on country and village roads. The village road gave high amplitudes containing spikes when the tire touched a curb, bump or pothole. These conditions contributed to a higher loading rate to the car component, contributing to shorter useful fatigue life, which was only 140 reversals of blocks. Driving on the village road resulted in a 6-times decrease in the useful fatigue life of the component in comparison to the country road. In conclusion, the village road caused stronger vibrations to the component because it has a rough surface; meanwhile, the country road provided lower vibrations because the road was smooth.

  1. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  2. One big rig, two valuable functions

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2004-11-01

    A hybrid coil tubing and conventional workover rig, tailor-made for conditions on Alaska's remote North Slope is described. The dual function rig, owned by BP Exploration, towers 142 feet above the barren Arctic tundra, and weighs between 1.5 and 2 million pounds, rests on eight enormous wheels that stand 11.5 feet tall and 3.5 feet wide, and is supported by 64 smaller tires in between. The rig includes the hybrid coiled tubing rig and a conventional workover rig; it exerts less than 100 pounds per square inch of pressure on the tender Arctic surface as it moves forward at a top speed of two miles per hour. It is considered by its developers as the next-step change in providing cost-effective access to reserves in the large, mature and remote oilfields such as those of Alaska's Prudhoe Bay. The rig is the product of cooperation between Schlumberger expertise in coiled tubing drilling and Nordic-Calista's know-how of jointed pipe operations and operating rigs in an Arctic environment. It is the first time in Prudhoe Bay, and probably in the world, that a coiled tubing unit was installed on a rig to do coiled-tubing sidetracks, i.e to drill a secondary wellbore away from the original wellbore. Since the first unit was commissioned in 1996, the rig has drilled 280 wells. Rig No. 2, much improved and commissioned in 2002, drilled about 30 wells to date. Unlike Rig No, 1, Rig No. 2 can change reels without a crane, and it has a hydraulic pipe skate that moves jointed pipe to and from the rig floor without human aid. The expectation is that using this rig it will be possible to do micro-hole exploration drilling on the North Slope (i.e. drilling a small surface hole with jointed pipe and then switch to coiled tubing), substantially cutting the cost of exploration.

  3. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  4. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  5. The significant impact of framing coils on long-term outcomes in endovascular coiling for intracranial aneurysms: how to select an appropriate framing coil.

    Science.gov (United States)

    Ishida, Wataru; Sato, Masayuki; Amano, Tatsuo; Matsumaru, Yuji

    2016-09-01

    OBJECTIVE The importance of a framing coil (FC)-the first coil inserted into an aneurysm during endovascular coiling, also called a lead coil or a first coil-is recognized, but its impact on long-term outcomes, including recanalization and retreatment, is not well established. The purposes of this study were to test the hypothesis that the FC is a significant factor for aneurysmal recurrence and to provide some insights on appropriate FC selection. METHODS The authors retrospectively reviewed endovascular coiling for 280 unruptured intracranial aneurysms and gathered data on age, sex, aneurysm location, aneurysm morphology, maximal size, neck width, adjunctive techniques, recanalization, retreatment, follow-up periods, total volume packing density (VPD), volume packing density of the FC, and framing coil percentage (FCP; the percentage of FC volume in total coil volume) to clarify the associated factors for aneurysmal recurrence. RESULTS Of 236 aneurysms included in this study, 33 (14.0%) had recanalization, and 18 (7.6%) needed retreatment during a mean follow-up period of 37.7 ± 16.1 months. In multivariate analysis, aneurysm size (odds ratio [OR] = 1.29, p < 0.001), FCP < 32% (OR 3.54, p = 0.009), and VPD < 25% (OR 2.96, p = 0.015) were significantly associated with recanalization, while aneurysm size (OR 1.25, p < 0.001) and FCP < 32% (OR 6.91, p = 0.017) were significant predictors of retreatment. VPD as a continuous value or VPD with any cutoff value could not predict retreatment with statistical significance in multivariate analysis. CONCLUSIONS FCP, which is equal to the FC volume as a percentage of the total coil volume and is unaffected by the morphology of the aneurysm or the measurement error in aneurysm length, width, or height, is a novel predictor of recanalization and retreatment and is more significantly predictive of retreatment than VPD. To select FCs large enough to meet the condition of FCP ≥ 32% is a potential relevant factor for better

  6. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  7. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  8. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  9. A history of detachable coils: 1987-2012.

    Science.gov (United States)

    Hui, Ferdinand K; Fiorella, David; Masaryk, Thomas J; Rasmussen, Peter A; Dion, Jacques E

    2014-03-01

    The development of detachable coils is one of the most pivotal developments in neurointervention, providing a tool that could be used to treat a wide variety of hemorrhagic stroke. From the original Guglielmi detachable coil, a number of different coil designs and delivery designs have evolved. This article reviews the history of commercially available detachable coils. A timeline of detachable coils was constructed and coil design philosophies were reviewed. A complete list of commercially available coils is presented in a timeline format. Detachable coil technology continues to evolve. Advances in construction and design have yielded products which may benefit patients in terms of safety, radiation dose reduction and cost of treatment. Continued evolution is expected, irrespective of competing disruptive technologies.

  10. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  11. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  12. Management of in-tube projectiles using acoustic channel

    Science.gov (United States)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  13. Evaluation of inductive heating energy of a PF insert coil conductor by the calorimetric method (Contract research)

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Nabara, Yoshihiro; Nunoya, Yoshihiko; Koizumi, Norikiyo; Okuno, Kiyoshi

    2009-02-01

    The PF Insert Coil is a single layer solenoid coil using a superconducting conductor designed for ITER, housed in a Poloidal field coil and installed in the bore of the CS Model Coil. A stability test of the conductor will be performed in a magnetic field generated by the CS Model Coil. In this test, the inductive heat of an inductive heater attached to the conductor will be applied to initiate a normal zone in the conductor. Since the conductor for the PF Insert Coil is a cable-in-conduit conductor, it is quite difficult to estimate inductive heating energy theoretically. Thus, the inductive heating energy is measured experimentally by the calorimetric method. The heating energy is in proportion to a constant multiplied by the integrated square of an applied sinusoidal current wave over the heating period. Experimental results show that the proportional constants of the conductor, cable, conduit and dummy conductor are 0.138 [J/A 2 s], 0.028 [J/A 2 s], 0.118 [J/A 2 s] and 0.009 [J/A 2 s], respectively. The first three denote not only the inductive heating but also the joule heating of the inductive heater. The final value denotes joule heating only. Therefore, subtracting the first three constants by the last one, the proportional constants of inductive heating generated in the conductor, cable and conduit are estimated to be 0.129 [J/A 2 s], 0.019 [J/A 2 s] and 0.109 [J/A 2 s], respectively. (author)

  14. The air quality in ventilation installations. Practical guidelines; Qualite de l'air dans les installations aerauliques. Guide pratique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, L. [France Air, 91 - Chilly Mazarin (France); Bianchina, M. [Unelvent, 93 - Le Bourget (France); Blazy, M. [Anjos, 01 - Torcieu (France); Boulanger, X. [Aldes, 21 - Chenove (France); Chiesa, M. [Atlantic (France); Duclos, M. [Groupe Titanair, 69 - Lyon (France); Hubert, D.; Kridorian, O. [Groupe Astato, Blanc Mesnil (France); Josserand, O. [Carrier (Belgium); Lancieux, C. [Camfil, 60 - Saint Martin Longueau (France); Lemaire, J.C. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Petit, Ph. [Compagnie Industrielle d' Applications Thermiques ( CIAT ), 75 - Paris (France); Ribot, B. [Electricite de France (EDF), 75 - Paris (France); Tokarek, S. [Gaz de France (GDF), 75 - Paris (France); Bernard, A.M.; Tissot, A. [Centre Technique des Industries Aerauliques et Thermiques (CETIAT), 69 - Villeurbanne (France)

    2004-07-01

    The present guide aims to provide design departments, maintenance companies and builders with practical guidelines and recommendations for the installation of ventilation and air-conditioning systems. The objective is to ensure good Indoor Air Quality (IAQ) and to safeguard the health and well-being of the occupants. The guide deals with aspects of design, dimensioning, installation and servicing, all of which play a major role in guaranteeing IAQ and duct-work hygiene. These steps are reviewed for the principal ventilation systems met in both residential and commercial premises. The first part presents the system and draws the attention of the user to specific points which require particular care in term of IAQ. The second part details recommended practice component by component, in respect of design, installation and servicing. Application of these simple guidelines during the various project stages is essential, in order to ensure a good IAQ in ventilation systems. Content: introduction; good ventilation; systems: exhaust ventilation, balanced ventilation, air handling unit, terminal ventilation units, impact of systems on indoor air quality, components: air inlet, air filter, heat recovery unit, heating or cooling coil, humidifier, mechanical fan unit, cowl and hybrid ventilation fan, mixing box, ventilation duct-work, air outlet and air terminal device; references.

  15. A Mobile Robotic System for the Inspection and Repair of SG Tubes in NPPs

    Directory of Open Access Journals (Sweden)

    Yong-Chil Seo

    2016-04-01

    Full Text Available The reliability and performance of a steam generator (SG is one of the serious concerns in the operation of pressurized water nuclear power plants. Because of high levels of radiation, robotic systems have been used to inspect and repair SG tubes. In this paper, we present a mobile robotic system that positions the inspection and repair tools while hanging down from the tube sheets where the tubes are fixed. All of the driving mechanisms of the mobile robot are actuated by electric motors to start its works, providing that the electric power is prepared without the additional need for an on-site air services. A special tube-holding mechanism with a high holding force has been developed to prevent falling from the tube sheets, even in the case of an electric power failure. We have also developed a quick installation guide device that guides the mobile robot to desired initial positions in the tube sheet exactly and quickly, which helps to reduce the radiation exposure of human workers during the installation work. This paper also provides on-site experimental results and lessons learned.

  16. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.

    Science.gov (United States)

    Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H

    2012-09-26

    Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.

  17. Invited review the coiled coil silk of bees, ants, and hornets.

    Science.gov (United States)

    Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T

    2012-06-01

    In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.

  18. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  19. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  20. The limited streamer tubes system for the SLD warm iron calorimeter

    International Nuclear Information System (INIS)

    Benvenuti, A.C.; Camanzi, B.; Piemontese, L.; Zucchelli, P.; Calcaterra, A.; De Sangro, R.; De Simone, P.; De Simone, S.; Gallinaro, M.; Peruzzi, I.; Piccolo, M.; Bacchetta, N.; Bisello, D.; Castro, A.; Galvagni, S.; Loreti, M.; Pescara, L.; Wyss, J.; Battiston, R.; Biasini, M.; Bilei, G.M.; Checcucci, B; Mancinelli, G.; Mantovani, G.; Pauluzzi, M.; Santocchia, A.; Servoli, L.; Carpinelli, M.; Castaldi, R.; Cazzola, U.; Dell'Orso, R.; Pieroni, E.; Vannini, C.; Verdini, P.G.; Byers, B.L.; Escalera, J.; Kharakh, D.; Messner, R.L.; Zdarko, R.W.; Johnson, J.R.

    1992-01-01

    The SLD detector at the Stanford Linear Accelerator Center is a general purpose device for studying e + ε - interaction at the Z 0 . The SLD calorimeter system consists of two parts: a lead Liquid Argon Calorimeter (LAC) with both electromagnetic (22 radiation lengths) and hadronic sections (2.8 absorption lengths) housed inside the coil, and the Warm Ion limited streamer tubes Calorimeter (WIC) outside the coil which uses as radiator the iron of the flux return for the magnetic field. The WIC completes the measurement of the hadronic shower energy (∼85% on average is contained in the LAC) and it provides identification and tracking for muons over 99% of the solid angle. In this note we report on the construction, test and commissioning of such a large system

  1. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  2. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  3. Utilization of a sealed-tube neutron generator for training and research

    International Nuclear Information System (INIS)

    Jonah, S.A.

    2000-01-01

    The development of a program in nuclear science and technology in Nigeria began in 1976 with the establishment of two research centers, namely, the Centre for Energy Research and Training, (CERT), Zaria and the Centre for Energy Research and Development (CERD), Ile-Ife. The choice of Neutron Activation Analysis (NAA) technique as a very effective method of training scientists in basic and applied nuclear research led to the purchase of two KAMAN A-711 Neutron Generators for the two research centers. At CERT, the neutron generator (code named ZARABUNG-1) was successfully installed and the first 14 MeV neutrons were produced through the technical assistance of the International Atomic Energy Agency (IAEA) in 1988. In 1991, a new tube-head was purchased and installed due to the expiration of the old tube. Following the completion of its permanent site, the neutron generator was re-located from the old site and re-installed at the permanent site of CERT in 1995. (author)

  4. Test facility for PLT TF coils

    International Nuclear Information System (INIS)

    Hearney, J.; File, J.; Dreskin, S.

    1975-01-01

    Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program

  5. Calandria cooling structure in pressure tube reactor

    International Nuclear Information System (INIS)

    Hyugaji, Takenori; Sasada, Yasuhiro.

    1976-01-01

    Purpose: To contrive the structure of a heavy water distributing device in a pressure tube reactor thereby to reduce the variation in the cooling function thereof due to the welding deformation and installation error. Constitution: A heating water distributing plate is provided at the lower part of the upper tubular plate of a calandria tank to form a heavy water distributing chamber between both plates and a plurality of calandria tubes. Heavy water which has flowed in the upper part of the heavy water distributing plate from the heavy water inlet nozzle flows down through gaps formed around the calandria tubes, whereby the cooling of the calandria tank and the calandria tubes is carried out. In the above described calandria cooling structure, a heavy water distributing plate support is provided to secure the heavy water distributing plate and torus-shaped heavy water distributing rings are fixed to holes formed in the heavy water distributing plate penetrating through the calandria tubes thereby to form torus-shaped heavy water outlet ports each having a space. (Seki, T.)

  6. Deformation behavior of curling strips on tearing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Kwon, Tae Soo; Jung, Hyun Seung; Kim, Jin Sung [Dept. of Robotics and Virtual Engineering, Korea University of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

  7. Modelling of the space-to-drift-time relationship of the ATLAS monitored drift-tube chambers in the presence of magnetic fields

    International Nuclear Information System (INIS)

    Dubbert, J.; Horvat, S.; Khartchenko, D.; Kortner, O.; Kotov, S.; Kroha, H.; Manz, A.; Nikolaev, K.; Rauscher, F.; Richter, R.; Staude, A.; Valderanis, Ch.

    2007-01-01

    The ATLAS muon spectrometer uses tracking chambers consisting of up to 5m long drift tubes filled with Ar:CO 2 (93:7) at 3bar. The chambers are run in a average toroidal magnetic field of 0.4T created by 8 air core coils. They provide a track-point accuracy of 40μm if the space-to-drift-time relationship r(t) is known with 20μm accuracy. The magnetic field B influences the electron drift inside the tubes: the maximum drift time t max =700ns increases by ∼70ns/T 2 B 2 . B varies by up to +/-0.4T along the tubes of the chambers mounted near the magnet coils which translates into a variation of t max of up to 45ns. The dependence of r(t) on B must be taken into account. Test-beam measurements show that the electron drift in case of B 0 can be modelled with the required accuracy by a Langevin equation with a friction term which is slightly non-linear in the drift velocity

  8. Residual stress measurement of the jacket material for ITER coil by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Nickel-Iron based super alloy INCOLOY 908 is used for the jacket of a central solenoid coil (CS coil) of the International Thermonuclear Experimental Reactor (ITER). INCOLOY 908, however, has a possibility of fracture due to Stress Accelerated Grain Boundary Oxidation (SAGBO) under a tensile residual stress beyond 200MPa. Therefore it is necessary to measure the residual stress of the jacket to avoid SAGBO. We performed residual stress measurement of the jacket by neutron diffraction using the neutron diffractometer for residual stress analysis (RESA) installed at JRR-3M in JAERI. A sample depth dependence of internal strain was obtained from the (111) plane spacing. A residual stress distribution was calculated from the strain using Young`s modulus and Poisson`s ratio that were evaluated by a tensile test with neutron diffraction. The result shows that the tensile residual stress exceeds 200MPa of the SAGBO condition in some regions inside the jacket. (author)

  9. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  10. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  11. Final Test of the W7-X Control Coils Power Supply and its Integration into the Overall Control Environment

    International Nuclear Information System (INIS)

    Fuellenbach, F.; Rummel, T.; Pingel, S.; Laqua, H.; Mueller, I.; Jauregi, E.

    2006-01-01

    In order to be able to vary the magnetic configuration of WENDELSTEIN 7-X (W7-X) at the plasma edge and allow sweeping of the power across the divertor target plates 10 '' control coils '' are installed inside the plasma vessel behind the baffle plates of the divertor. The coils are made of a hollow copper profile with eight turns each. The dimensions of the coils are 2,05 m x 0,35 m x 0,35 m with a three dimensional shape to fit into the narrow space between the baffles and the wall of the plasma vessel. Each of the ten coils is supplied by independent power supplies each providing bi-directionally a direct current of 2500 A with high accuracy and low ripple. To allow sweeping the power deposition from the plasma across the target plates the power supplies provide an alternating current of up to 625 A with frequencies up to 20 Hz which is synchronised between the ten supplies in order to maintain the symmetry of the magnetic field. The total output current of a power supply is a superposition of a direct current and an alternating current, where both parts have to be independently adjustable. JEMA, Spain provided the complete set of power supplies which are based on 10 independent four-quadrant power supplies with a link rectifier and includes a cooling water unit, a dedicated distribution and a central control and visualization system. All ten power supply units and auxiliary systems have meanwhile been installed and finally tested at the W7-X site in Greifswald. The paper focuses on the results of the final tests and measures to integrate the power supply system to the overall control system including the central PLC and PC's for experiment control, data acquisition- and security systems. (author)

  12. Installation and testing of the 112 boards for the front-end electronics.

    CERN Multimedia

    2006-01-01

    Installation and testing of the 112 boards for the front-end electronics. 28 boards are interconnected to a TPC type Readout Controller Unit trought the horizontal bus strips. The blue tubes are for the circulating cooling water.

  13. Characterizing permanent magnet blocks with Helmholtz coils

    Science.gov (United States)

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  14. Pushing the limits : from better bits to faster coil, companies leverage technology to ramp up onshore drilling performance

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2009-06-15

    Horizontal drilling and drilling with coiled tubing are two well drilling techniques that have steadily gained ground in the drilling industry. Most of the techniques evolved in western Canada and Alaska, but are now being successfully used south of the border. This article discussed the leveraging of technology by drilling companies in order to ramp up onshore drilling performance. Calgary-based Xtreme Coil Drilling Corp. leveraged its unique coil over top drive rigs in order to score more speed records and set new marks in both the United States Rockies and Mexico. This article also referred to other companies and their wells that have set records, including CNX Gas Corporation and the Marcellus Shale prospect; Smith International and its horizontal turbodrilling of a Pennsylvanian reservoir; and Baker Oil Tools' new rotating, self-aligning multilateral (RAM) system. For each of these examples, the article described the technology and the challenges encountered by the companies as well as the objectives of the project, and results of the drilling efforts. 2 figs.

  15. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  16. Installation Test of Cold Neutron Soruce In-pool Assembly

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Choi, J.; Wu, S. I.; Kim, Y. K.; Cho, Y. G.; Lee, C. H.; Kim, K. R.

    2006-04-01

    Before installation of the final cold neutron source in-pool assembly (IPA) in the vertical CN hole at the HANARO, the research reactor, the installation test of IPA has been conducted in the CN hole of the reactor using a full-scaled mock-up in-pool assembly. The well-known cold neutron sources, being safely operated or being now constructed, had been constructed together with each research reactor; therefore, there was little limitation to obtain the optimal cold neutron source since a cold neutron source had been decided to be installed in the reactor from the beginning of the design for the reactor construction. Unlikely, the HANARO has been operated for 10 years so that we have got lots of design limitation in terms of the decisions in the optimal shape, size, minimal light-water gap, and adhesion degree to the CN beam tube, IPA installation tools, etc. for the construction of the CNS. Accordingly, the main objective of this test is to understand any potential problem or interference happened inside the reactor by installing the mock-up IPA and installation bracket. The outcomes from this test is reflected on the finalizing process of the IPA detail design

  17. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  18. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  19. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  20. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  1. Testing installation for a steam generator

    International Nuclear Information System (INIS)

    Dubourg, M.

    1985-01-01

    The invention proposes a testing installation for a steam generator associated to a boiler, comprising a testing exchanger connected to a feeding circuit in secondary fluid and to a circuit to release the steam produced, and comprising a heating-tube bundle connected to a closed circuit of circulation of a primary coolant at the same temperature and at the pressure than the primary fluid. The heating-tube bundle of the testing exchanger has the same height than the primary bundle of the steam generator and the testing exchanger is at the same level and near the steam generator and is fed by the same secondary fluid such as it is subject to the same operation phases during a long period. The in - vention applies, more particularly, to the steam generators of pressurized water nuclear power plants [fr

  2. DEVELOPMENT OF A CHEST FREEZER – OPTIMUM DESIGN OF AN EVAPORATOR COIL

    Directory of Open Access Journals (Sweden)

    K. Kalyani Radha

    2012-06-01

    Full Text Available In a country such as India, food grains, fruit, vegetables, meat, poultry and fish, are very susceptible to microbial contamination and spoilage and require stringent preservation methods. One such method is by the use of a chest freezer for the storage of frozen food. This investigation considers different loads and design parameters for the development of a chest freezer using R134a as the working fluid. Experimental designs of an evaporator coil, condenser coil and capillary tube are investigated through the development of storage periods in terms of steady state and cyclic performance, by optimising the quantity of refrigerant charge, with strict adherence to the standards and requirement for maintaining an internal temperature of -23 °C at 43 °C ambient. Cyclic load performance tests optimise the performance of individual components selected for the design of a chest freezer. The system selection has a highly balanced performance with R134a and showed 118 kJ/kg cooling capacity with 8.42 coefficient of performance (COP. By the replacement of R134a, temperatures of -23 °C are maintained inside the freezer cabinet with low power consumption and an increase in the net refrigerating effect, which in turn increases the COP. The system design has optimum efficiency with moderate costs by optimising the length and diameter of the evaporator coil, i.e., 34.15 m and 7.94 mm, respectively.

  3. PLUSS-A weldless leaktight sleeve for alloy 600/690 steam generator tubes

    International Nuclear Information System (INIS)

    Potz, F.; Bohmann, W.

    1998-01-01

    The ABB PLUSS sleeving represents a new SG tube repair technique qualified and approved to replace in the future most of the plugging as well as welded sleeving. Basically the advantages of an innovative combination of both alloys 600/690 and 800 are taken into consideration. The upper sleeve/SG tube-joint is hydraulically expanded stressing the SG tube only within the elastic range. The lower joint is hard rolled. The installation processes are simple and reproducible, fast, computerized and individually recorded. The operating temperature range of the sleeved SG-tube is effectively reduced so that any further corrosion is impeded. Both, sleeve and SG tube are fully inspectable by ECT. (author)

  4. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    International Nuclear Information System (INIS)

    Terawaki, Shin-ichi; Yoshikane, Asuka; Higuchi, Yoshiki; Wakamatsu, Kaori

    2015-01-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site

  5. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    Energy Technology Data Exchange (ETDEWEB)

    Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikane, Asuka [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Higuchi, Yoshiki [Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Wakamatsu, Kaori [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-05-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.

  6. Status of the steam generator tube circumferential ODSCC degradation experienced at the Doel 4 plant

    International Nuclear Information System (INIS)

    Roussel, G.

    1997-01-01

    Since the 1991 outage, the Doel Unit 4 nuclear power plant is known to be affected by circumferential outside diameter intergranular stress corrosion cracking at the hot leg tube expansion transition. Extensive non destructive examination inspections have shown the number of tubes affected by this problem as well as the size of the cracks to have been increasing for the three cycles up to 1993. As a result of the high percentage of tubes found non acceptable for continued service after the 1993 in-service inspection, about 1,700 mechanical sleeves were installed in the steam generators. During the 1994 outage, all the tubes sleeved during the 1993 outage were considered as potentially cracked to some extent at the upper hydraulic transition and were therefore not acceptable for continued service. They were subsequently repaired by laser welding. Furthermore all the tubes not sleeved during the 1993 outage were considered as not acceptable for continued service and were repaired by installing laser welded sleeves. During the 1995 outage, some unexpected degradation phenomena were evidenced in the sleeved tubes. This paper summarizes the status of the circumferential ODSCC experienced in the SG tubes of the Doel 4 plant as well as the other connected degradation phenomena

  7. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    Science.gov (United States)

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  8. Coil supporting device for thermonuclear device

    International Nuclear Information System (INIS)

    Okubo, Minoru; Ando, Toshiro; Ota, Mitsuru; Ishimura, Masabumi.

    1979-01-01

    Purpose: To lower the bending stress exerted on coils thereby preventing the coils from deformation by branching the outer circumferential support frames of coil support frames disposed at an equal pitch circumferentially to the coils into plurality, and integrally forming them to the inner circumferential support frames. Constitution: Each of the support frames for supporting poloidal coils winding around a vacuum vessel is bisected at the radial midway so that the outer circumferential branches are disposed at an equal pitch and they are formed integrally with the inner circumferential support frames. The inner circumferential support frames are fixed by support posts on a bed and the outer circumferential support frames are mounted to the outer edge of wedge-like support posts. Accordingly, if the coils expand outwardly upon increase in the temperature, the stress exerted on the support frame can be decreased. (Yoshino, Y.)

  9. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    Science.gov (United States)

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  10. Impact of coil price knowledge by the operator on the cost of aneurysm coiling. A single center study.

    Science.gov (United States)

    Finitsis, Stephanos; Fahed, Robert; Gaulin, Ian; Roy, Daniel; Weill, Alain

    2017-09-15

    Endovascular treatment of aneurysms with coils is among the most frequent treatments in interventional neuroradiology, and represents an important expense. Each manufacturer has created several types of coils, with prices varying among brands and coil types. The objective of this study was to assess the impact of cost awareness of the exact price of each coil by the operating physician on the total cost of aneurysm coiling. This was a comparative study conducted over 1 year in a single tertiary care center. The reference cohort and the experimental cohort consisted of all aneurysm embolization procedures performed during the first 6 months and the last 6 months, respectively. During the second period, physicians were given an information sheet with the prices of all available coils and were requested to look at the sheet during each procedure with the instruction to try to reduce the total cost of the coils used. Expenses related to the coiling procedures during each period were compared. 77 aneurysms (39 ruptured) in the reference cohort and 73 aneurysms (36 ruptured) in the experimental cohort were treated, respectively. There was no statistically significant difference regarding aneurysm location and mean size. The overall cost of the coiling procedures, the mean number of coils used per procedure, and the median cost of each procedure did not differ significantly between the two cohorts. Awareness of the precise price of coils by operators without any additional measure did not have a scientifically proven impact on the cost of aneurysm embolization. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  12. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  13. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  14. The SMES model coil. Fabrication

    International Nuclear Information System (INIS)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji

    1998-01-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  15. The SMES model coil. Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji [Toshiba Corp., Yokohama, Kanagawa (Japan)] [and others

    1998-07-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  16. Control of the resistive wall mode with internal coils in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Okabayashi, M.; Bialek, J.; Bondeson, A.; Chance, M.S.; Chu, M.S.; Garofalo, A.M.; Hatcher, R.; In, Y.; Jackson, G.L.; Jayakumar, R.J.; Jensen, T.H.; Katsuro-Hopkins, O.; Haye, R.J. La; Liu, Y.Q.; Navratil, G.A.; Reimerdes, H.; Scoville, J.T.; Strait, E.J.; Takechi, M.; Turnbull, A.D.; Gohil, P.; Kim, J.S.; Makowski, M.A.; Manickam, J.; Menard, J.

    2005-01-01

    Internal coils, 'I-Coils', were installed inside the vacuum vessel of the DIII-D device to generate non-axisymmetric magnetic fields to act directly on the plasma. These fields are predicted to stabilize the resistive wall mode (RWM) branch of the long-wavelength external kink mode with plasma beta close to the ideal wall limit. Feedback using these I-Coils was found to be more effective as compared to using external coils located outside the vacuum vessel. Locating the coils inside the vessel allows for a faster response and the coil geometry also allows for better coupling to the helical mode structure. Initial results were reported previously (Strait E.J. et al 2004 Phys. Plasmas 11 2505). This paper reports on results from extended feedback stabilization operations, achieving plasma parameters up to the regime of C β ∼ 1.0 and open loop growth rates of γ open τ w ∼ 25 where the RWM was predicted to be unstable with only the 'rotational viscous stabilization mechanism'. Here C β ∼ (β - β no-wall.limit )/(β ideal.wall.limit - β no-wall.limit ) is a measure of the beta relative to the stability limits without a wall and with a perfectly conducting wall, and τ w is the resistive flux penetration time of the wall. These feedback experimental results clarified the processes of dynamic error field correction and direct RWM stabilization, both of which took place simultaneously during RWM feedback stabilization operation. MARS-F modelling provides a critical rotation velocity in reasonable agreement with the experiment and predicts that the growth rate increases rapidly as rotation decreases below the critical. The MARS-F code also predicted that for successful RWM magnetic feedback, the characteristic time of the power supply should be limited to a fraction of the growth time of the targeted RWM. The possibility of further improvements in the presently achievable range of operation of feedback gain values is also discussed

  17. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  18. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  19. Coil supporting device in a nuclear fusion device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  20. Status of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J; Benz, H.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1983-01-01

    The Swiss coil is a forced flow coil cooled by supercritical helium. A brief review of the design considerations, some of its specific features, and the progress in fabrication are described. A discussion of both the instrumentation and the cryogenic characteristics of the coil is presented

  1. Control of the Resistive Wall Mode with Internal Coils in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Okabayashi, M.; Bialek, J.; Bondeson, A.

    2005-01-01

    New coils were installed inside the vacuum vessel of the DIII-D device for producing nonaxisymmetric magnetic fields. These 'Internal-Coils' are predicted to stabilize the Resistive Wall Mode (RWM) branch of the long-wavelength external kink mode with plasma beta close to the ideal wall limit. Feedback using these new Internal-Coils was found to be more effective when compared with using the External-Coils located outside the vacuum vessel, because the location inside the vessel allows faster response and their geometry also couples better to the helical mode structure. A proper choice of feedback gain increased the plasma beta above the no-wall limit to C β ≥ 0.9, where C β is a measure of achievable beta above no-wall limit defined as (β-β no-wall.limit )/(β ideal.wall.limit )-)/(β no.wall.limit ). The feedback system with Internal-Coils can suppress the RWM up to the normalized growth rate γτ w > or ∼ 10 (τ w is the resistive flux penetration time of the wall). The feedback-driven dynamic error field correction helps to stabilize the RWM by reducing the rotational drag for Ω rot > Ω crit , where Ω rot is the angular rotation frequency of plasma and Ω crit is the critical value for the rotational stabilization. When Ω rot crit /2, the feedback system must stabilize the RWM mainly through direct magnetic control of the mode. The estimated Ω crit /Ω A is ∼ 2.5% by the MARS-F code analysis with experimentally observed profiles, where /Ω A is the Alfven angular rotational frequency at q 2 surface. The MARS-F code also predicts that for successful RWM magnetic feedback control the power supply characteristic time should be a fraction of the growth time of the targeted RWM. (author)

  2. Hybrid equilibrium field coils for the ORNL TNS

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Strickler, D.J; Dory, R.A.

    1977-01-01

    In this study, we make a comparative study of the power supplies required by interior and exterior [to the toroidal field (TF) coils] equilibrium field coils that are separately appropriate for high-β, D-shaped plasmas in TNS. It is shown that the interior coils need power supplies that are an order of magnitude below those required by the exterior coils (while the latter case is much less difficult to build than the former). A hybrid EF coil concept is proposed that combines the interior and the exterior coils to retain their advantages in avoiding large interior coils while lowering the power supplied to the exterior coils by an order of magnitude

  3. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  4. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  5. Repair technology for steam generator tubes

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating

  6. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  7. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  8. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  9. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  10. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  11. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  12. Flow distribution analysis on the cooling tube network of ITER thermal shield

    International Nuclear Information System (INIS)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-01

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly

  13. Performance of the Conduction-Cooled LDX Levitation Coil

    Science.gov (United States)

    Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.

    2004-06-01

    The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.

  14. Active internal corrector coils

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.; Dahl, P.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained

  15. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    International Nuclear Information System (INIS)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-01-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  16. Assembly, installation and commissioning of the JET-EP Halo Current Sensors system

    International Nuclear Information System (INIS)

    Peruzzo, S.; Grando, L.; Pomaro, N.; Sonato, P.; Fullard, K.; Huntley, S.; Lam, N.; Riccardo, V.

    2006-01-01

    The Halo Current Sensors (HCS) system has been developed under the JET-EP enhancement programme, to allow a more detailed study of the Halo Currents flowing in the upper part of the JET vessel. A better understanding of the origin, distribution and scaling of Halo Currents in tokamaks is one of the critical issues for any next step device, like the ITER project, in particular for the design of the plasma facing components and for a reliable plasma operation at high performances. The HCS system includes four sets of probes located in four octants equally spaced along the toroidal coordinate, each containing up to eight Rogowski coils and two toroidal field pick-up coils. The Rogowski coils are designed to directly measure the current flowing through the tiles of the upper dump plate, whereas the toroidal field pick-up coils are conceived to give an estimate the total poloidal Halo Current flowing through the first wall structures. The HCS system was installed in the JET vacuum vessel in March 2005 during the 2004/05 Shutdown and started the acquisition of signals during the restart phase of the machine in autumn 2005. This paper will highlight and discuss the critical aspects and the lessons learned during the final phase of the procurement of the system; the in-vessel installation, accomplished by means of remote handling system, and the pre-commissioning tests executed on the system will be described in detail. The paper will then focus on the analysis and interpretation of the data collected during the functional commissioning of the new system, carried out during the restart phase of the machine preceding the experimental campaigns. Since the beginning of operation the HCS signals showed the effects of several noise sources, increased by the low sensitivity of the probes, due to design geometrical constraints. The expected pick-up of stray magnetic fields was quite easily compensated through a correlation with other existing magnetic diagnostics. Moreover the

  17. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  18. Eddy current technology for heat exchanger and steam generator tube inspection

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.; Lepine, B.; Lu, J.; Cassidy, R.; Carter, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-07-01

    A variety of degradation modes can affect the integrity of both heat exchanger (HX) and balance of plant tubing, resulting in expensive repairs, tube plugging or replacement of tube bundles. One key component for ensuring tube integrity is inspection and monitoring for detection and characterization of the degradation. In-service inspection of HX and balance of plant tubing is usually carried out using eddy current (EC) bobbin coils, which are adequate for the detection of volumetric degradations. However, detection and quantification of additional modes of degradation such as pitting, intergranular attack (IGA), axial cracking and circumferential cracking require specialized probes. The need for timely, reliable detection and characterization of these modes of degradation is especially critical in Nuclear Generating Stations. Transmit-receive single-pass array probes, developed by AECL, offer high defect detectability in conjunction with fast and reliable inspection capabilities. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection. Compared to impedance probes, they offer improved performance in the presence of variable lift-off. This EC technology can help resolve critical detection issues at susceptible areas, such as the rolled-joint transitions at the tubesheet, U-bends and tube-support intersections. This paper provides an overview of the operating principles and the capabilities of advanced ET inspection technology available for HX tube inspection. Examples of recent application of this technology in Nuclear Generating Stations (NGSs) are discussed. (author)

  19. Eddy current technology for heat exchanger and steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Lepine, B.; Lu, J.; Cassidy, R.; Carter, J.

    2004-01-01

    A variety of degradation modes can affect the integrity of both heat exchanger (HX) and balance of plant tubing, resulting in expensive repairs, tube plugging or replacement of tube bundles. One key component for ensuring tube integrity is inspection and monitoring for detection and characterization of the degradation. In-service inspection of HX and balance of plant tubing is usually carried out using eddy current (EC) bobbin coils, which are adequate for the detection of volumetric degradations. However, detection and quantification of additional modes of degradation such as pitting, intergranular attack (IGA), axial cracking and circumferential cracking require specialized probes. The need for timely, reliable detection and characterization of these modes of degradation is especially critical in Nuclear Generating Stations. Transmit-receive single-pass array probes, developed by AECL, offer high defect detectability in conjunction with fast and reliable inspection capabilities. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection. Compared to impedance probes, they offer improved performance in the presence of variable lift-off. This EC technology can help resolve critical detection issues at susceptible areas, such as the rolled-joint transitions at the tubesheet, U-bends and tube-support intersections. This paper provides an overview of the operating principles and the capabilities of advanced ET inspection technology available for HX tube inspection. Examples of recent application of this technology in Nuclear Generating Stations (NGSs) are discussed. (author)

  20. Electromagnetic-coil (EM-coil) measurement technique to verify presence of metal/absence of oxide attribute

    International Nuclear Information System (INIS)

    Fuller, J.L.; Hockey, R.L.

    2001-01-01

    This paper summarizes how an Electromagnetic-coil (EM-coil) measurement technique can be used to discriminate between plutonium metal and plutonium oxide inside sealed storage containers. As evidence, measurements on a variety of metals and their oxides are presented. This non-radiation measurement method provides assurance of the 'presence of metal/absence of oxide' attribute in less than a minute. During initial development, researchers at Pacific Northwest Laboratory have demonstrated the ability of this method to discriminate between aluminum and aluminum oxide placed inside an AT-400R storage container (total stainless steel wall thickness of over 2.5 cm). Similar results are expected, since Pu metal is electrically conductive and a Pu oxide behaves as an electrical insulator. At this writing, work is underway to perform the same demonstration using plutonium and plutonium oxide. Similar success has been demonstrated when using ALR-8 storage containers (basically carbon steel drums). Within these container types two scenarios have been explored. 1.) The same configuration made from different metals for demonstrating material property effects. A clear distinction was seen between the slight alloy changes among various forms of aluminum and brass in the same configuration. 2.) The same metal configured differently to demonstrate how mass distribution affects the EM signature. Hundreds of bb's (each about 2 mm in diameter) were placed in different containers to show how a slight change in distribution will affect the EM signature. With a five percent change in bb container diameter, the resulting EM signature changes are clear. This measurement method offers an extremely wide dynamic range resulting from its sensitivity to the wide range in electrical conductivity and magnetic permeability found in most metals and alloys. In fact, electrical conductivity spans the widest spectrum of all the known physical properties. Most insulators such as the oxides cover the

  1. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  2. Polymer cancerostatics with a coiled coil motif targeted against murine leukemia

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 36 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA ČR(CZ) GA16-17207S Institutional support: RVO:61389013 ; RVO:68378050 ; RVO:61388971 Keywords : coiled coil * polymer cancerostatics * active targeting Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M) https://www.scitechnol.com/conference-abstracts/scientific-tracks-abstracts/nanodelivery-2017-proceedings.html

  3. Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube

    Science.gov (United States)

    Bogdanoff, D. W.; Miller, Robert J.

    1995-01-01

    Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.

  4. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    Directory of Open Access Journals (Sweden)

    Sieberer Stefan

    2016-01-01

    Full Text Available Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stability limits of case studies are presented in the paper.

  5. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  6. Development of Ground Coils with Low Eddy Current Loss by Applying the Compression Molding Method after the Coil Winding

    Science.gov (United States)

    Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori

    In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.

  7. Titanium condenser tubes--problems and their solutions for wider application to large surface condensers

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Sugiyama, Y; Nagata, K; Namba, K; Shimono, M

    1978-01-01

    To meet the demand for high reliability condensers for thermal and nuclear power plants, especially for PWR plants, the condensers installed entirely with titanium tubes have been investigated and used. Some difficulties from conventional copper alloy tubes exist. Further investigations are necessary on three items: (1) tube vibration; (2) joining tubes to tube plate; (3) fouling (bio-fouling) control. Literature survey on the tube vibration suggests that the probability of tube vibration due to decreased stiffness of titanium tubes in comparison with conventional copper alloy tubes can be decreased by designing the proper span length between supports. Experiments on seal welding of tubes to a tube plate have successfully proved that pulsed TIG arc welding is applicable to get reliable and strong joints, even on site, by suitable countermeasures. Experiments on the fouling (bio-fouling) of titanium tubes in marine application reveal that the increased fouling of titanium tubes could be controlled by proper application of sponge ball cleaning.

  8. Mechanical design of the storage tubes in the HWVP canister storage building

    International Nuclear Information System (INIS)

    Divona, C.J.; Fages, R.; Janicek, G.P.; Mullally, J.A.

    1993-01-01

    Canisters of high-level waste from the Hanford Waste Vitrification Plant (HWVP) will be stored in an adjacent facility, the Canister Storage Building (CSB). The canisters are stored vertically in an array of tubes within the shielded vault area of the CSB. This paper describes the mechanical design of the storage tubes, the shield floor plugs that confine the waste within the tubes and the impact absorber system used to assure that the canisters are not breached in the event of an accidental drop. Installation and testing of the components is also discussed

  9. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  10. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Science.gov (United States)

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  11. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  12. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  13. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  14. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  15. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  16. Optimization of the ECT background coil

    International Nuclear Information System (INIS)

    Ballou, J.K.; Luton, J.N.

    1975-01-01

    This study was begun to optimize the Eccentric Coil Test (ECT) background coil. In the course of this work a general optimization code was obtained, tested, and applied to the ECT problem. So far this code has proven to be very satisfactory. The results obtained with this code and earlier codes have illustrated the parametric behavior of such a coil system and that the optimum for this type system is broad. This study also shows that a background coil with a winding current density of less than 3000 A/cm 2 is not feasible for the ECT models presented in this paper

  17. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  18. Stress relaxation in SSC 50mm dipole coils

    International Nuclear Information System (INIS)

    Rogers, D.; Markley, F.

    1992-04-01

    We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) ''Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) ''Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) ''Theoretical methods for creep and stress relaxation studies of SSC coil.''

  19. Eccentric figure-eight coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi

    2015-01-01

    Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.

  20. Design and test program of a simplified divertor dummy coil structure for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L., E-mail: louis.doceul@cea.fr [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Bucalossi, J.; Dougnac, H.; Ferlay, F.; Gargiulo, L.; Keller, D.; Larroque, S.; Lipa, M.; Pilia, A. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon 13115, St. Paul-lez-Durance (France); Saille, A. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France); Salami, M. [AVANTIS Engineering Groupe, ZI de l’Aiguille 46100, Figeac (France); Samaille, F.; Soler, B.; Thouvenin, D.; Verger, J.M.; Zago, B. [CEA, IRFM, Saint-Paul-Lez-Durance Cedex F-13108 (France)

    2013-12-15

    Highlights: • The mechanical design and integration of the divertor structure has been performed. • The design of the casing and the winding-pack has been finalized. • The coil assembly process has been validated. • The realization of a coil mock-up scale one is in progress. -- Abstract: In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target. To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s). The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature. In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress. The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also