WorldWideScience

Sample records for coherent tunneling adiabatic

  1. Quantum tunneling in the adiabatic Dicke model

    International Nuclear Information System (INIS)

    Chen Gang; Chen Zidong; Liang Jiuqing

    2007-01-01

    The Dicke model describes N two-level atoms interacting with a single-mode bosonic field and exhibits a second-order phase transition from the normal to the superradiant phase. The energy levels are not degenerate in the normal phase but have degeneracy in the superradiant phase, where quantum tunneling occurs. By means of the Born-Oppenheimer approximation and the instanton method in quantum field theory, the tunneling splitting, inversely proportional to the tunneling rate for the adiabatic Dicke model, in the superradiant phase can be evaluated explicitly. It is shown that the tunneling splitting vanishes as exp(-N) for large N, whereas for small N it disappears as √(N)/exp(N). The dependence of the tunneling splitting on the relevant parameters, especially on the atom-field coupling strength, is also discussed

  2. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Science.gov (United States)

    Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao

    2017-05-01

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.

  3. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)

    2017-05-15

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)

  4. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    Energy Technology Data Exchange (ETDEWEB)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M., E-mail: champ@neu.edu [Department of Physics and Center for Interdisciplinary Research on Complex Systems,Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  5. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  6. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  7. Theory of coherent c-axis Josephson tunneling between layered superconductors

    International Nuclear Information System (INIS)

    Arnold, G. B.; Klemm, R. A.

    2000-01-01

    We calculate exactly the Josephson current for c-axis coherent tunneling between two layered superconductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling Hamiltonian. Our results are also correct for strong tunneling. However, the c-axis tunneling expressions of Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we consider the c-axis coherent critical current between two identical layered superconductors twisted an angle φ 0 about the c axis with respect to each other. Regardless of the order-parameter symmetry, our coherent tunneling results using a tight-binding intralayer quasiparticle dispersion are inconsistent with the recent c-axis twist bicrystal Bi 2 Sr 2 CaCu 2 O 8+δ twist junction experiments of Li et al. [Li et al., Phys. Rev. Lett. 83, 4160 (1999)]. (c) 2000 The American Physical Society

  8. Tunneling and Speedup in Quantum Optimization for Permutation-Symmetric Problems

    Directory of Open Access Journals (Sweden)

    Siddharth Muthukrishnan

    2016-07-01

    Full Text Available Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA, especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final cost function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Finally, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.

  9. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    Science.gov (United States)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  10. Levitation of Bose-Einstein condensates induced by macroscopic non-adiabatic quantum tunneling

    OpenAIRE

    Nakamura, Katsuhiro; Kohi, Akihisa; Yamasaki, Hisatsugu; Perez-Garcia, Victor M.

    2006-01-01

    We study the dynamics of two-component Bose-Einstein condensates trapped in different vertical positions in the presence of an oscillating magnetic field. It is shown here how tuning appropriately the oscillation frequency of the magnetic field leads to the levitation of the system against gravity. This phenomenon is a manifestation of a macroscopic non-adiabatic tunneling in a system with internal degrees of freedom.

  11. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  12. Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions

    International Nuclear Information System (INIS)

    Niu Zhen-Xia; Yu Zi-Fa; Xue Ju-Kui

    2015-01-01

    The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. (paper)

  13. Spatial non-adiabatic passage using geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)

    2017-12-15

    Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)

  14. Coherent tunneling of atoms from Bose-condensed gases at finite temperatures

    International Nuclear Information System (INIS)

    Luxat, David L.; Griffin, Allan

    2002-01-01

    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u 2 and v 2 amplitudes

  15. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    Science.gov (United States)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  16. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  17. The theory of coherent resonance tunneling of interacting electrons

    International Nuclear Information System (INIS)

    Elesin, V. F.

    2001-01-01

    Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons. Simple expressions for resonance current are derived which enable one to analyze the current-voltage characteristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical value proportional to the square of resonance level width.

  18. Coherent Cooper pair tunneling in systems of Josephson junctions: effects of quasiparticle tunneling and of the electromagnetic environment

    NARCIS (Netherlands)

    Maassen van den Brink, A.; Odintsov, A.A.; Bobbert, P.A.; Schön, G.

    1991-01-01

    Small capacitance tunnel junctions show single electron effects and, in the superconducting state, the coherent tunneling of Cooper pairs. We study these effects in a system of two Josephson junctions, driven by a voltage source with a finite impedance. Novel features show up in theI–V

  19. Adiabatic Quantum Computing

    Science.gov (United States)

    Landahl, Andrew

    2012-10-01

    Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with

  20. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  1. Coherence in Magnetic Quantum Tunneling

    Science.gov (United States)

    Fernandez, Julio F.

    2001-03-01

    Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.

  2. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  3. Coherent tunnelling conductance in normal-metal/d-wave superconductor/normal-metal double tunnel junctions

    International Nuclear Information System (INIS)

    Dong, Z C; Zheng, Z M; Xing, D Y

    2004-01-01

    Taking simultaneously into account the electron-injected current from one normal-metal (N) electrode and the hole-injected current from the other N electrode, we study the coherent tunnelling conductance and quantum interference effects in N/d-wave superconductor (S)/N double tunnel junctions. It is found that oscillations of all quasiparticle transport coefficients and the conductance spectrum with quasiparticle energy and thickness of the d-wave S depend to a great extent on the crystal orientation of the d-wave S. The zero-bias conductance peak is gradually lowered with increasing barrier strength and/or temperature, its magnitude exhibiting damped oscillatory behaviour with thickness of S

  4. Wireless adiabatic power transfer

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-01-01

    Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  5. Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps

    International Nuclear Information System (INIS)

    Lesanovsky, Igor; Klitzing, Wolf von

    2007-01-01

    We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers

  6. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage

    International Nuclear Information System (INIS)

    Graefe, E. M.; Korsch, H. J.; Witthaut, D.

    2006-01-01

    We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning

  7. Coherent population transfer and superposition of atomic states via stimulated Raman adiabatic passage using an excited-doublet four-level atom

    International Nuclear Information System (INIS)

    Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan

    2004-01-01

    Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect

  8. Time-dependent transport in interacting and noninteracting resonant-tunneling systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal

    1994-01-01

    noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a ''ringing'' current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic......We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...... nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitrary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current...

  9. Coherent tunneling of Bose-Einstein condensates: Exact solutions for Josephson effects and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.

    1997-07-01

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates (BEC) at T = 0 in (possibly asymmetric) double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well fractional population imbalance (related to the condensate phase difference) is obtained in terms of elliptic functions, generalizing well-known Josephson effects such as the 'ac' effect, the 'plasma oscillations', and the resonant Shapiro effect, to the nonsiusoidal regimes. We also present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are obtained in terms of the oscillations periods and the Fourier spectrum of the imbalance oscillations, as a function of the initial values of GPE parameters. Experimental procedures are suggested to make contact with theoretical predictions. (author). 44 refs, 8 figs

  10. Detuning-induced stimulated Raman adiabatic passage in dense two-level systems

    Science.gov (United States)

    Deng, Li; Lin, Gongwei; Niu, Yueping; Gong, Shangqing

    2018-05-01

    We investigate the coherence generation in dense two-level systems under detuning-induced stimulated Raman adiabatic passage (D-STIRAP). In the dense two-level system, the near dipole-dipole (NDD) interaction should be taken into consideration. With the increase in the strength of the NDD interaction, it is found that a switchlike transition of the generated coherence from maximum value to zero appears. Meanwhile, the adiabatic condition of the D-STIRAP is destroyed in the presence of the NDD interaction. In order to avoid the sudden decrease in the generated coherence and maintain the maximum value, we can use stronger detuning pulse or pump pulse, between which increasing the intensity of the detuning pulse is of more efficiency. Except for taking advantage of such maximum coherence in the high density case into areas like enhancing the four-wave mixing process, we also point out that the phenomenon of the coherence transition can be applied as an optical switch.

  11. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  12. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  13. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  14. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  15. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  16. Experimental investigation of tunneling times using Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Ciampini, Donatella; Arimondo, Ennio; Morsch, Oliver

    2011-01-01

    The time it takes a quantum system to complete a tunneling event (which in the case of cross-barrier tunneling can be viewed as the time spent in a classically forbidden area) is related to the time required for a state to evolve to an orthogonal state, and an observation, i.e., a quantum mechanical projection on a particular basis, is required to distinguish one state from another. We have performed time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. The use of different protocols enabled us to access the tunneling probability, in two different bases, namely, the adiabatic basis and the diabatic basis. The adiabatic basis corresponds to the eigenstates of the lattice, and the diabatic one to the free-particle momentum eigenstates. Our findings pave the way towards more quantitative studies of the tunneling time for LZ transitions, which are of current interest in the context of optimal quantum control and the quantum speed limit.

  17. Modification of optical properties by adiabatic shifting of resonances in a four-level atom

    Science.gov (United States)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2018-04-01

    We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.

  18. Adiabatic Low-Pass J Filters for Artifact Suppression in Heteronuclear NMR

    DEFF Research Database (Denmark)

    Meier, Sebastian; Benie, Andrew J; Duus, Jens Øllgaard

    2009-01-01

    NMR artifact purging: Modern NMR experiments depend on efficient coherence transfer pathways for their sensitivity and on suppression of undesired pathways leading to artifacts for their spectral clarity. A novel robust adiabatic element suppresses hard-to-get-at artifacts....

  19. Out-of-plane superfluid density of a layered organic superconductor: The coherent Josephson tunneling

    International Nuclear Information System (INIS)

    Tomic, S.; Prester, M.; Drobac, D.; Milat, O.; Maki, K.; Schweitzer, D.

    1999-01-01

    Measurements of AC magnetic susceptibility in κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Br show that the b-axis penetration depth below T c exhibits behaviour different from that observed in the ac plane, which exhibits the T-linear dependence. In agreement with earlier measurements, a leading quadratic temperature dependence is found at low temperatures. The temperature dependence of the out-of-plane superfluid density is shown to best agree with a model of d-wave superconducting layers coupled by coherent Josephson tunneling. (orig.)

  20. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  1. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  2. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  3. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    OpenAIRE

    Keefe, Peter

    2004-01-01

    Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of tradi...

  4. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    Science.gov (United States)

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.

  5. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    Directory of Open Access Journals (Sweden)

    Peter Keefe

    2004-03-01

    Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.

  6. Quantum tunneling in the periodically driven SU(2) model

    International Nuclear Information System (INIS)

    Arvieu, R.

    1991-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble, periodically driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The oscillatory, coherent tunneling of the wave-function between two Hartree-Fock minima is observed. The driving plays an important role increasing the tunneling rate by orders of magnitude as compared to the semiclassical results. This is due to the dominant role of excited states in the driven quantum tunneling. (author) 15 refs., 4 figs

  7. Coherent patterning of matter waves with subwavelength localization

    International Nuclear Information System (INIS)

    Mompart, J.; Ahufinger, V.; Birkl, G.

    2009-01-01

    We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.

  8. Quantum trajectories for time-dependent adiabatic master equations

    Science.gov (United States)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  9. Unified semiclassical theory for the two-state system: an analytical solution for general nonadiabatic tunneling.

    Science.gov (United States)

    Zhu, Chaoyuan; Lin, Sheng Hsien

    2006-07-28

    Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic transition [C. Zhu, J. Chem. Phys. 105, 4159 (1996)] with the certain symmetry transformation. This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters the analytical solution for general nonadiabatic tunneling. The certain two-state exponential potential models are employed for numerical tests, and the calculations from the present general nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact quantum mechanical calculations. The present general nonadiabatic tunneling formula can be incorporated with various mixed quantum-classical methods for modeling electronically nonadiabatic processes in photochemistry.

  10. Josephson tunneling in bilayer quantum Hall system

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.

    2012-01-01

    A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.

  11. Analytical expression for the tunnel current through the redox-mediated tunneling contact in the case of the adiabatic electron transfer at one of the working electrodes and any possible type of the electron transfer at the other electrode.

    Science.gov (United States)

    Medvedev, Igor G

    2017-11-21

    We study the tunnel current through a one-level redox molecule immersed into the electrolyte solution for the case when the coupling of the molecule to one of the working electrodes is strong while it is arbitrary to the other electrode. Using the Feynman-Vernon influence functional theory and the perturbation expansion of the effective action of the classical oscillator coupled both to the valence level of the redox molecule and to the thermal bath representing the classical fluctuations of the polarization of the solvent, we obtain, following the canonical way, the Langevin equation for the oscillator. It is found that for the aqueous electrolyte solution, the damping and the stochastic forces which arise due to the tunnel current are much smaller than those due to the thermal bath and therefore can be neglected. We estimate the higher-order corrections to the effective action and show that the Langevin dynamics takes place in this case for arbitrary parameters of the tunneling junction under the condition of the strong coupling of the redox molecule to one of the working electrodes. Then the steady-state coordinate distribution function of the oscillator resulting from the corresponding Fokker-Planck equation is the Boltzmann distribution function which is determined by the adiabatic free energy surface arising from the mean current-induced force. It enables us to obtain the expression for the tunnel current in the case when the coupling of the redox molecule to one of the working electrodes is strong while it is arbitrary to the other electrode.

  12. Optimization using quantum mechanics: quantum annealing through adiabatic evolution

    International Nuclear Information System (INIS)

    Santoro, Giuseppe E; Tosatti, Erio

    2006-01-01

    We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'ℎ' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models-double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schroedinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized. (topical review)

  13. Generalization of fewest-switches surface hopping for coherences

    Science.gov (United States)

    Tempelaar, Roel; Reichman, David R.

    2018-03-01

    Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.

  14. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  15. Stimulated Raman adiabatic passage in Tm3+:YAG

    International Nuclear Information System (INIS)

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-01-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results

  16. Adiabatic radio-frequency potentials for the coherent manipulation of matter waves

    DEFF Research Database (Denmark)

    Lesanovsky, Igor; Schumm, Thorsten; Hofferberth, S.

    2006-01-01

    Adiabatic dressed state potentials are created when magnetic substates of trapped atoms are coupled by a radio-frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one...... to implement numerous configurations, including double wells, Mach-Zehnder, and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips....

  17. Pre-History Of The Concepts Underlying Stimulated Raman Adiabatic Passage (STIRAP)

    International Nuclear Information System (INIS)

    Shore, B.W.

    2013-01-01

    This tutorial review discusses some of the work that preceded development, twenty-five years ago, of the stimulated Raman adiabatic passage (STIRAP) technique, now widely used in the controlled coherent dynamics of three-state systems, noting how the use of time-dependent adiabatically-evolving population-trapping dark states made possible the robust and highly-efficient population transfer between quantum states that first popularized STIRAP. Preceding the history discussion is a tutorial definition of STIRAP and its necessary and sufficient ingredients — understanding that has led to applications well beyond those of the original quantum systems. This review also discusses the relationship between STIRAP and two related procedures: chirped Raman adiabatic passage (RCAP or CHIRAP) and electromagnetically induced transparency (EIT) with slow and captured light. It concludes with a brief discussion of ways in which contemporary STIRAP has extended the original concept and enlarged the definition, beyond that of simple quantum systems to classical macroscopic devices. Appendices offer further details. The presentation emphasizes theory but with illustrations of experimental results. (author)

  18. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  19. Dynamical behavior of the wave packets on adiabatic potential surfaces observed by femtosecond luminescence spectroscopy

    International Nuclear Information System (INIS)

    Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi

    2007-01-01

    The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature

  20. Adiabatic quantum pumping and charge quantization

    International Nuclear Information System (INIS)

    Kashcheyevs, V; Aharony, A.; Entin-Wohlmanl, O.

    2004-01-01

    Full Text:Modern techniques for coherent manipulation of electrons at the nano scale (electrostatic gating, surface acoustic waves) allow for studies of the adiabatic quantum pumping effect - a directed current induced by a slowly varying external perturbation. Scattering theory of pumping predicts transfer of an almost integer number of electrons per cycle if instantaneous transmission is determined by a sequence of resonances. We show that this quantization can be explained in terms of loading/unloading quasi-bound virtual states, and derive a tool for analyzing quantized pumping induced by a general potential. This theory is applied to a simple model of pumping due to surface acoustic waves. The results reproduce all the qualitative features observed in actual experiments

  1. Population coherent control of Rydberg potassium atom via adiabatic passage

    International Nuclear Information System (INIS)

    Jiang Li-Juan; Zhang Xian-Zhou; Jia Guang-Rui; Zhang Yong-Hui; Xia Li-Hua

    2013-01-01

    The time-dependent multilevel approach (TDMA) and B-spline expansion technique are used to study the coherent population transfer between the quantum states of a potassium atom by a single frequency-chirped microwave pulse. The Rydberg potassium atom energy levels of n = 6–15, l = 0–5 states in zero field are calculated and the results are in good agreement with other theoretical values. The time evolutions of the population transfer of the six states from n = 70 to n = 75 in different microwave fields are obtained. The results show that the coherent control of the population transfer from the lower states to the higher ones can be accomplished by optimizing the microwave pulse parameters. (atomic and molecular physics)

  2. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  3. High-fidelity adiabatic inversion of a {sup 31}P electron spin qubit in natural silicon

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne, E-mail: a.laucht@unsw.edu.au; Kalra, Rachpon; Muhonen, Juha T.; Dehollain, Juan P.; Mohiyaddin, Fahd A.; Hudson, Fay; Dzurak, Andrew S.; Morello, Andrea [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052 (Australia); McCallum, Jeffrey C.; Jamieson, David N. [Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2014-03-03

    The main limitation to the high-fidelity quantum control of spins in semiconductors is the presence of strongly fluctuating fields arising from the nuclear spin bath of the host material. We demonstrate here a substantial improvement in single-qubit inversion fidelities for an electron spin qubit bound to a {sup 31}P atom in natural silicon, by applying adiabatic sweeps instead of narrow-band pulses. We achieve an inversion fidelity of 97%, and we observe signatures in the spin resonance spectra and the spin coherence time that are consistent with the presence of an additional exchange-coupled donor. This work highlights the effectiveness of simple adiabatic inversion techniques for spin control in fluctuating environments.

  4. Optimal control of population and coherence in three-level Λ systems

    Science.gov (United States)

    Kumar, Praveen; Malinovskaya, Svetlana A.; Malinovsky, Vladimir S.

    2011-08-01

    Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.

  5. Optimal control of population and coherence in three-level Λ systems

    International Nuclear Information System (INIS)

    Kumar, Praveen; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2011-01-01

    Optimal control theory (OCT) implementations for an efficient population transfer and creation of maximum coherence in a three-level system are considered. We demonstrate that the half-stimulated Raman adiabatic passage scheme for creation of the maximum Raman coherence is the optimal solution according to the OCT. We also present a comparative study of several implementations of OCT applied to the complete population transfer and creation of the maximum coherence. Performance of the conjugate gradient method, the Zhu-Rabitz method and the Krotov method has been analysed.

  6. Effect of the density of the electronic states at the valence orbital of the bridge redox molecule on the dependence of the tunnel current on the overvoltage in the case of fully adiabatic electron transition

    International Nuclear Information System (INIS)

    Medvedev, Igor G.

    2008-01-01

    Effect of the density of the electronic states at the valence orbital of the bridge redox molecule on the dependence of the tunnel current on the overvoltage and on the width at half maximum of the current-overvoltage curve is studied. A number of the approximate expressions for the density of states, the tunnel current and the width are obtained in the fully adiabatic limit for different particular cases. It is shown that at small values of the coupling of the electronic levels of the electrodes with the valence orbital of the redox molecule and the small values of the bias voltage two regions of the reorganization Gibbs energy exist with different dependence of the width on the reorganization Gibbs energy. The results of calculations of the density of states, the tunnel current and the width are presented and used for the interpretation of the experimental data [N.G. Tao, Phys. Rev. Lett. 76 (1996) 4066, I. Visoly-Fisher, K. Daie, Y. Terazono, C. Herrero, F. Fungo, L. Otero, E. Durantini, J.J. Silber, L. Sereno, D. Gust, T.A. Moore, A.L. Moore, S.M. Lindsay, PNAS 103 (2006) 8686

  7. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  8. Path integral approach to multidimensional quantum tunnelling

    International Nuclear Information System (INIS)

    Balantekin, A.B.; Takigawa, N.

    1985-01-01

    Path integral formulation of the coupled channel problem in the case of multidimensional quantum tunneling is presented and two-time influence functionals are introduced. The two-time influence functionals are calculated explicitly for the three simplest cases: Harmonic oscillators linearly or quadratically coupled to the translational motion and a system with finite number of equidistant energy levels linearly coupled to the translational motion. The effects of these couplings on the transmission probability are studied for two limiting cases, adiabatic case and when the internal system has a degenerate energy spectrum. The condition for the transmission probability to show a resonant structure is discussed and exemplified. Finally, the properties of the dissipation factor in the adiabatic limit and its correlation with the friction coefficient in the classically accessible region are studied

  9. Transitionless driving on adiabatic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  10. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  11. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  12. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  13. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  14. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions.

    Science.gov (United States)

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S; Saeys, Mark; Yang, Hyunsoo

    2014-09-30

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.

  15. Quantum tunneling in the driven SU(2) model

    International Nuclear Information System (INIS)

    Kaminski, P.; Ploszajczak, M.; Arvieu, R.

    1992-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The presence of the classical chaotic structures leads to the enormous growth in the tunneling rate. The results suggest the existence of a new mechanism of quantum tunneling, involving transport of the wave-function between stable regions of the classical phase-space due to a coupling with 'chaotic' levels. (author) 17 refs., 13 figs

  16. Particle creation and destruction of quantum coherence by topological change

    International Nuclear Information System (INIS)

    Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.

    1988-01-01

    The possibility is considered that changes of spatial topology occur as tunneling events in quantum gravity. Creation of scalar and spinor particles during these tunneling transitions is studied. The relevant formalism based on the euclidean Schroedinger equation and coherent state representation is developed. This formalism is illustrated in a two-dimensional example. It is argued that the particle creation during the topological changes induces the loss of quantum coherence. The particle creation is calculated in the case of O(4)-invariant background euclidean four-dimensional metrics. This calculation is used for estimating the loss of quantum coherence. An upper limit on the rate of the topological changes, A -17 M 4 Pl , is derived from the observation of K 0 -anti K 0 oscillations. (orig.)

  17. Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

    Science.gov (United States)

    Abbasabadi, Majid; Sahrai, Mostafa

    2018-01-01

    We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

  18. Topology hidden behind the breakdown of adiabaticity

    International Nuclear Information System (INIS)

    Fu, L.-B.; Chen, S.-G.

    2005-01-01

    For classical Hamiltonian systems, the adiabatic condition may fail at some critical points. However, the breakdown of the adiabatic condition does not always cause the adiabatic evolution to be destroyed. In this paper, we suggest a supplemental condition of the adiabatic evolution for the fixed points of classical Hamiltonian systems when the adiabatic condition breaks down at the critical points. As an example, we investigate the adiabatic evolution of the fixed points of a classical Hamiltonian system which has a number of applications

  19. Decoherence in adiabatic quantum computation

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  20. Multi-arrangement quantum dynamics in 6D: cis-trans isomerization and 1,3-hydrogen transfer in HONO

    International Nuclear Information System (INIS)

    Luckhaus, David

    2004-01-01

    The overtone spectrum and wave packet dynamics of nitrous acid (HONO) are studied with a global six-dimensional potential energy function interpolated directly from density functional calculations together with the corresponding dipole hypersurfaces. The quantum dynamics for the cis-trans isomerization and the symmetric 1,3-hydrogen transfer are treated in full dimensionality in terms of the generalized Z-matrix discrete variable representation. For the quantum mechanical description of complicated rearrangements a new approach to multi-arrangement quantum dynamics is introduced and applied to the symmetric hydrogen exchange tunneling in cis-HONO. The cis-trans isomerization is found to be dominated by adiabatic barrier crossing with only minor tunneling contributions, but with pronounced mode selectivity. The OH-stretching overtones of trans-HONO are adiabatically almost completely separated from the OH torsional dynamics with extremely slow intramolecular energy redistribution. The 1,3-hydrogen transfer, by contrast, proceeds largely via coherent tunneling even significantly below the barrier. The process is clearly non-adiabatic (at least in terms of valence coordinates) but remains highly state specific. While the absorption spectrum of trans-HONO remains largely unaffected, OH-stretching overtones of cis-HONO (above the barrier between 2ν OH and 3ν OH ) decompose into highly fragmented absorption patterns with corresponding tunneling periods on the picosecond time scale

  1. Studies of proximity-effect and tunneling in YBCO/metal layered films

    Energy Technology Data Exchange (ETDEWEB)

    Greene, L.H.; Barner, J.B.; Feldmann, W.L.; Farrow, L.A.; Miceli, P.F.; Ramesh, R.; Wilkens, B.J.; Bagley, B.G.; Tarascon, J.M.; Wernick, J.H. (Bellcore, Red Bank, NJ (USA)); Giroud, M. (CRTBT-CNRS, Grenoble (France)); Rowell, J.M. (Conductus, Sunnyvale, CA (USA))

    1989-12-01

    The short coherence length of the high-Tc superconductors, coupled with their tendency to form non-superconducting surface layers, accounts for the difficulty in achieving good tunnel junctions. A proximity layer of a longer coherence length normal metal (N) is expected to ''draw out'' Cooper pairs. Our goal is to fabricate reproducible, planar tunnel junctions of SNIS layered structures for proximity tunneling spectroscopy. Such structures of YBCO/N/I/Pb and SNS structures of YBCO/N/Pb indicate that the normal metal produces a low resistance contact to the YBCO surface with a supercurrent observed in the SNS. The insulating barrier in the SNIS is reproducible, insulating and continuous: A sharp Pb gap and phonons from the counter-electrode are routinely observed. (orig.).

  2. Studies of proximity-effect and tunneling in YBCO/metal layered films

    International Nuclear Information System (INIS)

    Greene, L.H.; Barner, J.B.; Feldmann, W.L.; Farrow, L.A.; Miceli, P.F.; Ramesh, R.; Wilkens, B.J.; Bagley, B.G.; Tarascon, J.M.; Wernick, J.H.; Giroud, M.; Rowell, J.M.

    1989-01-01

    The short coherence length of the high-T c superconductors, coupled with their tendency to form non-superconducting surface layers, accounts for the difficulty in achieving good tunnel junctions. A proximity layer of a longer coherence length normal metal (N) is expected to draw out Cooper pairs. The authors' goal is to fabricate reproducible, planar tunnel junctions of SNIS layered structures for proximity tunneling spectroscopy. They discuss how such structures of YBCO/N/I/Pb and SNS structures of YBCO/N/Pb indicate that the normal metal produces a low resistance contact to the YBCO surface with a supercurrent observed in the SNS. The insulating barrier in the SNIS is reproducible, insulating and continuous: A sharp Pb gap and phonons from the counter-electrode are routinely observed

  3. Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.

    Science.gov (United States)

    Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing

    2017-05-30

    Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.

  4. Suppression of tunneling by interference in half-integer--spin particles

    OpenAIRE

    Loss, Daniel; DiVincenzo, David P.; Grinstein, G.

    1992-01-01

    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.

  5. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  6. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  7. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Energy Technology Data Exchange (ETDEWEB)

    Dartora, C.A., E-mail: cadartora@eletrica.ufpr.br [Electrical Engineering Department, Federal University of Parana (UFPR), C.P. 19011 Curitiba, 81.531-970 PR (Brazil); Nobrega, K.Z., E-mail: bzuza1@yahoo.com.br [Federal Institute of Education, Science and Technolgy of Maranhão (IFMA), Av. Marechal Castelo Branco, 789, São Luís, 65.076-091 MA (Brazil); Cabrera, G.G., E-mail: cabrera@ifi.unicamp.br [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas (UNICAMP), C.P. 6165, Campinas 13.083-970 SP (Brazil)

    2016-08-15

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  8. Zurek–Kibble Symmetry Breaking Process in Superconducting Rings; Spontaneous Fluxon Formation in Annular Josephson Tunnel Junctions

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, Roberto; Dmitriev, P

    2007-01-01

    We report on new investigations of spontaneous symmetry breaking in non-adiabatic phase transitions. This Zurek-Kibble (ZK) process is mimicked in solid state systems by trapping of magnetic flux quanta, fluxons, in a long annular Josephson tunnel junction quenched through the normal-superconducting...

  9. Adiabatic capture and debunching

    International Nuclear Information System (INIS)

    Ng, K.Y.

    2012-01-01

    In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of ∼ ±22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than ∼ 3.46 eVs. The incoming booster bunches have total emittance ∼ 8.4 eVs, or each one with an emittance ∼ 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

  10. Microwave Enhanced Cotunneling in SET Transistors

    DEFF Research Database (Denmark)

    Manscher, Martin; Savolainen, M.; Mygind, Jesper

    2003-01-01

    Cotunneling in single electron tunneling (SET) devices is an error process which may severely limit their electronic and metrologic applications. Here is presented an experimental investigation of the theory for adiabatic enhancement of cotunneling by coherent microwaves. Cotunneling in SET...... transistors has been measured as function of temperature, gate voltage, frequency, and applied microwave power. At low temperatures and applied power levels, including also sequential tunneling, the results can be made consistent with theory using the unknown damping in the microwave line as the only free...

  11. Adiabatic quantum computing

    OpenAIRE

    Lobe, Elisabeth; Stollenwerk, Tobias; Tröltzsch, Anke

    2015-01-01

    In the recent years, the field of adiabatic quantum computing has gained importance due to the advances in the realisation of such machines, especially by the company D-Wave Systems. These machines are suited to solve discrete optimisation problems which are typically very hard to solve on a classical computer. Due to the quantum nature of the device it is assumed that there is a substantial speedup compared to classical HPC facilities. We explain the basic principles of adiabatic ...

  12. Adiabatic Quantum Transistors

    Directory of Open Access Journals (Sweden)

    Dave Bacon

    2013-06-01

    Full Text Available We describe a many-body quantum system that can be made to quantum compute by the adiabatic application of a large applied field to the system. Prior to the application of the field, quantum information is localized on one boundary of the device, and after the application of the field, this information propagates to the other side of the device, with a quantum circuit applied to the information. The applied circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a degenerate ground space with symmetry-protected topological order. Such “adiabatic quantum transistors” are universal adiabatic quantum computing devices that have the added benefit of being modular. Here, we describe this model, provide arguments for why it is an efficient model of quantum computing, and examine these many-body systems in the presence of a noisy environment.

  13. Optical photon detection in Al superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Brammertz, G.; Peacock, A.; Verhoeve, P.; Martin, D.; Venn, R.

    2004-01-01

    We report on the successful fabrication of low leakage aluminium superconducting tunnel junctions with very homogeneous and transparent insulating barriers. The junctions were tested in an adiabatic demagnetisation refrigerator with a base temperature of 35 mK. The normal resistance of the junctions is equal to ∼7 μΩ cm 2 with leakage currents in the bias voltage domain as low as 100 fA/μm 2 . Optical single photon counting experiments show a very high responsivity with charge amplification factors in excess of 100. The total resolving power λ/Δλ (including electronic noise) for 500 nm photons is equal to 13 compared to a theoretical tunnel limited value of 34. The current devices are found to be limited spectroscopically by spatial inhomogeneities in the detectors response

  14. Hierarchical theory of quantum adiabatic evolution

    International Nuclear Information System (INIS)

    Zhang, Qi; Wu, Biao; Gong, Jiangbin

    2014-01-01

    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau–Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory. (paper)

  15. Ion Motion in the Adiabatic Focuser

    International Nuclear Information System (INIS)

    Henestroza, E.; Sessler, A.M.; Yu, S.S.

    2006-01-01

    In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned

  16. Vibrational nonadiabaticity and tunneling effects in transition state theory

    International Nuclear Information System (INIS)

    Marcus, R.A.

    1979-01-01

    The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered

  17. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  18. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    International Nuclear Information System (INIS)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry

    2014-01-01

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement

  19. Electron dynamics inside short-coherence systems

    International Nuclear Information System (INIS)

    Ferrari, Giulio; Bordone, Paolo; Jacoboni, Carlo

    2006-01-01

    We present theoretical results on electron dynamics inside nanometric systems, where the coherence of the electron ensemble is maintained in a very short region. The contacts are supposed to spoil such a coherence, therefore the interference processes between the carrier wavefunction and the internal potential profile can be affected by the proximity of the contacts. The problem has been analysed by using the Wigner-function formalism. For very short devices, transport properties, such as tunnelling through potential barriers, are significantly influenced by the distance between the contacts

  20. Adiabatic temperature change from non-adiabatic measurements

    Czech Academy of Sciences Publication Activity Database

    Carvalho, A.M.G.; Mejía, C.S.; Ponte, C.A.; Silva, L.E.L.; Kaštil, Jiří; Kamarád, Jiří; Gomes, A.M.

    2016-01-01

    Roč. 122, č. 3 (2016), s. 1-5, č. článku 246. ISSN 0947-8396 Institutional support: RVO:68378271 Keywords : magnetocaloric effect * adiabatic temperature change * calorimetric device * gadolinium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  1. Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation

    International Nuclear Information System (INIS)

    Ferretti, Sara; Andreani, Lucio Claudio; Tuereci, Hakan E.; Gerace, Dario

    2010-01-01

    We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: The master equation for the model, which takes into account both a coherent continuous drive and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike state with photons locked on each cavity, identified by antibunching of emitted light.

  2. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  3. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.

    2014-01-01

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  4. Spin tunnelling in mesoscopic systems

    Science.gov (United States)

    Garg, Anupam

    2001-02-01

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.

  5. Application of the adiabatic self-consistent collective coordinate method to a solvable model of prolate-oblate shape coexistence

    International Nuclear Information System (INIS)

    Kobayasi, Masato; Matsuyanagi, Kenichi; Nakatsukasa, Takashi; Matsuo, Masayuki

    2003-01-01

    The adiabatic self-consistent collective coordinate method is applied to an exactly solvable multi-O(4) model that is designed to describe nuclear shape coexistence phenomena. The collective mass and dynamics of large amplitude collective motion in this model system are analyzed, and it is shown that the method yields a faithful description of tunneling motion through a barrier between the prolate and oblate local minima in the collective potential. The emergence of the doublet pattern is clearly described. (author)

  6. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.

    Science.gov (United States)

    Hong, Jongbae

    2011-07-13

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  7. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model

    International Nuclear Information System (INIS)

    Hong, Jongbae

    2011-01-01

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  8. Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Drummond, P.D.; Kheruntsyan, K.V.; Heinzen, D.J.; Wynar, R.H.

    2002-01-01

    The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions

  9. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  10. Possible influence of the voltage dependence of the Josephson tunneling current I(V,psi) on the corresponding current-voltage characteristic

    International Nuclear Information System (INIS)

    Hahlbohm, H.D.; Luebbig, H.; Luther, H.

    1975-01-01

    Analog computer calculations of the current-voltage characteristic involving the voltage dependence of the amplitudes of the tunneling current equation explicitly, for the case of a current driven tunneling junction at different temperatures are reported on. These studies are based upon the adiabatic representation of the current-phase relation. The influence of retarding effects is not included. Therefore the computational results can lead to practical consequences at best in the range near the transition temperature. (Auth.)

  11. Piecewise adiabatic following in non-Hermitian cycling

    Science.gov (United States)

    Gong, Jiangbin; Wang, Qing-hai

    2018-05-01

    The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.

  12. Tunnel vision for US X-ray free-electron laser

    Science.gov (United States)

    Banks, Michael

    2017-03-01

    Construction can begin on a major upgrade to the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the US after the tunnel that will house the facility was cleared of equipment.

  13. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  14. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  15. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  16. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  17. Geometry of the Adiabatic Theorem

    Science.gov (United States)

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  18. Quantum adiabatic Markovian master equations

    International Nuclear Information System (INIS)

    Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A

    2012-01-01

    We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)

  19. On the adiabatic walking of plasma waves in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Melikidze, George I.; Gil, Janusz; Mitra, Dipanjan

    2014-01-01

    The pulsar radio emission is generated in the near magnetosphere of the neutron star, and it must propagate through the rest of it to emerge into the interstellar medium. An important issue is whether this propagation affects the planes of polarization of the generated radiation. Observationally, there is sufficient evidence that the emerging radiation is polarized parallel or perpendicular to the magnetic field line planes that should be associated with the ordinary (O) and extraordinary (X) plasma modes, respectively, excited by some radiative process. This strongly suggests that the excited X and O modes are not affected by the so-called adiabatic walking that causes a slow rotation of polarization vectors. In this paper, we demonstrate that the conditions for adiabatic walking are not fulfilled within the soliton model of pulsar radio emission, in which the coherent curvature radiation occurs at frequencies much lower than the characteristic plasma frequency, The X mode propagates freely and observationally represents the primary polarization mode. The O mode has difficulty escaping from the pulsar plasma; however, it is sporadically observed as a weaker secondary polarization mode. We discuss a possible scenario under which the O mode can also escape from the plasma and reach an observer.

  20. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    International Nuclear Information System (INIS)

    Martin, J.; Shore, B.W.; Bergmann, K.

    1995-01-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid

  1. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    Science.gov (United States)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  2. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.

    Science.gov (United States)

    Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas

    2007-04-11

    We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.

  3. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    Science.gov (United States)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  4. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.

    Science.gov (United States)

    Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C

    2016-05-20

    We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.

  5. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde.

    Science.gov (United States)

    Wang, Yimin; Bowman, Joel M

    2013-10-21

    We present a theory of mode-specific tunneling that makes use of the general tunneling path along the imaginary-frequency normal mode of the saddle point, Qim, and the associated relaxed potential, V(Qim) [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. The novel aspect of the theory is the projection of the normal modes of a minimum onto the Qim path and the determination of turning points on V(Qim). From that projection, the change in tunneling upon mode excitation can be calculated. If the projection is zero, no enhancement of tunneling is predicted. In that case vibrationally adiabatic (VA) theory could apply. However, if the projection is large then VA theory is not applicable. The approach is applied to mode-specific tunneling in full-dimensional malonaldehyde, using an accurate full-dimensional potential energy surface. Results are in semi-quantitative agreement with experiment for modes that show large enhancement of the tunneling, relative to the ground state tunneling splitting. For the six out-of-plane modes, which have zero projection on the planar Qim path, VA theory does apply, and results from that theory agree qualitatively and even semi-quantitatively with experiment. We also verify the failure of simple VA theory for modes that show large enhancement of tunneling.

  6. Coherent manipulation of atoms using laser light

    International Nuclear Information System (INIS)

    Shore, B.W.

    2008-01-01

    The internal structure of a particle an atom or other quantum system in which the excitation energies are discrete undergoes change when exposed to pulses of near-resonant laser light. This tutorial review presents basic concepts of quantum states, of laser radiation and of the Hilbert-space state vector that provides the theoretical portrait of probability amplitudes the tools for quantifying quantum properties not only of individual atoms and molecules but also of artificial atoms and other quantum systems. It discusses the equations of motion that describe the laser-induced changes (coherent excitation), and gives examples of laser=pulse effects, with particular emphasis on two-state and three-state adiabatic time evolution within the rotating-wave approximation. It provides pictorial descriptions of excitation based on the Bloch equations that allow visualization of two-state excitation as motion of a three-dimensional vector (the Bloch vector). Other visualization techniques allow portrayal of more elaborate systems, particularly the Hilbert-space motion of adiabatic states subject to various pulse sequences. Various more general multilevel systems receive treatment that includes degeneracies, chains and loop linkages. The concluding sections discuss techniques for creating arbitrary pre-assigned quantum states, for manipulating them into alternative coherent superpositions and for analyzing an unknown superposition. Appendices review some basic mathematical concepts and provide further details of the theoretical formalism, including photons, pulse propagation, statistical averages, analytic solutions to the equations of motion, exact solutions of periodic Hamiltonians, and population-trapping 'dark' states. (author)

  7. Coherent wave packet dynamics in a double-well potential in cavity

    Science.gov (United States)

    Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui

    2018-02-01

    We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.

  8. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  9. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  10. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  11. Symmetry of the Adiabatic Condition in the Piston Problem

    Science.gov (United States)

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  12. Energy consumption for shortcuts to adiabaticity

    Science.gov (United States)

    Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.

    2017-08-01

    Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.

  13. Assessment of total efficiency in adiabatic engines

    Science.gov (United States)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  14. Accuracy versus run time in an adiabatic quantum search

    International Nuclear Information System (INIS)

    Rezakhani, A. T.; Pimachev, A. K.; Lidar, D. A.

    2010-01-01

    Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.

  15. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  16. Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule

    DEFF Research Database (Denmark)

    Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens

    2009-01-01

    We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...

  17. Fast-forward of quantum adiabatic dynamics in electro-magnetic field

    OpenAIRE

    Masuda, Shumpei; Nakamura, Katsuhiro

    2010-01-01

    We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...

  18. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    International Nuclear Information System (INIS)

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  19. Electron flux during pericyclic reactions in the tunneling limit: Quantum simulation for cyclooctatetraene

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Manz, Joern; Marquardt, Falko; Paulus, Beate; Schild, Axel

    2010-01-01

    Graphical abstract: In the limit of coherent tunneling, double bond shifting (DBS) of cyclooctatetraene from a reactant (R) to a product (P) is associated with pericyclic electron fluxes from double to single bonds, corresponding to a pincer-motion-type set of arrows in the Lewis structures, each representing a transfer of 0.19 electrons. - Abstract: Pericyclic rearrangement of cyclooctatetraene proceeds from equivalent sets of two reactants to two products. In the ideal limit of coherent tunneling, these reactants and products may tunnel to each other by ring inversions and by double bond shifting (DBS). We derive simple cosinusoidal or sinusoidal time evolutions of the bond-to-bond electron fluxes and yields during DBS, for the tunneling scenario. These overall yields and fluxes may be decomposed into various contributions for electrons in so called pericyclic, other valence, and core orbitals. Pericyclic orbitals are defined as the subset of valence orbitals which describe the changes of Lewis structures during the pericyclic reaction. The quantum dynamical results are compared with the traditional scheme of fluxes of electrons in pericyclic orbitals, as provided by arrows in Lewis structures.

  20. Spin-flip tunneling in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Lars; Braakman, Floris; Meunier, Tristan; Calado, Victor; Vandersypen, Lieven [Kavli Institute of NanoScience, Delft (Netherlands); Wegscheider, Werner [Institute for Experimental and Applied Physics, University of Regensburg (Germany)

    2010-07-01

    Electron spins in a gate-defined double quantum dot formed in a GaAs/(Al,Ga)As 2DEG are promising candidates for quantum information processing as coherent single spin rotation and spin swap has been demonstrated recently. In this system we investigate the two-electron spin dynamics in the presence of microwaves (5.20 GHz) applied to one side gate. During microwave excitation we observe characteristic photon assisted tunneling (PAT) peaks at the (1,1) to (0,2) charge transition. Some of the PAT peaks are attributed to photon tunneling events between the singlet S(0,2) and the singlet S(1,1) states, a spin-conserving transition. Surprisingly, other PAT peaks stand out by their different external magnetic field dependence. They correspond to tunneling involving a spin-flip, from the (0,2) singlet to a (1,1) triplet. The full spectrum of the observed PAT lines is captured by simulations. This process offers novel possibilities for 2-electron spin manipulation and read-out.

  1. Quantum theory of NMR adiabatic pulses and their applications

    International Nuclear Information System (INIS)

    Ke, Y.

    1993-01-01

    Recently explosive developments of in vivo NMR spectroscopy (NMRS) and imaging (NMRI) in biological and medical sciences have resulted in the establishment of NMR as one of the most advanced major technique in life sciences. These developments have created huge demands for a variety of NMR adiabatic pulses with play a very important role in NMR experiments in vivo. In order to develop new NMR adiabatic pulses, a rigorous systematical quantum theory for this kind of pulses is greatly needed. Providing such a theory is one of the important goals of this dissertation. Quantum density matrix theory and product operator method have been used throughout this dissertation. Another goal, which is the major goal of this thesis research, is to use the quantum theory as a guide to develop new NMR adiabatic pulses and their applications. To fill this goal, a technique to construct a new type of adiabatic pulses, narrow band selective adiabatic pulses, has been invented, which is described through the example of constructing an adiabatic DANTE inversion pulse. This new adiabatic pulse is the first narrow band selective adiabatic pulses: Adiabatic homonuclear and heteronuclear spectral editing sequences. Unique to the first pulse sequence is a B 1 -field filter which is built by using two non-refocusing adiabatic full passage pulses to refocus the wanted signal and dephase unwanted signals. This extra filter greatly enhance the editing efficiency. Unlike commonly used heteronuclear spectral editing sequences which depend on the polarization transfer or spectral subtraction by phase cycling techniques, the second pulse sequences accomplishes the editing of heteronuclear J-coupled signals based on the fact that this sequence is transparent to the uncoupled spins and is equivalent a 90 degrees excitation pulse to the heteronuclear J-coupled spins. Experimental results have confirmed the ability of spectral editing with these two new sequences

  2. Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.

    Science.gov (United States)

    Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang

    2016-10-07

    Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.

  3. Single-electron tunnel junction array

    International Nuclear Information System (INIS)

    Likharev, K.K.; Bakhvalov, N.S.; Kazacha, G.S.; Serdyukova, S.I.

    1989-01-01

    The authors have carried out an analysis of statics and dynamics of uniform one-dimensional arrays of ultrasmall tunnel junctions. The correlated single-electron tunneling in the junctions of the array results in its behavior qualitatively similar to that of the Josephson transmission line. In particular, external electric fields applied to the array edges can inject single-electron-charged solitons into the array interior. Shape of such soliton and character of its interactions with other solitons and the array edges are very similar to those of the Josephson vortices (sine-Gordon solitons) in the Josephson transmission line. Under certain conditions, a coherent motion of the soliton train along the array is possible, resulting in generation of narrowband SET oscillations with frequency f/sub s/ = /e where is the dc current flowing along the array

  4. Adiabatic process reversibility: microscopic and macroscopic views

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  5. Studies in Chaotic adiabatic dynamics

    International Nuclear Information System (INIS)

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)

  6. Quantum entangling power of adiabatically connected Hamiltonians

    International Nuclear Information System (INIS)

    Hamma, Alioscia; Zanardi, Paolo

    2004-01-01

    The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied

  7. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  8. Tunneling time in fluctuating symmetric double wells: Suppression and enhancement of tunneling by spatial symmetry-preserving perturbations

    International Nuclear Information System (INIS)

    Kar, Susmita; Bhattacharyya, S.P.

    2011-01-01

    Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.

  9. Quantum tunneling of magnetization in solids

    International Nuclear Information System (INIS)

    Stamp, P.C.E.; Barbara, B.

    1992-01-01

    Magnetic solids should, under certain circumstances, show macroscopic quantum behavior, in which coherence exists between completely distinct magnetization states, each involving a very large number of spins (∼10 12 spins). This article reviews the recent work in this field, concentrating particularly on macroscopic quantum tunneling (MQT) of magnetization. The two main phenomena discussed are the tunneling of magnetization in single-domain particles or grains (in which some 10 3 - 10 4 spins rotate together through an energy barrier), and the tunneling of domain walls in films or in bulk magnets; where walls containing ∼10 10 spins may tunnel off a pinning potential, or from one pinning center to another. Some attention is also given to the quantum nucleation of magnetization reversal in a bulk magnet, and to the quantum motion of other magnetic solitons (such as vortices). After a thorough analysis of the basic grain and wall tunneling phenomena, the authors continue on to a discussion of the various dissipative or decoherence mechanisms, which destroy the phase correlations involved in tunneling. The coupling of grain magnetization to phonons, photons, and electrons is shown to have little consequence for weakly-conducting or insulating grains. Domain walls couple to these and also to magnons and impurities or defects; the 3rd order coupling to magnons can have serious effects, but if one uses pure insulators at low temperatures, these can also be ignored

  10. Investigation of collective excitations in fluid neon by coherent neutron scattering at small scattering vectors

    International Nuclear Information System (INIS)

    Bell, H.G.

    1976-07-01

    The energy spectra of Ne studied under different temperatures and pressures with the aid of inelastic, coherent neutron scattering can be described by a scattering law derived from the basic hydrodynamic equations. The Brillouin lines found with very small momentum transfer 0.06 A -1 -1 are interpreted as collective, adiabatic pressure fluctuations. (orig./WL) [de

  11. Instantaneous Tunneling Flight Time for Wavepacket Transmission through Asymmetric Barriers.

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2018-04-12

    The time it takes a particle to tunnel through the asymmetric Eckart barrier potential is investigated using Gaussian wavepackets, where the barrier serves as a model for the potential along a chemical reaction coordinate. We have previously shown that the, in principle experimentally measurable, tunneling flight time, which determines the time taken by the transmitted particle to traverse the barrier, vanishes for symmetric potentials like the Eckart and square barrier [ Petersen , J. ; Pollak , E. J. Phys. Chem. Lett. 2017 , 9 , 4017 ]. Here we show that the same result is obtained for the asymmetric Eckart barrier potential, and therefore, the zero tunneling flight time seems to be a general result for one-dimensional time-independent potentials. The wavepacket dynamics is simulated using both an exact quantum mechanical method and a classical Wigner prescription. The excellent agreement between the two methods shows that quantum coherences are not important in pure one-dimensional tunneling and reinforces the conclusion that the tunneling flight time vanishes.

  12. Adiabatic logic future trend and system level perspective

    CERN Document Server

    Teichmann, Philip

    2012-01-01

    Adiabatic logic is a potential successor for static CMOS circuit design when it comes to ultra-low-power energy consumption. Future development like the evolutionary shrinking of the minimum feature size as well as revolutionary novel transistor concepts will change the gate level savings gained by adiabatic logic. In addition, the impact of worsening degradation effects has to be considered in the design of adiabatic circuits. The impact of the technology trends on the figures of merit of adiabatic logic, energy saving potential and optimum operating frequency, are investigated, as well as degradation related issues. Adiabatic logic benefits from future devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias Temperature Instability than static CMOS circuits. Major interest also lies on the efficient generation of the applied power-clock signal. This oscillating power supply can be used to save energy in short idle times by disconnecting circuits. An efficient way to generate the p...

  13. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  14. Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks.

    Science.gov (United States)

    Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V

    2017-02-06

    We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.

  15. Preserving atomic coherences for light storage in Pr3+:Y2SiO5 driven by an OPO laser system

    International Nuclear Information System (INIS)

    Mieth, Simon Robert

    2016-01-01

    This work had three objectives to improve an EIT-based, solid-state memory for light. First, we set up a solid-state-laser system for radiation at the wavelength λ=606 nm, i.e., the optical transition in our storage medium, the rare-earth-ion doped crystal PrYSO. Second, we implemented efficient rephasing of optically driven coherences after EIT-based light storage by means of rapid adiabatic passage (RAP) pulses. Last but not least we implemented a novel coherence population mapping (CPM) protocol in order to shelve fragile atomic coherences in robust and long-lived populations in PrYSO. Solid-State-Laser System: We developed a solid-state-laser system based on two nonlinear processes, optical parametric oscillation (OPO) and intra-cavity sum-frequency generation (SFG). The system is designed to generate continuous wave output in the orange part of the visible spectrum. OPO and SFG are implemented on a periodically poled lithium niobate crystal (PPLN). The crystal is divided into sections with appropriate poling periods for quasi phase matching of OPO and SFG. In addition, the poling period changes along the crystal height to allow tuning of the OPO-SFG output wavelength. The system provides output in a range between λ vis =605 nm and λ vis =616 nm with an output power P vis >1 W. For light storage experiments, we operate the OPO-SFG at λ=606 nm with a maximum available output power of P vis =1.3 W. An external Pound-Drever-Hall (PDH) frequency stabilization reduces the laser linewidth to Δv∼60 -10 +20 kHz on a time scale of 100 ms. The OPO-SFG provides stable output for more than 30 hours with a root-mean-square power jitter below 2%. In addition, we use three discrete poling periods in the SFG section, whereas the OPO section consists of a fanned poling structure. Adiabatic Rephasing of Atomic Coherences: We experimentally implemented rephasing of optically driven coherences in PrYSO by RAP pulses. As a feature of adiabatic pulses, the parameters for RAP

  16. Design of ternary clocked adiabatic static random access memory

    International Nuclear Information System (INIS)

    Wang Pengjun; Mei Fengna

    2011-01-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)

  17. Design of ternary clocked adiabatic static random access memory

    Science.gov (United States)

    Pengjun, Wang; Fengna, Mei

    2011-10-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.

  18. Tunneling induced dark states and the controllable resonance fluorescence spectrum in quantum dot molecules

    International Nuclear Information System (INIS)

    Tian, Si-Cong; Tong, Cun-Zhu; Ning, Yong-Qiang; Qin, Li; Liu, Yun; Wan, Ren-Gang

    2014-01-01

    Optical spectroscopy, a powerful tool for probing and manipulating quantum dots (QDs), has been used to investigate the resonance fluorescence spectrum from linear triple quantum dot molecules controlled by tunneling, using atomic physics methods. Interesting features such as quenching and narrowing of the fluorescence are observed. In such molecules the tunneling between the quantum dots can also induce a dark state. The results are explained by the transition properties of the dressed states generated by the coupling of the laser and the tunneling. Unlike the atomic system, in such quantum dot molecules quantum coherence can be induced using tunneling, requiring no coupling lasers, which will allow tunneling controllable quantum dot molecules to be applied to quantum optics and photonics. (paper)

  19. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  20. Shortcuts to adiabaticity in cutting a spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Feng-Hua [Department of Physics, Ocean University of China, Qingdao 266100 (China); School of Computer Engineering, Qingdao Technological University, Qingdao 266033 (China); Wang, Zhao-Ming, E-mail: mingmoon78@126.com [Department of Physics, Ocean University of China, Qingdao 266100 (China); Gu, Yong-Jian, E-mail: yjgu@ouc.edu.cn [Department of Physics, Ocean University of China, Qingdao 266100 (China)

    2017-01-15

    “Shortcuts to adiabaticity” represents a strategy for accelerating a quantum adiabatic process, is useful for preparing or manipulating a quantum state. In this paper, we investigate the adiabaticity in the dynamics of an XY spin chain. During the process of cutting one long chain into two short chains, a “shortcut” can be obtained by applying a sequence of external pulses. The fidelity which measures the adiabaticity can be dramatically enhanced by increasing the pulse strength or pulse duration time. This reliability can be kept for different types of pulses, such as random pulse time interval or random strength. The free choice of the pulse can be explained by the adiabatic representation of the Hamiltonian, and it shows that the control effects are determined by the integral of the control function in the time domain. - Highlights: • “Shortcuts to adiabaticity” is proposed by applying external pulses. • The adiabaticity can be accelerated by increasing pulse strength or duration time. • Control effects are determined by the integral of the control function with respect to time.

  1. Helicity coherence in binary neutron star mergers and nonlinear feedback

    Science.gov (United States)

    Chatelain, Amélie; Volpe, Cristina

    2017-02-01

    Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.

  2. Dynamical constraints and adiabatic invariants in chemical reactions.

    Science.gov (United States)

    Lorquet, J C

    2007-08-23

    For long-range electrostatic potentials and, more generally, when the topography of the potential energy surface is locally simple, the reaction path coordinate is adiabatically separable from the perpendicular degrees of freedom. For the ion-permanent dipole and ion-quadrupole interactions, the Poisson bracket of the adiabatic invariant decreases with the interfragment distance more rapidly than the electrostatic potential. The smaller the translational momentum, the moment of inertia of the neutral fragment, and the dipole or quadrupole moments are, the more reliable the adiabatic approximation is, as expected from the usual argumentation. Closed-form expressions for an effective one-dimensional potential in an adiabatic Hamiltonian are given. Connection with a model where the decoupling is exact is obtained in the limit of an infinitely heavy dipole. The dynamics is also constrained by adiabatic invariance for a harmonic valley about a curved reaction path, as shown by the reaction path Hamiltonian method. The maximum entropy method reveals that, as a result of the invariance properties of the entropy, constraints whose validity has been demonstrated locally only subsist in all parts of phase space. However, their form varies continuously, and they are not necessarily expressed in simple terms as they are in the asymptotic region. Therefore, although the influence of adiabatic invariance has been demonstrated at asymptotically large values of the reaction coordinate only, it persists in more interesting ranges.

  3. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    Science.gov (United States)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  4. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    Science.gov (United States)

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  5. Transparent control of three-body selective destruction of tunneling via unusual states

    International Nuclear Information System (INIS)

    Luo, Yunrong; Tan, Jintao; Hai, Wenhua; Lu, Gengbiao

    2015-01-01

    We study transparent control of quantum tunneling via unusual analytical solutions for three bosons held in a driven double-well. Under high-frequency approximation, we analytically obtain the fine band structure and general non-Floquet state. At some collapse points of the quasi-energy spectra, the latter becomes the unusual special states. Based on the analytical results and their numerical correspondences, we clearly reveal the mechanism of coherent tunneling and suggest a scheme to transparently control the tunneling of three bosons from one well to another. The results can be observed with the current experimental capability (Chen et al 2011 Phys. Rev. Lett. 107 210405) (paper)

  6. Quantum Tunneling in Breather Nano-colliders

    OpenAIRE

    Dubinko, V. I.

    2015-01-01

    In many crystals with sufficient anharmonicity, a special kind of lattice vibrations, namely, discrete breathers (DBs) can be excited either thermally or by external triggering, in which the amplitude of atomic oscillations greatly exceeds that of harmonic oscillations (phonons). Coherency and persistence of large atomic oscillations in DBs may have drastic effect on quantum tunneling due to correlation effects discovered by Schrodinger and Robertson in 1930. These effects have been applied r...

  7. Quantum adiabatic approximation and the geometric phase

    International Nuclear Information System (INIS)

    Mostafazadeh, A.

    1997-01-01

    A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society

  8. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  9. Adiabatic graph-state quantum computation

    International Nuclear Information System (INIS)

    Antonio, B; Anders, J; Markham, D

    2014-01-01

    Measurement-based quantum computation (MBQC) and holonomic quantum computation (HQC) are two very different computational methods. The computation in MBQC is driven by adaptive measurements executed in a particular order on a large entangled state. In contrast in HQC the system starts in the ground subspace of a Hamiltonian which is slowly changed such that a transformation occurs within the subspace. Following the approach of Bacon and Flammia, we show that any MBQC on a graph state with generalized flow (gflow) can be converted into an adiabatically driven holonomic computation, which we call adiabatic graph-state quantum computation (AGQC). We then investigate how properties of AGQC relate to the properties of MBQC, such as computational depth. We identify a trade-off that can be made between the number of adiabatic steps in AGQC and the norm of H-dot as well as the degree of H, in analogy to the trade-off between the number of measurements and classical post-processing seen in MBQC. Finally the effects of performing AGQC with orderings that differ from standard MBQC are investigated. (paper)

  10. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  11. Magnus approximation in the adiabatic picture

    International Nuclear Information System (INIS)

    Klarsfeld, S.; Oteo, J.A.

    1991-01-01

    A simple approximate nonperturbative method is described for treating time-dependent problems that works well in the intermediate regime far from both the sudden and the adiabatic limits. The method consists of applying the Magnus expansion after transforming to the adiabatic basis defined by the eigenstates of the instantaneous Hamiltonian. A few exactly soluble examples are considered in order to assess the domain of validity of the approximation. (author) 32 refs., 4 figs

  12. Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage

    International Nuclear Information System (INIS)

    Feng Zhifang; Li Weidong; Wang Lirong; Xiao Liantuan; Jia Suotang

    2009-01-01

    The optimum conditions for producing Cs 2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended 'two-photon' resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.

  13. Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage

    Science.gov (United States)

    Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang

    2009-10-01

    The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.

  14. Semi adiabatic theory of seasonal Markov processes

    Energy Technology Data Exchange (ETDEWEB)

    Talkner, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.

  15. Adiabatic quantum search algorithm for structured problems

    International Nuclear Information System (INIS)

    Roland, Jeremie; Cerf, Nicolas J.

    2003-01-01

    The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover's algorithm. In this paper, we study how the structure of the search problem may be exploited to further improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a complexity that, although still exponential, grows with a reduced order in the problem size

  16. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  17. Approximability of optimization problems through adiabatic quantum computation

    CERN Document Server

    Cruz-Santos, William

    2014-01-01

    The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l

  18. Spin interference of neutrons tunneling through magnetic thin films

    International Nuclear Information System (INIS)

    Hino, Masahiro; Achiwa, Norio; Tasaki, Seiji; Ebisawa, Toru; Akiyoshi, Tsunekazu; Kawai, Takeshi.

    1996-01-01

    Larmor precession of a neutron spin is represented as the superposition of the wave functions of the two Stern-Gerlach states ↑ and ↓. A transverse neutron spin echo (NSE) spectrometer can hence be used as a neutron spin interferometer (NSI) by setting a magnetic film, such as iron and permalloy45 (Fe 55 Ni 45 ), thin enough to permit tunneling at an incident angle above and below the critical angle of the total reflection in the Larmor precession field. The NSI can be used to study spin coherent superposition and rotation of the Larmor precession through a magnetic thin film for a tunneling ↑ spin neutron and a non-tunneling ↓ spin neutron and to get the tunneling time using Larmor clock. The NSI experiments were carried out to measure the shifts of NSE signals transmitted through magnetic iron films with thicknesses of 200 and 400 A and those magnetic permalloy45 films with thicknesses of 200 and 400 A, respectively, as a function of the incident angle. Then even in tunneling ↑ spin neutron and non-tunneling ↓ spin neutron, NSE signal was observed. The phase delay was measured in iron and permalloy45 films with thickness of 200 A, and the tunneling time using Larmor clock was estimated to be 4 ± 0.6 x 10 -9 sec. (author)

  19. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  20. Polaronic and bipolaronic structures in the adiabatic Hubbard-Holstein model involving 2 electrons and its extensions

    International Nuclear Information System (INIS)

    Proville, L.

    1998-01-01

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.)

  1. Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.

    Science.gov (United States)

    Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z

    2017-10-25

    Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.

  2. Are the reactions of quinones on graphite adiabatic?

    International Nuclear Information System (INIS)

    Luque, N.B.; Schmickler, W.

    2013-01-01

    Outer sphere electron transfer reactions on pure metal electrodes are often adiabatic and hence independent of the electrode material. Since it is not clear, whether adiabatic electron transfer can also occur on a semi-metal like graphite, we have re-investigated experimental data presented in a recent communication by Nissim et al. [Chemical Communications 48 (2012) 3294] on the reactions of quinones on graphite. We have supplemented their work by DFT calculations and conclude, that these reactions are indeed adiabatic. This contradicts the assertion of Nissim et al. that the rates are proportional to the density of states at the Fermi level

  3. Improving the positive feedback adiabatic logic familiy

    Directory of Open Access Journals (Sweden)

    J. Fischer

    2004-01-01

    Full Text Available Positive Feedback Adiabatic Logic (PFAL shows the lowest energy dissipation among adiabatic logic families based on cross-coupled transistors, due to the reduction of both adiabatic and non-adiabatic losses. The dissipation primarily depends on the resistance of the charging path, which consists of a single p-channel MOSFET during the recovery phase. In this paper, a new logic family called Improved PFAL (IPFAL is proposed, where all n- and pchannel devices are swapped so that the charge can be recovered through an n-channel MOSFET. This allows to decrease the resistance of the charging path up to a factor of 2, and it enables a significant reduction of the energy dissipation. Simulations based on a 0.13µm CMOS process confirm the improvements in terms of power consumption over a large frequency range. However, the same simple design rule, which enables in PFAL an additional reduction of the dissipation by optimal transistor sizing, does not apply to IPFAL. Therefore, the influence of several sources of dissipation for a generic IPFAL gate is illustrated and discussed, in order to lower the power consumption and achieve better performance.

  4. Adiabatic invariants of the extended KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)

    2017-01-30

    When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.

  5. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  6. Adiabatically steered open quantum systems: Master equation and optimal phase

    International Nuclear Information System (INIS)

    Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.

    2010-01-01

    We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.

  7. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  8. Superconducting system for adiabatic quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)

    2006-06-01

    We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.

  9. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.

    Science.gov (United States)

    Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M

    2007-05-09

    The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.

  10. Adiabatic quantum computation

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.

    2018-01-01

    Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.

  11. Adiabatic rotation, quantum search, and preparation of superposition states

    International Nuclear Information System (INIS)

    Siu, M. Stewart

    2007-01-01

    We introduce the idea of using adiabatic rotation to generate superpositions of a large class of quantum states. For quantum computing this is an interesting alternative to the well-studied 'straight line' adiabatic evolution. In ways that complement recent results, we show how to efficiently prepare three types of states: Kitaev's toric code state, the cluster state of the measurement-based computation model, and the history state used in the adiabatic simulation of a quantum circuit. We also show that the method, when adapted for quantum search, provides quadratic speedup as other optimal methods do with the advantages that the problem Hamiltonian is time independent and that the energy gap above the ground state is strictly nondecreasing with time. Likewise the method can be used for optimization as an alternative to the standard adiabatic algorithm

  12. Dependence of adiabatic population transfer on pulse profile

    Indian Academy of Sciences (India)

    Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends ...

  13. Adiabatic, chaotic and quasi-adiabatic charged particle motion in two-dimensional magnetic field reversals

    International Nuclear Information System (INIS)

    Buechner, J.M.

    1989-01-01

    For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab

  14. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Science.gov (United States)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  15. Muonic molecules as three-body Coulomb problem in adiabatic approximation

    International Nuclear Information System (INIS)

    Decker, M.

    1994-04-01

    The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d 3 Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)

  16. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  17. Adiabatic Compression Sensitivity of AF-M315E

    Science.gov (United States)

    2015-07-01

    Brand for their technical expertise and guidance. He also wishes to thank Mr. Stephen McKim from NASA Goddard Space Flight Center for his assistance...Wilson, D. B., and Stoltzfus, J. M. "Adiabatic Compression of Oxygen: Real Fluid Temperatures," 2000. 10Ismail, I. M. K., and Hawkins , T. W. "Adiabatic

  18. Controlling Correlated Tunneling and Superexchange Interactions with ac-Driven Optical Lattices

    International Nuclear Information System (INIS)

    Chen, Yu-Ao; Nascimbene, Sylvain; Aidelsburger, Monika; Atala, Marcos; Trotzky, Stefan; Bloch, Immanuel

    2011-01-01

    The dynamical control of tunneling processes of single particles plays a major role in science ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in molecules. Here we show how such control can be extended to the regime of correlated tunneling of strongly interacting particles. Through a periodic modulation of a biased tunnel contact, we have been able to coherently control single-particle and correlated two-particle hopping processes. We have furthermore been able to extend this control to superexchange spin interactions in the presence of a magnetic-field gradient. Such photon-assisted superexchange processes constitute a novel approach to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising-type spin couplings can be fully controlled in magnitude and sign.

  19. Adiabatic and non-adiabatic electron oscillations in a static electric field

    International Nuclear Information System (INIS)

    Wahlberg, C.

    1977-03-01

    The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers

  20. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.

    Science.gov (United States)

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2014-11-07

    Zero-point and excited level splittings due to double-proton tunneling are calculated for porphycene and the results are compared with experiment. The calculation makes use of a multidimensional imaginary-mode Hamiltonian, diagonalized directly by an effective reduction of its dimensionality. Porphycene has a complex potential energy surface with nine stationary configurations that allow a variety of tunneling paths, many of which include classically accessible regions. A symmetry-based approach is used to show that the zero-point level, although located above the cis minimum, corresponds to concerted tunneling along a direct trans - trans path; a corresponding cis - cis path is predicted at higher energy. This supports the conclusion of a previous paper [Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Chem. Phys. 127, 174513 (2007)] based on the instanton approach to a model Hamiltonian of correlated double-proton transfer. A multidimensional tunneling Hamiltonian is then generated, based on a double-minimum potential along the coordinate of concerted proton motion, which is newly evaluated at the RI-CC2/cc-pVTZ level of theory. To make it suitable for diagonalization, its dimensionality is reduced by treating fast weakly coupled modes in the adiabatic approximation. This results in a coordinate-dependent mass of tunneling, which is included in a unique Hermitian form into the kinetic energy operator. The reduced Hamiltonian contains three symmetric and one antisymmetric mode coupled to the tunneling mode and is diagonalized by a modified Jacobi-Davidson algorithm implemented in the Jadamilu software for sparse matrices. The results are in satisfactory agreement with the observed splitting of the zero-point level and several vibrational fundamentals after a partial reassignment, imposed by recently derived selection rules. They also agree well with instanton calculations based on the same Hamiltonian.

  1. Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata

    OpenAIRE

    Toth, Geza; Lent, Craig S.

    2000-01-01

    Recent experiments have demonstrated a working cell suitable for implementing the Quantum-dot Cellular Automata (QCA) paradigm. These experiments have been performed using metal island clusters. The most promising approach to QCA operation involves quasi-adiabatically switching the cells. This has been analyzed extensively in gated semiconductor cells. Here we present a metal island cell structure that makes quasi-adiabatic switching possible. We show how this permits quasi-adiabatic clocking...

  2. Non-adiabatic effect on Laughlin's argument of the quantum Hall effect

    International Nuclear Information System (INIS)

    Maruyama, I; Hatsugai, Y

    2009-01-01

    We have numerically studied a non-adiabatic charge transport in the quantum Hall system pumped by a magnetic flux, as one of the simplest theoretical realizations of non-adiabatic Thouless pumping. In the adiabatic limit, a pumped charge is quantized, known as Laughlin's argument in a cylindrical lattice. In a uniform electric field, we obtained a formula connecting quantized pumping in the adiabatic limit and no-pumping in the sudden limit. The intermediate region between the two limits is determined by the Landau gap. A randomness or impurity effect is also discussed.

  3. Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...

  4. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    Science.gov (United States)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  5. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  6. Adiabatic quantum simulators

    Directory of Open Access Journals (Sweden)

    J. D. Biamonte

    2011-06-01

    Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.

  7. Coherent Control of Lithium Atom by Adiabatic Rapid Passage with Chirped Microwave Pulses

    International Nuclear Information System (INIS)

    Jiang Li-Juan; Zhang Xian-Zhou; Ma Huan-Qiang; Xia Li-Hua; Jia Guang-Rui

    2012-01-01

    Using the time-dependent multilevel approach and the B-spline technique, populations of Rydberg lithium atoms in chirped microwave pulses are demonstrated. Firstly the populations of two energy levels are controlled by the microwave pulse parameters. Secondly the atoms experience the consequence 70s-71p-72s-73p-74s in a microwave field using optimized microwave field parameters. It is shown that the coherent control of the population transfer in the microwave field from the initial to the target states can be accomplished by optimizing the microwave field parameters. (atomic and molecular physics)

  8. Modeling non-adiabatic photoexcited reaction dynamics in condensed phases

    International Nuclear Information System (INIS)

    Coker, D.F.

    2003-01-01

    Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites

  9. Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors

    Science.gov (United States)

    He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team

    2014-03-01

    Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.

  10. A design study of non-adiabatic electron guns

    International Nuclear Information System (INIS)

    Barroso, J.J.; Stellati, C.

    1994-01-01

    The design of a non-adiabatic gun capable of producing a 10 A, 50 KeV high-quality laminar electron beam is reported. In contrast to the magnetron injection gun with a conical cathode, where the beam is generated initially with a transverse velocity component, in the non-adiabatic gun electrons are extracted in a direction parallel to the axial guide magnetic field. The beam electrons acquire cyclotron motion as result of non-adiabatic processes in a strong non uniform electric field across the modulation anode. Such an extraction method gives rise to favourable features that are explored throughout the work. An extensive numerical simulation study has also been done to minimize velocity and energy spreads. (author). 3 refs, 5 figs, 1 tab

  11. Adiabatic and isothermal resistivities

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1989-01-01

    The force-balance method is used to calculate the isothermal resistivity to first order in the electric field. To lowest order in the impurity potential, the isothermal resistivity disagrees with the adiabatic results of the Kubo formula and the Boltzmann equation. However, an expansion of the isothermal resistivity in powers of the impurity potential is divergent, with two sets of divergent terms. The first set arises from the density matrix of the relative electron-phonon system. The second set arises from the explicit dependence of the density matrix on the electric field, which was ignored by force-balance calculations. These divergent contributions are calculated inductively, by applying a recursion relation for the Green's functions. Using the λ 2 t→∞ limit of van Hove, I show that the resummation of these divergent terms yields the same result for the resistivity as the adiabatic calculations, in direct analogy with the work of Argyres and Sigel, and Huberman and Chester

  12. Coherence in a transmon qubit with epitaxial tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, Martin [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Karlsruhe Institute of Technology (Germany); Kline, Jeffrey; Vissers, Michael; Sandberg, Martin; Pappas, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Wisbey, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Saint Louis University, St. Louis, Missouri 63103 (United States); Johnson, Blake; Ohki, Thomas [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States)

    2012-07-01

    Transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors were developed. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T{sub 1} is.72-.86 {mu} sec and the ensemble dephasing time T{sub 2}{sup *} is slightly larger than T{sub 1}. The dephasing time T{sub 2} (1.36 {mu} sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements.

  13. Teleportation of an Unknown Atomic State via Adiabatic Passage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.

  14. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures.

    Science.gov (United States)

    Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel

    2017-06-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

  15. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    Science.gov (United States)

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Controlled release of stored pulses in a double-quantum-well structure

    International Nuclear Information System (INIS)

    Carreno, F; Anton, M A

    2009-01-01

    We show that an asymmetric double-quantum-well structure can operate as an optical memory. The double quantum wells are modelled like an atomic ensemble of four-level atoms in the Λ-V-type configuration with vacuum-induced coherence arising from resonant tunnelling through the ultra-thin potential energy barrier between the wells. A weak quantum field connects the ground level with the two upper levels and an auxiliary classical control field connects the intermediate level with the upper levels. The quantum field can be mapped into two channels. One channel results from the adiabatic change of the control field which maps the incoming quantum field into the coherence of the two lower levels like in a Λ-type atomic ensemble. The other channel results from the mapping of the quantum field into a combination of coherences between the two upper levels and the ground level, and it is allowed by the adiabatic change of the upper level splitting via an external voltage. The possibility of releasing multiple pulses from the medium resulting from the existence of a non-evolving component of the two-channel memory is shown. A physical picture has been developed providing an explanation of the performance of the device.

  17. Low-temperature phonoemissive tunneling rates in single molecule magnets

    Science.gov (United States)

    Liu, Yun; Garg, Anupam

    2016-03-01

    Tunneling between the two lowest energy levels of single molecule magnets with Ising type anisotropy, accompanied by the emission or absorption of phonons, is considered. Quantitatively accurate calculations of the rates for such tunneling are performed for a model Hamiltonian especially relevant to the best studied example, Fe8. Two different methods are used: high-order perturbation theory in the spin-phonon interaction and the non-Ising-symmetric parts of the spin Hamiltonian, and a novel semiclassical approach based on spin-coherent-state-path-integral instantons. The methods are found to be in good quantitative agreement with other, and consistent with previous approaches to the problem. The implications of these results for magnetization of molecular solids of these molecules are discussed briefly.

  18. Estimation of the adiabatic energy limit versus beta in Baseball II

    International Nuclear Information System (INIS)

    Foote, J.H.

    1976-01-01

    Several estimates of the adiabatic energy limit versus beta in Baseball II are summarized, and the calculational methods used to obtain them are described. Some estimates are based on analytic expressions; for others, particle orbits are calculated, magnetic-moment jumps are inspected, and adiabatic limits then derived. The results are sensitive to the assumed variation of the combined vacuum-plus-plasma magnetic field. The calculated adiabatic energy limit falls rapidly with beta, even for a gradual magnetic-field variation. If we assume a sharp depression in the axial profile of the combined magnetic field for a finite-beta plasma, the adiabatic limit can be further markedly reduced

  19. Complex magnetic monopoles, geometric phases and quantum evolution in the vicinity of diabolic and exceptional points

    International Nuclear Information System (INIS)

    Nesterov, Alexander I; Aceves de la Cruz, F

    2008-01-01

    We consider the geometric phase and quantum tunneling in the vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopoles. In the limit of weak coupling, the leading contribution to the real part of the geometric phase is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the imaginary part starts with a dipole-like field. For a two-level system governed by a generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic, complex, geometric phase by integrating over the complex Bloch sphere. We apply our results to study a dissipative two-level system driven by a periodic electromagnetic field and show that, in the vicinity of the exceptional point, the complex geometric phase behaves like a step-function. Studying the tunneling process near and at the exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this region of the parameters. The two-sheeted hyperbolic monopole is associated with the incoherent regime. We show that the dissipation results in a series of pulses in the complex geometric phase which disappear when the dissipation dies out. Such a strong coupling effect of the environment is beyond the conventional adiabatic treatment of the Berry phase

  20. Adiabatic passage and ensemble control of quantum systems

    International Nuclear Information System (INIS)

    Leghtas, Z; Sarlette, A; Rouchon, P

    2011-01-01

    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.

  1. In situ scanning tunnelling microscopy of redox molecules. Coherent electron transfer at large bias voltages

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Kuznetsov, A.M.; Ulstrup, Jens

    2003-01-01

    Theories of in situ scanning tunnelling microscopy (STM) of molecules with redox levels near the substrate and tip Fermi levels point to 'spectroscopic' current-overpotential features. Prominent features require a narrow 'probing tip', i.e. a small bias voltage, eV(bias), compared...... a broad tunnelling current-overpotential range at a constant (large) bias voltage of +0.2 V. The current is found to be constant over a 0.25 V overpotential range, which covers roughly the range where the oxidised and reduced redox levels are located within the energy tip. STM contrast and apparent...... of previous theoretical work on in situ STM of redox molecules, to large bias voltages, \\eV(bias)\\ > E-r. Large bias voltages give tunnelling contrasts independent of the overpotential over a broad range, as both the oxidised and reduced redox levels are located within the 'energy tip' between the substrate...

  2. The propagation of sound in tunnels

    Science.gov (United States)

    Li, Kai Ming; Iu, King Kwong

    2002-11-01

    The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.

  3. Topological structures of adiabatic phase for multi-level quantum systems

    International Nuclear Information System (INIS)

    Liu Zhengxin; Zhou Xiaoting; Liu Xin; Liu Xiongjun; Chen Jingling

    2007-01-01

    The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) has a monopole structure, the curvature 2-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures

  4. On Adiabatic Processes at the Elementary Particle Level

    OpenAIRE

    A, Michaud

    2016-01-01

    Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.

  5. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  6. Interplay between electric and magnetic effect in adiabatic polaritonic systems

    KAUST Repository

    Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; Chirumamilla, Manohar; Giugni, Andrea; De Angelis, Francesco De; Das, Gobind; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2013-01-01

    We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.

  7. Adiabatic condition and the quantum hitting time of Markov chains

    International Nuclear Information System (INIS)

    Krovi, Hari; Ozols, Maris; Roland, Jeremie

    2010-01-01

    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P ' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP ' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

  8. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  9. Collapse and equilibrium of rotating, adiabatic clouds

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand

  10. A Study of Coherent Structures using Wavelet Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kaspersen, J H

    1996-05-01

    Turbulence is important in many fields of engineering, for example in estimating drag or minimizing drag on surfaces. It is known that turbulent flows contain coherent structures, which implies that a turbulent shear flow can be decomposed into coherent structures and random motion. It is generally accepted that coherent structures are responsible for significant transport of mass, heat and momentum. This doctoral thesis presents and discusses a new algorithm to detect coherent structures based on Wavelet transformations, a transform similar to the Fourier transform but providing information on both frequency and scale. The new detection scheme does not require any predefined threshold or integration time, and its general performance is found to be very good. Wind tunnel experiments were performed to obtain data for analysis. Scalograms resulting from the Wavelet transform show clearly that coherent structures exist in turbulent flows. These structures are shown to contribute considerably to the shear stresses. The contribution from the organized motion to the normal stresses close to the wall appears to be considerably smaller. Direct Navier Stokes (DNS) channel flow seems to be more organized than Zero Pressure Gradient (ZPG) flows. The topology of ZPG flows was studied using a multiple hot wire arrangement and conditionally averaged streamlines based on detections from the Wavelet method are presented. It is shown that the coherent structures produce large amounts of both vorticity and strain at the detection point. 56 refs., 92 figs., 3 tabs.

  11. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Science.gov (United States)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  12. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B. [Research Department of Biomedical Engineering, Institute of Electrical Engineering, Chinese Academy of Science, Beijing 100190 (China); Qin, G., E-mail: wangjunfang@mail.iee.ac.cn, E-mail: qingang@hit.edu.cn [School of Science, Harbin Institute of Technology, Shenzhen 518055 (China)

    2017-08-20

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  13. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  14. Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing

    International Nuclear Information System (INIS)

    Wang, J. F.; Ma, Q. M.; Song, T.; Yuan, S. B.; Qin, G.

    2017-01-01

    The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.

  15. Calculation of a hydrogen molecule in the adiabatic approximation

    International Nuclear Information System (INIS)

    Vukajlovich, F.R.; Mogilevskij, O.A.; Ponomarev, L.I.

    1979-01-01

    The adiabatic approximation js used for calculating the energy levels of a hydrogen molecule, i.e. of the simplest four-body system with a Coulomb interaction. The aim of this paper is the investigation of the possible use of the adiabatic method in the molecular problems. The most effective regions of its application are discussed. An infinite system of integro-differential equations is constructed, which describes the hydrogen molecule in the adiabatic approximation with the effective potentials taking into account the corrections to the nuclear motion. The energy of the first three vibrational states of the hydrogen molecule is calculated and compared with the experimental data. The convergence of the method is discussed

  16. Narrow-line laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.

    2018-02-01

    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.

  17. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  18. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

    Science.gov (United States)

    Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi

    2018-04-01

    The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

  19. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation

    International Nuclear Information System (INIS)

    Lidar, Daniel A.; Rezakhani, Ali T.; Hamma, Alioscia

    2009-01-01

    We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.

  20. Vibronic dephasing model for coherent-to-incoherent crossover in DNA

    Science.gov (United States)

    Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas

    2018-05-01

    In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.

  1. Pulsed adiabatic structure and complete population transfer

    International Nuclear Information System (INIS)

    Shore, B.W.

    1992-10-01

    Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses

  2. Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem

    International Nuclear Information System (INIS)

    Pan, Yu; James, Matthew R.; Miao, Zibo; Amini, Nina H.; Ugrinovskii, Valery

    2015-01-01

    Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)

  3. Non-adiabatic generator-coordinate calculation of H2+

    International Nuclear Information System (INIS)

    Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de

    1982-10-01

    A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt

  4. Adiabatic supernova expansion into the circumstellar medium

    International Nuclear Information System (INIS)

    Band, D.L.; Liang, E.P.

    1987-01-01

    We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs

  5. Dynamic mapping of conical intersection seams: A general method for incorporating the geometric phase in adiabatic dynamics in polyatomic systems.

    Science.gov (United States)

    Xie, Changjian; Malbon, Christopher L; Yarkony, David R; Guo, Hua

    2017-07-28

    The incorporation of the geometric phase in single-state adiabatic dynamics near a conical intersection (CI) seam has so far been restricted to molecular systems with high symmetry or simple model Hamiltonians. This is due to the fact that the ab initio determined derivative coupling (DC) in a multi-dimensional space is not curl-free, thus making its line integral path dependent. In a recent work [C. L. Malbon et al., J. Chem. Phys. 145, 234111 (2016)], we proposed a new and general approach based on an ab initio determined diabatic representation consisting of only two electronic states, in which the DC is completely removable, so that its line integral is path independent in the simply connected domains that exclude the CI seam. Then with the CIs included, the line integral of the single-valued DC can be used to construct the complex geometry-dependent phase needed to exactly eliminate the double-valued character of the real-valued adiabatic electronic wavefunction. This geometry-dependent phase gives rise to a vector potential which, when included in the adiabatic representation, rigorously accounts for the geometric phase in a system with an arbitrary locus of the CI seam and an arbitrary number of internal coordinates. In this work, we demonstrate this approach in a three-dimensional treatment of the tunneling facilitated dissociation of the S 1 state of phenol, which is affected by a C s symmetry allowed but otherwise accidental seam of CI. Here, since the space is three-dimensional rather than two-dimensional, the seam is a curve rather than a point. The nodal structure of the ground state vibronic wavefunction is shown to map out the seam of CI.

  6. Dzyaloshinskii-Moriya interactions and adiabatic magnetization dynamics in molecular magnets

    NARCIS (Netherlands)

    De Raedt, H; Miyashita, S; Michielsen, K; Machida, M

    A microscopic model of the molecular magnet V-15 is used to study mechanisms for the adiabatic change of the magnetization in time-dependent magnetic fields. The effects of the Dzyaloshinskii-Moriya interaction, the most plausible source for the energy-level repulsions that lead to adiabatic changes

  7. Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats

    Directory of Open Access Journals (Sweden)

    Ricardo T. Paéz-Hernández

    2017-11-01

    Full Text Available This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered.

  8. Ramsey numbers and adiabatic quantum computing.

    Science.gov (United States)

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  9. First Principles Study of Electron Tunneling through Ice

    KAUST Repository

    Cucinotta, Clotilde S.; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  10. First Principles Study of Electron Tunneling through Ice

    KAUST Repository

    Cucinotta, Clotilde S.

    2012-10-25

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  11. Probing Entanglement in Adiabatic Quantum Optimization with Trapped Ions

    Directory of Open Access Journals (Sweden)

    Philipp eHauke

    2015-04-01

    Full Text Available Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.

  12. Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.

    Science.gov (United States)

    Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M

    2017-06-09

    We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.

  13. A note on the geometric phase in adiabatic approximation

    International Nuclear Information System (INIS)

    Tong, D.M.; Singh, K.; Kwek, L.C.; Fan, X.J.; Oh, C.H.

    2005-01-01

    The adiabatic theorem shows that the instantaneous eigenstate is a good approximation of the exact solution for a quantum system in adiabatic evolution. One may therefore expect that the geometric phase calculated by using the eigenstate should be also a good approximation of exact geometric phase. However, we find that the former phase may differ appreciably from the latter if the evolution time is large enough

  14. Improved efficiency of stimulated Raman adiabatic passage in photoassociation of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Mackie, Matt; Suominen, Kalle-Antti; Haerkoenen, Kari; Collin, Anssi; Javanainen, Juha

    2004-01-01

    We theoretically examine Raman photoassociation of a Bose-Einstein condensate, revisiting stimulated Raman adiabatic passage (STIRAP). Due to collisional mean-field shifts, efficient molecular conversion requires strong coupling and low density, either of which can bring about rogue photodissociation to noncondensate modes. We demonstrate explicitly that rogue transitions are negligible for low excited-state fractions and photodissociation that is slower than the STIRAP time scale. Moreover, we derive a reduced-parameter model of collisions, and thereby find that a gain in the molecular conversion efficiency can be obtained by adjusting the atom-atom scattering length with off-resonant magnetoassociation. This gain saturates when the atom-atom scattering length is tuned to a specific fraction of either the molecule-molecule or atom-molecule scattering length. We conclude that a fully optimized STIRAP scheme may offer the best chance for achieving coherent conversion from an atomic to a molecular condensate with photoassociation

  15. An Adiabatic Phase-Matching Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [DESY; Floettmann, Klaus [DESY; Piot, Philippe [Northern Illinois U.; Kaertner, Franz X. [Hamburg U.; Assmann, Ralph [DESY

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that a $\\sim 200$-keV electron beam can be accelerated to an energy of $\\sim10$~MeV over $\\sim 10$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  16. Adiabatic transfer of energy fluctuations between membranes inside an optical cavity

    Science.gov (United States)

    Garg, Devender; Chauhan, Anil K.; Biswas, Asoka

    2017-08-01

    A scheme is presented for the adiabatic transfer of average fluctuations in the phonon number between two membranes in an optical cavity. We show that by driving the cavity modes with external time-delayed pulses, one can obtain an effect analogous to stimulated Raman adiabatic passage in the atomic systems. The adiabatic transfer of fluctuations from one membrane to the other is attained through a "dark" mode, which is robust against decay of the mediating cavity mode. The results are supported with analytical and numerical calculations with experimentally feasible parameters.

  17. Gaussian tunneling model of c-axis twist Josephson junctions

    International Nuclear Information System (INIS)

    Bille, A.; Klemm, R.A.; Scharnberg, K.

    2001-01-01

    We calculate the critical current density J c J ((var p hi) 0 ) for Josephson tunneling between identical high-temperature superconductors twisted an angle (var p hi) 0 about the c axis. Regardless of the shape of the two-dimensional Fermi surface and for very general tunneling matrix elements, an order parameter (OP) with general d-wave symmetry leads to J c J (π/4)=0. This general result is inconsistent with the data of Li et al. [Phys. Rev. Lett. 83, 4160 (1999)] on Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212), which showed J c J to be independent of (var p hi) 0 . If the momentum parallel to the barrier is conserved in the tunneling process, J c J should vary substantially with the twist angle (var p hi) 0 when the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely isotropic. We quantify the degree of momentum nonconservation necessary to render J c J ((var p hi) 0 ) constant within experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using five specific models to describe the momentum dependence of the tunneling matrix element squared. From the data of Li et al., we conclude that the c-axis tunneling in Bi2212 must be very nearly incoherent, and that the OP must have a nonvanishing Fermi-surface average for T c . We further show that the apparent conventional sum-rule violation observed by Basov et al. [Science 283, 49 (1999)] can be consistent with such strongly incoherent c-axis tunneling.

  18. Resonant coherent quantum tunneling of the magnetization of spin-systems: Spin-parity effects

    NARCIS (Netherlands)

    Garcia-Pablos, D; Garcia, N; de Raedt, H.A.

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated to occur only for some specific resonant values of

  19. Convergence of hyperspherical adiabatic expansion for helium-like systems

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Pojda, V.Yu.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1988-01-01

    The convergence of hyperspherical adiabatic expansion has been studied numerically. The spectral problems arising after separation of variables are solved by the finite-difference and finite element methods. The energies of the ground and some doubly excited staes of a hydrogen ion are calculated in the six-channel approximation within the 10 -4 a.u. accuracy. Obtained results demonstrate a rapid convergence of the hyperspherical adiabatic expansion. 14 refs.; 5 tabs

  20. Tunneling magnetoresistance in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L. L.; Liang, S. H.; Liu, D. P.; Wei, H. X.; Han, X. F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Jian [Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong (China)

    2014-04-28

    We present a theoretical study of the tunneling magnetoresistance (TMR) and spin-polarized transport in Fe{sub 3}Si/MgO/Fe{sub 3}Si(001) magnetic tunnel junction (MTJ). It is found that the spin-polarized conductance and bias-dependent TMR ratios are rather sensitive to the structure of Fe{sub 3}Si electrode. From the symmetry analysis of the band structures, we found that there is no spin-polarized Δ{sub 1} symmetry bands crossing the Fermi level for the cubic Fe{sub 3}Si. In contrast, the tetragonal Fe{sub 3}Si driven by in-plane strain reveals half-metal nature in terms of Δ{sub 1} state. The giant TMR ratios are predicted for both MTJs with cubic and tetragonal Fe{sub 3}Si electrodes under zero bias. However, the giant TMR ratio resulting from interface resonant transmission for the former decreases rapidly with the bias. For the latter, the giant TMR ratio can maintain up to larger bias due to coherent transmission through the majority-spin Δ{sub 1} channel.

  1. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    Science.gov (United States)

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  2. Digitized adiabatic quantum computing with a superconducting circuit.

    Science.gov (United States)

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  3. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    Science.gov (United States)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  4. Investigation of spectral characteristics of tunnel photodiodes based on DLC nanofilms

    Science.gov (United States)

    Akchurin, Garif G.; Aban'shin, Nickolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Kochubey, Vyacheslav I.; Yakunin, Alexander N.

    2018-04-01

    The tunneling photo effect has been studied in a microdiode with an electrostatic field localized at an emitter based on a nanosized DLC structure. It is established the photocurrent, when the carbon nanoemitter is exposed by laser and tunable low-coherent radiation in the spectral range from UV to near IR with photons of low energy (below work function). A linear dependence of the photocurrent on the level of optical power in the range of micro- and milliwatt power is established. The effect of saturation of the current-voltage characteristics of the tunnel photocurrent associated with a finite concentration of non-equilibrium photoelectrons is observed. The observed spectral Watt-Amper characteristics can be adequately interpreted using a modified Fowler-Nordheim equation for non-equilibrium photoelectrons.

  5. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  6. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  7. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  8. Trapped Ion Quantum Computation by Adiabatic Passage

    International Nuclear Information System (INIS)

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-01-01

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  9. ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS

    International Nuclear Information System (INIS)

    Robertson, Brant; Goldreich, Peter

    2012-01-01

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  10. Adiabatic perturbation theory in quantum dynamics

    CERN Document Server

    Teufel, Stefan

    2003-01-01

    Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.

  11. Random matrix model of adiabatic quantum computing

    International Nuclear Information System (INIS)

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.

    2005-01-01

    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size

  12. Compact beam splitters in coupled waveguides using shortcuts to adiabaticity

    Science.gov (United States)

    Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen

    2018-04-01

    There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.

  13. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  14. Photon-assisted tunneling in a Fe8 single-molecule magnet

    Science.gov (United States)

    Sorace, L.; Wernsdorfer, W.; Thirion, C.; Barra, A.-L.; Pacchioni, M.; Mailly, D.; Barbara, B.

    2003-12-01

    The low-temperature spin dynamics of a Fe8 single-molecule magnet was studied under circularly polarized electromagnetic radiation allowing us to establish clearly photon-assisted tunneling. This effect, while linear at low power, becomes highly nonlinear above a relatively low-power threshold. Heating due to phonon emission, spin-spin interactions, and coherent emission/absorption of photons might lead to the observed nonlinearity. These results are of importance if such systems are to be used as quantum computers.

  15. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    International Nuclear Information System (INIS)

    Anglin, J.R.; Schmiedmayer, J.

    2004-01-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation

  16. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Directory of Open Access Journals (Sweden)

    T. J. Barton

    2012-12-01

    Full Text Available Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K. R. Samokhvalova, J. Zhou, and C. Chen, Phys. Plasmas 14, 103102 (2007PHPAEN1070-664X10.1063/1.2779281; J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008PHPAEN1070-664X10.1063/1.2837891]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.

  17. Connection between optimal control theory and adiabatic-passage techniques in quantum systems

    Science.gov (United States)

    Assémat, E.; Sugny, D.

    2012-08-01

    This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.

  18. Change of adiabatic invariant near the separatrix

    International Nuclear Information System (INIS)

    Bulanov, S.V.

    1995-10-01

    The properties of particle motion in the vicinity of the separatrix in a phase plane are investigated. The change of adiabatic invariant value due to the separatrix crossing is evaluated as a function of a perturbation parameter magnitude and a phase of a particle for time dependent Hamiltonians. It is demonstrated that the change of adiabatic invariant value near the separatrix birth is much larger than that in the case of the separatrix crossing near the saddle point in a phase plane. The conditions of a stochastic regime to appear around the separatrix are found. The results are applied to study the longitudinal invariant behaviour of charged particles near singular lines of the magnetic field. (author). 22 refs, 9 figs

  19. Perturbative treatment of possible failures in the adiabatic theorem

    International Nuclear Information System (INIS)

    Vertesi, T.; Englman, R.

    2005-01-01

    Complete text of publication follows. The adiabatic theorem (AT) is one of the oldest and basic results in quantum physics, and has been in widespread use ever since. The theorem concerns the evolution of systems subject to slowly varying Hamiltonians. Roughly, its content is that a system prepared in an instantaneous eigenstate of a time-dependent Hamiltonian H(t) will remain close to an instantaneous eigenstate at later times, provided the Hamiltonian changes sufficiently slowly. The role of the AT in the study of slowly varying quantum mechanical systems spans a vast array of fields and applications. In a recent application the adiabatic geometric phases have been proposed to perform various quantum computational tasks on a naturally fault-tolerant way. Additional interest has arisen in adiabatic processes in connection with the concept of adiabatic quantum computing, where the solution to a problem is encoded in the (unknown) ground state of a (known) Hamiltonian. The evolution of the quantum state is governed by a time-dependent Hamiltonian H(t), starting with an initial Hamiltonian H i with a known ground state and slowly (adiabatically) evolving to the final Hamiltonian H f with the unknown ground state, e.g., H(t) = (1 - t/T )H i + (t/T )H f , (1) where 0 ≤ t/T ≤ 1 and T controls the rate at which H(t) varies. Since the ground state of the system is very robust against external perturbations and decoherence, this scheme offers many advantages compared to the conventional quantum circuit model of quantum computation. The achievable speed-up of adiabatic quantum algorithms (compared to classical methods) depends on the value of the run-time T. The standard AT yields a general criterion to estimate the necessary run-time T, however recently Marzlin and Sanders have claimed that an inconsistency does exist for a particular class of Hamiltonians, so that the condition for the estimate of T may do not hold. Marzlin and Sanders start with a time

  20. Multichannel modeling and two-photon coherent transfer paths in NaK

    Science.gov (United States)

    Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.

    2013-08-01

    We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.

  1. Adiabatic analysis of collisions. III. Remarks on the spin model

    International Nuclear Information System (INIS)

    Fano, U.

    1979-01-01

    Analysis of a spin-rotation model illustrates how transitions between adiabatic channel states stem from the second, rather than from the first, rate of change of these states, provided that appropriate identification of channels and scaling of the independent variable are used. These remarks, like the earlier development of a post-adiabatic approach, aim at elucidating the surprising success of approximate separation of variables in the treatment of complex mechanical systems

  2. Non-Adiabatic Molecular Dynamics Methods for Materials Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)

    2017-04-04

    The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.

  3. Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian

    International Nuclear Information System (INIS)

    Wu Zhaoyan; Yu Ting; Zhou Hongwei

    1994-01-01

    It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)

  4. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    International Nuclear Information System (INIS)

    Okano, Y.; Yamaguchi, A.

    2001-01-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na 2 O (l) , and in combustion in moist air, with NaOH (g) . The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH (g) , NaOH (l) and H2 (g) . Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar

  5. Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Raedt, H. De

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated

  6. Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Villavicencio, J [Facultad de Ciencias, Universidad Autonoma de Baja California, Ensenada (Mexico); Maldonado, I [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico); Cota, E [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Ensenada (Mexico); Platero, G, E-mail: villavics@uabc.edu.mx [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain)

    2011-02-15

    The dynamics of electrons in ac-driven double quantum dots have been extensively analyzed by means of Floquet theory. In these systems, coherent destruction of tunneling has been shown to occur for certain ac field parameters. In this work we analyze, by means of Floquet theory, the electron dynamics of a triple quantum dot in series attached to electric contacts, where the central dot position oscillates. In particular, we analyze the quasienergy spectrum of this ac-driven nanoelectromechanical system as a function of the intensity and frequency of the ac field and of external dc voltages. For strong driving fields, we derive, by means of perturbation theory, analytical expressions for the quasienergies of the driven oscillator system. From this analysis, we discuss the conditions for coherent destruction of tunneling (CDT) to occur as a function of detuning and field parameters. For zero detuning, and from the invariance of the Floquet Hamiltonian under a generalized parity transformation, we find analytical expressions describing the symmetry properties of the Fourier components of the Floquet states under such a transformation. By using these expressions, we show that in the vicinity of the CDT condition, the quasienergy spectrum exhibits exact crossings which can be characterized by the parity properties of the corresponding eigenvectors.

  7. Adiabatic Theorem for Quantum Spin Systems

    Science.gov (United States)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  8. Magnetoresistance in Co/AlO sub x /Co tunnel junction arrays

    CERN Document Server

    Urech, M; Haviland, D B

    2002-01-01

    Lateral arrays of Co/AlO sub x /Co junctions with dimensions down to 60 nm and inter-junction separations approx 60-100 nm have been fabricated and analyzed for possible coherent tunneling effects. Extra attention is paid to avoid uncertainties due to inconsistencies in switching and/or resistance of successive barriers. We observe approx 10% magnetoresistance enhancement at moderate bias in double junctions that cannot be accounted for by a simple model of two resistsors in series.

  9. Adiabatic invariance with first integrals of motion

    Science.gov (United States)

    Adib, Artur B.

    2002-10-01

    The construction of a microthermodynamic formalism for isolated systems based on the concept of adiabatic invariance is an old but seldom appreciated effort in the literature, dating back at least to P. Hertz [Ann. Phys. (Leipzig) 33, 225 (1910)]. An apparently independent extension of such formalism for systems bearing additional first integrals of motion was recently proposed by Hans H. Rugh [Phys. Rev. E 64, 055101 (2001)], establishing the concept of adiabatic invariance even in such singular cases. After some remarks in connection with the formalism pioneered by Hertz, it will be suggested that such an extension can incidentally explain the success of a dynamical method for computing the entropy of classical interacting fluids, at least in some potential applications where the presence of additional first integrals cannot be ignored.

  10. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1982-01-01

    The simplest model of plasma dynamics is the adiabatic model. In this model the plasma is assumed to be in MHD equilibrium at each instant of time. The equilibria are connected by the requirement that they all have the same entropy per unit flux, i.e., the equilibria form a sequence generated by adiabatic changes. The standard way of computing such a sequence of equilibria was developed by Grad, but its practical use requires a fairly complicated code. It would be helpful if approximately the same results could be gotten either with a much simpler code or by analytical techniques. In Sec. II a one-dimensional equilibrium code is described and its results are checked against a two-dimensional equilibrium code; in Sec. III an even simpler analytic calculation is presented.

  11. RFDR with Adiabatic Inversion Pulses: Application to Internuclear Distance Measurements

    International Nuclear Information System (INIS)

    Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2004-01-01

    In the context of the structural characterisation of biomolecular systems via MAS solid state NMR, the potential utility of homonuclear dipolar recoupling with adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. The results obtained suggest that it is possible to obtain reliable estimates of internuclear distances via an analysis of the initial cross-peak intensity buildup curves generated from two-dimensional adiabatic inversion pulse driven longitudinal magnetisation exchange experiments

  12. ASYMPT - a program to calculate asymptotics of hyperspherical potential curves and adiabatic potentials

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Puzynin, I.V.; Vinitskij, S.I.

    1997-01-01

    A FORTRAN 77 program is presented which calculates asymptotics of potential curves and adiabatic potentials with an accuracy of O(ρ -2 ) in the framework of the hyperspherical adiabatic (HSA) approach. It is shown that matrix elements of the equivalent operator corresponding to the perturbation ρ -2 have a simple form in the basis of the Coulomb parabolic functions in the body-fixed frame and can be easily computed for high values of total orbital momentum and threshold number. The second-order corrections to the adiabatic curves are obtained as the solutions of the corresponding secular equation. The asymptotic potentials obtained can be used for the calculation of the energy levels and radial wave functions of two-electron systems in the adiabatic and coupled-channel approximations of the HSA approach

  13. Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation

    Science.gov (United States)

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.

    2018-02-01

    We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.

  14. Post-adiabatic analysis of atomic collisions

    International Nuclear Information System (INIS)

    Klar, H.; Fano, U.

    1976-01-01

    The coupling between adiabatic channels can be partially transformed away. The transformation need not induce any transition between channnels; but it correlates the radial wave functions and their gradients with the channel functions and it depresses the lower effective potentials, as the energy increases, in accordance with empirical evidence

  15. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Science.gov (United States)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  16. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum–lithium alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Tan, G.Y.; Chen, P.X.; Zhang, Q.M.

    2012-01-01

    The adiabatic shear susceptibility of 2195 aluminum–lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress–true strain curves and true stress–time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum–lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  17. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)

    2012-06-01

    The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  18. SU(2) instantons with boundary jumps and spin tunneling in magnetic molecules

    OpenAIRE

    Kececioglu, Ersin; Garg, Anupam

    2001-01-01

    Coherent state path integrals are shown in general to contain instantons with jumps at the boundaries, i.e., with boundary points lying outside classical parameter or phase space. As an example, the magnetic molecule Fe_8 is studied using a realistic Hamiltonian, and instanons with jumps are shown to dominate beyond a certain external magnetic field. An approximate formula is found for the fields where ground state tunneling is quenched in this molecule.

  19. Performance analysis of a complete adiabatic logic system driven by the proposed power clock generator

    International Nuclear Information System (INIS)

    Kanungo, Jitendra; Dasgupta, S.

    2014-01-01

    We analyze the energy performance of a complete adiabatic circuit/system including the Power Clock Generator (PCG) at the 90 nm CMOS technology node. The energy performance in terms of the conversion efficiency of the PCG is extensively carried out under the variations of supply voltage, process corner and the driver transistor's width. We propose an energy-efficient singe cycle control circuit based on the two-stage comparator for the synchronous charge recovery sinusoidal power clock generator (PCG). The proposed PCG is used to drive the 4-bit adiabatic Ripple Carry Adder (RCA) and their simulation results are compared with the adiabatic RCA driven by the reported PCG. We have also simulated the logically equivalent static CMOS RCA circuit to compare the energy saving of adiabatic and non-adiabatic logic circuits. In the clock frequency range from 25 MHz to 1GHz, the proposed PCG gives a maximum conversion efficiency of 56.48%. This research work shows how the design of an efficient PCG increases the energy saving of adiabatic logic. (semiconductor integrated circuits)

  20. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  1. Matter-wave interferometry in a double well on an atom chip

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Hofferberth, S.; Andersson, L. M.

    2005-01-01

    Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements...... that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we...... demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 μm, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single...

  2. Thermal reservoir sizing for adiabatic compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)

    2012-07-01

    Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.

  3. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations

    International Nuclear Information System (INIS)

    Hartmann, Niklas; Vöhringer, O.; Kruck, C.; Eltrop, L.

    2012-01-01

    Highlights: ► We modeled several configurations of an adiabatic Compressed Air Energy Storage (CAES) plant. ► We analyzed changes in efficiency of these configurations under varying operating conditions. ► The efficiency of the adiabatic CAES plant can reach about 70% for the isentropic configuration. ► In the polytropic case, the efficiency is about 10% lower (at about 60%) than in the isentropic configuration. ► The efficiency is highest for a two-stage CAES configuration and highly dependent on the cooling and heating demand. - Abstract: In this paper, the efficiency of one full charging and discharging cycle of several adiabatic Compressed Air Energy Storage (CAES) configurations are analyzed with the help of an energy balance. In the second step main driving factors for the efficiency of the CAES configurations are examined with the help of sensitivity analysis. The results show that the efficiency of the polytropic configuration is about 60%, which is considerable lower than literature values of an adiabatic CAES of about 70%. The high value of 70% is only reached for the isentropic (ideal) configuration. Key element to improve the efficiency is to develop high temperature thermal storages (>600 °C) and temperature resistant materials for compressors. The highest efficiency is delivered by the two-stage adiabatic CAES configuration. In this case the efficiency varies between 52% and 62%, depending on the cooling and heating demand. If the cooling is achieved by natural sources (such as a river), a realistic estimation of the efficiency of adiabatic Compressed Air Energy Storages (without any greenhouse gas emissions due to fuel consumption) is about 60%.

  4. Adiabatic translation factors in slow ion-atom collisions

    International Nuclear Information System (INIS)

    Vaaben, J.; Taulbjerg, K.

    1981-01-01

    The general properties of translation factors in slow atomic collisions are discussed. It is emphasised that an acceptable form of translation factors must be conceptually consistent with the basic underlying assumption of the molecular model; i.e. translation factors must relax adiabatically at intermediate and small internuclear separations. A simple physical argument is applied to derive a general parameter-free expression for the translation factor pertinent to an electron in a two-centre Coulomb field. Within the present approach the adiabatic translation factor is considered to be a property of the two-centre field independently of the molecular state under consideration. The generalisation to many-electron systems is therefore readily made. (author)

  5. Optimal control of the power adiabatic stroke of an optomechanical heat engine.

    Science.gov (United States)

    Bathaee, M; Bahrampour, A R

    2016-08-01

    We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.

  6. Tunneling of electrons via rotor–stator molecular interfaces: Combined ab initio and model study

    Energy Technology Data Exchange (ETDEWEB)

    Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Ohanesjan, Vladimir [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Pejov, Ljupčo [Institute of Chemistry, Department of Physical Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, PO Box 428, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of)

    2016-07-01

    Tunneling of electrons through rotor–stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons’ formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green’s Function Formalism.

  7. Adiabatic theory of ionization of atoms by intense laser pulses

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I; Morishita, Toru; Watanabe, Shinichi

    2009-01-01

    As a first step towards the adiabatic theory of ionization of atoms by intense laser pulses, here we consider the simplest one-dimensional zero-range potential model. The asymptotic solution to the time-dependent Schroedinger equation in the adiabatic regime is obtained and the photoelectron spectrum is calculated. The factorization formula for the photoelectron spectrum in the back-rescattering region, first suggested by Morishita et al. [Phys. Rev. Lett. 100, 013903 (2008)] on the basis of ab initio calculations, is derived analytically.

  8. On the adiabatic theorem when eigenvalues dive into the continuum

    DEFF Research Database (Denmark)

    Cornean, Decebal Horia; Jensen, Arne; Knörr, Hans Konrad

    2018-01-01

    We consider a reduced two-channel model of an atom consisting of a quantum dot coupled to an open scattering channel described by a three-dimensional Laplacian. We are interested in the survival probability of a bound state when the dot energy varies smoothly and adiabatically in time. The initial...... in the adiabatic limit. At the end of the paper, we present a short outlook on how our method may be extended to cover other classes of Hamiltonians; details will be given elsewhere....

  9. Development of a model for dimethyl ether non-adiabatic reactors to improve methanol conversion

    Energy Technology Data Exchange (ETDEWEB)

    Nasrollahi, Fatemeh [University of Tehran, Tehran (Iran, Islamic Republic of); Bakeri, Gholamreza; Rahimnejad, Mostafa [Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of); Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia); Imanian, Mahdi [Mohajer Technical University, Isfahan (Iran, Islamic Republic of)

    2013-10-15

    The modeling of adiabatic and non-adiabatic reactors, using three cooling mediums in the shell side of a shell and tube reactor in cocurrent and countercurrent flow regimes has been conducted. The cooling mediums used in this research are saturated water and methanol feed gas to a reactor which is preheated in the shell side and a special type of oil. The results of adiabatic reactor modeling show good compatibility with the data received from a commercial plant. The results of non-adiabatic reactor modeling showed that more methanol conversion can be achieved in a lower length of reactor, even though in some cases the maximum temperature in the tube side of the reactor is more than the deactivation temperature of the catalyst.

  10. In situ scanning tunnelling microscopy of redox molecules. Coherent electron transfer at large bias voltages

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Kuznetsov, A.M.; Ulstrup, Jens

    2003-01-01

    Theories of in situ scanning tunnelling microscopy (STM) of molecules with redox levels near the substrate and tip Fermi levels point to 'spectroscopic' current-overpotential features. Prominent features require a narrow 'probing tip', i.e. a small bias voltage, eV(bias), compared...

  11. Mid-range adiabatic wireless energy transfer via a mediator coil

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Vitanov, N.V.

    2012-01-01

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.

  12. Dynamics of ionizing shock waves on adiabatic motions of gases

    International Nuclear Information System (INIS)

    Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.

    1982-01-01

    Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru

  13. Laser pulses for coherent xuv Raman excitation

    Science.gov (United States)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  14. Accuracy of the adiabatic-impulse approximation for closed and open quantum systems

    Science.gov (United States)

    Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.

  15. Observation of rotational revivals for iodine molecules in helium droplets using a near-adiabatic laser pulse

    Science.gov (United States)

    Shepperson, Benjamin; Chatterley, Adam S.; Christiansen, Lars; Søndergaard, Anders A.; Stapelfeldt, Henrik

    2018-01-01

    A 160-ps near-Gaussian, linearly polarized laser pulse is used to align iodine (I2) molecules embedded in helium nanodroplets. The rise time of the laser pulse is sufficiently long and smooth that the alignment, characterized by , behaves adiabatically during the pulse turnon. However, after the laser pulse has turned off stays above 0.50 and a recurrence structure occurs ˜650 ps later. Measurements on isolated (I2) molecules with identical laser pulses are used to identify, through analysis of the observed half- and full-rotational revivals, that the nonadiabatic postpulse alignment dynamics results from a mild truncation of the trailing edge of the laser pulse. This truncation establishes a well-defined starting time for coherent rotation, which leads to the revival structures observed both for isolated molecules and molecules in He droplets. In the latter case the time-dependent trace recorded here is compared to that obtained previously for a 450-fs alignment pulse. It is found that the observed revivals are very similar.

  16. Adiabatic theory of nonlinear electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Kotel'nikov, I.A.; Stupakov, G.V.

    1989-01-01

    Plasma heating at electron frequency by an ordinary wave propagating at right angle to unidirectional magnetic field is treated. Injected microwave power is assumed to be so large that relativistic change of electron gyrofrequency during one flight thorugh the wave beam is much greater than inverse time of flight. The electron motion in the wave field is described using Hamiltonian formalism in adiabatic approximation. It is shown that energy coupling from the wave to electrons is due to a bifurcation of electron trajectory which results in a jumpm of the adiabatic invariant. The probability of bifurcational transition from one trajectory to another is calculated analytically and is used for the estimation of the beam power absorbed in plasma. 6 refs.; 2 figs

  17. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  18. On the adiabatic theorem in quantum statistical mechanics

    International Nuclear Information System (INIS)

    Narnhofer, H.; Thirring, W.

    1982-01-01

    We show that with suitable assumptions the equilibrium states are exactly the states invariant under adiabatic local perturbations. The relevance of this fact to the problem of ergodicity is discussed. (Author)

  19. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  20. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  1. Aspects of hyperspherical adiabaticity in an atomic-gas Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Kushibe, Daisuke; Mutou, Masaki; Morishita, Toru; Watanabe, Shinichi; Matsuzawa, Michio

    2004-01-01

    Excitation of an atomic-gas Bose-Einstein condensate (BEC) in the zeroth-order ground-state channel is studied with the hyperspherical adiabatic method of Bohn et al. [Bohn et al., Phys. Rev. A 58, 584 (1998)] suitably generalized to accommodate the anisotropic trapping potential. The method exploits the system's size as an adiabatic parameter so that the explicit size dependence is immediately conducive to the virial theorem. The oscillation frequencies associated with the monopole (breathing) and quadrupole modes thus emerge naturally and converge to the well-known Thomas-Fermi limits. Analysis of the single-particle density and the projected excitation wave function shows that the excitation in the single hyperspherical ground-state channel merely represents a progressive increase in occupancy of the first excited single-particle state. The work paves the way for applying the adiabatic picture to other BEC phenomena

  2. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  3. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  4. The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads

    International Nuclear Information System (INIS)

    Weymann, Ireneusz

    2010-01-01

    We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spatial distribution of the electron wavefunction in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed.

  5. An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1977-11-01

    It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin

  6. Spin tunneling in magnetic molecules: Quasisingular perturbations and discontinuous SU(2) instantons

    Science.gov (United States)

    Keçecioğlu, Ersin; Garg, Anupam

    2003-02-01

    Spin coherent state path integrals with discontinuous semiclassical paths are investigated with special reference to a realistic model for the magnetic degrees of freedom in the Fe8 molecular solid. It is shown that such paths are essential to a proper understanding of the phenomenon of quenched spin tunneling in these molecules. In the Fe8 problem, such paths are shown to arise as soon as a fourth-order anisotropy term in the energy is turned on, making this term a singular perturbation from the semiclassical point of view. The instanton approximation is shown to quantitatively explain the magnetic field dependence of the tunnel splitting, as well as agree with general rules for the number of quenching points allowed for a given value of spin. A fairly accurate approximate formula for the spacing between quenching points is derived.

  7. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    Science.gov (United States)

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  8. Comment on ''Semiclassical treatment of vibrational--translational energy transfer in the near-adiabatic approximation''

    International Nuclear Information System (INIS)

    Cady, W.A.; Clark, A.P.; Dickinson, A.S.

    1975-01-01

    Recently a near-adiabatic (perturbed stationary states) approximation was used in an investigation the collinear vibrational excitation of a harmonic oscillator. This approximation reduced the problem to that of obtaining transition probabilities for a harmonic oscillator with time-dependent forcing function. Cady derived an apparently exact solution for this problem. It is shown that this solution is not exact but that the solution results from making a further adiabatic approximation and a derivation is given that clearly shows the adiabatic character of this further approximation

  9. Adiabatic energization in the ring current and its relation to other source and loss terms

    Science.gov (United States)

    Liemohn, M. W.; Kozyra, J. U.; Clauer, C. R.; Khazanov, G. V.; Thomsen, M. F.

    2002-04-01

    The influence of adiabatic energization and deenergization effects, caused by particle drift in radial distance, on ring current growth rates and loss lifetimes is investigated. Growth and loss rates from simulation results of four storms (5 June 1991, 15 May 1997, 19 October 1998, and 25 September 1998) are examined and compared against the y component of the solar wind electric field (Ey,sw). Energy change rates with and without the inclusion of adiabatic energy changes are considered to isolate the influence of this mechanism in governing changes of ring current strength. It is found that the influence of adiabatic drift effects on the energy change rates is very large when energization and deenergization are considered separately as gain and loss mechanisms, often about an order of magnitude larger than all other source or loss terms combined. This is true not only during storm times, when the open drift path configuration of the hot ions dominates the physics of the ring current, but also during quiet times, when the small oscillation in L of the closed trajectories creates a large source and loss of energy each drift orbit. However, the net energy change from adiabatic drift is often smaller than other source and loss processes, especially during quiet times. Energization from adiabatic drift dominates ring current growth only during portions of the main phase of storms. Furthermore, the net-adiabatic energization is often positive, because some particles are lost in the inner magnetosphere before they can adiabatically deenergize. It is shown that the inclusion of only this net-adiabatic drift effect in the total source rate or loss lifetime (depending on the sign of the net-adiabatic energization) best matches the observed source and loss values from empirical Dst predictor methods (that is, for consistency, these values should be compared between the calculation methods). While adiabatic deenergization dominates the loss timescales for all Ey,sw values

  10. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  11. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  12. Low-leakage superconducting tunnel junctions with a single-crystal Al{sub 2}O{sub 3} barrier

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Department of Physics, University of Illinois, Urbana, IL 61801 (United States); Cicak, K; Osborn, K D; Simmonds, R W; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, R; Cooper, K B; Steffen, M; Martinis, J M [University of California, Santa Barbara, CA 93106 (United States)

    2005-10-01

    We have developed a two-step growth scheme for single-crystal Al{sub 2}O{sub 3} tunnel barriers. The barriers are epitaxially grown on single-crystal rhenium (Re) base electrodes that are grown epitaxially on a sapphire substrate, while polycrystalline Al is used as the top electrode. We show that by first growing an amorphous aluminium (Al) oxide layer at room temperature and crystallizing it at a high temperature in oxygen environment, a morphologically intact single-crystal Al{sub 2}O{sub 3} layer is obtained. Tunnel junctions fabricated from these trilayers show very low subgap leakage current. This single-crystal Al{sub 2}O{sub 3} junction may open a new venue for coherent quantum devices.

  13. Adiabatic Quantum Optimization for Associative Memory Recall

    Science.gov (United States)

    Seddiqi, Hadayat; Humble, Travis

    2014-12-01

    Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  14. Adiabatic Quantum Optimization for Associative Memory Recall

    Directory of Open Access Journals (Sweden)

    Hadayat eSeddiqi

    2014-12-01

    Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.

  15. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  16. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  17. Fast fracture: an adiabatic restriction on thermally activated crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.J.

    1978-01-01

    Slow, isothermal, crack propagation is widely suspected to be rate controlled by thermally activated plastic deformation in the crack tip region. Adiabatic conditions are generally established in the fracture modified material at the tip of a crack during fast fracture. The temperature of this material is not the temperature of the specimen and is generally not measured during fast fracture. Thus, a complete thermodynamic description of adiabatic crack propagation data can not be made. When the slow, isothermal, crack propagation mechanisms are assumed to be operative during adiabatic crack propagation then certain predictions can be made. For example: the changes in the driving force due to temperature and rate are always in the opposite sense; there is no minimum in the driving force versus crack velocity without a change in mechanism; the temperature rise in the crack tip fracture modified material is determined mainly by the activation enthalpy for crack propagation; the interpretation of fast fracture structural steel data from simple plastic models is suspect since these materials have dissimilar isothermal temperature dependencies.

  18. Adiabatic theory of Wannier threshold laws and ionization cross sections

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Y.

    1994-01-01

    Adiabatic energy eigenvalues of H 2 + are computed for complex values of the internuclear distance R. The infinite number of bound-state eigenenergies are represented by a function ε(R) that is single valued on a multisheeted Riemann surface. A region is found where ε(R) and the corresponding eigenfunctions exhibit harmonic-oscillator structure characteristic of electron motion on a potential saddle. The Schroedinger equation is solved in the adiabatic approximation along a path in the complex R plane to compute ionization cross sections. The cross section thus obtained joins the Wannier threshold region with the keV energy region, but the exponent near the ionization threshold disagrees with well-accepted values. Accepted values are obtained when a lowest-order diabatic correction is employed, indicating that adiabatic approximations do not give the correct zero velocity limit for ionization cross sections. Semiclassical eigenvalues for general top-of-barrier motion are given and the theory is applied to the ionization of atomic hydrogen by electron impact. The theory with a first diabatic correction gives the Wannier threshold law even for this case

  19. Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity

    Directory of Open Access Journals (Sweden)

    Mathieu Beau

    2016-04-01

    Full Text Available The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by eliminating quantum friction and reducing the cycle time. To this end, we first analyze the finite-time thermodynamics of a quantum Otto cycle implemented with a quantum fluid confined in a time-dependent harmonic trap. We show that nonadiabatic effects can be controlled and tailored to match the adiabatic performance using a variety of shortcuts to adiabaticity. As a result, the nonadiabatic dynamics of the scaled-up many-particle quantum heat engine exhibits no friction, and the cycle can be run at maximum efficiency with a tunable output power. We demonstrate our results with a working medium consisting of particles with inverse-square pairwise interactions that includes non-interacting and hard-core bosons as limiting cases.

  20. Nuclear spin Hall and Klein tunneling effects during oxidation with electric and magnetic field inductions in graphene.

    Science.gov (United States)

    Little, Reginald B; McClary, Felicia; Rice, Bria; Jackman, Corine; Mitchell, James W

    2012-12-14

    The recent observation of the explosive oxidation of graphene with enhancement for decreasing temperature and the requirements for synchronizing oxidants for collective oxidation-reduction (redox) reactions presented a chemical scenario for the thermal harvesting by the magnetic spin Hall Effect. More experimental data are presented to demonstrate such spin Hall Effect by determining the influence of spins of so-called spectator fermionic cations. Furthermore, the so-called spectator bosonic cations are discovered to cause a Klein tunneling effect during the redox reaction of graphene. The Na(+) and K(+), fermionic cations and the Mg(2+) and Ca(2+), bosonic cations were observed and compared under a variety of experimental conditions: adiabatic reactions with initial temperatures (18-22 °C); reactions toward infinite dilution; isothermal reactions under nonadiabatic conditions at low temperature of 18 °C; reactions under paramagnetic O(2) or diamagnetic N(2) atmospheres of different permeabilities; reactions in applied and no applied external magnetic field; and reactions toward excess concentrations of common and uncommon Na(+) and Mg(2+) cations. The observed reaction kinetics and dynamics under these various, diverse conditions are consistent with the spin Hall mechanism, energy harvesting and short time violation of Second Law of Thermodynamics for redox reactions of graphene by the Na(+)K(+) mixture and are consistent with the Klein tunnel mechanism for the redox reactions of graphene by the Mg(2+)Ca(2+) mixture. Mixed spin Hall and Klein tunnel mechanisms are discovered to slow and modulate explosive redox reactions. Such spin Hall Effect also gives explanation of recent tunneling of electrons through boron nitride.

  1. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  2. A many-particle adiabatic invariant of strongly magnetized pure electron plasmas

    International Nuclear Information System (INIS)

    Hjorth, P.G.

    1988-01-01

    A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation

  3. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems.

    Science.gov (United States)

    Habershon, Scott

    2013-09-14

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  4. Path integral density matrix dynamics: A method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems

    International Nuclear Information System (INIS)

    Habershon, Scott

    2013-01-01

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency

  5. Adiabatic pipelining: a key to ternary computing with quantum dots

    Science.gov (United States)

    Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.

    2008-12-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  6. Adiabatic pipelining: a key to ternary computing with quantum dots

    International Nuclear Information System (INIS)

    Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A

    2008-01-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  7. Adiabatic pipelining: a key to ternary computing with quantum dots.

    Science.gov (United States)

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  8. High beta lasing in micropillar cavities with adiabatic layer design

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Lorke, M.

    2013-01-01

    We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...... of the threshold pump power by over 2 orders of magnitude from dc = 2.25 μm down to 0.95 μm. Lasing with β factors exceeding 0.5 shows that adiabatic micropillars are operating deeply in the cavity quantum electrodynamics regime....

  9. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    International Nuclear Information System (INIS)

    Lode, Axel U.J.

    2013-01-01

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.

  10. Tunneling dynamics in open ultracold bosonic systems. Numerically exact dynamics - Analytical models - Control schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lode, Axel U.J.

    2013-06-03

    This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.

  11. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  12. A Phase Matching, Adiabatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Hamburg U.; Flöttmann, Klaus [DESY; Kärtner, Franz [CFEL, Hamburg; Piot, Philippe [Northern Illinois U.

    2017-05-01

    Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.

  13. Adiabatic theorem for the time-dependent wave operator

    International Nuclear Information System (INIS)

    Viennot, David; Jolicard, Georges; Killingbeck, John P.; Perrin, Marie-Yvonne

    2005-01-01

    The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system

  14. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  15. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment

    Directory of Open Access Journals (Sweden)

    Byung Jae Lee

    2014-12-01

    Full Text Available In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise (Q∞ and the ternary blended cement mixture had the lowest reaction factor (r. Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  16. The Effect of Specimen Size on the Results of Concrete Adiabatic Temperature Rise Test with Commercially Available Equipment.

    Science.gov (United States)

    Lee, Byung Jae; Bang, Jin Wook; Shin, Kyung Joon; Kim, Yun Yong

    2014-12-08

    In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise ( Q ∞ ) and the ternary blended cement mixture had the lowest reaction factor ( r ). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q ∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

  17. Development of Adiabatic Doppler Feedback Model in 3D space time analysis Code ARCH

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Gupta, Anurag

    2015-01-01

    Integrated 3D space-time neutron kinetics with thermal-hydraulic feedback code system is being developed for transient analysis of Compact High Temperature Reactor (CHTR) and Advanced Heavy Water Reactor (AHWR). ARCH (code for Analysis of Reactor transients in Cartesian and Hexagon geometries) has been developed with IQS module for efficient 3D space time analysis. Recently, an adiabatic Doppler (fuel temperature) feedback module has been incorporated in this ARCH-IQS version of tile code. In the adiabatic model of fuel temperature feedback, the transfer of the excess heat from the fuel to the coolant during transient is neglected. The viability of Doppler feedback in ARCH-IQS with adiabatic heating has been checked with AER benchmark (Dyn002). Analyses of anticipated transient without scram (ATWS) case in CHTR as well as in AHWR have been performed with adiabatic fuel temperature feedback. The methodology and results have been presented in this paper. (author)

  18. Analysis of adiabatic transfer in cavity quantum electrodynamics

    Indian Academy of Sciences (India)

    adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.

  19. Adiabatic tapered optical fiber fabrication in two step etching

    Science.gov (United States)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  20. Assignment of Side-Chain Conformation Using Adiabatic Energy Mapping, Free Energy Perturbation, and Molecular Dynamic Simulations

    DEFF Research Database (Denmark)

    Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl

    1999-01-01

    adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...

  1. Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains

    International Nuclear Information System (INIS)

    Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del

    2016-01-01

    We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)

  2. The adiabatic versus the diabatic approximation in the decoupling of electron and nuclear motion

    International Nuclear Information System (INIS)

    Every, A.G.

    1975-01-01

    There are two limiting approximations that are used as starting points for the analysis of a system of interacting electrons and nuclei. The more widely used is the adiabatic approximation in which one assumes that the electrons adjust adiabatically to the instantaneous configuration of the nuclei. This yields an effective internuclear potential. In treating the nuclear motion, this potential can legitimately be expanded to fourth order in nuclear displacements from equilibrium. The difficulties of extending this expansion further are discussed. In situations where two adiabatic potentials approach each other the so-called diabatic approximation has to be used. A novel application to non-radioactive processes in solids is discussed. (author)

  3. FRW-type cosmologies with adiabatic matter creation

    International Nuclear Information System (INIS)

    Lima, J.A.; Germano, A.S.; Abramo, L.R.

    1996-01-01

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ * =γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society

  4. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  5. Coherence effects in three- and four-level laser-cooled rubidium systems

    International Nuclear Information System (INIS)

    De Echaniz, Sebastian R.

    2002-01-01

    This thesis presents developmental work on the existing magneto-optical trap (MOT) system and novel studies of coherence effects. The developmental work was carried out on the experimental apparatus used previously in this laboratory in order to perform experiments to study coherence effects in three- and four-level rubidium systems in the MOT. This developmental work includes the upgrading and installation of new laser systems, the improvement of the MOT, the installation of data acquisition hardware and software, and the commissioning of a new 'second generation' MOT. As part of our studies of coherence effects, we present a wide-ranging theoretical and experimental study of non-adiabatic transient phenomena in a Λ system which exhibits electromagnetically induced transparency when a strong coupling field is rapidly switched on or off using a Pockels cell. The theoretical treatment uses a Laplace transform approach as well as standard numerical methods to solve the time-dependent density matrix equation. The results show clear Rabi oscillations and transient gain without population inversion of a weak probe in parameter regions not previously studied, and provide insight into the transition dynamics between bare a dressed states. Experimental studies of a doubly driven V system are also reported, together with a theoretical dressed-state analysis of such systems. The expected three-peak spectrum is explored for various coupling field strengths and detunings. In all this work we have found good agreement between the theory and the experimental spectra once light shifts and uncoupled absorption in the rubidium system are taken into account. (author)

  6. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  7. Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material

    Directory of Open Access Journals (Sweden)

    Martin Haemmerle

    2017-03-01

    Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.

  8. Connection between adiabaticity and the mirror mode

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1976-01-01

    The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode

  9. SU(2) Instantons with Boundary Jumps and Spin Tunneling in Magnetic Molecules

    Science.gov (United States)

    Keçecioğlu, Ersin; Garg, Anupam

    2002-06-01

    Coherent state path integrals are shown in general to contain instantons with jumps at the boundaries, i.e., boundary points lying outside classical phase space. Inclusion of these instantons is shown to resolve the ``missing quench paradox'' in the magnetic molecule Fe8, i.e., the fact that the tunneling between the ground Zeeman states of this molecule is quenched at only four magnetic field values, instead of the ten that would be expected from the topological Berry phase between interfering instantons. An approximate formula is found for the location of the four remaining quenches.

  10. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  11. Adiabatic approximation in the ultrastrong-coupling regime of an oscillator and two qubits

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Zou, Ping [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China); Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China)

    2012-10-01

    We present a system composed of two flux qubits and a transmission-line resonator. Instead of using the rotating wave approximation (RWA), we analyze the system by the adiabatic approximation methods under two opposite extreme conditions. Basic properties of the system are calculated and compared under these two different conditions. Relative energy-level spectrum of the system in the adiabatic displaced oscillator basis is shown, and the theoretical result is compared with the numerical solution. -- Highlights: ► Our work shows that the adiabatic approximations may work also in the ultrastrong coupling limit. ► Both of the approximation methods are valid in a large range of coupling strength, including the ultrastrong coupling regime. ► The results of the approximate formula meet well the exact numerical solution.

  12. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    Science.gov (United States)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  13. Experimental demonstration of efficient and robust second harmonic generation using the adiabatic temperature gradient method

    Science.gov (United States)

    Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.

    2018-03-01

    We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.

  14. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  15. Low-energy P-wave phaseshifts for positron-hydrogen elastic scattering using an adiabatic approximation

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Beker, C.A.; Farina, J.E.G.

    1981-01-01

    P-wave phaseshifts for positron-hydrogen elastic scattering are calculated using a new adiabatic approximation in which the length of the radius vector from the proton to the positron is fixed but its direction is allowed to vary. This adiabatic approximation makes possible the full inclusion in the calculation of virtual states in which angular momentum is transferred to the target H atom. The results obtained agree qualitatively with the highly accurate results of Bhatia and co-workers (Phys. Rev.; A9:219 (1974)) and are much closer to them than the results obtained using the usual adiabatic approximation in which the radius vector from the proton to the positron is fixed. (author)

  16. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  17. Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability.

    Science.gov (United States)

    Wolf, Brian R; Ramme, Austin J; Wright, Rick W; Brophy, Robert H; McCarty, Eric C; Vidal, Armando R; Parker, Richard D; Andrish, Jack T; Amendola, Annunziato

    2013-06-01

    Multicenter and multisurgeon cohort studies on anterior cruciate ligament (ACL) reconstruction are becoming more common. Minimal information exists on intersurgeon and intrasurgeon variability in ACL tunnel placement. Purpose/ The purpose of this study was to analyze intersurgeon and intrasurgeon variability in ACL tunnel placement in a series of The Multicenter Orthopaedic Outcomes Network (MOON) ACL reconstruction patients and in a clinical cohort of ACL reconstruction patients. The hypothesis was that there would be minimal variability between surgeons in ACL tunnel placement. Cross-sectional study; Level of evidence, 3. Seventy-eight patients who underwent ACL reconstruction by 8 surgeons had postoperative imaging with computed tomography, and ACL tunnel location and angulation were analyzed using 3-dimensional surface processing and measurement. Intersurgeon and intrasurgeon variability in ACL tunnel placement was analyzed. For intersurgeon variability, the range in mean ACL femoral tunnel depth between surgeons was 22%. For femoral tunnel height, there was a 19% range. Tibial tunnel location from anterior to posterior on the plateau had a 16% range in mean results. There was only a small range of 4% for mean tibial tunnel location from the medial to lateral dimension. For intrasurgeon variability, femoral tunnel depth demonstrated the largest ranges, and tibial tunnel location from medial to lateral on the plateau demonstrated the least variability. Overall, surgeons were relatively consistent within their own cases. Using applied measurement criteria, 85% of femoral tunnels and 90% of tibial tunnels fell within applied literature-based guidelines. Ninety-one percent of the axes of the femoral tunnels fell within the boundaries of the femoral footprint. The data demonstrate that surgeons performing ACL reconstructions are relatively consistent between each other. There is, however, variability of average tunnel placement up to 22% of mean condylar depth

  18. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  19. Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis.

    Science.gov (United States)

    Amailland, Sylvain; Thomas, Jean-Hugh; Pézerat, Charles; Boucheron, Romuald

    2018-04-01

    The acoustic study of propellers in a hydrodynamic tunnel is of paramount importance during the design process, but can involve significant difficulties due to the boundary layer noise (BLN). Indeed, advanced denoising methods are needed to recover the acoustic signal in case of poor signal-to-noise ratio. The technique proposed in this paper is based on the decomposition of the wall-pressure cross-spectral matrix (CSM) by taking advantage of both the low-rank property of the acoustic CSM and the sparse property of the BLN CSM. Thus, the algorithm belongs to the class of robust principal component analysis (RPCA), which derives from the widely used principal component analysis. If the BLN is spatially decorrelated, the proposed RPCA algorithm can blindly recover the acoustical signals even for negative signal-to-noise ratio. Unfortunately, in a realistic case, acoustic signals recorded in a hydrodynamic tunnel show that the noise may be partially correlated. A prewhitening strategy is then considered in order to take into account the spatially coherent background noise. Numerical simulations and experimental results show an improvement in terms of BLN reduction in the large hydrodynamic tunnel. The effectiveness of the denoising method is also investigated in the context of acoustic source localization.

  20. Adiabatic partial Siberian snake turn-on with no beam depolarization

    International Nuclear Information System (INIS)

    Phelps, R.A.; Anferov, V.A.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Derbenev, Y.S.; Kaufman, W.A.; Koulsha, A.V.; Krisch, A.D.; Nurushev, T.S.; Raczkowksi, D.B.; Sund, S.E.; Wong, V.K.; Caussyn, D.D.; Ellison, T.J.P.; Lee, S.Y.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Baiod, R.; Khiari, F.Z.; Ratner, L.G.; Sato, H.

    1994-01-01

    A recent experiment in the IUCF cooler ring studied the adiabatic turn-on of a partial Siberian snake at 370 MeV, where the spin tune, ν s is 21/2 for all snake strengths. The snake consisted of two rampable warm solenoid magnets in series with a superconducting solenoid; this combination allowed varying the snake strength between about 0 and 25% at 370 MeV. We measured the beam polaraization after varying the snake either 1, 2, or 10 times; we found with good precision that no polarization was lost. This supports the conjecture that a Siberian snake can be ramped adiabatically at an energy where the spin tune is a half integer

  1. On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Legrand, M.; Rodriguez-Hidalgo, M.C.

    2010-01-01

    This paper presents a numerical model of single-effect absorption cycles with ammonia-lithium nitrate solution as the working pair and incorporating an adiabatic absorber. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers and it assumes an approach factor to adiabatic equilibrium. The results are offered as a function of external temperatures. A loop circuit with a heat exchanger upstream the absorber produces subcooling for facilitating absorption process. The effect of the mass flow rate recirculated through the absorber is studied. Results show a diminishing return effect. The value at which the recirculation mass flow yields a reasonable performance is between 4 and 6 times the solution mass flow. With a heat transfer area 6 times smaller than with a conventional diabatic shell-and-tube type absorber, the adiabatic absorber configured with a plate heat exchanger yields a 2% smaller maximum COP and a 15-20% smaller cooling power.

  2. Low-Power Adiabatic Computing with Improved Quasistatic Energy Recovery Logic

    Directory of Open Access Journals (Sweden)

    Shipra Upadhyay

    2013-01-01

    Full Text Available Efficiency of adiabatic logic circuits is determined by the adiabatic and non-adiabatic losses incurred by them during the charging and recovery operations. The lesser will be these losses circuit will be more energy efficient. In this paper, a new approach is presented for minimizing power consumption in quasistatic energy recovery logic (QSERL circuit which involves optimization by removing the nonadiabatic losses completely by replacing the diodes with MOSFETs whose gates are controlled by power clocks. Proposed circuit inherits the advantages of quasistatic ERL (QSERL family but is with improved power efficiency and driving ability. In order to demonstrate workability of the newly developed circuit, a 4 × 4 bit array multiplier circuit has been designed. A mathematical expression to calculate energy dissipation in proposed inverter is developed. Performance of the proposed logic (improved quasistatic energy recovery logic (IQSERL is analyzed and compared with CMOS and reported QSERL in their representative inverters and multipliers in VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In our proposed (IQSERL inverter the power efficiency has been improved to almost 20% up to 50 MHz and 300 fF external load capacitance in comparison to CMOS and QSERL circuits.

  3. Experimental evaluation of ammonia adiabatic absorption into ammonia–lithium nitrate solution using a fog jet nozzle

    International Nuclear Information System (INIS)

    Zacarías, Alejandro; Venegas, María; Lecuona, Antonio; Ventas, Rubén

    2013-01-01

    This paper presents the experimental assessment of the adiabatic absorption of ammonia vapour into an ammonia–lithium nitrate solution using a fog jet nozzle. The ammonia mass fraction was kept constant at 46.08% and the absorber pressure was varied in the range 355–411 kPa. The nozzle was located at the top of the absorption chamber, at a height of 205 mm measured from the bottom surface. The diluted solution flow rate was modified between 0.04 and 0.08 kg s −1 and the solution inlet temperature in the range 25.9–30.2 °C. The influence of these variables on the approach to adiabatic equilibrium factor, outlet subcooling, absorption ratio and mass transfer coefficient is analysed. The approach to adiabatic equilibrium factor for the conditions essayed is always between 0.82 and 0.93. Pressure drop of the solution entering the absorption chamber is also evaluated. Correlations for the approach to adiabatic equilibrium factor and the Sherwood number are given. - Highlights: ► Adiabatic absorption of NH 3 vapour into NH 3 –LiNO 3 using fog jet nozzle created spray. ► Pressure drop of the solution entering to the absorption chamber is evaluated. ► Approach to adiabatic equilibrium factor (F) is between 0.82 and 0.93 at 205 mm height. ► Experimental values of mass transfer coefficient and outlet subcooling are presented. ► Correlations for F and Sherwood number are given.

  4. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  5. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  6. Quantum gas in the fast forward scheme of adiabatically expanding cavities: Force and equation of state

    Science.gov (United States)

    Babajanova, Gulmira; Matrasulov, Jasur; Nakamura, Katsuhiro

    2018-04-01

    With use of the scheme of fast forward which realizes quasistatic or adiabatic dynamics in shortened timescale, we investigate a thermally isolated ideal quantum gas confined in a rapidly dilating one-dimensional (1D) cavity with the time-dependent size L =L (t ) . In the fast-forward variants of equation of states, i.e., Bernoulli's formula and Poisson's adiabatic equation, the force or 1D analog of pressure can be expressed as a function of the velocity (L ˙) and acceleration (L ̈) of L besides rapidly changing state variables like effective temperature (T ) and L itself. The force is now a sum of nonadiabatic (NAD) and adiabatic contributions with the former caused by particles moving synchronously with kinetics of L and the latter by ideal bulk particles insensitive to such a kinetics. The ratio of NAD and adiabatic contributions does not depend on the particle number (N ) in the case of the soft-wall confinement, whereas such a ratio is controllable in the case of hard-wall confinement. We also reveal the condition when the NAD contribution overwhelms the adiabatic one and thoroughly changes the standard form of the equilibrium equation of states.

  7. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  8. Theory of superconducting tunneling without the tunneling Hamiltonian

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling

  9. Spin quantum tunneling via entangled states in a dimer of exchange coupled single-molecule magnets

    Science.gov (United States)

    Tiron, R.; Wernsdorfer, W.; Aliaga-Alcalde, N.; Foguet-Albiol, D.; Christou, G.

    2004-03-01

    A new family of supramolecular, antiferromagnetically exchange-coupled dimers of single-molecule magnets (SMMs) has recently been reported [W. Wernsdorfer, N. Aliaga-Alcalde, D.N. Hendrickson, and G. Christou, Nature 416, 406 (2002)]. Each SMM acts as a bias on its neighbor, shifting the quantum tunneling resonances of the individual SMMs. Hysteresis loop measurements on a single crystal of SMM-dimers have now established quantum tunneling of the magnetization via entangled states of the dimer. This shows that the dimer really does behave as a quantum-mechanically coupled dimer. The transitions are well separated, suggesting long coherence times compared to the time scale of the energy splitting. This result is of great importance if such systems are to be used for quantum computing. It also allows the measurement of the longitudinal and transverse superexchange coupling constants [Phys. Rev. Lett. 91, 227203 (2003)].

  10. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  11. CIRCE: A dedicated storage ring for coherent THz synchrotron radiation

    International Nuclear Information System (INIS)

    Byrd, J.M.; Martin, Michael C.; McKinney, W.R.; Munson, D.V.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Thur, W.G.; Jung, J.Y.; Wan, W.

    2003-01-01

    We present the concepts for an electron storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 mm to about one cm. CIRCE (Coherent InfraRed CEnter) will be a 66 m circumference ring located on top of the ALS booster synchrotron shielding tunnel and using the existing ALS injector. This location provides enough floor space for both the CIRCE ring, its required shielding, and numerous beamlines. We briefly outline a model for CSR emission in which a static bunch distortion induced by the synchrotron radiation field is used to significantly extend the stable CSR emission towards higher frequencies. This model has been verified with experimental CSR results. We present the calculated CIRCE photon flux where a gain of 6-9 orders of magnitude is shown compared to existing far-IR sources. Additionally, the particular design of the dipole vacuum chamber has been optimized to allow an excellent transmission of these far-infrared wavelengths. We believe that the CIRCE source can be constructed for a modest cost

  12. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  13. Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms

    Directory of Open Access Journals (Sweden)

    Min-Suk Jo

    2017-11-01

    Full Text Available This paper aimed to evaluate the applicability of adiabatic humidification in the heating, ventilation, and air conditioning (HVAC systems of semiconductor cleanrooms. Accurate temperature and humidity control are essential in semiconductor cleanrooms and high energy consumption steam humidification is commonly used. Therefore, we propose an adiabatic humidification system employing a pressurized water atomizer to reduce the energy consumption. The annual energy consumption of three different HVAC systems were analyzed to evaluate the applicability of adiabatic humidification. The studied cases were as follows: (1 CASE 1: a make-up air unit (MAU with a steam humidifier, a dry cooling coil (DCC, and a fan filter unit (FFU; (2 CASE 2: a MAU with the pressurized water atomizer, a DCC, and a FFU; and (3 CASE 3: a MAU, a DCC, and a FFU, and the pressurized water atomizer installed in the return duct. The energy saving potential of adiabatic humidification over steam humidification has been proved, with savings of 8% and 23% in CASE 2 and CASE 3 compared to CASE 1, respectively. Furthermore, the pressurized water atomizer installed in the return duct exhibits greater energy saving effect than when installed in the MAU.

  14. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  15. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  16. Nonstationary quantum mechanics. 4. Nonadiabatic properties of the Schroedinger equation in adiabatic processes

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, N S [Low Temperature Department of the Institute of Solid State Physics of the Bulgarian Academy of Sciences, Sofia

    1981-04-01

    It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article rests essentially on the ideology of the preceding articles, in particular article I.

  17. Nonstationary quantum mechanics. IV. Nonadiabatic properties of the Schroedinger equation in adiabatic processes

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, N S

    1981-04-01

    It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article IV rests essentially on the ideology of the preceding articles, in particular article I.

  18. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    Science.gov (United States)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  19. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  20. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  1. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  2. Mathematical Model of a Lithium-Bromide/Water Absorption Refrigeration System Equipped with an Adiabatic Absorber

    Directory of Open Access Journals (Sweden)

    Salem M. Osta-Omar

    2016-11-01

    Full Text Available The objective of this paper is to develop a mathematical model for thermodynamic analysis of an absorption refrigeration system equipped with an adiabatic absorber using a lithium-bromide/water (LiBr/water pair as the working fluid. The working temperature of the generator, adiabatic absorber, condenser, evaporator, the cooling capacity of the system, and the ratio of the solution mass flow rate at the circulation pump to that at the solution pump are used as input data. The model evaluates the thermodynamic properties of all state points, the heat transfer in each component, the various mass flow rates, and the coefficient of performance (COP of the cycle. The results are used to investigate the effect of key parameters on the overall performance of the system. For instance, increasing the generator temperatures and decreasing the adiabatic absorber temperatures can increase the COP of the cycle. The results of this mathematical model can be used for designing and sizing new LiBr/water absorption refrigeration systems equipped with an adiabatic absorber or for optimizing existing aforementioned systems.

  3. Adiabatic and diabatic aerosol transport to the Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Lugauer, M.; Baltensperger, U.; Furger, M.; Jost, D.T.; Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Synoptic scale vertical motion, here detected by the geopotential height of the 500 hPa surface, mainly accounts for the aerosol transport to the Jungfraujoch in winter. In summer, diabatic convection provides the dominant vertical transport mechanism. Nevertheless, synoptic scale adiabatic motion still determines whether diabatic convection can develop. (author) 2 figs., 2 refs.

  4. Adiabatic Processes Realized with a Trapped Brownian Particle

    Science.gov (United States)

    Martínez, Ignacio A.; Roldán, Édgar; Dinis, Luis; Petrov, Dmitri; Rica, Raúl A.

    2015-03-01

    The ability to implement adiabatic processes in the mesoscale is of key importance in the study of artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental implementation due to the difficulty in isolating Brownian particles from their fluctuating environment. Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing a protocol where both characteristic volume and temperature of the system are changed in such a way that the entropy of the system is conserved along the process. We compare the protocols that follow from either the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.

  5. Adiabatic quantum computing with spin qubits hosted by molecules.

    Science.gov (United States)

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  6. Spin-dependent tunnelling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R

    2003-01-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  7. Adiabatic CMB perturbations in pre-big bang string cosmology

    DEFF Research Database (Denmark)

    Enqvist, Kari; Sloth, Martin Snoager

    2001-01-01

    We consider the pre-big bang scenario with a massive axion field which starts to dominate energy density when oscillating in an instanton-induced potential and subsequently reheats the universe as it decays into photons, thus creating adiabatic CMB perturbations. We find that the fluctuations...

  8. Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.

    1988-01-01

    in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...

  9. Spin-dependent tunneling recombination in heterostructures with a magnetic layer

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)

    2017-01-15

    We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.

  10. Landau-Zener evolution under weak measurement: manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

    Science.gov (United States)

    Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham

    2015-01-01

    The time evolution and the asymptotic outcome of a Landau-Zener-Stueckelberg-Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength.

  11. An adiabatic matching device for the Orsay linear positron accelerator

    International Nuclear Information System (INIS)

    Chehab, R.; Le Meur, G.; Mouton, B.; Renard, M.

    1983-03-01

    An adiabatically tapered solenoidal magnetic field is used to match positron beam source emittance to accelerating section acceptance. Such a matching system improves the accepted energy band which has been accurately computed and compared with analytical determination. The tapered field is provided by stacked pancakes and solenoids of various radii; total lens length is about 0.75m. The adiabatic matching system took place of a quarter wave transformer system and has been in operation for two years. Positron conversion ratio is 3.3% for a 1 GeV incident beam and presents a factor of nearly two of improvement for the positron yield. Energy bandwidth of positron beam has also been increased by a factor of nearly 2.5; the output positron beam energy is of 1.2 GeV

  12. Plasmonic tunnel junctions for single-molecule redox chemistry.

    Science.gov (United States)

    de Nijs, Bart; Benz, Felix; Barrow, Steven J; Sigle, Daniel O; Chikkaraddy, Rohit; Palma, Aniello; Carnegie, Cloudy; Kamp, Marlous; Sundararaman, Ravishankar; Narang, Prineha; Scherman, Oren A; Baumberg, Jeremy J

    2017-10-20

    Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.

  13. Adiabatic Wankel type rotary engine

    Science.gov (United States)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  14. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Science.gov (United States)

    ten Brinke, Nicolai; Schützhold, Ralf

    2016-04-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  15. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  16. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  17. Thermodynamic analysis of a novel exhaust heat-driven non-adiabatic ejection-absorption refrigeration cycle using R290/oil mixture

    International Nuclear Information System (INIS)

    Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng

    2017-01-01

    Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.

  18. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  19. The ISI Tunnel

    Science.gov (United States)

    1993-10-01

    DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP

  20. Transmission characteristics of Bessel-Gaussian vortex beams propagating along both longitudinal and transverse directions in a subway tunnel

    Science.gov (United States)

    Wang, Xiaohui; Song, Yingxiong

    2018-02-01

    By exploiting the non-Kolmogorov model and Rytov approximation theory, a propagation model of Bessel-Gaussian vortex beams (BGVB) propagating in a subway tunnel is derived. Based on the propagation model, a model of orbital angular momentum (OAM) mode probability distribution is established to evaluate the propagation performance when the beam propagates along both longitudinal and transverse directions in the subway tunnel. By numerical simulations and experimental verifications, the influences of the various parameters of BGVB and turbulence on the OAM mode probability distribution are evaluated, and the results of simulations are consistent with the experimental statistics. The results verify that the middle area of turbulence is more beneficial for the vortex beam propagation than the edge; when the BGVB propagates along the longitudinal direction in the subway tunnel, the effects of turbulence on the OAM mode probability distribution can be decreased by selecting a larger anisotropy parameter, smaller coherence length, larger non-Kolmogorov power spectrum coefficient, smaller topological charge number, deeper subway tunnel, lower train speed, and longer wavelength. When the BGVB propagates along the transverse direction, the influences can be also mitigated by adopting a larger topological charge number, less non-Kolmogorov power spectrum coefficient, smaller refractive structure index, shorter wavelength, and shorter propagation distance.

  1. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  2. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses.

    NARCIS (Netherlands)

    Scheenen, T.W.J.; Heerschap, A.; Klomp, D.W.J.

    2008-01-01

    OBJECTIVE: To explore the possibilities of proton spectroscopic imaging (1H-MRSI) of the human brain at 7 Tesla with adiabatic refocusing pulses. MATERIALS AND METHODS: A combination of conventional slice selective excitation and two pairs of slice selective adiabatic refocusing pulses (semi-LASER)

  3. Tunneling through landsliding zone; Jisuberi chitainai no tunnel seko

    Energy Technology Data Exchange (ETDEWEB)

    Konbu, A; Hatabu, K; Kano, T [Tekken Corp., Tokyo (Japan)

    1994-08-01

    At the new tunnel construction site of the Shirakata tunnel on the Obama line in Yamaguchi Prefecture, a landsliding occurred at about 60 meters to the upper portion obliquely to the right hand side of the shaft when the excavation progressed to about 10 meters from the starting side. The landslide caused displacement at the shaft opening and change in the supports. As a result of the re-investigation, it was confirmed that the slide face went through the tunnel cross section. The measures taken were removal of the upper soil and an adoption of the all ground fastening (AGF) method (injection type long tip fastening method) as an auxiliary construction to stop loosening of the natural ground associated with the tunnel excavation. The result was a completion of tunneling the landsliding zone without a problem. This paper reports the AGF method adopted in the above construction, together with the construction works and natural ground conditions. The AGF method is about the same as the pipe roof method with regard to the natural ground accepting mechanism and the materials used. The difference is building an improved body in a limited area in the natural ground around the steel pipes by injecting the fixing material. The use of this method caused no problems in subsidence and displacement in the surrounding ground, and completed the tunneling construction without an unusual event. 1 ref., 7 figs., 2 tabs.

  4. Landau–Zener evolution under weak measurement: manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

    International Nuclear Information System (INIS)

    Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham

    2015-01-01

    The time evolution and the asymptotic outcome of a Landau–Zener–Stueckelberg–Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength. (paper)

  5. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  6. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential.

    Science.gov (United States)

    Scribano, Yohann; Faure, Alexandre; Lauvergnat, David

    2012-03-07

    Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile. © 2012 American Institute of Physics

  8. Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world

    KAUST Repository

    Giugni, Andrea

    2014-11-01

    Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.

  9. Adiabatic nanofocusing: Spectroscopy, transport and imaging investigation of the nano world

    KAUST Repository

    Giugni, Andrea; Allione, Marco; Torre, Bruno; Das, Gobind; Francardi, Marco; Moretti, Manola; Malerba, Mario; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2014-01-01

    Adiabatic compression plays a fundamental role in the realization of localized enhanced electromagnetic field hot spots, it provides the possibility to focus at nanoscale optical excitation. It differs from the well-known lightning rod effect since it is based on the lossless propagation of surface plasmon polaritons (SPPs) up to a nano-sized metal tip where the energy density is largely enhanced. Here we discuss two important applications of adiabatic compression: Raman and hot electron spectroscopy at nanometric resolution. The underlying phenomena are the conversion of SPPs into photons or hot electrons. New scanning probe spectroscopy techniques along with experimental results are discussed. We foresee that these techniques will play a key role in relating the functional and structural properties of matter at the nanoscale.

  10. Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra? aga; Luis Cabarique; Manuel Londo? o

    2012-01-01

    Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.

  11. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  12. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  13. Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2008-01-01

    Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron

  14. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    Science.gov (United States)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  15. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  16. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  17. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  18. Quantum tunneling time

    International Nuclear Information System (INIS)

    Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2004-01-01

    We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes

  19. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  20. Treatment of Carpal Tunnel Syndrome in pregnancy with Polarized Polychromatic Non-coherent Light (Bioptron Light): A Preliminary, Prospective, Open Clinical Trial.

    Science.gov (United States)

    Dimitrios, Stasinopoulos; Stasinopoulos, Loannis

    2017-12-31

    The aim of this trial was to assess the efficacy of polarized polychromatic noncoherent light (Bioptron light) in the treatment of Carpal Tunnel Syndrome (CTS) in pregnancy. An uncontrolled experimental study was conducted in pregnant patients with CTS who visited our clinic from January 2006 to January 2010. Bioptron light (480-3400 nm; 95% polarization; 40 mW/cm 2 ; and 2.4 J/cm 2 ) was administered perpendicular to the carpal tunnel area. The irradiation time for each session was 6 min at an operating distance of 5-10 cm from the carpal tunnel area, twice each day, five days per week for 2 weeks. Pain and paraesthesia using a visual analogue scale (VAS) and finger pinch strength were evaluated at the end of treatment (week 2) and 1-month (week 6) after the end of treatment. The Student'sttest was used and p values Bioptron light is a reliable, safe, and effective treatment option in pregnant patients with CTS. Controlled clinical trials are needed to establish the absolute and relative effectiveness of this intervention.

  1. Polaronic and bipolaronic structures in the adiabatic Hubbard-Hostein model involving 2 electrons and in its extensions; Structures polaroniques et bipolaroniques dans le modele de hostein hubbard adiabatique a deux electrons et ses extensions

    Energy Technology Data Exchange (ETDEWEB)

    Proville, L

    1998-03-30

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.) 33 refs.

  2. Modelling of an adiabatic trickle-bed reactor with phase change

    DEFF Research Database (Denmark)

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...

  3. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  4. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  5. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coïsson, M. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); University of Torino, Chemistry Department, via P. Giuria 7, 10125 Torino (Italy); Celegato, F.; Martino, L.; Vinai, F. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Martino, P. [Politronica srl, via Livorno 60, 10144 Torino (Italy); Ferraro, G. [Center for Space Human Robotics, Istituto Italiano di Tecnologia - IIT, corso Trento 21, 10129 Torino (Italy); Tiberto, P. [INRIM, strada delle Cacce 91, 10135 Torino (Italy)

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained. - Highlights: • Development and thermodynamic modelling of a hyperthermia setup operating in non-adiabatic conditions. • Calibration of the experimental setup and validation of the model. • Accurate measurement of specific absorption rate and intrinsic loss power in non-adiabatic conditions.

  6. Correlated adiabatic and isocurvature cosmic microwave background fluctuations in the wake of the results from the wilkinson microwave anisotropy probe.

    Science.gov (United States)

    Väliviita, Jussi; Muhonen, Vesa

    2003-09-26

    In general correlated models, in addition to the usual adiabatic component with a spectral index n(ad1) there is another adiabatic component with a spectral index n(ad2) generated by entropy perturbation during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature cosmic microwave background fluctuations of the Wilkinson Microwave Anisotropy Probe (WMAP) group, who set the two adiabatic spectral indices equal. Allowing n(ad1) and n(ad2) to vary independently we find that the WMAP data favor models where the two adiabatic components have opposite spectral tilts. Using the WMAP data only, the 2sigma upper bound for the isocurvature fraction f(iso) of the initial power spectrum at k(0)=0.05 Mpc(-1) increases somewhat, e.g., from 0.76 of n(ad2)=n(ad1) models to 0.84 with a prior n(iso)<1.84 for the isocurvature spectral index.

  7. Neutron generator based on adiabatic trap

    International Nuclear Information System (INIS)

    Golovin, I.N.; Zhil'tsov, V.A.; Panov, D.A.; Skovoroda, A.A.; Shatalov, G.E.; Shcherbakov, A.G.

    1988-01-01

    A possibility of 14 MeV neutron generator (NG) production on the basis of axial-symmetric adiabatic trap with MHD cusped armature for the testing of materials and elements of the DT reactor first wall and blanket structure is discussed. General requirements to NG are formulated. It is shown that the NG variant discussed meets the requirements formulated. Approximate calculation of the NG parameters has shown that total energy consumption by the generator does not exceed 220 MW at neutron flux specific capacity of 2.5 MW/m 2 and radiation test area of 5-6 m 2

  8. Phase avalanches in near-adiabatic evolutions

    International Nuclear Information System (INIS)

    Vertesi, T.; Englman, R.

    2006-01-01

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes

  9. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  10. Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy

    OpenAIRE

    Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf

    1995-01-01

    By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.

  11. Non-adiabatic rotational excitation of dipolar molecule under the ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1213–1221. c Indian Academy of Sciences. ... The rotational wave packets of LiCl molecule excited non-adiabatically by half cycle pulse. (HCP) is .... pared to the intensities required for the ionization of ..... out and with delayed ultrashort HCP at different initial pulse dura-.

  12. Adiabatic quantum games and phase-transition-like behavior between optimal strategies

    Science.gov (United States)

    de Ponte, M. A.; Santos, Alan C.

    2018-06-01

    In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.

  13. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  14. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  15. Evidence for the adiabatic invariance of the black hole horizon area

    OpenAIRE

    Mayo, Avraham E.

    1998-01-01

    Some examples in support of the conjecture that the horizon area of a near equilibrium black hole is an adiabatic invariant are described. These clarify somewhat the conditions under which the conjecture would be true.

  16. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  17. Tunnel ionization of H2 in a low-frequency laser field: A wave-packet approach

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.; Chateauneuf, F.; Manoli, S.; Atabek, O.; Keller, A.

    1997-01-01

    The dynamics of multielectron dissociative ionization (MEDI) of H 2 in an intense IR laser pulse are investigated using a wave-packet propagation scheme. The electron tunneling processes corresponding to the successive ionizations of H 2 are expressed in terms of field-free Born-Oppenheimer (BO) potential energy surfaces (PES) by transforming the tunnel shape resonance picture into a Feshbach resonance problem. This transformation is achieved by defining a new, time-dependent electronic basis in which the bound electrons are still described by field-free BO electronic states while the ionized ones are described by Airy functions. In the adiabatic, quasistatic approximation, these functions describe free electrons under the influence of the instantaneous electric field of the laser and such an ionized electron can have a negative total energy. As a consequence, when dressed by the continuous ejected electron energy, the BO PES of an ionic channel can be brought into resonance with states of the parent species. This construction gives a picture in which wave packets are to be propagated on a continuum of coupled electronic manifolds. A reduction of the wave-packet propagation scheme to an effective five-channel problem has been obtained for the description of the first dissociative ionization process in H 2 by using Fano's formalism [U. Fano, Phys. Rev. 124, 1866 (1961)] to analytically diagonalize the infinite, continuous interaction potential matrix and by using the properties of Fano's solutions. With this algorithm, the effect that continuous ionization of H 2 has on the dissociation dynamics of the H 2 + ion has been investigated. In comparison with results that would be obtained if the first ionization of H 2 was impulsive, the wave-packet dynamics of the H 2 + ion prepared continuously by tunnel ionization are markedly nonadiabatic. (Abstract Truncated)

  18. PIPER Continuous Adiabatic Demagnetization Refrigerator

    Science.gov (United States)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  19. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J. [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600 (United States); Cheng, B.; Sharp, D. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  20. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    International Nuclear Information System (INIS)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-01-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results

  1. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    Science.gov (United States)

    Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.

    2015-02-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  2. Theoretical estimation of adiabatic temperature rise from the heat flow data obtained from a reaction calorimeter

    International Nuclear Information System (INIS)

    Das, Parichay K.

    2012-01-01

    Highlights: ► This method for estimating ΔT ad (t) against time in a semi-batch reactor is distinctively pioneer and novel. ► It has established uniquely a direct correspondence between the evolution of ΔT ad (t) in RC and C A (t) in a semi-batch reactor. ► Through a unique reaction scheme, the independent effects of heat of mixing and reaction on ΔT ad (t) has been demonstrated quantitatively. ► This work will help to build a thermally safe corridor of a thermally hazard reaction. ► This manuscript, the author believes will open a new vista for further research in Adiabatic Calorimetry. - Abstract: A novel method for estimating the transient profile of adiabatic rise in temperature has been developed from the heat flow data for exothermic chemical reactions that are conducted in reaction calorimeter (RC). It has also been mathematically demonstrated by the present design that there exists a direct qualitative equivalence between the temporal evolution of the adiabatic temperature rise and the concentration of the limiting reactant for an exothermic chemical reaction, carried out in semi batch mode. The proposed procedure shows that the adiabatic temperature rise will always be less than that of the reaction executed at batch mode thereby affording a thermally safe corridor. Moreover, a unique reaction scheme has been designed to establish the independent heat effect of dissolution and reaction quantitatively. It is hoped that the testimony of the transient adiabatic temperature rise that can be prepared by the proposed method, may provide ample scope for further research.

  3. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  4. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  5. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  6. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.; Kosel, Jü rgen; Useinov, N. Kh.; Tagirov, L. R.

    2011-01-01

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  7. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  8. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  9. DFTBaby: A software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B)

    Science.gov (United States)

    Humeniuk, Alexander; Mitrić, Roland

    2017-12-01

    A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.

  10. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  11. Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.

    Science.gov (United States)

    Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin

    2015-11-21

    Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.

  12. Adiabats of quartz, coesite, olivine, and magnesium oxide to 50 kbar and 1000 K, and the adiabatic gradient in the Earth's mantle

    Science.gov (United States)

    Boehler, R.

    1982-07-01

    The adiabats of olivine, magnesium oxide, and quartz were measured up to 50kbar and 1000 K. An end-loaded piston-cylinder apparatus with an in situ pressure gauge and a very fine thermocouple was used to measure (∂T/∂P)s during adiabatic compression. A power law between (∂T/∂P)s and compression yields values of the power n = -∂ ln (∂T/∂P)s/∂ ln ρ that agree with previous results from salts, metals, and fluids. Assuming constant values for n, the adiabtic gradient for an olivine upper mantle and a magnesium oxide lower mantle was calculated. The results agree well with some previous theoretical estimates. The volume dependence of the Grüneisen parameter γ was calculated from the thermodynamic equation ∂ ln γ/∂ ln ρ = ∂B/∂P - n, where B is the isothermal bulk modulus. γ is found to a good approximation to be proportional to volume. Table 6 is available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J82-002; $1.00. Payment must accompany order.

  13. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  14. Quantum revivals and magnetization tunneling in effective spin systems

    International Nuclear Information System (INIS)

    Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R

    2016-01-01

    Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)

  15. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    Science.gov (United States)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  16. Electrical installations of the Channel tunnel; Installations electriques du Tunnel sous la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Kersabiec, G. de [Eurotunnel, Folkestone (United Kingdom)

    2002-08-01

    Like an underground factory, the railway and auxiliary equipments of the Channel tunnel between France and UK, need a reliable and redundant power supply with a high quality maintenance. This article presents: the design criteria of the power distribution systems, the installation itself and the organisation of its exploitation: 1 - transportation system of the Channel tunnel (loads to supply, exploitation imperatives, fundamental criteria); 2 - external power sources (connection to the UK and French grids, values used by the national grids); 3 - exploitation criteria, tunnel design; 4 - description (main UK and French power stations, 25 kV traction network, 21 kV distribution network, tunnels, lighting in railway tunnels, supply of terminals, earthing network); 5 - exploitation; 6 - maintenance and quality. (J.S.)

  17. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    Science.gov (United States)

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    International Nuclear Information System (INIS)

    Brittnacher, M.J.; Whipple, E.C.

    1991-01-01

    In attempting to develop a fluidlike model of plasma dynamics in a current sheet, kinetic effects due to chaotic non-adiabatic particle motion must be included in any realistic description. Using drift variables, derived by the Kruskal averaging procedure, to construct distribution functions may provide an approach in which to develop the fluid description. However, the drift motion is influenced by abrupt changes in the value of the generalized first adiabatic invariant J. In this letter, the authors indicate how the changes in J derived from separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. In particular, the authors propose a method to determine distribution functions for an ensemble of particles following interactions with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant

  19. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    Science.gov (United States)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  20. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  1. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  2. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2016-05-15

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  3. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  4. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  5. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  6. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  7. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  8. Proposal for a phase-coherent thermoelectric transistor

    International Nuclear Information System (INIS)

    Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

    2014-01-01

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ∼45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit

  9. Proposal for a phase-coherent thermoelectric transistor

    Energy Technology Data Exchange (ETDEWEB)

    Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Robinson, J. W. A., E-mail: jjr33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moodera, J. S. [Department of Physics and Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bergeret, F. S., E-mail: sebastian-bergeret@ehu.es [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2014-08-11

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ∼45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit.

  10. Non - Adiabaticity and Novel Isotope Effect in the Doped Cuprates

    International Nuclear Information System (INIS)

    Kresin, V.; WOLF, S. A.

    1995-01-01

    This paper reports a novel isotope effect which is due to a strong non-adiabaticity that manifests itself in the dependence of the carrier concentration on the isotopic mass. The critical temperature in turn depends on the carrier concentration giving rise to a unique and non-phononic isotope shift. (author)

  11. Evolutions of Yang Phase Under Cyclic Condition and Adiabatic Condition

    International Nuclear Information System (INIS)

    Qian Shangwu; Gu Zhiyu

    2005-01-01

    There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the evolutions of Yang phase under the cyclic condition and the adiabatic condition for the general time-dependent harmonic oscillator, thus reveals the intimate relations between these three non-integrable phases.

  12. Adiabatic/diabatic polarization beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  13. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jhu, Can-Yong [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Wang, Yih-Wen, E-mail: g9410825@yuntech.edu.tw [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9, Sha-Luen-Hu, Xi-Zhou-Li, Houlong, Miaoli 35664, Taiwan, ROC (China); Shu, Chi-Min [Doctoral Program, Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology (NYUST), 123, University Rd., Sec. 3, Douliou, Yunlin 64002, Taiwan, ROC (China); Chang, Jian-Chuang; Wu, Hung-Chun [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Rm. 222, Bldg. 77, 2F, 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC (China)

    2011-08-15

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO{sub 2}) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO{sub 2} cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T{sub 0}), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T{sub max}) and pressure (P{sub max}). The T{sub max} and P{sub max} of the charged Li-ion battery during the runaway reaction reach 903.0 {sup o}C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO{sub 2} batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.

  14. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter

    International Nuclear Information System (INIS)

    Jhu, Can-Yong; Wang, Yih-Wen; Shu, Chi-Min; Chang, Jian-Chuang; Wu, Hung-Chun

    2011-01-01

    Thermal abuse behaviors relating to adiabatic runaway reactions in commercial 18650 lithium ion batteries (LiCoO 2 ) are being studied in an adiabatic calorimeter, vent sizing package 2 (VSP2). We select four worldwide battery producers, Sony, Sanyo, Samsung and LG, and tested their Li-ion batteries, which have LiCoO 2 cathodes, to determine their thermal instabilities and adiabatic runaway features. The charged (4.2 V) and uncharged (3.7 V) 18650 Li-ion batteries are tested using a VSP2 with a customized stainless steel test can to evaluate their thermal hazard characteristics, such as the initial exothermic temperature (T 0 ), the self-heating rate (dT/dt), the pressure rise rate (dP/dt), the pressure-temperature profiles and the maximum temperature (T max ) and pressure (P max ). The T max and P max of the charged Li-ion battery during the runaway reaction reach 903.0 o C and 1565.9 psig (pound-force per square inch gauge), respectively. This result leads to a thermal explosion, and the heat of reaction is 26.2 kJ. The thermokinetic parameters of the reaction of LiCoO 2 batteries are also determined using the Arrhenius model. The thermal reaction mechanism of the Li-ion battery (pack) proved to be an important safety concern for energy storage. Additionally, use of the VSP2 to classify the self-reactive ratings of the various Li-ion batteries demonstrates a new application of the adiabatic calorimetric methodology.

  15. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  16. Single-molecule electron tunnelling through multiple redox levels with environmental relaxation

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    represent the substrate and tip in electrochemical in situ scanning tunnelling microscopy. An equivalent three-electrode configuration represents a molecular single-electron transistor in which the enclosing electrodes constitute source and drain, and the reference electrode the gate. Current-bias voltage...... relations at fixed electrochemical overpotential or gate voltage, and current-overpotential or current-gate voltage relations at fixed bias voltage are equivalent in the two systems. Due to the activation-less nature of the processes, electron flow between the electrodes through the molecular redox levels...... level(s) subsequent to electron transfer. Several physical mechanisms can be distinguished and distinctive current-overpotential/gate voltage or current-bias voltage relations obtained. These reflect electronic level separation, environmental nuclear reorganisation, and coherent or incoherent multi...

  17. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  18. How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?

    International Nuclear Information System (INIS)

    Yarman, T.; Kholmetskii, A. L.

    2011-01-01

    We continue to analyse the known law of adiabatic transformation for an ideal gas PV 5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed. (physics of gases, plasmas, and electric discharges)

  19. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  20. Adiabatic superconducting cells for ultra-low-power artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrey E. Schegolev

    2016-10-01

    Full Text Available We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.