WorldWideScience

Sample records for coherent polarization states

  1. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  2. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    International Nuclear Information System (INIS)

    Mendonca, Fabio Alencar; Ramos, Rubens Viana

    2008-01-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed

  3. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    Science.gov (United States)

    Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2008-02-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.

  4. Entanglement between total intensity and polarization for pairs of coherent states

    Science.gov (United States)

    Sanchidrián-Vaca, Carlos; Luis, Alfredo

    2018-04-01

    We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.

  5. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  6. Coherent active polarization control without loss

    Science.gov (United States)

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2017-11-01

    We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  7. Coherent active polarization control without loss

    Directory of Open Access Journals (Sweden)

    Yuqian Ye

    2017-11-01

    Full Text Available We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  8. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  9. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  10. Generalized hypergeometric coherent states

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2004-01-01

    We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions

  11. Coherence and Polarization of Polarization Speckle Generated by Depolarizers and Their Changes through Complex ABCD Matrix

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.

    2015-01-01

    Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind...... of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....

  12. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  13. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  14. On coherent states

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1975-01-01

    A definition of the coherent state representation is given in this paper. In the representation quantum theory equations take the form of classical field theory equations (with causality inherent to the latter) not only in simple cases (free field and interactions with an external current or field), but also in the general case of closed systems of interacting fields. And, conversely, a classical field theory can be transformed into a form of a quantum one

  15. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  16. Coherent states and rational surfaces

    International Nuclear Information System (INIS)

    Brody, Dorje C; Graefe, Eva-Maria

    2010-01-01

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  17. Geometry of generalized coherent states

    International Nuclear Information System (INIS)

    Bacry, H.; Centre National de la Recherche Scientifique, 13 - Marseille; Grossmann, A.; Zak, J.

    1975-09-01

    Various attempts have been made to generalize the concept of coherent states (c.s.). One of them, due to Perelomov, seems to be very promising but no restrictive enough. The Perelomov c.s. are briefly reviewed. One shows how his definition gives rise to Radcliffe's c.s. Relationship between the usual and Radcliffe's c.s. can be investigated either from group contraction point of view (Arecchi et al.) or from a physical point of view (with the aid of the Poincare sphere of elliptic polarizations of electromagnetic plane waves). The question of finding complete subsets of c.s. is revisited and an attempt is made to restrict the Perelomov definition [fr

  18. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  19. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  20. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  1. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  2. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  3. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  4. Coherent states on Hilbert modules

    International Nuclear Information System (INIS)

    Ali, S Twareque; Bhattacharyya, T; Roy, S S

    2011-01-01

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  5. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  6. Coherent states for quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes

    2011-01-01

    The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.

  7. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  8. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  9. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  10. Coherent states for polynomial su(2) algebra

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Inomata, Akira

    2007-01-01

    A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit

  11. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  12. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  13. Polarization sensitive optical coherence tomography in dentistry

    International Nuclear Information System (INIS)

    Dichtl, S.

    1998-01-01

    Optical coherence tomography (OCT) is a noninvasive and noncontact technique for obtaining cross-sectional images of biologic structure, which was initially introduced to depict the transparent tissue of the eye. It employs the partial coherence properties of a light source to image structures with high resolution (< 20 (m). Recently, this technique has also been applied in turbid media. This tomographic imaging is analogous to conventional ultrasound B mode imaging, except that OCT measures the intensity of backreflected infrared light rather than acoustical waves. First applications, of OCT in dentistry for diagnosing periodontal disease have been reported by Colston et al. presenting in vitro OCT images of the dental and periodontal tissues of porcine premolar teeth. In this work, the feasibility of polarisation sensitive OCT for dental material is suggested. In contrast with conventional OCT, where the magnitude of backscattered light as a function of depth is imaged, backscattered light is used to image the magnitude of the birefringence in the sample as a function of depth. Partial loss of birefringence is known to be an early indication of incipient caries or tissue thermal damage. Applying this technique for caries diagnosis or guidance regarding optimal dosimetry for thermally mediated laser therapeutic procedures, polarisation sensitive OCT would represent a promising new technology for dentistry. (author)

  14. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  15. Coherent polarization radiation of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Morokhovskii, V.L.

    2014-01-01

    A brief narration about the history of those heated arguments and discussions around the nature of so-called parametric X-radiation, which were concluded by the recognition of the discovery the phenomenon of coherent polarization bremsstrahlung of relativistic charged particles in crystals. Some important information and comments, which stay over of notice of specialists till now are reported.

  16. Coherent states: a contemporary panorama Coherent states: a contemporary panorama

    Science.gov (United States)

    Twareque Ali, S.; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre

    2012-06-01

    Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schrödinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably the 1985 reprint volume of Klauder and Skagerstam [1], the 1990 review paper by Zhang et al [2], the 1993 Oak Ridge Conference [3] and the 1995 review paper by Ali et al [4]. Textbooks also have been published, among which one might mention the ground breaking text of Perelomov [5] focusing on the group-theoretical aspects, that of Ali et al [6]1 analyzing systematically the mathematical structure beyond the group-theoretical approach and also the relation to wavelet analysis, that of Dodonov and Man'ko [7] mostly devoted to quantum optics, that of Gazeau [8] more oriented towards the physical, probabilistic and quantization aspects, and finally the very recent one by Combescure and Robert [9]. In retrospect, one can see that the development of CS has gone through a two-phase transition. First, the (simultaneous) discovery in 1972 by Gilmore and Perelomov that CS were rooted in group theory, then the realization that CS can be defined in a purely algebraic way, as an eigenvalue problem or by a series expansion (Malkin and Man'ko 1969, Barut and Girardello 1971, Gazeau and Klauder 1999; references to the original articles may be found in the textbooks quoted above). Both facts resulted in an explosive expansion of the CS literature. We thought, therefore, that the time was ripe

  17. Nuclear structure with coherent states

    CERN Document Server

    Raduta, Apolodor Aristotel

    2015-01-01

    This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.

  18. Hybrid entanglement concentration assisted with single coherent state

    International Nuclear Information System (INIS)

    Guo Rui; Zhou Lan; Sheng Yu-Bo; Gu Shi-Pu; Wang Xing-Fu

    2016-01-01

    Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. (paper)

  19. Polarization phenomena on coherent particle backscattering by random media

    International Nuclear Information System (INIS)

    Gorodnichev, E.E.; Dudarev, S.L.; Rogozkin, D.B.

    1990-01-01

    An exact solution is found for the problem of coherent enhanced backscattering of spin 1/2 particles by random media with small-radius scatterers. The polarization features in the angular spectrum are analyzed for particles reflected by three- and two-dimensional disordered systems and by medium with Anderson disorder (periodic system of random scatterers). The analysis is carried out in the case of magnetic and spin-orbit interaction with the scattering centers. The effects predicted have not any analogues on coherent backscattering of light and scalar waves

  20. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  1. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  2. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  3. Coherent Backscattering in the Cross-Polarized Channel

    Science.gov (United States)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  4. QCD jets from coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1979-11-19

    A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.

  5. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  6. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  7. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  8. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  9. Recent progress on the unified theory of polarization and coherence for stochastic electromagnetic fields

    DEFF Research Database (Denmark)

    Wang, Wei; Zhao, Juan; Hu, Xiaoying

    2017-01-01

    All optical fields undergo random fluctuation and the underlying theory referred to as coherence and polarization of optical fields has played a fundamental role as an important manifestation of the random fluctuations of the electric fields. In this paper, we reviewed our recent theoretical...... and experimental work on the unified theory of polarization and coherence including coherence tensor wave, degree of coherence tensor, degree of generalized Stokes parameters, and their applications including coherence tensor holography and two-point resolution of polarimetric imaging....

  10. Information cloning of harmonic oscillator coherent states

    Indian Academy of Sciences (India)

    We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...

  11. NONINVASIVE DIAGNOSIS OF URINARY BLADDER CANCER BY CROSS-POLARIZATION OPTICAL COHERENCE TOMOGRAPHY: CLINICAL RESULTS

    Directory of Open Access Journals (Sweden)

    O. S. Streltsova

    2014-07-01

    Full Text Available The investigation examined the feasibility of cross-polarization optical cohe-rence tomography (CP OCT to detect early urinary bladder cancer (UBC. Studies were performed in 376 patients; 5290 images were obtained using an OCT 133-U optical coherence tomograph. To acquire and compare intrared-light scattering images in baseline and orthogonal polarizations is the basis of CP OCT; their analysis makes it possible to judge from the state of the epithelium/connective tissue system and to obtain information on changes in tissue depolarizing components, collagen in particular. The authors elaborated criteria as determinants of the nature of CP OCT changes in direct and orthogonal polarizations in health, inflammatory changes, and UBC at its early stage - urothelial dysplasia and carcinoma in situ in flat suspected areas.

  12. Coherent State Quantization and Moment Problem

    Directory of Open Access Journals (Sweden)

    J. P. Gazeau

    2010-01-01

    Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.

  13. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  14. Coherent states approach to Penning trap

    International Nuclear Information System (INIS)

    Fernandez, David J; Velazquez, Mercedes

    2009-01-01

    By using a matrix technique, which allows us to identify directly the ladder operators, the Penning trap coherent states are derived as eigenstates of the appropriate annihilation operators. These states are compared with those obtained through the displacement operator. The associated wavefunctions and mean values for some relevant operators in these states are also evaluated. It turns out that the Penning trap coherent states minimize the Heisenberg uncertainty relation

  15. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  16. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  17. Analytic coherent states for generalized potentials

    International Nuclear Information System (INIS)

    Nieto, M.M.; Simmons, L.M. Jr.

    1978-01-01

    A prescription is given for finding coherent states in generalized potentials. By coherent states is meant states which in time follow the motion that a classical particle would. This prescription is based upon finding those natural classical variables which vary as the sine and the cosine of the classical ω/sub c/t. As an example, the symmetric Rosen--Morse potential is discussed in detail

  18. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  19. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  20. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  1. Polarization of the coherent radio emission from pulsars

    International Nuclear Information System (INIS)

    Ardavan, H.

    1982-01-01

    The polarization characteristics of the radiation from a quasi-steady pulsar magnetosphere are calculated using the amplitude-modulated-noise interpretation of the data on pulse structures. The total emission consists of three incoherently mixed radiation streams. Two of the independent polarization states are elliptically polarized (modes I and II) and one is linearly polarized (mode III). In the regime where the length scale of the radial distribution of the electric current density is appreciably longer than the wavelength of the radiation, the position angles of modes I and II are orthogonal and those of modes I and III coincident. However, the senses of circular polarization of modes I and II are in general uncorrelated. The degrees of circular polarization of the 'orthogonal' modes are decreasing functions of frequency and both approach zero in the limit where the frequency of the radiation is much higher than the rotation frequency of the pulsar. Longitudinal changes in the position angle and in the sense of circular polarization of each of the elliptically polarized modes are shown to arise, together with mode transitions, in part from the stochastic fluctuations and in part from the systematic variations of the electric current density with the azimuthal angle, in a narrow emitting region adjacent to the light cylinder. (author)

  2. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  3. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  4. Coherent states, pseudodifferential analysis and arithmetic

    Science.gov (United States)

    Unterberger, André

    2012-06-01

    Basic questions regarding families of coherent states include describing some constructions of such and the way they can be applied to operator theory or partial differential equations. In both questions, pseudodifferential analysis is important. Recent developments indicate that they can contribute to methods in arithmetic, especially modular form theory. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  5. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  6. von Neumann's hypothesis concerning coherent states

    International Nuclear Information System (INIS)

    Zak, J

    2003-01-01

    An orthonormal basis of modified coherent states is constructed. Each member of the basis is an infinite sum of coherent states on a von Neumann lattice. A single state is assigned to each unit cell of area h (Planck constant) in the phase plane. The uncertainties of the coordinate x and the square of the momentum p 2 for these states are shown to be similar to those for the usual coherent states. Expansions in the newly established set are discussed and it is shown that any function in the kq-representation can be written as a sum of two fixed kq-functions. Approximate commuting operators for x and p 2 are defined on a lattice in phase plane according to von Neumann's prescription. (leeter to the editor)

  7. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  8. Polarization sensitive optical coherence tomography in equine bone

    Science.gov (United States)

    Jacobs, J. W.; Matcher, S. J.

    2009-02-01

    Optical coherence tomography (OCT) has been used to image equine bone samples. OCT and polarization sensitive OCT (PS-OCT) images of equine bone samples, before and after demineralization, are presented. Using a novel approach, taking a series of images at different angles of illumination, the polar angle and true birefringence of collagen within the tissue is determined, at one site in the sample. The images were taken before and after the bones were passed through a demineralization process. The images show an improvement in depth penetration after demineralization allowing better visualization of the internal structure of the bone and the optical orientation of the collagen. A quantitative measurement of true birefringence has been made of the bone; true birefringence was shown to be 1.9x10-3 before demineralization increasing to 2.7x10-3 after demineralization. However, determined collagen fiber orientation remains the same before and after demineralization. The study of bone is extensive within the field of tissue engineering where an understanding of the internal structures is essential. OCT in bone, and improved depth penetration through demineralization, offers a useful approach to bone analysis.

  9. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  10. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  11. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  12. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  13. Hilbert W*-modules and coherent states

    International Nuclear Information System (INIS)

    Bhattacharyya, T; Roy, S Shyam

    2012-01-01

    Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  14. Coherent states in the quantum multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, S.; Hassouni, Y.; Gonzalez-Diaz, P.F.

    2010-01-01

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  15. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  16. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  17. Testing nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-01-01

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  18. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  19. Coherent states in constrained systems

    International Nuclear Information System (INIS)

    Nakamura, M.; Kojima, K.

    2001-01-01

    When quantizing the constrained systems, there often arise the quantum corrections due to the non-commutativity in the re-ordering of constraint operators in the products of operators. In the bosonic second-class constraints, furthermore, the quantum corrections caused by the uncertainty principle should be taken into account. In order to treat these corrections simultaneously, the alternative projection technique of operators is proposed by introducing the available minimal uncertainty states of the constraint operators. Using this projection technique together with the projection operator method (POM), these two kinds of quantum corrections were investigated

  20. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  1. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  2. Coherent semiclassical states for loop quantum cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Montoya, Edison

    2011-01-01

    The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.

  3. Coherent states associated to the Jacobi group

    International Nuclear Information System (INIS)

    Berceanu, S.

    2007-01-01

    .The coherent states (CS) offer a useful connection between classical and quantum mechanics. In several previous works we have constructed CS attached to the Jacobi group. It is well known that the Jacobi group appears in Quantum Mechanics, Geometric Quantization, Optics. The mathematicians have given the name 'Jacobi group' to the semidirect product of the Heisenberg-Weyl group and the symplectic group. The same group is known to physicists under other names, as the Schroedinger group. Also the name 'Weyl-symplectic' group is used for the same semi-direct product of the Heisenberg-Weyl group and the symplectic group. In this paper we review and discuss some properties of the coherent states associated to the Jacobi group. (author)

  4. K-dimensional trio coherent states

    International Nuclear Information System (INIS)

    Yi, Hyo Seok; Nguyen, Ba An; Kim, Jaewan

    2004-01-01

    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-Poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K = 2 in the quantized vibronic motion of a trapped ion

  5. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  6. Coherent states versus De Broglie-Wavelets

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-08-01

    There are two types of nonspreading localized wave forms representing a stable, individual, indivisible, single quantum particle with interference properties endowed with classical (hidden) parameters, i.e. initial positions and velocity: coherent states and wavelets. The first is exactly known for oscillator, the second for free particles. Their relation and their construction is discussed from a new unified point of view. We then extend this contraction to the Coulomb problem, where with the introduction of a new time variable T, nonspreading states are obtained. (author). 10 refs

  7. On the dynamics of generalized coherent states

    International Nuclear Information System (INIS)

    Nikolov, B.A.; Trifonov, D.A.

    1981-01-01

    The exact and stable evolutions of generalized coherent states (GCS) for quantum system are considered by making use of the time- dependent integrals of motion method and of the Klauder approach to the relationship between quantum and classical mechanics. It is shown that one can construct for any quantum system overcomplete family of states, related to the unitary representations of the Lie group G by means of integral of motion generators, and the possibility of using this group as a dynamic symmetry group is pointed out. The relation of the GCS with quantum measurement theory is also established [ru

  8. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography

    NARCIS (Netherlands)

    Islam, M.S.; Oliveira, M.C.; Wang, Y.; Henry, F.P.; Randolph, M.A.; Park, B. H.; de Boer, J.F.

    2012-01-01

    We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT,

  9. Representations of coherent states in non-orthogonal bases

    International Nuclear Information System (INIS)

    Ali, S Twareque; Roknizadeh, R; Tavassoly, M K

    2004-01-01

    Starting with the canonical coherent states, we demonstrate that all the so-called nonlinear coherent states, used in the physical literature, as well as large classes of other generalized coherent states, can be obtained by changes of bases in the underlying Hilbert space. This observation leads to an interesting duality between pairs of generalized coherent states, bringing into play a Gelfand triple of (rigged) Hilbert spaces. Moreover, it is shown that in each dual pair of families of nonlinear coherent states, at least one family is related to a (generally) non-unitary projective representation of the Weyl-Heisenberg group, which can then be thought of as characterizing the dual pair

  10. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Zhang, Jun; Chen, Zhongping; Peavy, George M

    2006-10-01

    Previous studies have demonstrated that optical coherence tomography (OCT) could be used to delineate alterations in the microstructure of cartilage, and have suggested that changes in the polarization state of light as detected by OCT could provide information on the birefringence properties of articular cartilage as influenced by disease. In this study we have used both OCT and polarization sensitive optical coherence tomography (PS-OCT) technologies to evaluate normal and abnormal bovine articular cartilage according to established structural, organizational, and birefringent characteristics of degenerative joint disease (DJD) in order to determine if this technology can be used to differentiate various stages of DJD as a minimally invasive imaging tool. Fresh bovine femoral-tibial joints were obtained from an abattoir, and 45 cartilage specimens were harvested from 8 tibial plateaus. Whole ex vivo specimens of normal and degenerative articular cartilage were imaged by both OCT and PS-OCT, then fixed and processed for histological evaluation. OCT/PS-OCT images and corresponding histology sections of each specimen were scored according to a modified Mankin structural grading scale and compared. OCT and PS-OCT imaging allowed structural evaluation of intact articular cartilage along a 6 mm surface length to a depth of 2 mm with a transverse resolution of 12 microm and an axial resolution of 10 microm. The OCT and PS-OCT images demonstrated characteristic alterations in the structure of articular cartilage with a high correlation to histological evaluation (kappa = 0.776). The OCT images were able to demonstrate early to advanced structural changes of articular cartilage while the optical phase retardation images obtained by PS-OCT imaging were able to discriminate areas where disorganization of the cartilage matrix was present, however, these characteristics are much different than those reported where OCT images alone were used to characterize tissue

  11. The coordinate coherent states approach revisited

    International Nuclear Information System (INIS)

    Miao, Yan-Gang; Zhang, Shao-Jun

    2013-01-01

    We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies that the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor. - Highlights: ► Suggest a canonical quantization in the coordinate coherent states approach. ► Prove the validity of the concept of point particles. ► Apply the canonical quantization to the Unruh effect and Hawking radiation. ► Find no deformations in the Unruh temperature and Hawking temperature. ► Provide the modified spectra of the Unruh effect and Hawking radiation.

  12. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  13. Quantum nonlinear lattices and coherent state vectors

    DEFF Research Database (Denmark)

    Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth

    1999-01-01

    for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... state vectors, and accounts for the quantum correlations of the lattice sites that develop during the time evolution of the systems. (C) 1999 Elsevier Science B.V. All rights reserved....

  14. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  15. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  16. Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states

    International Nuclear Information System (INIS)

    Wiseman, H.M.; Vaccaro, John A.

    2002-01-01

    As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular

  17. Experimental demonstration of a Hadamard gate for coherent state qubits

    Energy Technology Data Exchange (ETDEWEB)

    Tipsmark, Anders; Laghaout, Amine; Andersen, Ulrik L. [Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Dong, Ruifang [Quantum Frequency Standards Division, National Time Service Center (NTSC), Chinese Academy of Sciences, 710600 Lintong, Shaanxi (China); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Marek, Petr [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Jezek, Miroslav [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark)

    2011-11-15

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.

  18. Experimental demonstration of a Hadamard gate for coherent state qubits

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Dong, Ruifang; Laghaout, Amine

    2011-01-01

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for t...... for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere....

  19. Stochastic Modeling and Generation of Partially Polarized or Partially Coherent Electromagnetic Waves

    Science.gov (United States)

    Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.

  20. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  1. Construction of classical and non-classical coherent photon states

    International Nuclear Information System (INIS)

    Honegger, Reinhard; Rieckers, Alfred

    2001-01-01

    It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity

  2. Symmetric structures of coherent states in superfluid helium-4

    International Nuclear Information System (INIS)

    Ahmad, M.

    1981-02-01

    Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)

  3. Quantitative measures of entanglement in pair-coherent states

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    The pair-coherent states for a two-mode radiation field are known to belong to a family of states with non-Gaussian wavefunction. The nature of quantum entanglement between the two modes and some features of non-classicality are studied for such states. The existing criterion for inseparability are examined in the context of pair-coherent states

  4. Symmetric discrete coherent states for n-qubits

    International Nuclear Information System (INIS)

    Muñoz, C; Klimov, A B; Sánchez-Soto, L L

    2012-01-01

    We put forward a method of constructing discrete coherent states for n qubits. After establishing appropriate displacement operators, the coherent states appear as displaced versions of a fiducial vector that is fixed by imposing a number of natural symmetry requirements on its Q-function. Using these coherent states, we establish a partial order in the discrete phase space, which allows us to picture some n-qubit states as apparent distributions. We also analyze correlations in terms of sums of squared Q-functions. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  5. Coherent-state representation for the QCD ground state

    International Nuclear Information System (INIS)

    Celenza, L.S.; Ji, C.; Shakin, C.M.

    1987-01-01

    We make use of the temporal gauge to construct a coherent state which is meant to describe the gluon condensate in the QCD vacuum under the assumption that the condensate is in a zero-momentum mode. The state so constructed is a color singlet and will yield finite, nonperturbative vacuum expectation values such as . (This matrix element is found to have a value of about 0.012 GeV 4 in QCD sum-rule studies.)

  6. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  7. Gaussian cloning of coherent states with known phases

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2006-01-01

    The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier

  8. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes

    Science.gov (United States)

    Dorize, Christian; Awwad, Elie

    2018-05-01

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  9. Coherent states of systems with quadratic Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2015-06-15

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  10. Coherent states of systems with quadratic Hamiltonians

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.

    2015-01-01

    Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)

  11. Fuzzy spheres from inequivalent coherent states quantizations

    International Nuclear Information System (INIS)

    Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques

    2007-01-01

    The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets

  12. Ellipsometry with randomly varying polarization states

    NARCIS (Netherlands)

    Liu, F.; Lee, C. J.; Chen, J. Q.; E. Louis,; van der Slot, P. J. M.; Boller, K. J.; F. Bijkerk,

    2012-01-01

    We show that, under the right conditions, one can make highly accurate polarization-based measurements without knowing the absolute polarization state of the probing light field. It is shown that light, passed through a randomly varying birefringent material has a well-defined orbit on the Poincar

  13. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  14. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  15. Driving a mechanical resonator into coherent states via random measurements

    International Nuclear Information System (INIS)

    Garcia, Ll; Wu, L-A; Chhajlany, R W; Li, Y

    2013-01-01

    We propose dynamical schemes to engineer coherent states of a mechanical resonator (MR) coupled to an ancillary, superconducting flux qubit. The flux qubit, when repeatedly projected on to its ground state, drives the MR into a coherent state in probabilistic, albeit heralded fashion. Assuming no operations on the state of the MR during the protocol, coherent states are successfully generated only up to a certain value of the displacement parameter. This restriction can be overcome at the cost of a one-time operation on the initial state of the MR. We discuss the possibility of experimental realization of the presented schemes. (paper)

  16. On the dynamics of generalized coherent states

    International Nuclear Information System (INIS)

    Nikolov, B.A.; Trifonov, D.A.

    1981-01-01

    Using the Klauder approach the stable evolution of generalized coherent states (GCS) for some groups (SU(2), SU(1.1) and U(N)) is considered and it is shown that one and the same classical solution z(t) can correctly characterize the quantum evolution for many different (in general nonequivalent) systems. As examples some concrete systems are treated in greater detail: it is obtained that the nonstationary systems of the singular oscillator, of the particle motion in a magnetic field and of the oscillator with a friction all have stable SU(1.1) GCS whose quantum evolution is determined by one and the same classical function z(t). The physical properties of the constructed SU(1.1)GCS are discussed and it is shown particularly that in the case of discrete series Dsub(k)sup((+)) they are those states for which the quantum mean value coincides with the statistical one for an oscillator in a thermostat [ru

  17. Anomalous property of coherent bremsstrahlung linear polarization of relativistic electrons in a crystal

    International Nuclear Information System (INIS)

    Lapko, V.P.; Nasonov, N.N.; Truten', V.I.

    1993-01-01

    Polarization and spectral-and-angular properties of γ-radiation of the relativistic electron flux moving in a crystal under uncorrelated collisions with crystal atomic chains, are studied theoretically. Direction of linear polarization of radiation is shown to vary with energy of emitted photon. Reasons of occurrence of this effect are discussed. The results of numerical calculations demonstrating the possibility to form an intensive source of polarized γ-quanta on the basis of coherent radiation of relativistic electrons during low-angular scattering at crystal atom chains, are given

  18. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Boer, J.F. de; Milner, T.E.; Nelson, J.S.

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and in vivo rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals. copyright 1999 Optical Society of America

  19. Statistical Aspects of Coherent States of the Higgs Algebra

    Science.gov (United States)

    Shreecharan, T.; Kumar, M. Naveen

    2018-04-01

    We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J 0.

  20. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...

  1. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  2. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  3. Completeness for coherent states in a magnetic–solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Gitman, D M; Górska, K

    2012-01-01

    This paper completes our study of coherent states in the so-called magnetic–solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov–Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin–Man’ko coherent states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  4. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  5. Wigner function and tomogram of the pair coherent state

    International Nuclear Information System (INIS)

    Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi

    2007-01-01

    Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >

  6. Coherent states and parasupersymmetric quantum mechanics

    Science.gov (United States)

    Debergh, Nathalie

    1992-01-01

    It is well known that Parafermi and Parabose statistics are natural extensions of the usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones. Due to this generalization, positive parameters appear: the so-called orders of paraquantization p (= 1, 2, 3, ...) and h sub 0 (= 1/2, 1, 3/2, ...), respectively, the first value leading in each case to the usual statistics. The superpostion of the parabosonic and parafermionic operators gives rise to parasupermultiplets for which mixed trilinear relations have already been studied leading to two (nonequivalent) sets: the relative Parabose and the relative Parafermi ones. For the specific values p = 1 = 2h sub 0, these sets reduce to the well known supersymmetry. Coherent states associated with this last model have been recently put in evidence through the annihilation operator point of view and the group theoretical approach or displacement operator context. We propose to realize the corresponding studies within the new context p = 2 = 2h sub 0, being then directly extended to any order of paraquantization.

  7. Clifford coherent state transforms on spheres

    Science.gov (United States)

    Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao

    2018-01-01

    We introduce a one-parameter family of transforms, U(m)t,t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.

  8. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction

    DEFF Research Database (Denmark)

    Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa

    2007-01-01

    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...

  9. Negativity of Two-Qubit System Through Spin Coherent States

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.

    2009-12-01

    Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)

  10. Development of an polarization sensitive Fourier domain optical coherence tomography and it utilization on the Mueller matrix determination

    International Nuclear Information System (INIS)

    Raele, Marcus Paulo

    2009-01-01

    This study approached theoretical and experimental aspects related with the development of a polarization sensitive, Fourier domain, optical coherence tomography system (PS-FD-OCT) and its utilization on the Mueller Matrix determination. This work began with a bibliographic revision, which describes since the early studies to the actual state of the art of the technique. The mathematical formalism of Fourier domain low coherence interferometry and light polarization was performed as well. Studies based on numerical simulations, of three different algorithm types, responsible to recover the scattering profile, were done. The implemented algorithms were: Direct Fourier Transform, Interpolation and zero-filling. By the end of the simulation study, was possible to conclude that the algorithm zero-filling 2N presented better characteristics when compared with the others. In the experimental part, firstly different OCT setups were assembled and measurements were done in order to verify aspects related with the theory. Then, using a polymeric sample, birefringence images were performed, which allowed determining the sample birefringence quantitatively. Finally, images taken of different polarization states were collected, and through then images related with the Mueller Matrix elements were calculated, which were analyzed individually. (author)

  11. Preparation of freezing quantum state for quantum coherence

    Science.gov (United States)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  12. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  13. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  14. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  15. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  16. NONINVASIVE DIAGNOSIS OF BLADDER CANCER BY CROSS-POLARIZATION OPTICAL COHERENCE TOMOGRAPHY: A BLIND STATISTICAL STUDY

    Directory of Open Access Journals (Sweden)

    O. S. Streltsova

    2014-07-01

    Full Text Available Whether cross-polarization (CP optical coherence tomography (OCT could be used to detect early bladder cancer was ascertained; it was compared with traditional OCT within the framework of blind (closed clinical statistical studies. One hundred and sixteen patients with local nonexophytic (flat pathological processes of the bladder were examined; 360 CP OCT images were obtained and analyzed. The study used an OCT 1300-U CP optical coherence tomographer. CP OCT showed a high (94% sensitivity and a high (84% specificity in the identification of suspected nonexophytic areas in the urinary bladder.

  17. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  18. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  19. Pair q-coherent states and their antibunching effects

    International Nuclear Information System (INIS)

    Wang Zhongqing; Li Junhong; An Guanglei; Chongqing Univ. of Posts and Telecommunications, Chongqing

    2005-01-01

    Using the properties of the q-deformed boson creation and annihilation operators and their inverse operators, two kind of q-deformed pair coherent states are introduced. Antibunching effects and correlation properties between two modes in the states are investigated. It is shown that q-deformed pair coherent states exhibit antibunching effects and the photons of the two modes are correlated. These nonclassical effects are influenced by the parameter q. These effects increase when |lnq| increases. (authors)

  20. Wigner Function of Thermo-Invariant Coherent State

    International Nuclear Information System (INIS)

    Xue-Fen, Xu; Shi-Qun, Zhu

    2008-01-01

    By using the thermal Winger operator of thermo-field dynamics in the coherent thermal state |ξ) representation and the technique of integration within an ordered product of operators, the Wigner function of the thermo-invariant coherent state |z,ℵ> is derived. The nonclassical properties of state |z,ℵ> is discussed based on the negativity of the Wigner function. (general)

  1. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  2. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  3. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  4. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  5. Nonlinear resonance rotation of polarization plane in the conditions of coherent captivity of occupation

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Zelenskij, I.V.

    2002-01-01

    The effect of the nonlinear resonance rotation of the polarization plane of the electromagnetic radiation under the conditions of the coherent occupation captivity in the 87 Rb pairs at the F = 2 → F' = 1 transition of the D 1 -line is studied within the wide range of the experimental parameters change. The nonmonotonous dependence of the turning angle on the laser radiation intensity and applied magnetic field is identified. The effect of the occupation optical pumping out on the F = 1 level is discussed. The twofold increase in the polarization plane turning angle by the pumping out compensation is experimentally demonstrated [ru

  6. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  7. Polarization Sensitive Coherent Anti-Stokes Raman Spectroscopy of DCVJ in Doped Polymer

    Science.gov (United States)

    Ujj, Laszlo

    2014-05-01

    Coherent Raman Microscopy is an emerging technic and method to image biological samples such as living cells by recording vibrational fingerprints of molecules with high spatial resolution. The race is on to record the entire image during the shortest time possible in order to increase the time resolution of the recorded cellular events. The electronically enhanced polarization sensitive version of Coherent anti-Stokes Raman scattering is one of the method which can shorten the recording time and increase the sharpness of an image by enhancing the signal level of special molecular vibrational modes. In order to show the effectiveness of the method a model system, a highly fluorescence sample, DCVJ in a polymer matrix is investigated. Polarization sensitive resonance CARS spectra are recorded and analyzed. Vibrational signatures are extracted with model independent methods. Details of the measurements and data analysis will be presented. The author gratefully acknowledge the UWF for financial support.

  8. Simulating of spectrum and polarization characteristics of ultrarelativistic - electron coherent radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the base of the computer simulation method it is shown that new maxima of ultrarelativistic electron radiation spectrum in aligned crystals may appear in a low-frequency region together with the ordinary coherent maxima. The appearance of these maxima is the result of the high-index-crystal-plane effect. These maxima manifest themselves in spectral as well as in polarization features of radiation [ru

  9. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  10. Coherent states of an electron in a quantized electromagnetic wave

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.

    1977-01-01

    Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied

  11. Coherent states of the real symplectic group in a complex analytic parametrization. I. Unitary-operator coherent states

    International Nuclear Information System (INIS)

    Quesne, C.

    1986-01-01

    In the present series of papers, the coherent states of Sp(2d,R), corresponding to the positive discrete series irreducible representations 1 +n/2> encountered in physical applications, are analyzed in detail with special emphasis on those of Sp(4,R) and Sp(6,R). The present paper discusses the unitary-operator coherent states, as defined by Klauder, Perelomov, and Gilmore. These states are parametrized by the points of the coset space Sp(2d,R)/H, where H is the stability group of the Sp(2d,R) irreducible representation lowest weight state, chosen as the reference state, and depends upon the relative values of lambda 1 ,...,lambda/sub d/, subject to the conditions lambda 1 > or =lambda 2 > or = x x x > or =lambda/sub d/> or =0. A parametrization of Sp(2d,R)/H corresponding to a factorization of the latter into a product of coset spaces Sp(2d,R)/U(d) and U(d)/H is chosen. The overlap of two coherent states is calculated, the action of the Sp(2d,R) generators on the coherent states is determined, and the explicit form of the unity resolution relation satisfied by the coherent states in the representation space of the irreducible representation is obtained. The Hilbert space of analytic functions arising from the coherent state representation is studied in detail. Finally, some applications of the formalism developed in the present paper are outlined

  12. Even and odd combinations of nonlinear coherent states

    International Nuclear Information System (INIS)

    De los Santos-Sanchez, O; Recamier, J

    2011-01-01

    In this work we present some statistical properties of even and odd combinations of nonlinear coherent states associated with two nonlinear potentials; one supporting a finite number of bound states and the other supporting an infinite number of bound states, within the framework of an f-deformed algebra. We calculate their normalized variance and the temporal evolution of their dispersion relations using nonlinear coherent states defined as (a) eigensates of the deformed annihilation operator and (b) those states created by the application of a deformed displacement operator upon the ground state of the oscillator.

  13. Coherent states for certain time-dependent systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.

    1989-01-01

    Hartley and Ray have constructed and studied coherent states for the time-dependent oscillator. Here we show how to construct states for more general time-dependent systems. We also show that these states are equivalent to the well-known squeezed states. (author) [pt

  14. Projective measurement onto arbitrary superposition of weak coherent state bases

    DEFF Research Database (Denmark)

    Izumi, Shuro; Takeoka, Masahiro; Wakui, Kentaro

    2018-01-01

    One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and i...

  15. Regional polarization sensitivity of articular cartilage by using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Peavy, George M.

    2007-02-01

    In this study, PS-OCT is used to image fresh bovine joints to investigate the orientation of collagen fibrils in relation to optical phase retardation to better understand the distribution of normal matrix orientation and articular cartilage birefringence in different regions of a whole joint. Understanding and mapping variations in matrix organization and orientation within the normal joint is an important issue in potential applications of PS-OCT for evaluation and diagnosis of degenerative joint disease (DJD). The experimental results demonstrate that articular cartilage is not polarization sensitive on the edge of the medial, but polarization sensitive on the lateral edge of the tibial plateau. The collagen orientation on the edge of the joint is different from the central areas of the joint. Normal articular cartilage demonstrates regional polarization sensitivity within joints that is important to understand in order to accurately assess cartilage health by PS-OCT.

  16. First-Order Polynomial Heisenberg Algebras and Coherent States

    International Nuclear Information System (INIS)

    Castillo-Celeita, M; Fernández C, D J

    2016-01-01

    The polynomial Heisenberg algebras (PHA) are deformations of the Heisenberg- Weyl algebra characterizing the underlying symmetry of the supersymmetric partners of the Harmonic oscillator. When looking for the simplest system ruled by PHA, however, we end up with the harmonic oscillator. In this paper we are going to realize the first-order PHA through the harmonic oscillator. The associated coherent states will be also constructed, which turn out to be the well known even and odd coherent states. (paper)

  17. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  18. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  19. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  20. Nonlinear coherent loss for generating non-classical states

    International Nuclear Information System (INIS)

    Mikhalychev, A; Mogilevtsev, D; Kilin, S

    2011-01-01

    Here, we discuss a generation of non-classical states of bosonic mode with the help of artificially designed loss, namely the nonlinear coherent loss. We show how to generate superpositions of Fock states, and how it is possible to 'comb' the initial states leaving only states with certain properties in the resulting superposition (for example, a generation of a superposition of Fock states with odd number of particles). We discuss purity of generated states and estimate maximal achievable generation fidelity.

  1. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Science.gov (United States)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  2. Entangled Coherent States Generation in two Superconducting LC Circuits

    International Nuclear Information System (INIS)

    Chen Meiyu; Zhang Weimin

    2008-01-01

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  3. Painlevé IV Hamiltonian systems and coherent states

    International Nuclear Information System (INIS)

    Bermudez, D; Contreras-Astorga, A; Fernández C, D J

    2015-01-01

    Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the third-order ladder operators, and finally as displaced extremal states using linearized ladder operators. To each Hamiltonian corresponds two families of coherent states for fixed ladder operators: one in the infinite dimension subspace associated with the oscillator spectrum and another in the finite dimension one generated by the eigenstates created by SUSY QM. (paper)

  4. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls

    Science.gov (United States)

    Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang

    2018-05-01

    In this paper, the fiber-based coherent polarization beam combining (CPBC) with cascaded phase-locking (PL) and polarization-transforming (PT) controls was proposed to combine imbalanced input beams where the number of the input beams is not binary, in which the PL control was performed using the piezoelectric-ring fiber-optic phase compensator, and the PT control was realized by the dynamic polarization controller, simultaneously. The principle of the proposed CPBC was introduced. The performance of the proposed CPBC was analyzed in comparison with the CPBC based on PL control and the CPBC based on PT control. The basic experiment of CPBC of three laser beams was carried out to validate the feasibility of the proposed CPBC, where cascaded controls of PL and PT were implemented based on stochastic parallel gradient descent algorithm. Simulation and experimental results show that the proposed CPBC incorporates the advantages of the two previous CPBC schemes and performs well in the closed loop. Moreover, the expansibility and the application of the proposed CPBC were validated by scaling the CPBC to combine seven laser beams. We believe that the proposed fiber-based CPBC with cascaded PL and PT controls has great potential in free space optical communications employing the multi-aperture receiver with asymmetric structure.

  5. Geometric phases for nonlinear coherent and squeezed states

    International Nuclear Information System (INIS)

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  6. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    Science.gov (United States)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  7. Teleportation of Unknown Superpositions of Collective Atomic Coherent States

    Institute of Scientific and Technical Information of China (English)

    ZHENG ShiBiao

    2001-01-01

    We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time.``

  8. Superior Valley Polarization and Coherence of 2s Excitons in Monolayer WSe_{2}.

    Science.gov (United States)

    Chen, Shao-Yu; Goldstein, Thomas; Tong, Jiayue; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jun

    2018-01-26

    We report the experimental observation of 2s exciton radiative emission from monolayer tungsten diselenide, enabled by hexagonal boron nitride protected high-quality samples. The 2s luminescence is highly robust and persists up to 150 K, offering a new quantum entity for manipulating the valley degree of freedom. Remarkably, the 2s exciton displays superior valley polarization and coherence than 1s under similar experimental conditions. This observation provides evidence that the Coulomb-exchange-interaction-driven valley-depolarization process, the Maialle-Silva-Sham mechanism, plays an important role in valley excitons of monolayer transition metal dichalcogenides.

  9. Superior Valley Polarization and Coherence of 2 s Excitons in Monolayer WSe2

    Science.gov (United States)

    Chen, Shao-Yu; Goldstein, Thomas; Tong, Jiayue; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jun

    2018-01-01

    We report the experimental observation of 2 s exciton radiative emission from monolayer tungsten diselenide, enabled by hexagonal boron nitride protected high-quality samples. The 2 s luminescence is highly robust and persists up to 150 K, offering a new quantum entity for manipulating the valley degree of freedom. Remarkably, the 2 s exciton displays superior valley polarization and coherence than 1 s under similar experimental conditions. This observation provides evidence that the Coulomb-exchange-interaction-driven valley-depolarization process, the Maialle-Silva-Sham mechanism, plays an important role in valley excitons of monolayer transition metal dichalcogenides.

  10. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  11. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  12. Imaging of human breast tissue using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.

    2011-12-01

    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  13. A probabilistic CNOT gate for coherent state qubits

    International Nuclear Information System (INIS)

    Oliveira, M.S.R.; Vasconcelos, H.M.; Silva, J.B.R.

    2013-01-01

    We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as a CNOT gate, near-faithful when |α| 2 ⩾25 and independent of the input state. The key element for realizing the proposed CNOT scheme is the entangled four-mode state.

  14. A probabilistic CNOT gate for coherent state qubits

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.S.R.; Vasconcelos, H.M.; Silva, J.B.R., E-mail: joaobrs@ufc.br

    2013-11-22

    We propose a scheme for implementing a probabilistic controlled-NOT (CNOT) gate for coherent state qubits using only linear optics and a particular four-mode state. The proposed optical setup works, as a CNOT gate, near-faithful when |α|{sup 2}⩾25 and independent of the input state. The key element for realizing the proposed CNOT scheme is the entangled four-mode state.

  15. Coherent light squeezing states within a modified microring system

    Science.gov (United States)

    Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M. S.; Amiri, I. S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P.

    2018-06-01

    We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM). When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  16. Coherent light squeezing states within a modified microring system

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We have proposed the simple method of the squeezed light generation in the modified microring resonator, which is known as the microring conjugate mirror (MCM. When the monochromatic light is input into the MCM, the general form of the squeezed coherent states for a quantum harmonic oscillator can be generated by controlling the additional two side rings, which are the phase modulators. By using the graphical method called the Optiwave program, the coherent squeezed states of coherent light within an MCM can be obtained and interpreted as the amplitude, phase, quadrature and photon number-squeezed states. This method has shown potentials for microring related device design, which can be used before practical applications.

  17. Vector coherent state representations and their inner products

    International Nuclear Information System (INIS)

    Rowe, D J

    2012-01-01

    Several advances have extended the power and versatility of coherent state theory to the extent that it has become a vital tool in the representation theory of Lie groups and their Lie algebras. Representative applications are reviewed and some new developments are introduced. The examples given are chosen to illustrate special features of the scalar and vector coherent state constructions and how they work in practical situations. Comparisons are made with Mackey's theory of induced representations. For simplicity, we focus on square integrable (discrete series) unitary representations although many of the techniques apply more generally, with minor adjustment. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  18. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  19. Quantum Properties of the Superposition of Two Nearly Identical Coherent States

    Science.gov (United States)

    Othman, Anas; Yevick, David

    2018-04-01

    In this paper, we examine the properties of the state obtained when two nearly identical coherent states are superimposed. We found that this state exhibits many nonclassical properties such as sub-Poissonian statistics, squeezing and a partially negative Wigner function. These and other properties indicate that such states, here termed near coherent states, are significantly closer to coherent states more than the generalized Schrördinger cat states. We finally provide an experimental procedure for generating the near coherent states.

  20. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  1. Generalized Spin Coherent States: Construction and Some Physical Properties

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.

    2009-12-01

    A generalized deformation of the su(2) algebra and a scheme for constructing associated spin coherent states is developed. The problem of resolving the unity operator in terms of these states is addressed and solved for some particular cases. The construction is carried using a deformation of Holstein-Primakoff realization of the su(2) algebra. The physical properties of these states is studied through the calculation of Mandel's parameter. (author)

  2. Discrete coherent and squeezed states of many-qudit systems

    International Nuclear Information System (INIS)

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-01-01

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d n xd n points and use the finite Galois field GF(d n ) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  3. Coherent secondary emission from resonantly excited two-exciton states

    DEFF Research Database (Denmark)

    Birkedal, Dan

    2000-01-01

    The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...

  4. Coherent states for oscillators of non-conventional statistics

    International Nuclear Information System (INIS)

    Dao Vong Duc; Nguyen Ba An

    1998-12-01

    In this work we consider systematically the concept of coherent states for oscillators of non-conventional statistics - parabose oscillator, infinite statistics oscillator and generalised q-deformed oscillator. The expressions for the quadrature variances and particle number distribution are derived and displayed graphically. The obtained results show drastic changes when going from one statistics to another. (author)

  5. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  6. On coherent states for the simplest quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. (Palackeho Univ., Olomouc (Czechoslovakia). Dept. of Optics)

    1991-01-01

    The coherent states for the simplest quantum groups (q-Heisenberg-Weyl, SU{sub q}(2) and the discrete series of representations of SU{sub q}(1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on C, a sphere, and the Lobatchevsky plane are discussed. (orig.).

  7. On coherent states for the simplest quantum groups

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    The coherent states for the simplest quantum groups (q-Heisenberg-Weyl, SU q (2) and the discrete series of representations of SU q (1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on C, a sphere, and the Lobatchevsky plane are discussed. (orig.)

  8. Extended SUSY quantum mechanics, intertwining operators and coherent states

    International Nuclear Information System (INIS)

    Bagarello, F.

    2008-01-01

    We propose an extension of supersymmetric quantum mechanics which produces a family of isospectral Hamiltonians. Our procedure slightly extends the idea of intertwining operators. Several examples of the construction are given. Further, we show how to build up vector coherent states of the Gazeau-Klauder type associated to our Hamiltonians

  9. Semi-classical behavior of Poschl-Teller coherent states

    Czech Academy of Sciences Publication Activity Database

    Bergeron, H.; Gazeau, J.P.; Siegl, Petr; Youssef, A.

    2010-01-01

    Roč. 92, č. 6 (2010), s. 60003 ISSN 0295-5075 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Institutional support: RVO:61389005 Keywords : coherent states * Pöschl-Teller potential * quantization Subject RIV: BE - Theoretical Physics Impact factor: 2.753, year: 2010

  10. Classical motion and coherent states for Poeschl-Teller potentials

    International Nuclear Information System (INIS)

    Cruz y Cruz, S.; Kuru, S.; Negro, J.

    2008-01-01

    The trigonometric and hyperbolic Poeschl-Teller potentials are dealt with from the point of view of classical and quantum mechanics. We show that there is a natural correspondence between the algebraic structure of these two approaches for both kind of potentials. Then, the coherent states are constructed and the appropriate classical variables are compared with the expected values of their corresponding quantum operators

  11. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  12. CANCER-PAthological breakdown of coherent energy states

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan; Kobilková, J.; Jandová, Anna; Vrba, J.; Vrba, J. jr.

    2014-01-01

    Roč. 9, č. 1 (2014), s. 115-133 ISSN 1793-0480 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : breakdown of coherent states * Cancer electrodynamics * Warburg effect Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BO - Biophysics (FZU-D)

  13. Action–angle variables, ladder operators and coherent states

    International Nuclear Information System (INIS)

    Campoamor-Stursberg, R.; Gadella, M.; Kuru, Ş.; Negro, J.

    2012-01-01

    This Letter is devoted to the building of coherent states from arguments based on classical action–angle variables. First, we show how these classical variables are associated to an algebraic structure in terms of Poisson brackets. In the quantum context these considerations are implemented by ladder type operators and a structure known as spectrum generating algebra. All this allows to generate coherent states and thereby the correspondence of classical–quantum properties by means of the aforementioned underlying structure. This approach is illustrated with the example of the one-dimensional Pöschl–Teller potential system. -- Highlights: ► We study the building of coherent states from classical action–angle variables arguments. ► The classical variables are associated to an algebraic structure in terms of Poisson brackets. ► In the quantum context these considerations are implemented by ladder type operators. ► All this allows to formulate coherent states and the correspondence of classical–quantum properties.

  14. Reproducing Kernels and Coherent States on Julia Sets

    Energy Technology Data Exchange (ETDEWEB)

    Thirulogasanthar, K., E-mail: santhar@cs.concordia.ca; Krzyzak, A. [Concordia University, Department of Computer Science and Software Engineering (Canada)], E-mail: krzyzak@cs.concordia.ca; Honnouvo, G. [Concordia University, Department of Mathematics and Statistics (Canada)], E-mail: g_honnouvo@yahoo.fr

    2007-11-15

    We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems.

  15. Reproducing Kernels and Coherent States on Julia Sets

    International Nuclear Information System (INIS)

    Thirulogasanthar, K.; Krzyzak, A.; Honnouvo, G.

    2007-01-01

    We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems

  16. New construction of coherent states for generalized harmonic oscillators

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.; Madouri, F.

    2001-08-01

    A dynamical algebra A q , englobing many of the deformed harmonic oscillator algebras is introduced. One of its special cases is extensively developed. A general method for constructing coherent states related to any algebra of the type A q is discussed. The construction following this method is carried out for the special case. (author)

  17. Reduction of coating induced polarization aberrations by controlling the polarization state variation

    International Nuclear Information System (INIS)

    Li, Yanghui; Shen, Weidong; Zheng, Zhenrong; Zhang, Yueguang; Liu, Xu; Hao, Xiang

    2011-01-01

    The mechanism of coating induced polarization state variation is analysed by the Jones matrix. Pauli spin matrices are used to establish the relationship between coating induced polarization state variation and polarization aberrations. To reduce coating induced polarization aberrations, we propose that δ = 0 and T s = T p at arbitrary incident angle should be appended as two additional optimization goals of optical coating design when the requirements of transmittance are met. Two typical anti-reflection (AR) coatings are designed and the polarization state variation induced by them is simulated. The MTF (modulation transfer function) calculated by polarization ray tracing is applied to evaluate the polarization aberrations of the practical lithography objective system with the two AR coatings. All the obtained results show that the coating induced polarization aberrations can be reduced by optimizing the angle dependent properties of the optical coating without additional optical elements

  18. Spin coherence in phosphorescent triplet states

    International Nuclear Information System (INIS)

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  19. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  20. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  1. Polarization demultiplexing in stokes space for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Yi, Xingwen; Yang, Qi; Luo, Ming; Zhang, Jing; Chen, Lei; Qiu, Kun

    2013-02-11

    We propose a polarization demultiplexing method for coherent optical PDM-OFDM based on Stokes space, without inserting training symbols. The proposed approach performs well for different modulation formats of OFDM subcarrier, and shows comparable performances with that of conventional methods, but with a fast convergence speed and reduced overhead. The OFDM signal in the time domain cannot satisfy the conditions of SS-PDM accurately. Therefore, we first digitally convert the received OFDM signals to the frequency domain using fast Fourier transform (FFT). Each subcarrier of the OFDM signal has a much lower speed and narrower bandwidth, the polarization effects that it experiences can be treated as flat. Consequently, we can apply the polarization demultiplexing in Stokes space (SS-PDM) on per subcarrier basis. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960km SSMF respectively. We also compare the results with those of training symbols. Finally, we analyze of the convergence speed of this method.

  2. Blind polarization demultiplexing by constructing a cost function for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Chen, Minghua; Chen, Hongwei; Yi, Xingwen; Yang, Sigang; Xie, Shizhong

    2015-07-13

    We propose a training symbols-free polarization demultiplexing method by constructing a cost function (CCF-PDM) for coherent optical PDM-OFDM. This method is applicable for high-speed, wide-bandwidth OFDM signals, different subcarrier modulation formats and long-haul transmission. It shows comparable performance with that of conventional method but without overhead and converges fast. Since the neighboring subcarriers experience similar polarization effects, we set the initial matrix parameters by the neighboring subcarrier to reduce the number of iteration for the gradient algorithm and prevent swapping the data of the two orthogonal polarizations. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440 km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960 km SSMF respectively. We compare its performance with that of training symbols. We also analyze the convergence speed of this method.

  3. Spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture objective

    International Nuclear Information System (INIS)

    Luo, Yamei; Lü, Baida

    2010-01-01

    The dynamic behavior of spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture (NA) objective is studied by using the vectorial Debye diffraction theory and complex spectral Stokes fields. It is shown that there exist s 12 , s 23 , and s 31 singularities, as well as P (completely polarized) and U (unpolarized) singularities. The motion, pair creation and annihilation, and changes in the degree of polarization of s 12 , s 23 , and s 31 singularities, and the handedness reversal of s 12 singularities (C-points) may appear by varying a controlling parameter, such as the truncation parameter, NA, or spatial correlation length. The creation and annihilation occur for a pair of s 12 singularities with opposite topological charge but the same handedness, and for a pair of oppositely charged s 23 or s 31 singularities. The critical value of the truncation parameter, at which the pair annihilation takes place, increases as the semi-angle of the aperture lens (or, equivalently, NA) or spatial correlation length increases. The collision of an s 12 singularity with an L-line (s 3 = 0 contour) leads to a V-point, which is located at the intersection of contours of s 12 = 0 and s 23 = 0 (or s 31 = 0) and is unstable

  4. Creating and probing coherent atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  5. Theory and practice of dressed coherent states in circuit QED

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Frank [Theoretical Physics, Saarland University, Campus E 2.6, 66123 Saarbruecken (Germany); Govia, Luke C.G. [Theoretical Physics, Saarland University, Campus E 2.6, 66123 Saarbruecken (Germany); Department of Physics, McGill University, Montreal (Canada)

    2016-07-01

    In the dispersive regime of qubit-cavity coupling, classical cavity drive populates the cavity, but leaves the qubit state unaffected. However, the dispersive Hamiltonian is derived after both a frame transformation and an approximation. Therefore, to connect to external experimental devices, the inverse frame transformation from the dispersive frame back to the lab frame is necessary. We show that in the lab frame the system is best described by an entangled state known as the dressed coherent state, and thus even in the dispersive regime, entanglement is generated between the qubit and the cavity. Also, we show that further qubit evolution depends on both the amplitude and phase of the dressed coherent state. This provides a limitation to readout in the dispersive regime. We show that only in the limit of infinite measurement time is this protocol QND, as the formation of a dressed coherent state in the qubit-cavity system applies an effective rotation to the qubit state. We show how this rotation can be corrected by a unitary operation, leading to improved qubit initialization by measurement and unitary feedback.

  6. The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states

    Directory of Open Access Journals (Sweden)

    A Rabeie and

    2015-01-01

    Full Text Available In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation

  7. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  8. Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems

    Science.gov (United States)

    Hou, Fen-fei; Yang, Ming

    2012-12-01

    A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.

  9. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  10. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Science.gov (United States)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  11. Nonlinear dynamics of semiclassical coherent states in periodic potentials

    International Nuclear Information System (INIS)

    Carles, Rémi; Sparber, Christof

    2012-01-01

    We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch’s spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities, we establish a novel averaging-type result in the critical case. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  12. The semiclassical coherent state propagator in the Weyl representation

    International Nuclear Information System (INIS)

    Braun, Carol; Li, Feifei; Garg, Anupam; Stone, Michael

    2015-01-01

    It is shown that the semiclassical coherent state propagator takes its simplest form when the quantum mechanical Hamiltonian is replaced by its Weyl symbol in defining the classical action, in that there is then no need for a Solari-Kochetov correction. It is also shown that such a correction exists if a symbol other than the Weyl symbol is chosen and that its form is different depending on the symbol chosen. The various forms of the propagator based on different symbols are shown to be equivalent provided the correspondingly correct Solari-Kochetov correction is included. All these results are shown for both particle and spin coherent state propagators. The global anomaly in the fluctuation determinant is further elucidated by a study of the connection between the discrete fluctuation determinant and the discrete Jacobi equation

  13. 112 Gbit/s single-polarization silicon coherent receiver with hybrid-integrated BiCMOS linear TIA

    NARCIS (Netherlands)

    Verbist, J.; Zhang, J.; Moeneclaey, B.; van Weerdenburg, J.; van Uden, R.; Okonkwo, C.; Yin, X.; Bauwelinck, J.; Roelkens, G.

    2015-01-01

    We report the design, fabrication and verification of a single-polarization silicon coherent receiver with a low-power linear TIA array. Error-free operation assuming FEC is shown at bitrates of 112 Gbit/s (28 Gbaud 16-QAM) and 56 Gbit/s (28 Gbaud QPSK).

  14. Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Yasuno, Yoshiaki; Yamanari, Masahiro; Kawana, Keisuke; Miura, Masahiro; Fukuda, Shinichi; Makita, Shuichi; Sakai, Shingo; Oshika, Tetsuro

    2010-11-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is known to be advantageous because of its additional tissue-specific contrast of the anterior eye. So far, this advantage has been shown only qualitatively. We evaluate the improved visibility afforded by 3-D PS corneal and anterior eye segment OCT (PS-CAS-OCT) in visualizing the trabecular meshwork (TM) based on statistical evidences. A total of 31 normal subjects participated in this study. The anterior eye segments of both the eyes of the subjects are scanned using a custom-made PS-CAS-OCT and the standard-scattering OCT (S-OCT) and polarization-sensitive phase-retardation OCT (P-OCT) images are obtained. Three graders grade the visibility of the TM using a four-leveled grading system. The intergrader agreement, intermodality differences, and interquadrant dependence of visibility are statistically examined. All three of three combinations of graders show substantial agreement in visibility with P-OCT (ρ = 0.74, 0.70, and 0.68, Spearman's correlation), while only one of three shows substantial agreement with S-OCT (ρ = 0.72). Significant dependence of the visibility on the modality (S-OCT versus P-OCT) and quadrants are found by the analysis of variance. A subsequent Wilcoxon signed-rank test reveals significantly improved visibility. PS-CAS-OCT may become a useful tool for screening angle-closure glaucoma.

  15. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  16. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    Science.gov (United States)

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  17. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations

    DEFF Research Database (Denmark)

    H. Lieb, Elliott; Solovej, Jan Philip

    2014-01-01

    Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb...

  18. Assessment of atherosclerotic plaque collagen content and architecture using polarization-sensitive optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Doradla, Pallavi; Villiger, Martin; Tshikudi, Diane M.; Bouma, Brett E.; Nadkarni, Seemantini K.

    2016-02-01

    Acute myocardial infarction, caused by the rupture of vulnerable coronary plaques, is the leading cause of death worldwide. Collagen is the primary extracellular matrix macromolecule that imparts the mechanical stability to a plaque and its reduction causes plaque instability. Intracoronary polarization sensitive optical coherence tomography (PS-OCT) measures the polarization states of the backscattered light from the tissue to evaluate plaque birefringence, a material property that is elevated in proteins such as collagen with an ordered structure. Here we investigate the dependence of the PS-OCT parameters on the quantity of the plaque collagen and fiber architecture. In this study, coronary arterial segments from human cadaveric hearts were evaluated with intracoronary PS-OCT and compared with Histopathological assessment of collagen content and architecture from picrosirius-red (PSR) stained sections. PSR sections were visualized with circularly-polarized light microscopy to quantify collagen birefringence, and the additional assessment of color hue indicated fibril thickness. Due to the ordered architecture of thick collagen fibers, a positive correlation between PS-OCT retardation and quantity of thick collagen fibers (r=0.54, p=0.04), and similarly with the total collagen content (r=0.51, p=0.03) was observed. In contrast, there was no perceivable relationship between PS-OCT retardation and the presence of thin collagen fibers (r=0.08, p=0.07), suggesting that thin and disorganized collagen fiber architecture did not significantly contribute to the PS-OCT retardation. Further analysis will be performed to assess the relationship between PS-OCT retardation and collagen architecture based on immunohistochemical analysis of collagen type. These results suggest that intracoronary PS-OCT may open the opportunity to assess collagen architecture in addition total collagen content, potentially enabling an improved understanding of coronary plaque rupture.

  19. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    designing a QC system is that they should be robust and reliable while ... interaction, the atoms prepared in such states will not interact with the light any ... polarizing beam splitter, M are mirrors and MG are magnets to provide the weak field.

  20. PMD compensation in multilevel coded-modulation schemes with coherent detection using BLAST algorithm and iterative polarization cancellation.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-09-15

    We present two PMD compensation schemes suitable for use in multilevel (M>or=2) block-coded modulation schemes with coherent detection. The first scheme is based on a BLAST-type polarization-interference cancellation scheme, and the second scheme is based on iterative polarization cancellation. Both schemes use the LDPC codes as channel codes. The proposed PMD compensations schemes are evaluated by employing coded-OFDM and coherent detection. When used in combination with girth-10 LDPC codes those schemes outperform polarization-time coding based OFDM by 1 dB at BER of 10(-9), and provide two times higher spectral efficiency. The proposed schemes perform comparable and are able to compensate even 1200 ps of differential group delay with negligible penalty.

  1. Probabilistic cloning of coherent states without a phase reference

    DEFF Research Database (Denmark)

    Müller, Christian R.; Wittmann, Christoffer; Marek, Petr

    2012-01-01

    We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based solely on a phase-randomized displacement and photon counting, omitting the need for nonclassical resources and nonlinear materials. In an experimental implementation, we employ the scheme...... to clone coherent states from a phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones can be approached asymptotically...

  2. Faithful test of nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-01-01

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.

  3. Wigner function for the generalized excited pair coherent state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi

    2008-01-01

    This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states

  4. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    Science.gov (United States)

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-03-24

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  5. Disturbing the coherent dynamics of an excitonic polarization with strong terahertz fields

    Science.gov (United States)

    Drexler, M. J.; Woscholski, R.; Lippert, S.; Stolz, W.; Rahimi-Iman, A.; Koch, M.

    2014-11-01

    We present a paper based on combining four-wave mixing and strong fields in the terahertz frequency range to monitor the time evolution of a disturbed excitonic polarization in a multiple quantum well system. Our findings not only confirm a lower field-dependent ionization threshold for higher excitonic states, but furthermore provide experimental evidence for intraexcitonic Rabi flopping in the time domain. These measurements correspond to the picture of a reversible and irreversible transfer as previously predicted by a microscopic theory.

  6. Influence of atmospheric turbulence on the quantum polarization state

    Science.gov (United States)

    Yang, Ru; Xue, Yang; Li, Yunxia; Shi, Lei; Zhu, Yu; Zhu, Qiuli

    2018-03-01

    In order to study the influence of atmospheric turbulence on the polarization state of the free space quantum communication, the relationship between the refractive index and altitude, the refractive index structure constant and the turbulence dimension is deduced based on two different atmospheric refractive index structural constants models. The turbulence intensity factor κ is introduced and the equation of the variation of the quantum polarization degree with turbulence intensity is established. Through the simulation of the turbulent refractive index and the performance of four different polarization states in the low altitude turbulence environment, the results show that the atmospheric turbulence in the near ground will affect the fluctuation of the degree of polarization, and the degree of polarization varies linearly with the change of turbulence intensity. In the case of polarization |H>, the range of polarization |H> varies from 0 to 0.14 with the change of turbulence intensity. The influence of atmospheric turbulence on four different polarization states is different, and the degree of |H> and |V> depolarization is greater in the daytime and back. The depolarization degree of |-> at night is greater. The relationship between the degree of polarization and the change of turbulence intensity is analyzed by mathematical modeling, which is helpful to select the reasonable experimental scheme and compensate the change of polarization state in the aviation quantum Secure communication channel.

  7. Detection of oral early cancerous lesion by using polarization-sensitive optical coherence tomography: mice model

    Science.gov (United States)

    Lee, Hong-Yi; Chen, Ping-Hsien; Lee, Tzu-Han; Chang, Kuo-Wei; Kuo, Wen-Chuan

    2018-02-01

    Oral cancer is the 11th most common cancer worldwide, especially in a male adult. The median age of death in oral cancer was 55 years, 10-20 years earlier than other cancers. Presently, oral cancer is often found in late stage, because the lesion is often flat in early stage and is difficult to diagnose under traditional white light imaging. The only definitive method for determining cancer is an invasive biopsy and then using histology examination. How to detect precancerous lesions or early malignant lesions is an important issue for improving prognosis of oral cancer. Optical coherence tomography (OCT) is a new optical tool for diagnosing early malignant lesions in the skin or gastrointestinal tract recently. Here we report a new method for detecting precancerous or early malignant oral lesions by using swept source polarization-sensitive optical coherence tomography (PS-OCT) with center-wavelength 1310 nm, bandwidth 110 nm and 100 kHz swept rate. We used all single-mode fiber design to detect the change of birefringence information in the epithelium structure. This system has an advantage that enables measurement of backscattered intensity and birefringence simultaneously with only one A-scan per transverse location. In preliminary result, we computed the slope of the every A-scan signal in tissue part using a linear-curve fitting in backscattered intensity and birefringence on the enface. In this research, we used an oral cancer mice model for observing the change of structure and birefringence properties in different stages of oral cancer mice. We presented the parametric enface imaging that can detect the early oral malignant lesions.

  8. Pisot q-coherent states quantization of the harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.fr [Laboratoire APC, Univ. Paris Diderot, Sorbonne Paris Cite, 75205 Paris (France); Olmo, M.A. del, E-mail: olmo@fta.uva.es [Departamento de Fisica Teorica and IMEVA, Universidad de Valladolid, E-47005, Valladolid (Spain)

    2013-03-15

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0states form an overcomplete set that resolves the unity with respect to an explicit measure. We restrict our study to the case in which q{sup -1} is a quadratic unit Pisot number, since then the q-deformed integers form Fibonacci-like sequences of integers. We then examine the main characteristics of the corresponding quantum oscillator: localization in the configuration and in the phase spaces, angle operator, probability distributions and related statistical features, time evolution and semi-classical phase space trajectories. - Highlights: Black-Right-Pointing-Pointer Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0states form an overcomplete set that resolves the unity with respect to an explicit measure. Black-Right-Pointing-Pointer q-Deformed numbers are Fibonacci-like integer sequences (1/q a quadratic unit Pisot number). Black-Right-Pointing-Pointer We examine the main physical characteristics of the corresponding quantum oscillator.

  9. The hand-hold polarization-sensitive spectral domain optical coherence and its applications

    Science.gov (United States)

    Liu, Hao; Gao, Wanrong

    2017-08-01

    The polarization-sensitive spectral domain optical coherence tomography (PSOCT) has the advantages of being able to measure the polarization properties of samples, such as phase-retardation, diattenuation, depolarization, and optical axis orientation, providing a contrast to identify the diseased area and normal area in tissues in PSOCT images. Conventionally, the sample arm of PSOCT is fixed on the stage where biomedical tissues or models is placed, and the OCT images is acquired by scanning with a galvanometer-based mirror. To be applied in the practical diagnosis, a promising way is to design a hand-held device. To this end, it is required that probe is assembled with a small volume to allow for comprehensively imaging large tissues areas at a microscopic scale, and is available to move on different samples to be acquired quickly with negligible motion artifacts. Meanwhile, the probe should be manufactured wih well stability to avoid system jitter error while it is used to detect the biological tissues in vivo. In this work, a design of a hand-hold fiber-based PSOCT is described. The device is of the size of 10 cm (length) × 8 cm (width) × 6 cm (height). Both the axial resolution and the imaging depth of the system are measured and were approximately 7 μm and 2.5 mm in air, respectively, which are in good agreement with the theoretical predictions. The A-scan rate of the system is 70 kHz. The structure is compact and all the components are fixed on the shell to reduce the motion artifact, resulting in a great stability on measuring the tissues in vivo. The cross sectional images of ex vivo chicken breast, ex vivo pork cartilage and in vivo forearm skin of human wolunteer are presented to demonstrate the capability of the system.

  10. Bound states in quantum field theory and coherent states: A fresh look

    International Nuclear Information System (INIS)

    Misra, S.P.

    1986-09-01

    We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)

  11. Coherent states and related quantizations for unbounded motions

    International Nuclear Information System (INIS)

    Bagrov, V G; Gazeau, J-P; Gitman, D M; Levin, A D

    2012-01-01

    We discuss the construction of coherent states (CS) for systems with continuous spectra. First, we propose to adopt the Malkin–Manko approach, developed for systems with discrete spectra, to the case under consideration. Following this approach, we consider two examples, a free particle and a particle in a linear potential. Second, we generalize the approach of action-angle CS to systems with continuous spectra. In the first approach we start with a well-defined quantum formulation (canonical quantization) of a physical system and the construction of CS follows from such a quantization. In the second approach, the quantization procedure is inherent to the CS construction itself. (paper)

  12. Inequivalent coherent state representations in group field theory

    Science.gov (United States)

    Kegeles, Alexander; Oriti, Daniele; Tomlin, Casey

    2018-06-01

    In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with an infinite number of degrees of freedom on compact manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory.

  13. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  14. Deformed exterior algebra, quons and their coherent states

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.

    2002-08-01

    We review the notion of the deformation of the exterior wedge product. This allows us to construct the deformation of the algebra of exterior forms over a vector space and also over an arbitrary manifold. We relate this approach to the generalized statistics and we study quons, as a particular case of these generalized statistics. We also give their statistical properties. A large part of the work is devoted to the problem of constructing coherent states for the deformed oscillators. We give a review of all the approaches existing in the literature concerning this point and enforce it with many examples. (author)

  15. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V [Present address: JSC ' Saratovneftegeophysics' , Saratov (Russian Federation)

    2004-04-07

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence {delta}n is (6.0 {+-} 0.2) x 10{sup -3} at a wavelength of 1.3 {mu}m. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, {delta}n = (6.0 {+-} 0.6) x 10{sup -3} at 1.3 {mu}m. The nucleus pulposus does not display birefringence, the measured apparent value of {delta}n = (0.39 {+-} 0.01) x 10{sup -3} being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.

  16. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V

    2004-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Δn is (6.0 ± 0.2) x 10 -3 at a wavelength of 1.3 μm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Δn = (6.0 ± 0.6) x 10 -3 at 1.3 μm. The nucleus pulposus does not display birefringence, the measured apparent value of Δn = (0.39 ± 0.01) x 10 -3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease

  17. Investigation in clinical potential of polarization sensitive optical coherence tomography in laryngeal tumor model study

    Science.gov (United States)

    Zhou, Xin; Oak, Chulho; Ahn, Yeh-Chan; Kim, Sung Won; Tang, Shuo

    2018-02-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is capable of measuring tissue birefringence. It has been widely applied to access the birefringence in tissues such as skin and cartilage. The vocal cord tissue consists of three anatomical layers from the surface to deep inside, the epithelium that contains almost no collagen, the lamina propria that is composed with abundant collagen, and the vocalis muscle layer. Due to the variation in the organization of collagen fibers, the different tissue layers show different tissue birefringence, which can be evaluated by PS-OCT phase retardation measurement. Furthermore, collagen fibers in healthy connective tissues are usually well organized, which provides relatively high birefringence. When the collagen organization is destroyed by diseases such as tumor, the birefringence of the tissue will decrease. In this study, a rabbit laryngeal tumor model with different stages of tumor progression is investigated ex-vivo by PS-OCT. The PS-OCT images show a gradual decrease in birefringence from normal tissue to severe tumor tissue. A phase retardation slope-based analysis is conducted to distinguish the epithelium, lamina propria, and muscle layers, respectively. The phase retardation slope quantifies the birefringence in different layers. The quantitative study provides a more detailed comparison among different stages of the rabbit laryngeal tumor model. The PS-OCT result is validated by the corresponding histology images of the same samples.

  18. Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Baumann, Bernhard; Gotzinger, Erich; Pircher, Michael; Sattmann, Harald; Schuutze, Christopher; Schlanitz, Ferdinand; Ahlers, Christian; Schmidt-Erfurth, Ursula; Hitzenberger, Christoph K

    2010-01-01

    We present polarization-sensitive optical coherence tomography (PS-OCT) for quantitative assessment of retinal pathologies in age-related macular degeneration (AMD). On the basis of the polarization scrambling characteristics of the retinal pigment epithelium, novel segmentation algorithms were developed that allow one to segment pathologic features such as drusen and atrophic zones in dry AMD as well as to determine their dimensions. Results from measurements in the eyes of AMD patients prove the ability of PS-OCT for quantitative imaging based on the retinal features polarizing properties. Repeatability measurements were performed in retinas diagnosed with drusen and geographic atrophy in order to evaluate the performance of the described methods. PS-OCT appears as a promising imaging modality for three-dimensional retinal imaging and ranging with additional contrast based on the structures' tissue-inherent polarization properties.

  19. 6C polarization analysis - seismic direction finding in coherent noise, automated event identification, and wavefield separation

    Science.gov (United States)

    Schmelzbach, C.; Sollberger, D.; Greenhalgh, S.; Van Renterghem, C.; Robertsson, J. O. A.

    2017-12-01

    Polarization analysis of standard three-component (3C) seismic data is an established tool to determine the propagation directions of seismic waves recorded by a single station. A major limitation of seismic direction finding methods using 3C recordings, however, is that a correct propagation-direction determination is only possible if the wave mode is known. Furthermore, 3C polarization analysis techniques break down in the presence of coherent noise (i.e., when more than one event is present in the analysis time window). Recent advances in sensor technology (e.g., fibre-optical, magnetohydrodynamic angular rate sensors, and ring laser gyroscopes) have made it possible to accurately measure all three components of rotational ground motion exhibited by seismic waves, in addition to the conventionally recorded three components of translational motion. Here, we present an extension of the theory of single station 3C polarization analysis to six-component (6C) recordings of collocated translational and rotational ground motions. We demonstrate that the information contained in rotation measurements can help to overcome some of the main limitations of standard 3C seismic direction finding, such as handling multiple arrivals simultaneously. We show that the 6C polarisation of elastic waves measured at the Earth's free surface does not only depend on the seismic wave type and propagation direction, but also on the local P- and S-wave velocities just beneath the recording station. Using an adaptation of the multiple signal classification algorithm (MUSIC), we demonstrate how seismic events can univocally be identified and characterized in terms of their wave type. Furthermore, we show how the local velocities can be inferred from single-station 6C data, in addition to the direction angles (inclination and azimuth) of seismic arrivals. A major benefit of our proposed 6C method is that it also allows the accurate recovery of the wave type, propagation directions, and phase

  20. Partially coherent twisted states in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  1. Partially coherent twisted states in arrays of coupled phase oscillators

    International Nuclear Information System (INIS)

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-01-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system

  2. “Stringy” coherent states inspired by generalized uncertainty principle

    Science.gov (United States)

    Ghosh, Subir; Roy, Pinaki

    2012-05-01

    Coherent States with Fractional Revival property, that explicitly satisfy the Generalized Uncertainty Principle (GUP), have been constructed in the context of Generalized Harmonic Oscillator. The existence of such states is essential in motivating the GUP based phenomenological results present in the literature which otherwise would be of purely academic interest. The effective phase space is Non-Canonical (or Non-Commutative in popular terminology). Our results have a smooth commutative limit, equivalent to Heisenberg Uncertainty Principle. The Fractional Revival time analysis yields an independent bound on the GUP parameter. Using this and similar bounds obtained here, we derive the largest possible value of the (GUP induced) minimum length scale. Mandel parameter analysis shows that the statistics is Sub-Poissonian. Correspondence Principle is deformed in an interesting way. Our computational scheme is very simple as it requires only first order corrected energy values and undeformed basis states.

  3. “Stringy” coherent states inspired by generalized uncertainty principle

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Pinaki

    2012-01-01

    Coherent States with Fractional Revival property, that explicitly satisfy the Generalized Uncertainty Principle (GUP), have been constructed in the context of Generalized Harmonic Oscillator. The existence of such states is essential in motivating the GUP based phenomenological results present in the literature which otherwise would be of purely academic interest. The effective phase space is Non-Canonical (or Non-Commutative in popular terminology). Our results have a smooth commutative limit, equivalent to Heisenberg Uncertainty Principle. The Fractional Revival time analysis yields an independent bound on the GUP parameter. Using this and similar bounds obtained here, we derive the largest possible value of the (GUP induced) minimum length scale. Mandel parameter analysis shows that the statistics is Sub-Poissonian. Correspondence Principle is deformed in an interesting way. Our computational scheme is very simple as it requires only first order corrected energy values and undeformed basis states.

  4. Polarization control of spontaneous emission for rapid quantum-state initialization

    Science.gov (United States)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  5. Dephasing in coherent communication with weak signal states

    International Nuclear Information System (INIS)

    Jarzyna, Marcin; Banaszek, Konrad; Demkowicz-Dobrzański, Rafał

    2014-01-01

    We analyse the ultimate quantum limit on the accessible information for an optical communication scheme when time bins carry coherent light pulses prepared in one of several orthogonal modes and the phase undergoes diffusion after each channel use. This scheme, an example of a quantum memory channel, can be viewed as noisy pulse position modulation (PPM) keying with phase fluctuations occurring between consecutive PPM symbols. We derive a general expression for the output states in the Fock basis and implement a numerical procedure to calculate the Holevo quantity. Using asymptotic properties of Toeplitz matrices, we also present an analytic expression for the Holevo quantity valid for very weak signals and sufficiently strong dephasing when the dominant contribution comes from the single-photon sector in the Hilbert space of signal states. Based on numerical results we conjecture an inequality for contributions to the Holevo quantity from multiphoton sectors which implies that in the asymptotic limit of weak signals, for arbitrarily small dephasing the accessible information scales linearly with the average number of photons contained in the pulse. Such behaviour presents a qualitative departure from the fully coherent case. (paper)

  6. Special issue on coherent states: mathematical and physical aspects Special issue on coherent states: mathematical and physical aspects

    Science.gov (United States)

    Twareque Ali, Syed; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre

    2011-07-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to coherent states. The motivation behind this special issue is to gather in a single comprehensive volume the main aspects (past and present), latest developments, different viewpoints and directions being followed in this multidisciplinary field. Given the impressive development of the field in the past two decades, the topicality of such a volume can hardly be overemphasized. We strongly believe that such a special issue could become a particularly valuable reference for the broad scientific community working in mathematical and theoretical physics, as well as in signal processing and mathematics. Editorial policy The Guest Editors for this issue will be Syed Twareque Ali, Jean-Pierre Antoine, Fabio Bagarello and Jean-Pierre Gazeau. Potential topics include, but are not limited to, developments in the theory and applications of coherent states in: quantum optics, optomechanics, Bose-Einstein condensates quantum information, quantum measurement signal processing quantum gravity pseudo-Hermitian quantum mechanics supersymmetric quantum mechanics non-commutative quantum mechanics quantization theory harmonic and functional analysis operator theory Berezin-Toeplitz operators, PT-symmetric operators holomorphic representation theory, reproducing kernel spaces generalization of coherent states All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 October 2011. This deadline will allow the special issue to appear before the end of May 2012 There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a

  7. Simulating the spectrum and the polarization characteristics of coherent radiation from ultrarelativistic electrons in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the basis of a computer simulation, it is shown that, in the spectrum of radiation from ultrarelativistic electrons in oriented crystals, new maxima can appear in the low-frequency region in addition to ordinary coherent maxima. This effect is due to the influence of high-index planes on the radiation in question. The aforementioned new maxima manifest themselves not only in the spectrum but also in the polarization characteristics of the radiation

  8. A group property for the coherent state representation of fermionic squeezing operators

    Science.gov (United States)

    Fan, Hong-yi; Li, Chao

    2004-06-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation.

  9. A group property for the coherent state representation of fermionic squeezing operators

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation

  10. Influence of temporal–spectral effects on ultrafast fiber coherent polarization beam combining system

    International Nuclear Information System (INIS)

    Yu, H L; Ma, P F; Wang, X L; Su, R T; Zhou, P; Chen, J B

    2015-01-01

    The active coherent polarization beam combining (CPBC) technique has been experimentally proved to be a promising approach for the energy and power scaling of ultrashort laser pulses, despite the tremendous challenge in temporal synchronization, dispersion management and nonlinearity control. In order to develop a comprehensive theoretical model to investigate the influence of temporal–spectral effects on ultrafast fiber active CPBC systems, a generalized nonlinear Schrödinger equation carrying spectral factors is used to depict the propagation of ultrashort pulses in fiber amplifier channels and ultrashort-pulsed Gaussian beams (PGBs) carrying temporal–spatial factors are utilized to picture the propagation of ultrashort pulses in the free space. To the best of our knowledge, the influence of different temporal–spectral effects has been segregated for the first time and corresponding analytical equations have been strictly derived to link the combining efficiency with specific factors. Based on our analysis, the optical path difference (OPD) has the most detrimental impact on the combining efficiency because of the high controlling accuracy and anti-interference requirements. For instance, the OPD must be controlled in ∼  ±14 μm to achieve a combining efficiency of above 95% for combining ultrashort laser pulses with a 3 dB spectral bandwidth of 13 nm centered at 1064 nm. Besides, the analytical expression also demonstrates that the impact of self-phase modulation on the combining efficiency has no dependence on spectral bandwidth and only depends on the B integral difference if neglecting the direct influence of the peak power difference. Our analysis also indicates that the group velocity dispersion has relatively small influence on the combining efficiency. These formulas can be used to diagnose the influence of temporal–spectral effects and provide useful guidelines for the design or optimization of the active CPBC system of ultrafast

  11. Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography

    Science.gov (United States)

    Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.

    2015-03-01

    Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.

  12. The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)

    2014-04-15

    We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.

  13. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  14. Coherent states for a polynomial su(1, 1) algebra and a conditionally solvable system

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Inomata, Akira; Junker, Georg

    2009-01-01

    In a previous paper (2007 J. Phys. A: Math. Theor. 40 11105), we constructed a class of coherent states for a polynomially deformed su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1, 1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1, 1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1, 1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.

  15. Security improvement by using a modified coherent state for quantum cryptography

    International Nuclear Information System (INIS)

    Lu, Y.J.; Zhu, Luobei; Ou, Z.Y.

    2005-01-01

    Weak coherent states as a photon source for quantum cryptography have a limit in secure data rate and transmission distance because of the presence of multiphoton events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4-dB improvement in the secure data rate or a nearly twofold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible

  16. Generalized coherent states related to the associated Bessel functions and Morse potential

    International Nuclear Information System (INIS)

    Mojaveri, B; Amiri Faseghandis, S

    2014-01-01

    Using the associated Bessel functions, a shape-invariant Lie algebra spanned by ladder operators plus the identity operator, is realized. The Hilbert space of the associated Bessel functions, representing the Lie algebra, are established and two kinds of generalized coherent states as an appropriate superposition of these functions are constructed. By implying appropriate similarity transformation on the constructed coherent states, the generalized coherent states for the Morse potential are obtained. By considering some statistical characteristics, it is revealed that the constructed coherent states indeed possess nonclassical features, such as squeezing and sub-Poissonian statistics. (paper)

  17. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  18. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  19. Representation of coherent states in many-boson theory

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    1978-01-01

    Solution of the Bloch equation for the density matrix of the system of interacting Bose particles in the coherent states representation is obtained. The matrix of the thermodynamical potential functional is represented in the form of the functional series over the eigen-values of the annihilation operator and the coefficient functions are the matrix elements of cluster operators. A simple functional integration in the partition sum leads to the well-known quantum virial expansions and the standard perturbation theory series. Possibilities of application of the expressions obtained to the investigation of the lambda-transition in the liquid He 4 and the generalization to the case of the many-fermion system is discussed

  20. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  1. Detailed analysis of evolution of the state of polarization in all-fiber polarization transformers.

    Science.gov (United States)

    Zhu, Xiushan; Jain, Ravinder K

    2006-10-30

    We present a detailed analysis of key attributes and performance characteristics of controllably-spun birefringent-fiber-based all-fiber waveplates or "all fiber polarization transformers" (AFPTs), first proposed and demonstrated by Huang [11]; these AFPTs consist essentially of a long carefully-designed "spin-twisted" high-birefringence fiber, fabricated by slowly varying the spin rate of a birefringent fiber preform (either from very fast to very slow or vice versa) while the fiber is being drawn. The evolution of the eigenstate from a linear polarization state to a circular polarization state, induced by slow variation of the intrinsic structure from linear anisotropy at the unspun end to circular anisotropy at the fast-spun end, enables the AFPT to behave like an all-fiber quarter-wave plate independent of the wavelength of operation. Power coupling between local eigenstates causes unique evolution of the polarization state along the fiber, and has been studied to gain insight into - as well as to understand detailed characteristics of -- the polarization transformation behavior. This has been graphically illustrated via plots of the relative power in these local eigenstates as a function of distance along the length of the fiber and plots of the extinction ratio of the output state of polarization (SOP) as a function of distance and the normalized spin rate. Deeper understanding of such polarization transformers has been further elucidated by quantitative calculations related to two crucial requirements for fabricating practical AFPT devices. Our calculations have also indicated that the polarization mode dispersion behaviour of the AFPT is much smaller than that of the original birefringent fiber. Finally, a specific AFPT was experimentally investigated at two widely-separated wavelengths (1310 nm and 1550 nm) of interest in telecommunications systems applications, further demonstrating and elucidating the broadband character of such AFPTs.

  2. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  3. Experimental determination of the degree of polarization of quantum states

    DEFF Research Database (Denmark)

    Kothe-Termén, Christian; Madsen, Lars Skovgaard; Andersen, Ulrik Lund

    2013-01-01

    We demonstrate experimental excitation-manifold-resolved polarization characterization of quantum states of light ranging from the few-photon to the many-photon level. In contrast to the traditional characterization of polarization that is based on the Stokes parameters, we experimentally determine...... the Stokes vector of each excitation manifold separately. Only for states with a given photon number do the methods coincide. For states with an indeterminate photon number, for example Gaussian states, the employed method gives a richer and more accurate description. We apply the method both in theory...

  4. Cyclic and Coherent States in Flocks with Topological Distance

    Science.gov (United States)

    Bhattacherjee, Biplab; Bhattacharya, Kunal; Manna, Subhrangshu

    2014-01-01

    A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first n neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise η and diverges as η → 0. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its n = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with n = 2 and 3; but it is completely frozen when the interaction is isotropic with n=4$. These spin configu

  5. Cyclic and Coherent States in Flocks with Topological Distance

    Directory of Open Access Journals (Sweden)

    Biplab eBhattacherjee

    2014-01-01

    Full Text Available A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first $n$ neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise $eta$ and diverges as $eta to 0$. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its $n$ = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with $n$ = 2 and 3; but it is completely frozen when the interaction is isotropic with $n=4$. These spin configu

  6. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    International Nuclear Information System (INIS)

    Niu, Kai; Lee, Soo-Y.

    2015-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms

  7. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Kai [School of Science, Tianjin University of Technology and Education, Tianjin, 300222 (China); Lee, Soo-Y., E-mail: sooying@ntu.edu.sg [Division of Physics & Applied Physics, and Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  8. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    Science.gov (United States)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  9. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    International Nuclear Information System (INIS)

    Daoud, M.; Ahl Laamara, R.

    2012-01-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states

  10. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)

    2012-07-16

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.

  11. Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Lezama, A; Hannaford, P; Akulshin, A M

    2007-01-01

    We present an experimental study of sub-natural width resonances in fluorescence from a collimated beam of 6 Li atoms excited on the D 1 and D 2 lines by a bichromatic laser field. We show that in addition to ground-state Zeeman coherence, coherent population oscillations between ground and excited states contribute to the sub-natural resonances. High-contrast resonances of electromagnetically induced transparency and electromagnetically induced absorption due to both effects, i.e., ground-state Zeeman coherence and coherent population oscillations, are observed

  12. In vivo imaging of human oral hard and soft tissues by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Walther, Julia; Golde, Jonas; Kirsten, Lars; Tetschke, Florian; Hempel, Franz; Rosenauer, Tobias; Hannig, Christian; Koch, Edmund

    2017-12-01

    Since optical coherence tomography (OCT) provides three-dimensional high-resolution images of biological tissue, the benefit of polarization contrast in the field of dentistry is highlighted in this study. Polarization-sensitive OCT (PS OCT) with phase-sensitive recording is used for imaging dental and mucosal tissues in the human oral cavity in vivo. An enhanced polarization contrast of oral structures is reached by analyzing the signals of the co- and crosspolarized channels of the swept source PS OCT system quantitatively with respect to reflectivity, retardation, optic axis orientation, and depolarization. The calculation of these polarization parameters enables a high tissue-specific contrast imaging for the detailed physical interpretation of human oral hard and soft tissues. For the proof-of-principle, imaging of composite restorations and mineralization defects at premolars as well as gingival, lingual, and labial oral mucosa was performed in vivo within the anterior oral cavity. The achieved contrast-enhanced results of the investigated human oral tissues by means of polarization-sensitive imaging are evaluated by the comparison with conventional intensity-based OCT.

  13. Polarization sensitive optical coherence tomography at 1060 nm for retinal imaging

    International Nuclear Information System (INIS)

    Torzicky, T.

    2014-01-01

    The aim of this thesis was to develop a Polarization Sensitive Optical Coherence Tomography (PS-OCT) device for ocular imaging in the 1 µm wavelength range and to explore its capabilities to image healthy subjects and patients with various retinal disorders. PS-OCT set-ups working in the 840 nm range have been used in several clinical studies, for examining different retinal pathologies. Especially the segmentation of the retinal pigment epithelium (RPE) based on PS-OCT data shows advantages in cases of age related macular degeneration (AMD) in comparison to segmentation based on intensity images from commercial OCT systems. OCT imaging in the 1 µm wavelength region has recently gained popularity for ophthalmic applications due to the fact that it is perfectly suitable for enhanced visualization of choroid and sclera. This is due to decreased scattering and absorption in the RPE with increasing wavelength and due to the local absorption minimum of water (the vitreous of the eye consists mainly of water) for wavelengths around 1060 nm. An additional advantage is that a higher imaging quality in patients with corneal haze or cataract can be achieved when using OCT systems working at 1 µm. In this work we combine the advantages of PS-OCT imaging with the enhanced penetration depth of the 1 µm wavelength range for acquiring intensity, retardation, axis orientation and degree of polarization uniformity (DOPU) images of choroid and sclera. As a first step different PS-OCT set-ups working at 1060 nm were developed and a comparison regarding set-up parameters and imaging performance was accomplished. The two different set-ups that were built and investigated were a spectrometer based Fourier Domain OCT set-up and a swept source Fourier Domain OCT set-up. The swept source set-up was tested with two different light sources, a commercially available swept source laser (A-Scan rate of 100 kHz) and a prototype of a Fourier Domain Mode Locked (FDML) laser (A-Scan rate of 350

  14. Advantages of cross-polarization endoscopic optical coherence tomography in diagnosis of bladder neoplasia

    Science.gov (United States)

    Gladkova, N. D.; Zagaynova, E. V.; Streltsova, O. S.; Kiseleva, E. B.; Karabut, M. M.; Snopova, L. B.; Yunusova, E. E.; Tararova, E.; Gelikonov, V. M.

    2010-02-01

    We consider the cross-polarization OCT (CP OCT) that is focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously. This technique provides information about microstructural and biochemical alterations in depolarizing tissue components (collagen). We found that mature type I collagen gives a strong signal in orthogonal polarization. CP OCT images of benign inflammatory processes always feature signal in orthogonal polarization, with layers and borders persisting to be well defined. In the presence of precancerous alterations, signal in orthogonal polarization is available in the image but it is irregular, disappearing in some areas. A CP OCT image of bladder cancer in orthogonal polarization either shows no signal at all or a weak signal.

  15. Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal

  16. Quantum cryptography using coherent states: Randomized encryption and key generation

    Science.gov (United States)

    Corndorf, Eric

    objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.

  17. Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection

    International Nuclear Information System (INIS)

    Suzuki, Shigenari; Takeoka, Masahiro; Sasaki, Masahide; Andersen, Ulrik L.; Kannari, Fumihiko

    2006-01-01

    We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude

  18. The Variable Transition State in Polar Additions to Pi Bonds

    Science.gov (United States)

    Weiss, Hilton M.

    2010-01-01

    A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…

  19. General sets of coherent states and the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Daoud, M.; Hussin, V.

    2002-01-01

    General sets of coherent states are constructed for quantum systems admitting a nondegenerate infinite discrete energy spectrum. They are eigenstates of an annihilation operator and satisfy the usual properties of standard coherent states. The application of such a construction to the quantum optics Jaynes-Cummings model leads to a new understanding of the properties of this model. (author)

  20. 2D-Zernike Polynomials and Coherent State Quantization of the Unit Disc

    Energy Technology Data Exchange (ETDEWEB)

    Thirulogasanthar, K., E-mail: santhar@gmail.com [Concordia University, Department of Comuter Science and Software Engineering (Canada); Saad, Nasser, E-mail: nsaad@upei.ca [University of Prince Edward Island, Department of mathematics and Statistics (Canada); Honnouvo, G., E-mail: g-honnouvo@yahoo.fr [McGill University, Department of Mathematics and Statistics (Canada)

    2015-12-15

    Using the orthonormality of the 2D-Zernike polynomials, reproducing kernels, reproducing kernel Hilbert spaces, and ensuring coherent states attained. With the aid of the so-obtained coherent states, the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized Berezin transforms also obtained. A number of necessary summation formulas for the 2D-Zernike polynomials proved.

  1. Maths-type q-deformed coherent states for q>1

    International Nuclear Information System (INIS)

    Quesne, C.; Penson, K.A.; Tkachuk, V.M.

    2003-01-01

    Maths-type q-deformed coherent states with q>1 allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra

  2. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  3. Entanglement Generation with Deformed Barut-Girardello Coherent States as Input States in a Unitary Beam Splitter

    International Nuclear Information System (INIS)

    Berrada, K.; Benmoussa, A.; Hassouni, Y.

    2010-07-01

    Using linear entropy as a measure of entanglement, we investigate the entanglement generated via a beam splitter using deformed Barut-Girardello coherent states. We show that the degree of entanglement depends strongly on the q-deformation parameter and amplitude Z of the states. We compute the Mandel Q parameter to examine the quantum statistical properties of these coherent states and make a comparison with the Glauber coherent states. It is shown that these states are useful to describe the states of real and ideal lasers by a proper choice of their characterizing parameters, using an alteration of the Holstein-Primakoff realization. (author)

  4. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  5. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  6. Role of initial coherence on entanglement dynamics of two qubit X states

    Science.gov (United States)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  7. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  8. Three-dimensional polarization states of monochromatic light fields.

    Science.gov (United States)

    Azzam, R M A

    2011-11-01

    The 3×1 generalized Jones vectors (GJVs) [E(x) E(y) E(z)](t) (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation E(s)=T E(i), is briefly introduced. In such a matrix transformation, E(i) and E(s) are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

  9. Coherent states field theory in supramolecular polymer physics

    Science.gov (United States)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  10. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  11. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    International Nuclear Information System (INIS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-01-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light

  12. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    Science.gov (United States)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  13. Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Schubert, Roman

    2012-01-01

    The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  14. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  15. Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model

    Science.gov (United States)

    Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.

    2018-04-01

    The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.

  16. On irreversible evolutions of two-level systems approaching coherent and squeezed states

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1988-01-01

    The concepts of completely positive quantum dynamical semigroups and SU(2)-related generalized coherence and squeezing are used to investigate conditions for Markovian evolutions leading to coherent, intelligent, minimum-uncertainty and squeezed asymptotic stationary states in a 2-level system. (author). 10 refs

  17. Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang, L.-M.; Chen Zengbing; Pan Jianwei

    2007-01-01

    We propose a method to generate entangled coherent states between two spatially separated atomic Bose-Einstein condensates (BECs) via the technique of electromagnetically induced transparency (EIT). Two strong coupling laser beams and two entangled probe laser beams are used to cause two distant BECs to be in EIT states and to generate an atom-photon entangled state between probe lasers and distant BECs. The two BECs are initially in unentangled product coherent states while the probe lasers are initially in an entangled state. Entangled states of two distant BECs can be created through the performance of projective measurements upon the two outgoing probe lasers under certain conditions. Concretely, we propose two protocols to show how to generate entangled coherent states of the two distant BECs. One is a single-photon scheme in which an entangled single-photon state is used as the quantum channel to generate entangled distant BECs. The other is a multiphoton scheme where an entangled coherent state of the probe lasers is used as the quantum channel. Additionally, we also obtain some atom-photon entangled states of particular interest such as entangled states between a pair of optical Bell states (or quasi-Bell-states) and a pair of atomic entangled coherent states (or quasi-Bell-states)

  18. Coherent states of a particle in a magnetic field and the Stieltjes moment problem

    International Nuclear Information System (INIS)

    Gazeau, J.P.; Baldiotti, M.C.; Gitman, D.M.

    2009-01-01

    A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.

  19. Coherent states of a particle in a magnetic field and the Stieltjes moment problem

    Energy Technology Data Exchange (ETDEWEB)

    Gazeau, J.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gazeau@apc.univ-paris7.fr; Baldiotti, M.C. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: baldiott@fma.if.usp.br; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gitman@dfn.if.usp.br

    2009-05-11

    A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.

  20. Coherent and generalized intelligent states for infinite square well potential and nonlinear oscillators

    International Nuclear Information System (INIS)

    El Kinani, A.H; Daoud, M.

    2001-10-01

    This article is an illustration of the construction of coherent and generalized intelligent states which has been recently proposed by us for an arbitrary quantum system. We treat the quantum system submitted to the infinite square well potential and the nonlinear oscillators. By means of the analytical representation of the coherent states a la Gazeau-Klauder and those a la Klauder-Perelomov, we derive the generalized intelligent states in analytical ways. (author)

  1. Coherent states of non-relativistic electron in the magnetic-solenoid field

    International Nuclear Information System (INIS)

    Bagrov, V G; Gavrilov, S P; Filho, D P Meira; Gitman, D M

    2010-01-01

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  2. Coherent states of non-relativistic electron in the magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G [Department of Physics, Tomsk State University, 634050, Tomsk (Russian Federation); Gavrilov, S P; Filho, D P Meira [Institute of Physics, University of Sao Paulo (Brazil); Gitman, D M, E-mail: bagrov@phys.tsu.r, E-mail: gavrilovsergeyp@yahoo.co, E-mail: gitman@dfn.if.usp.b, E-mail: dmeira@dfn.if.usp.b [Institute of Physics, University of Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo (Brazil)

    2010-09-03

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  3. Continuous-variable quantum teleportation of even and odd coherent states through varied gain channels

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai

    2006-01-01

    This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.

  4. Heisenberg-limited interferometry with pair coherent states and parity measurements

    International Nuclear Information System (INIS)

    Gerry, Christopher C.; Mimih, Jihane

    2010-01-01

    After reviewing parity-measurement-based interferometry with twin Fock states, which allows for supersensitivity (Heisenberg limited) and super-resolution, we consider interferometry with two different superpositions of twin Fock states, namely, two-mode squeezed vacuum states and pair coherent states. This study is motivated by the experimental challenge of producing twin Fock states on opposite sides of a beam splitter. We find that input two-mode squeezed states, while allowing for Heisenberg-limited sensitivity, do not yield super-resolutions, whereas both are possible with input pair coherent states.

  5. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  6. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  7. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  8. Construction of the Barut–Girardello quasi coherent states for the Morse potential

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk [“Politehnica” University of Timişoara, Department of Physical Foundations of Engineering, 2 Vasile Pârvan Blvd., 300223 Timisoara (Romania); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D. F. 07738 (Mexico); Pop, Nicolina, E-mail: popnico2000@yahoo.com [“Politehnica” University of Timişoara, Department of Physical Foundations of Engineering, 2 Vasile Pârvan Blvd., 300223 Timisoara (Romania); Sajfert, Vjekoslav, E-mail: sajfertv@open.telekom.rs [Technical Faculty “M. Pupin” Zrenjanin, University of Novi Sad, Djure Djakovica bb, 23000 Zrenjanin (Serbia); Şimon, Simona, E-mail: simon_cristina@hotmail.com [“Politehnica” University of Timişoara, Faculty of Communication Sciences, 2A Traian Lalescu St, 300223 Timişoara (Romania)

    2013-12-15

    The Morse oscillator (MO) potential occupies a privileged place among the anharmonic oscillator potentials due to its applications in quantum mechanics to diatomic or polyatomic molecules, spectroscopy and so on. For this potential some kinds of coherent states (especially of the Klauder–Perelomov and Gazeau–Klauder kinds) have been constructed previously. In this paper we construct the coherent states of the Barut–Girardello kind (BG-CSs) for the MO potential, which have received less attention in the scientific literature. We obtain these CSs and demonstrate that they fulfil all conditions required by the coherent state. The Mandel parameter for the pure BG-CSs and Husimi’s and P-quasi distribution functions (for the mixed-thermal states) are also presented. Finally, we show that all obtained results for the BG-CSs of MO tend, in the harmonic limit, to the corresponding results for the coherent states of the one dimensional harmonic oscillator (CSs for the HO-1D). -- Highlights: •Construct the coherent states of the Barut–Girardello kind (BG-CSs) for the MO potential. •They fulfil all the conditions needed to a coherent state. •Present the Mandel parameter and Husimi’s and P-quasi distribution functions. •All results tend to those for the one dimensional harmonic oscillator in its harmonic limit.

  9. Implementation of biological tissue Mueller matrix for polarization-sensitive optical coherence tomography based on LabVIEW

    Science.gov (United States)

    Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui

    2018-02-01

    The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.

  10. Polarization effects in coherent and incoherent photon scattering: survey of measurements and theory relevant to radiation transport calculations

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    1993-01-01

    This report reviews available information on polarization effects arising when photons in the X-ray and gamma-ray energy regime undergo coherent (Rayleigh) scattering and incoherent (Compton) scattering by atomic electrons. In addition to descriptions and discussions of these effects, including estimates of their magnitudes as they apply to radiation transport calculations, an annotated bibliography of 102 selected works covering the period 1905-1991 is provided, with particularly relevant works for the purpose of this report flagged with asterisks (*). A major resource for this report is a 1948 unpublished informal report by L.V. Spencer which has been quoted here almost in its entirety, since, of all the works cited in the annotated bibliography, it appears to be the only one which explicitly and directly addresses the purpose of this report. Hence this valuable material should be re-introduced into the available and current literature. (author). 119 refs., 7 figs

  11. The coherent state variational algorithm and the QCD deconfinement phase transition

    International Nuclear Information System (INIS)

    Somsky, W.R.

    1989-01-01

    This thesis describes the coherent state variational algorithm, its implementation in a recently completed set of computer programs, and its application to the study of the QCD deconfinement phase transition. The coherent state variational algorithm is a computational method for studying the large-N limit of non-abelian gauge theories by direct exploitation of the classical nature of this limit. Unlike Monte Carlo methods, this technique is applicable to both euclidean and hamiltonian formulations of lattice gauge theories and is deterministic, rather than statistical, in nature. The first part of this thesis presents the theoretical basis of the coherent state algorithm and describes the application of the algorithm, to non-abelian lattice gauge theories. The second part describes the symbolic methods involved in the computer implementation of the coherent state algorithm and gives an overview of the programs which form the full coherent state implementation. The final part of this thesis discusses the application of the coherent state algorithm to the study of the QCD deconfinement phase transition at large N. The results obtained are indicative of a second-order transition for lattices of temporal extent N ν = 1 and N τ = 2 in both three and four space-time dimensions

  12. Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems

    Directory of Open Access Journals (Sweden)

    Ghader Najarbashi

    2011-01-01

    Full Text Available In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b^† together with bz form a closed deformed algebra, i.e., SU_q(2 with q=e^{2πi/3}, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.

  13. Quantum key distribution with a single photon from a squeezed coherent state

    International Nuclear Information System (INIS)

    Matsuoka, Masahiro; Hirano, Takuya

    2003-01-01

    Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation

  14. Teleportation of a two-mode entangled coherent state encoded with two-qubit information

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Manoj K; Prakash, Hari, E-mail: manoj.qit@gmail.co, E-mail: prakash_hari123@rediffmail.co [Department of physics, University of Allahabad, Allahabad (India)

    2010-09-28

    We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | {+-} {alpha}), minimum average fidelity in our case is {>=}0.99 for |{alpha}| {>=} 1.6 (i.e. |{alpha}|{sup 2} {>=} 2.6), while previously proposed schemes referred above report the same for |{alpha}| {>=} 5 (i.e. |{alpha}|{sup 2} {>=} 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|{alpha}|), our teleportation scheme is at the reach of modern technology.

  15. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  16. The quantum potential and ''causal'' trajectories for stationary states and for coherent states

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1988-07-01

    We show for stationary states in a central potential that the quantum action S is only a part of the classical action W and derive an expression for the ''quantum potential'' U Q in terms of the other part. The association of momenta of some ''particles'' in the causal interpretation of quantum mechanics by p-vector=∇S and by dp-vector'/dt=-∇(V+U Q ) gives for stationary states very different orbits which have no relation to classical orbits but express some flow properties of the quantum mechanical current. For coherent states, on the other hand, p-vector and p-vector' as well as the quantum mechanical average p-vector and classical momenta, all four, lead to essentially the same trajectories except for different integration constants. The spinning particle is also considered. (author). 27 refs, 2 figs

  17. Correlation of collagen synthesis with polarization-sensitive optical coherence tomography imaging of in vitro human atherosclerosis

    Science.gov (United States)

    Kuo, Wen-Chuan; Shyu, Jeou-Jong; Chou, Nai-Kuan; Lai, Chih-Ming; Tien, En-Kuang; Huang, Huan-Jang; Chou, Chien; Jan, Gwo-Jen

    2005-04-01

    Atherosclerosis is unquestionably the leading cause of morbidity and mortality in developed countries. In the mean time, the worldwide importance of acute vascular syndromes is increasing. Because collagen fiber is a critical component of atherosclerotic lesions; it constitutes up to 60% of the total atherosclerotic plaque protein. The uncontrolled collagen accumulation leads to arterial stenosis, whereas excessive collagen breakdown weakens plaques thereby making them prone to rupture finally. Thus, in this study, we present the first application, to our knowledge, of using polarization-sensitive optical coherence tomography (PS-OCT) in human atherosclerosis. We demonstrate this technique for imaging of intensity, birefringence, and fast-axis orientation simultaneously in atherosclerotic plaques. This in vitro study suggests that the birefringence change in plaque is due to the prominent deposition of collagen according to the correlation of PS-OCT images with histological counterpart. Moreover, we can acquire quantitative criteria based on the change of polarization of incident beam to estimate whether the collagen synthesized is "too much" or "not enough". Thus by combining of high resolution intensity imaging and birefringence detection makes PS-OCT could be a potentially powerful tool for early assessment of atherosclerosis appearance and the prediction of plaque rupture in clinic.

  18. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber : toward a practical coherent fiber supercontinuum laser

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generat...... of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser.......Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC...... generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10...

  19. Discrimination of optical coherent states using a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, C.; Andersen, Ulrik Lund; Leuchs, G.

    2010-01-01

    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error...... probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal...

  20. The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Tao; He Guang-Qiang; Ren Li-Jie; Zeng Gui-Hua

    2011-01-01

    This paper investigates an analytical expression of teleportation fidelity in the teleportation scheme of a single mode of electromagnetic field. The fidelity between the original squeezed coherent state and the teleported one is expressed in terms of the squeezing parameter r and the quantum channel parameter (two-mode squeezed state) p. The results of analysis show that the fidelity increases with the increase of the quantum channel parameter p, while the fidelity decreases with the increase of the squeezing parameter r of the squeezed state. Thus the coherent state (r = 0)is the best quantum signal for continuous variable quantum teleportation once the quantum channel is built.

  1. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    Science.gov (United States)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  2. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  3. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    Science.gov (United States)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  4. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  5. Security proof of continuous-variable quantum key distribution using three coherent states

    Science.gov (United States)

    Brádler, Kamil; Weedbrook, Christian

    2018-02-01

    We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.

  6. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Science.gov (United States)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  7. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  8. On the construction of coherent states of position dependent mass Schroedinger equation endowed with effective potential

    International Nuclear Information System (INIS)

    Chithiika Ruby, V.; Senthilvelan, M.

    2010-01-01

    In this paper, we propose an algorithm to construct coherent states for an exactly solvable position dependent mass Schroedinger equation. We use point canonical transformation method and obtain ground state eigenfunction of the position dependent mass Schroedinger equation. We fix the ladder operators in the deformed form and obtain explicit expression of the deformed superpotential in terms of mass distribution and its derivative. We also prove that these deformed operators lead to minimum uncertainty relations. Further, we illustrate our algorithm with two examples, in which the coherent states given for the second example are new.

  9. Topographic mapping of electroencephalography coherence in hypnagogic state.

    Science.gov (United States)

    Tanaka, H; Hayashi, M; Hori, T

    1998-04-01

    The present study examined the topographic characteristics of hypnagogic electroencephalography (EEG), using topographic mapping of EEG power and coherence corresponding to nine EEG stages (Hori's hypnagogic EEG stages). EEG stages 1 and 2, the EEG stages 3-8, and the EEG stage 9 each correspond with standard sleep stage W, 1 and 2, respectively. The dominant topographic components of delta and theta activities increased clearly from the vertex sharp-wave stage (the EEG stages 6 and 7) in the anterior-central areas. The dominant topographic component of alpha 3 activities increased clearly from the EEG stage 9 in the anterior-central areas. The dominant topographic component of sigma activities increased clearly from the EEG stage 8 in the central-parietal area. These results suggested basic sleep process might start before the onset of sleep stage 2 or of the manually scored spindles.

  10. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino

    1997-01-01

    In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when...

  11. Coherent State Projection Operator Representation of Symplectic Transformations as a Loyal Representation of Symplectic Group

    Science.gov (United States)

    Fan, Hong-Yi; Chen, Jun-Hua

    2002-08-01

    We find that the coherent state projection operator representation of symplectic transformation constitutes a loyal group representation of symplectic group. The result of successively applying squeezing operators on number state can be easily derived. The project supported by National Natural Science Foundation of China under Grant No. 10575057 and the President Foundation of the Chinese Academy of Sciences

  12. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FAN HongYi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is"squeezed" under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.

  13. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FANHong-Yi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is “squeezed” under the thermal transformation.The thermal Wigner operator provides us with a new direct and neat approach for deriving Wigner functions of thermal states.

  14. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  15. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  16. Fractals as macroscopic manifestation of squeezed coherent states and brain dynamics

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe

    2012-01-01

    Recent results on the relation between self-similarity and squeezed coherent states are presented. I consider fractals which are generated iteratively according to a prescribed recipe, the so-called deterministic fractals. Fractal properties are incorporated in the framework of the theory of the entire analytical functions and deformed coherent states. Conversely, fractal properties of squeezed coherent states are recognized. This sheds some light on the understanding of the dynamical origin of fractals and their global nature emerging from local deformation processes. The self-similarity in brain background activity suggested by laboratory observations of power-law distributions of power spectral densities of electrocorticograms is also discussed and accounted in the frame of the dissipative many-body model of brain.

  17. Change of State of a Dynamical Unit in the Transition of Coherence

    International Nuclear Information System (INIS)

    Yang Yan-Jin; Du Ru-Hai; Wang Sheng-Jun; Jin Tao; Qu Shi-Xian

    2015-01-01

    The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs

  18. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  19. Symplectic Group Representation of the Two-Mode Squeezing Operator in the Coherent State Basis

    Science.gov (United States)

    Fan, Hong-Yi; Chen, Jun-Hua

    2003-11-01

    We find that the coherent state projection operator representation of the two-mode squeezing operator constitutes a loyal group representation of symplectic group, which is a remarkable property of the coherent state. As a consequence, the resultant effect of successively applying two-mode squeezing operators are equivalent to a single squeezing in the two-mode Fock space. Generalization of this property to the 2n-mode case is also discussed. The project supported by National Natural Science Foundation of China under Grant No. 10575057

  20. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  1. From Coherent States in Adjacent Graphene Layers toward Low-Power Logic Circuits

    International Nuclear Information System (INIS)

    Register, L.F.; Basu, D.; Reddy, D.

    2011-01-01

    Colleagues and we recently proposed a new type of transistor, a Bilayer Pseudo Spin Field Effect Transistor (BiSFET), based on many-body coherent states in coupled electron and hole layers in graphene. Here we review the basic BiSFET device concept and ongoing efforts to determine how such a device, which would be far from a drop-in replacement for MOSFETs in CMOS logic, could be used for low-power logic operation, and to model the effects of engineer able device parameters on the formation and gating of interlayer coherent state.

  2. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    Science.gov (United States)

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  3. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  4. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  5. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.

    2014-01-01

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  6. Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass

    International Nuclear Information System (INIS)

    Yahiaoui, S A; Bentaiba, M

    2012-01-01

    In the context of the factorization method, we investigate the pseudo-Hermitian coherent states and their Hermitian counterpart coherent states under the generalized quantum condition in the framework of a position-dependent mass. By considering a specific modification in the superpotential, suitable annihilation and creation operators are constructed in order to reproduce the Hermitian counterpart Hamiltonian in the factorized form. We show that by means of these ladder operators, we can construct a wide range of exactly solvable potentials as well as their accompanying coherent states. Alternatively, we explore the relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterparts, obtained from a similarity transformation, to construct the associated pseudo-Hermitian coherent states. These latter preserve the structure of Perelomov’s states and minimize the generalized position–momentum uncertainty principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  7. Coherent and Semiclassical States of a Charged Particle in a Constant Electric Field

    Science.gov (United States)

    Adorno, T. C.; Pereira, A. S.

    2018-05-01

    The method of integrals of motion is used to construct families of generalized coherent states of a nonrelativistic spinless charged particle in a constant electric field. Families of states, differing in the values of their standard deviations at the initial time, are obtained. Depending on the initial values of the standard deviations, and also on the electric field, it turns out to be possible to identify some families with semiclassical states.

  8. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  9. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  10. Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state

    Science.gov (United States)

    Zhou, Lan; Sheng, Yu-Bo

    2017-10-01

    Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.

  11. Joint Polar Satellite System: the United States New Generation Civilian Polar Orbiting Environmental Satellite System

    Science.gov (United States)

    Mandt, G.

    2017-12-01

    The Joint Polar Satellite System (JPSS) is the Nation's advanced series of polar-orbiting environmental satellites. JPSS represents significant technological and scientific advancements in observations used for severe weather prediction and environmental monitoring. The Suomi National Polar-orbiting Partnership (S-NPP) is providing state-of-the art atmospheric, oceanographic, and environmental data, as the first of the JPSS satellites while the second in the series, J-1, is scheduled to launch in October 2017. The JPSS baseline consists of a suite of four instruments: an advanced microwave and infrared sounders which are critical for weather forecasting; a leading-edge visible and infrared imager critical to data sparse areas such as Alaska and needed for environmental assessments such as snow/ice cover, droughts, volcanic ash, forest fires and surface temperature; and an ozone sensor primarily used for global monitoring of ozone and input to weather and climate models. The same suite of instruments that are on JPSS-1 will be on JPSS-2, 3 and 4. The JPSS-2 instruments are well into their assembly and test phases and are scheduled to be completed in 2018. The JPSS-2 spacecraft critical design review (CDR) is scheduled for 2Q 2018 with the launch in 2021. The sensors for the JPSS-3 and 4 spacecraft have been approved to enter into their acquisition phases. JPSS partnership with the US National Aeronautics and Space Agency (NASA) continues to provide a strong foundation for the program's success. JPSS also continues to maintain its important international relationships with European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the Japan Aerospace Exploration Agency (JAXA). JPSS works closely with its user community through the Proving Ground and Risk Reduction (PGRR) Program to identify opportunities to maximize the operational application of current JPSS capabilities. The PGRR Program also helps identify and evaluate the use of JPSS

  12. Sense of Coherence and Personality Traits Related to Depressive State

    Directory of Open Access Journals (Sweden)

    Yoko Kikuchi

    2014-01-01

    Full Text Available Aims. The current study aims to examine the influence of job stress, SOC, and personality traits on depressive state. Methods. A self-reported survey was conducted among 347 female nurses in a general hospital. Job stress was measured using the Japanese version of the Brief-Job Stress Questionnaire scale. Depressive state was assessed by the K6 scale. We used 13-item SOC scale. Personality traits were assessed by the Japanese version of Ten-Item Personality Inventory. Multiple liner regression analyses were conducted to examine predictors that significantly affect depressive state. Results. Job and life satisfaction and SOC negatively related to the depressive state (β=-0.76,  P<0.01;  β=-0.18,  P<0.001, resp. while neuroticism was positively correlated (β=0.49,  P<0.001. Also, intrinsic rewards tended to negatively relate (β=-0.80,  P<0.1. Conclusions. From a practical perspective, the possible influence of SOC and neurotic personality on depressive state should be considered for health care professionals.

  13. Coherent states related with SU(N) and SU(N,1) groups

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shelepin, A.L.

    1990-01-01

    The basis of coherent state (CS) for symmetric presentations of groups SU(N) and SU(N,1) is plotted, its properties being investigated. Evolution of CS is considered. Relation between CS of groups SU(N) and Glauber is ascertained

  14. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography.

    Science.gov (United States)

    Pirandola, Stefano; Braunstein, Samuel L; Lloyd, Seth

    2008-11-14

    We provide a simple description of the most general collective Gaussian attack in continuous-variable quantum cryptography. In the scenario of such general attacks, we analyze the asymptotic secret-key rates which are achievable with coherent states, joint measurements of the quadratures and one-way classical communication.

  15. Extended discrete-ordinate method considering full polarization state

    International Nuclear Information System (INIS)

    Box, Michael A.; Qin Yi

    2006-01-01

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation

  16. Extended discrete-ordinate method considering full polarization state

    Energy Technology Data Exchange (ETDEWEB)

    Box, Michael A. [School of Physics, University of New South Wales (Australia)]. E-mail: m.box@unsw.edu.au; Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au

    2006-01-15

    This paper presents an extension to the standard discrete-ordinate method (DOM) to consider generalized sources including: beam sources which can be placed at any (vertical) position and illuminate in any direction, thermal emission from the atmosphere and angularly distributed sources which illuminate from a surface as continuous functions of zenith and azimuth angles. As special cases, the thermal emission from the surface and deep space can be implemented as angularly distributed sources. Analytical-particular solutions for all source types are derived using the infinite medium Green's function. Radiation field zenith angle interpolation using source function integration is developed for all source types. The development considers the full state of polarization, including the sources (as applicable) and the (BRDF) surface, but the development can be reduced easily to scalar problems and is ready to be implemented in a single set of code for both scalar and vector radiative transfer computation.

  17. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    International Nuclear Information System (INIS)

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-01-01

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ 1 ,T ~ 2 ,λ 3 )) along the population time (T ~ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ 1 ,ν ~ 2 ,λ 3 )). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν ~ 2 ) in the rephasing beating map and at negative frequency (−ν ~ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems

  18. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  19. Noncommutative Geometry of the Moyal Plane: Translation Isometries, Connes' Distance on Coherent States, Pythagoras Equality

    Science.gov (United States)

    Martinetti, Pierre; Tomassini, Luca

    2013-10-01

    We study the metric aspect of the Moyal plane from Connes' noncommutative geometry point of view. First, we compute Connes' spectral distance associated with the natural isometric action of on the algebra of the Moyal plane . We show that the distance between any state of and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes' spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) by . We show that on the set of states obtained by translation of an arbitrary state of , this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes' spectral distance and the DFR quantum length coincide on the set of states of optimal localization.

  20. Analysis of the Origin of Atypical Scanning Laser Polarimetry Patterns by Polarization-Sensitive Optical Coherence Tomography

    Science.gov (United States)

    Götzinger, Erich; Pircher, Michael; Baumann, Bernhard; Hirn, Cornelia; Vass, Clemens; Hitzenberger, Christoph K.

    2010-01-01

    Purpose To analyze the physical origin of atypical scanning laser polarimetry (SLP) patterns. To compare polarization-sensitive optical coherence tomography (PS-OCT) scans to SLP images. To present a method to obtain pseudo-SLP images by PS-OCT that are free of atypical artifacts. Methods Forty-one eyes of healthy subjects, subjects with suspected glaucoma, and patients with glaucoma were imaged by SLP (GDx VCC) and a prototype spectral domain PS-OCT system. The PS-OCT system acquires three-dimensional (3D) datasets of intensity, retardation, and optic axis orientation simultaneously within 3 seconds. B-scans of intensity and retardation and en face maps of retinal nerve fiber layer (RNFL) retardation were derived from the 3D PS-OCT datasets. Results were compared with those obtained by SLP. Results Twenty-two eyes showed atypical retardation patterns, and 19 eyes showed normal patterns. From the 22 atypical eyes, 15 showed atypical patterns in both imaging modalities, five were atypical only in SLP images, and two were atypical only in PS-OCT images. In most (15 of 22) atypical cases, an increased penetration of the probing beam into the birefringent sclera was identified as the source of atypical patterns. In such cases, the artifacts could be eliminated in PS-OCT images by depth segmentation and exclusion of scleral signals. Conclusions PS-OCT provides deeper insight into the contribution of different fundus layers to SLP images. Increased light penetration into the sclera can distort SLP retardation patterns of the RNFL. PMID:19036999

  1. Two-way QKD with single-photon-added coherent states

    Science.gov (United States)

    Miranda, Mario; Mundarain, Douglas

    2017-12-01

    In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys' security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.

  2. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48105 (United States); Zhang, Lei; Hill, Tyler A.; Deng, Hui [Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, Michigan 48105 (United States)

    2015-11-09

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  3. Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics

    Science.gov (United States)

    Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-03-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.

  4. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    Science.gov (United States)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  5. Coherent control of long-distance steady-state entanglement in lossy resonator arrays

    Science.gov (United States)

    Angelakis, D. G.; Dai, L.; Kwek, L. C.

    2010-07-01

    We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.

  6. Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements

    International Nuclear Information System (INIS)

    Ho Ngoc Phien; Nguyen Ba An

    2008-01-01

    We propose a linear optics scheme to teleport an arbitrary two-mode coherent state. The devices used are beam-splitters, phase-shifters and ideal photo-detectors capable of distinguishing between even and odd photon numbers. The scheme achieves faithful teleportation with a probability of 1/4. However, with additional use of an appropriate displacement operator, the teleported state can always be made near-faithful

  7. Coherent current states in mesoscopic four-terminal Josephson junction

    International Nuclear Information System (INIS)

    Zareyan, M.; Omelyanchouk, A.N.

    1999-01-01

    A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consist of a mesoscopic two-dimensional normal rectangular layer which is attached on each side to the bulk superconducting banks (terminals). A relation is obtained between the currents through the different terminals, that is valid for arbitrary temperatures and junction sizes. The nonlocal coupling of the supercurrent leads to a new effect, specific for the mesoscopic weak link between two superconducting rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even in the absence of an external flux through the other one. The phase dependent distributions of the local density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The 'interference pattern' for the anomalous average inside the two-dimensional region cam be regulated by the applied magnetic fluxes or the transport currents. For some values of the phase differences between the terminals, the current vortex state and two-dimensional phase slip center appear

  8. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  9. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  11. Wigner functions and tomograms of the photon-depleted even and odd coherent states

    International Nuclear Information System (INIS)

    Wang Jisuo; Meng Xiangguo

    2008-01-01

    Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter α the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m) o (or |β, m) e ) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics

  12. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    Science.gov (United States)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  13. Coherent states with classical motion: from an analytic method complementary to group theory

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1982-01-01

    From the motivation of Schroedinger, that of finding states which follow the motion which a classical particle would have in a given potential, we discuss generalizations of the coherent states of the harmonic oscillator. We focus on a method which is the analytic complement to the group theory point of view. It uses a minimum uncertainty formalism as its basis. We discuss the properties and time evolution of these states, always keeping in mind the desire to find quantum states which follow the classical motion

  14. Coherent electron - hole state and femtosecond cooperative emission in bulk GaAs

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T

    2002-01-01

    The conditions for obtaining a collective coherent electron - hole state in semiconductors are discussed. The results of the experimental study of the regime of cooperative recombination of high-density electrons and holes (more than 3 x 10 18 cm -3 ) in bulk GaAs at room temperature are presented. It is shown that the collective pairing of electrons and holes and their condensation cause the formation of a short-living coherent electron - hole BCS-like state, which exhibits radiative recombination in the form of high-power femtosecond optical pulses. It is experimentally demonstrated that almost all of the electrons and holes available are condensed at the very bottoms of the bands and are at the cooperative state. The average lifetime of this state is measured to be of about 300 fs. The dependences of the order parameter (the energy gap of the spectrum of electrons and holes) and the Fermi energy of the coherent BCS state on the electron - hole concentration are obtained. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  15. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  16. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  17. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.; Leeuw, Dago M. de, E-mail: deleeuw@mpip-mainz.mpg.de [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Katsouras, Ilias [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Groen, Wilhelm A. [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1 2629 HS, Delft (Netherlands)

    2016-06-06

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  18. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Science.gov (United States)

    Zhao, Dong; Katsouras, Ilias; Asadi, Kamal; Groen, Wilhelm A.; Blom, Paul W. M.; de Leeuw, Dago M.

    2016-06-01

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O3. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  19. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  20. Quantum reconstruction of an intense polarization squeezed optical state

    DEFF Research Database (Denmark)

    Marquardt, Ch.; Heersink, J.; Dong, R.

    2007-01-01

    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space, providing a full quantum mechanical characteri...

  1. Coherent state methods for semi-classical heavy-ion physics

    International Nuclear Information System (INIS)

    Remaud, B.; Sebille, F.; Raffray, Y.

    1985-01-01

    A semi-classical model of many fermion systems is developed in view of solving the Vlasov equation; it provides an unified description of both static and dynamic properties of the system. The phase space distribution functions are written as convolution products of generalized coherent state distributions with semi-probabilistic weight functions. The generalized coherent states are defined from the local constants of motion of the dynamical system; they may reduce to the usuel ones (eigen states of the annihilation operator) only at the harmonic limit. Solving the Vlasov equation consists in two steps: (i) search for weight functions which properly describe the initial density distributions (ii) calculation of the evolutions of the coherent state set which acts as a moving basis for the Vlasov equation solutions. Sample applications to statics are analyzed: fermions in a harmonic field, self-consistent nuclear slabs. Outlooks of dynamical applications are discussed with a special attention to the fast nucleon emission in heavy-ion reactions

  2. Absence of coherent peaks in a Z2 fractionalized BCS superconducting state

    Science.gov (United States)

    Zhong, Yin; Lu, Han-Tao; Luo, Hong-Gang

    2015-01-01

    We explore a Z2 fractionalized Bardeen-Cooper-Schrieffer (BCS) superconducting state, which is a minimal extension of usual BCS framework. It is found that this state has similar thermal and transport properties, but its single-particle feature strongly deviates from the coherent quasiparticle behavior of the classic/conventional BCS superconducting state. The fingerprint of such Z2 BCS state is the absence of the BCS coherent peaks and instead a kink in the local density of state occurs, which in principle could be probed by scanning tunneling microscopy or point-contact spectroscopy experiments. The corresponding exactly soluble models that realize the desirable Z2 fractionalized BCS state are presented. In addition, we also study the extended t-U-J model by using Z2 slave-spin representation and find that the Z2 BCS state may exist when the paring structure is fully gapped or has nodes. The prototypical wave-function of such a Z2 BCS state is also proposed, which could be taken as trial wave-function in current numerical techniques. Furthermore, the pairing mechanism of Z2 BCS state is argued from both weak and strong coupling perspective. The present work may be helpful to further study the unconventional superconductivity and its relation to non-Fermi liquids.

  3. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  4. Archive of information about geological samples available for research from the Ohio State University Byrd Polar and Climate Research Center (BPCRC) Polar Rock Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Rock Repository (PRR) operated by the Byrd Polar and Climate Research Center (BPCRC) at the Ohio State University is a partner in the Index to Marine and...

  5. Lesion size detection in geographic atrophy by polarization-sensitive optical coherence tomography and correlation to conventional imaging techniques.

    Science.gov (United States)

    Schütze, Christopher; Bolz, Matthias; Sayegh, Ramzi; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2013-01-28

    To investigate the reproducibility of automated lesion size detection in patients with geographic atrophy (GA) using polarization-sensitive spectral-domain optical coherence tomography (PS-OCT) and to compare findings with scanning laser ophthalmoscopy (SLO), fundus autofluorescence (FAF), and intensity-based spectral-domain OCT (SD-OCT). Twenty-nine eyes of 22 patients with GA were examined by PS-OCT, selectively identifying the retinal pigment epithelium (RPE). A novel segmentation algorithm was applied, automatically detecting and quantifying areas of RPE atrophy. The reproducibility of the algorithm was assessed, and lesion sizes were correlated with manually delineated SLO, FAF, and intensity-based SD-OCT images to validate the clinical applicability of PS-OCT in GA evaluation. Mean GA lesion size of all patients was 5.28 mm(2) (SD: 4.92) in PS-OCT. Mean variability of individual repeatability measurements was 0.83 mm(2) (minimum: 0.05; maximum: 3.65). Mean coefficient of variation was 0.07 (min: 0.01; max: 0.19). Mean GA area in SLO (Spectralis OCT) was 5.15 mm(2) (SD: 4.72) and 2.5% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area in intensity-based SD-OCT pseudo-SLO images (Cirrus OCT) was 5.14 mm(2) (SD: 4.67) and 2.7% smaller than in PS-OCT (P = 0.9, Pearson correlation coefficient = 0.98, P < 0.01). Mean GA area of all eyes measured 5.41 mm(2) (SD: 4.75) in FAF, deviating by 2.4% from PS-OCT results (P = 0.89, Pearson correlation coefficient = 0.99, P < 0.01). PS-OCT demonstrated high reproducibility of GA lesion size determination. Results correlated well with SLO, FAF, and intensity-based SD-OCT fundus imaging. PS-OCT may therefore be a valuable and specific imaging modality for automated GA lesion size determination in scientific studies and clinical practice.

  6. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-12-15

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  7. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-01-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol

  8. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-12-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  9. Cross coherence independent component analysis in resting and action states EEG discrimination

    International Nuclear Information System (INIS)

    Almurshedi, A; Ismail, A K

    2014-01-01

    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes condition

  10. Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Majury, Helena [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Boutari, Joelle [University of Oxford, Clarendon Laboratory, Oxford (United Kingdom); O' Sullivan, Elizabeth [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom)

    2018-12-15

    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localization in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms. (orig.)

  11. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  12. Coherent state approach for the Φ6-lattice model and phase transitions

    International Nuclear Information System (INIS)

    Aguero-Granados, M.A.; Makhan'kov, V.G.

    1991-01-01

    Phase transitions in the lattice version of the Φ 6 -field theory are studied. The generalized coherent states approach to is used. In such a way the roles of kinks and bubbles in phase transitions have been reexamined. It is shown via a numerical analysis that first and second order phase transitions appear due to the behaviour of kinks and bubbles excitations. 12 refs.; 10 figs

  13. New applications of Boson's coherent states of double modes at regular product

    International Nuclear Information System (INIS)

    Zhang Yongde; Ren Yong

    1987-05-01

    This paper presents a series of new applications of boson's coherent states of double modes by means of the technique of regular products. They include non-coupled double oscillator solutions at two time dependent extra-sources; coupled double oscillator solutions at two time dependent extra-sources; some applications to regular momentum theory; an explicit expression for time-reversal operator. (author). 7 refs

  14. Generalized coherent state approach to star products and applications to the fuzzy sphere

    International Nuclear Information System (INIS)

    Alexanian, G.; Pinzul, A.; Stern, A.

    2001-01-01

    We construct a star product associated with an arbitrary two-dimensional Poisson structure using generalized coherent states on the complex plane. From our approach one easily recovers the star product for the fuzzy torus, and also one for the fuzzy sphere. For the latter we need to define the 'fuzzy' stereographic projection to the plane and the fuzzy sphere integration measure, which in the commutative limit reduce to the usual formulae for the sphere

  15. Security of continuous-variable quantum cryptography using coherent states: Decline of postselection advantage

    International Nuclear Information System (INIS)

    Namiki, Ryo; Hirano, Takuya

    2005-01-01

    We investigate the security of continuous-variable (CV) quantum key distribution (QKD) using coherent states in the presence of quadrature excess noise. We consider an eavesdropping attack that uses a linear amplifier and a beam splitter. This attack makes a link between the beam-splitting attack and the intercept-resend attack (classical teleportation attack). We also show how postselection loses its efficiency in a realistic channel

  16. Electron density of states in a one-dimensional distorted system with impurities: Coherent potential approximation

    International Nuclear Information System (INIS)

    Bulka, B.R.

    1982-04-01

    A tight-binding one-dimensional distorted system with impurities is considered and the electron density of states is calculated in the coherent potential approximation. It is shown that two types of impurities, an impurity built in a chain and a domain wall (a soliton), play the essential role and a drastic reduction of the energy gap is observed for a few per cent of impurities. The experimental situation in polyacetylene is also discussed. (author)

  17. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    Science.gov (United States)

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  18. Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity

    Science.gov (United States)

    Yadollahi, F.; Safaiee, R.; Golshan, M. M.

    2018-02-01

    In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.

  19. Bursting and critical layer frequencies in minimal turbulent dynamics and connections to exact coherent states

    Science.gov (United States)

    Park, Jae Sung; Shekar, Ashwin; Graham, Michael D.

    2018-01-01

    The dynamics of the turbulent near-wall region is known to be dominated by coherent structures. These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant solutions known as exact coherent states (ECS), some of which display nonlinear critical layer dynamics (motions that are highly localized around the surface on which the streamwise velocity matches the wave speed of ECS). The present work aims to investigate temporal coherence in minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very close to those displayed by an ECS family recently identified in the channel flow geometry. The frequencies of these ECS are determined by critical layer structures and thus might be described as "critical layer frequencies." While the bursting frequency is predominant near the wall, the ECS frequencies (critical layer frequencies) become predominant over the bursting frequency at larger distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are classified into strong and relatively weak classes with respect to an intermittent approach to a lower branch ECS. This temporally intermittent approach is closely related to an intermittent low drag event, called hibernating turbulence, found in minimal and large domains. The relationship between the strong burst and the instability of the lower branch ECS is further discussed in state space. The state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower branch ECS. In particular, strong bursting processes are always preceded by hibernation events. This precursor dynamics to strong turbulence may aid in development of more effective control schemes by a way of anticipating dynamics

  20. Generation of coherent states of photon-added type via pathway of eigenfunctions

    International Nuclear Information System (INIS)

    Gorska, K; Penson, K A; Duchamp, G H E

    2010-01-01

    We obtain and investigate the regular eigenfunctions of simple differential operators x r d r+1 /dx r+1 , r = 1, 2, ..., with the eigenvalues equal to 1. With the help of these eigenfunctions, we construct a non-unitary analogue of a boson displacement operator which will be acting on the vacuum. In this way, we generate collective quantum states of the Fock space which are normalized and equipped with the resolution of unity with the positive weight functions that we obtain explicitly. These states are thus coherent states in the sense of Klauder. They span the truncated Fock space without first r lowest-lying basis states: |0), |1), ..., |r - 1). These states are squeezed, sub-Poissonian in nature and reminiscent of photon-added states in Agarwal and Tara (1991 Phys. Rev. A 43 492).

  1. Effect of atomic-state coherence and spontaneous emission on three-level dynamics

    International Nuclear Information System (INIS)

    Cardimona, D.A.

    1990-01-01

    For a three-level atom in the ssV configuration (i.e., having two excited states each dipole-coupled to a common ground state), we have found a particular linear combination of bare-atom states in which Rabi oscillations and their associated collapses and revivals do not occur. Moving to a dressed-state picture, we discover that this particular linear combination state is just that dressed state which is decoupled from all the field modes. It is a dressed state for which the transition dipole moments with the other dressed states are zero. The existence of this decoupled dressed state depends on the tuning of the dressing laser field, which in turn depends on the bare-atom excited-state dipole moments and energy-level separation. When we include spontaneous emission, the population decays from the other dressed states into this decoupled state and remains coherently trapped there, producing a system that experiences no dynamical behavior. This is exact for δ-function photon statistics (i.e., if there is no intensity uncertainty). The trapping becomes less perfect as the photon statistics are allowed to have a greater bandwidth. Also, if the applied field is tuned incorrectly, the spontaneous realignment of the atomic state amplitudes does not result in a totally decoupled dressed state, and the dynamics proceed normally

  2. Dependence of extinction cross-section on incident polarization state and particle orientation

    International Nuclear Information System (INIS)

    Yang Ping; Wendisch, Manfred; Bi Lei; Kattawar, George; Mishchenko, Michael; Hu, Yongxiang

    2011-01-01

    This note reports on the effects of the polarization state of an incident quasi-monochromatic parallel beam of radiation and the orientation of a hexagonal ice particle with respect to the incident direction on the extinction process. When the incident beam is aligned with the six-fold rotational symmetry axis, the extinction is independent of the polarization state of the incident light. For other orientations, the extinction cross-section for linearly polarized light can be either larger or smaller than its counterpart for an unpolarized incident beam. Therefore, the attenuation of a quasi-monochromatic radiation beam by an ice cloud depends on the polarization state of the beam if ice crystals within the cloud are not randomly oriented. Furthermore, a case study of the extinction of light by a quartz particle is also presented to illustrate the dependence of the extinction cross-section on the polarization state of the incident light.

  3. The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)

    2016-12-20

    A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.

  4. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, Christoffer; Andersen, Ulrik Lund; Takeoka, Masahiro

    2010-01-01

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne...... detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver...

  5. Coherent correlated states of interacting particles - the possible key to paradoxes and features of LENR

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Vysotskyy, Mykhaylo V.

    2015-01-01

    In this article, the universal mechanism of optimization of low energy nuclear reactions (LENR) on the basis of coherent correlated states (CCS) of interacting particles is discussed. Formation of these states is the result of special nonstationary low energy action to parameters of potential well containing interacting particles. It was shown that in real nuclear-physical systems usage of CCS leads to sharp growth (up to 10 30 -10 100 and more) of Coulomb barrier penetrability at very low energy of interacting particles. Several successful LENR experiments based on CCS are discussed. (author)

  6. Nonclassical features of trimodal excited coherent Greenberger - Horne - Zeilinger(GHZ) - type state

    Science.gov (United States)

    Merlin, J.; Ahmed, A. B. M.; Mohammed, S. Naina

    2017-06-01

    We examine the influence of photon excitation on each mode of the Glauber coherent GHZ type tripartite state. Concurrence is adopted as entanglement measure between bipartite entangled state. The pairwise concurrence is calculated and used as a quantifier of intermodal entanglement. The entanglement distribution among three modes is investigated using tangle as a measure and the residual entanglement is also calculated. The effect of the photon addition process on the quadrature squeezing is investigated. The higher order squeezing capacity of the photon addition process is also shown.

  7. Analysis on the steady-state coherent synchrotron radiation with strong shielding

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges

  8. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-01-01

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational

  9. States of maximum polarization for a quantum light field and states of a maximum sensitivity in quantum interferometry

    International Nuclear Information System (INIS)

    Peřinová, Vlasta; Lukš, Antonín

    2015-01-01

    The SU(2) group is used in two different fields of quantum optics, the quantum polarization and quantum interferometry. Quantum degrees of polarization may be based on distances of a polarization state from the set of unpolarized states. The maximum polarization is achieved in the case where the state is pure and then the distribution of the photon-number sums is optimized. In quantum interferometry, the SU(2) intelligent states have also the property that the Fisher measure of information is equal to the inverse minimum detectable phase shift on the usual simplifying condition. Previously, the optimization of the Fisher information under a constraint was studied. Now, in the framework of constraint optimization, states similar to the SU(2) intelligent states are treated. (paper)

  10. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    International Nuclear Information System (INIS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles. - Highlights: • States of polarization of vortex beams affect the optically induced orbital motion of particles. • The dependences of the force and orbital torque on the topological charge, the size and the absorptivity of particles were calculated. • Focused vortex beams with circular, radial or azimuthal polarizations induce a uniform orbital motion on particles. • Particles experience a non-uniform orbital motion in the focused linearly polarized vortex beam. • The circularly polarized vortex beam is a superior candidate for rotating particles.

  11. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  12. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  13. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  14. Comparison of effects of Cyriax physiotherapy, a supervised exercise programme and polarized polychromatic non-coherent light (Bioptron light) for the treatment of lateral epicondylitis.

    Science.gov (United States)

    Stasinopoulos, Dimitrios; Stasinopoulos, Ioannis

    2006-01-01

    To compare the effectiveness of Cyriax physiotherapy, a supervised exercise programme, and polarized polychromatic non-coherent light (Bioptron light) in the treatment of lateral epicondylitis. Controlled clinical trial. Rheumatology and rehabilitation centre. This study was carried out with 75 patients who had lateral epicondylitis. They were allocated to three groups by sequential allocation. Group A (n = 25) was treated with Cyriax physiotherapy. A supervised exercise programme was given to group B (n = 25). Group C (n = 25) received polarized polychromatic non-coherent light (Bioptron light). All patients received three treatments per week for four weeks. Pain was evaluated using a visual analogue scale and function using a visual analogue scale and pain-free grip strength at the end of the four-week course of treatment (week 4), one month (week 8), three months (week 16) and six months (week 28) after the end of treatment. The supervised exercise programme produced the largest effect in the reduction of pain and in the improvement of function at the end of the treatment (PBioptron light) may be suitable.

  15. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  16. Central-moment description of polarization for quantum states of light

    DEFF Research Database (Denmark)

    Björk, G.; Söderholm, J.; Kim, Y.-S.

    2012-01-01

    We present a moment expansion for the systematic characterization of the polarization properties of quantum states of light. Specifically,we link the method to themeasurements of the Stokes operator in different directions on the Poincar´e sphere and provide a scheme for polarization tomography w...

  17. New SUSYQM coherent states for Pöschl-Teller potentials: a detailed mathematical analysis

    Science.gov (United States)

    Bergeron, H.; Siegl, P.; Youssef, A.

    2012-06-01

    In a recent short note (Bergeron et al 2010 Europhys. Lett. 92 60003), we have presented the good properties of a new family of semi-classical states for Pöschl-Teller potentials. These states are built from a supersymmetric quantum mechanics (SUSYQM) approach and the parameters of these ‘coherent’ states are points in the classical phase space. In this paper, we develop all the mathematical aspects that have been left out of the previous paper (proof of the resolution of unity, detailed calculations of the quantized version of classical observables and mathematical study of the resulting operators: problems of domains, self-adjointness or self-adjoint extensions). Some additional questions such as asymptotic behavior are also studied. Moreover, the framework is extended to a larger class of Pöschl-Teller potentials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  18. State of the art in polarized proton sources

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1987-01-01

    Present day polarized H/sup +/ and H/sup -/ ion sources are reviewed by describing the performance of sources representative of each of the techniques being used. New ideas for producing higher intensities are then mentioned. Presently, pulsed H/sup +/ currents in the milliampere range, and H/sup -/ currents of hundreds of μA's, can be obtained

  19. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  20. Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory

    NARCIS (Netherlands)

    Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.

    2010-01-01

    We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the

  1. Effect of dielectric medium on the nonclassical properties of nonlinear sphere coherent states

    Directory of Open Access Journals (Sweden)

    E Amooghorban

    2014-04-01

    Full Text Available In order to investigate the effect of a medium with dissipation and dispersion and also the curvature of the physical space on the properties of the incident quantum states, we use the quantization of electromagnetic field based on phenomenological approach to obtain input-output relations between radiations on both sides of dielectric slab. By using these relations the fidelity, the Wigner function, and also the quantum correlation of the outgoing state through dielectric slab are obtained for a situation in which the rightward incident state is a nonlinear coherent state on a sphere and the leftward incident state is a vacuum state. Here, the incident states are considered monochromatic and the modeling of the medium is given by the Lorentz' model. Accordingly, we study nonclassical properties of the output states such as the quantum entanglement. It will be observed that the nonclassical properties of the outgoing states depend strongly on the optical property of the medium and also on the curvature of the physical state.

  2. Coherent Motion Reveals Non‐Ergodic Nature of Internal Conversion between Excited States

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Sølling, Theis I.; Møller, Klaus Braagaard

    2012-01-01

    for smaller molecules. Specifically, we focus on the S2→S1 internal conversion in cyclobutanone, cyclopentanone, and cyclohexanone. By means of time‐resolved mass spectrometry and photoelectron spectroscopy the relative rate of this transition is determined to be 13:2:1. Remarkably, we observe coherent......We found that specific nuclear motion along low‐frequency modes is effective in coupling electronic states and that this motion prevail in some small molecules. Thus, in direct contradiction to what is expected based on the standard models, the internal conversion process can proceed faster...

  3. Special deformed exponential functions leading to more consistent Klauder's coherent states

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.

    2001-08-01

    We give a general approach for the construction of deformed oscillators. These ones could be seen as describing deformed bosons. Basing on new definitions of certain quantum series, we demonstrate that they are nothing but the ordinary exponential functions in the limit when the deformation parameters goes to one. We also prove that these series converge to a complex function, in a given convergence radius that we calculate. Klauder's Coherent States are explicitly found through these functions that we design by deformed exponential functions. (author)

  4. Collapse and Revival of an Atomic Beam Interacting with a Coherent State Light Field

    International Nuclear Information System (INIS)

    Ben, Li; Jing-Biao, Chen

    2009-01-01

    We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly et al. [Phys. Rev. Lett. 44 (1980) 1323] are presented in the case of the evolution with time of the population inversion. Here, we study the evolution with coupling strength of population inversion. We define the collapse and revival coupling strengths as characteristic parameters to describe the above collapse and revival. Furthermore, we present the analytic formulas for the population inversion, the collapse and revival coupling strengths

  5. Field’s entropy in the atom–field interaction: Statistical mixture of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Zúñiga-Segundo, Arturo [Instituto Politécnico Nacional. ESFM Departamento de Física, Edificio 9 Unidad Profesional Adolfo López Mateos, CP 07738 CDMX (Mexico); Juárez-Amaro, Raúl [Universidad Tecnológica de la Mixteca, Apdo. Postal 71, Huajuapan de León, Oax., 69000 (Mexico); Aguilar-Loreto, Omar [Departamento de Ingenierías, CUCSur, Universidad de Guadalajara CP 48900, Autlán de Navarro, Jal. (Mexico); Moya-Cessa, Héctor M., E-mail: hmmc@inaoep.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840 (Mexico)

    2017-04-15

    We study the atom–field interaction when the field is in a mixture of coherent states. We show that in this case it is possible to calculate analytically the field entropy for times of the order of twice the collapse time. Such analytical results are done with the help of numerical analysis. We also give an expression in terms of Chebyshev polynomials for power of density matrices. - Highlights: • We calculate the field entropy for times of the order of twice the collapse time. • We give a relation between powers of the density matrices of the subsystems. • Entropy operators for both subsystems are obtained.

  6. Integrals of the motion, Green functions, and coherent states of dynamical systems

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Malkin, I.A.; Man'ko, V.I.

    1975-01-01

    The connection between the integrals of the motion of a quantum system and its Green function is established. The Green function is shown to be the eigenfunction of the integrals of the motion which describe initial points of the system trajectory in the phase space of average coordinates and moments. The explicit expressions for the Green functions of the N-dimensional system with the Hamiltonians which is the most general quadratic form of coordinates and momenta with time-dependent coefficients is obtained in coordinate, momentum, and coherent states representations. The Green functions of the nonstationary singular oscillator and of the stationary Schroedinger equation are also obtained. (author)

  7. Optimized design of polarizers with low ohmic loss and any polarization state for the 28 GHz QUEST ECH/ECCD system

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Toru Ii, E-mail: tsujimura.tohru@nifs.ac.jp [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan); Idei, Hiroshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Kubo, Shin; Kobayashi, Sakuji [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292 (Japan)

    2017-01-15

    Highlights: • Ohmic loss was calculated on the grooved mirror surface in simulated polarizers. • Polarizers with a low ohmic loss feature were optimally designed for 28 GHz. • Smooth rounded-rectangular grooves were made by mechanical machining. • The designed polarizers can realize all polarization states. - Abstract: In a high-power long-pulse millimeter-wave transmission line for electron cyclotron heating and current drive (ECH/ECCD), the ohmic loss on the grooved mirror surface of polarizers is one of the important issues for reducing the transmission loss. In this paper, the ohmic loss on the mirror surface is evaluated in simulated real-scale polarizer miter bends for different groove parameters under a linearly-polarized incident wave excitation. The polarizers with low ohmic loss are optimally designed for a new 28 GHz transmission line on the QUEST spherical tokamak. The calculated optimum ohmic loss is restricted to only less than 1.5 times as large as the theoretical loss for a copper flat mirror at room temperature. The copper rounded-rectangular grooves of the polarizers were relatively easy to make smooth in mechanical machining and the resultant surface roughness was not more than 0.15 μm, which is only 0.38 times as large as the skin depth. The combination of the designed elliptical polarizer and the polarization rotator can also realize any polarization state of the reflected wave.

  8. Principal State Analysis for a Compact in-Line Fiber Polarization Controller

    International Nuclear Information System (INIS)

    Li Zheng-Yong; Wu Chong-Qing; Wang Zhi-Hao; Qin Tao; Wang Yi-Xu

    2013-01-01

    A compact in-line fiber-based polarization controller (FPC) made of a rotatable fiber squeezer is investigated in detail with the Mueller matrix model established based on the generalized principal state of polarization (PSP). The PSP caused by the fiber squeezing is in the equator plane, which turns around S 3 axis on the Poincaré sphere when rotating the squeezer. Subsequently, a programmable polarization control method is proposed to realize the polarization conversion between arbitrary polarization states, in which only two parameters of phase shift and rotation angle need to be controlled. This type of FPC, which has a highly compact structure, lower insertion loss, and can be directly embedded into any fiber devices without any extra delay, will be an ideal PC for high-speed optical communication and all-optical signal processing

  9. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  10. A polarization stabilizer up to 12.6 krad/s with an additional function of stable state of polarization transformation

    International Nuclear Information System (INIS)

    Xiao-Guang, Zhang; Guang-Qing, Fang; Xin-Yuan, Zhao; Wen-Bo, Zhang; Li-Xia, Xi; Qian-Jin, Xiong; Xi-Xiang, Li; Guang-Yong, Zhang

    2010-01-01

    This paper reports on an experiment about a novel method of polarization stabilization. The polarization stabilizer proposed here has an additional function of polarization transformation from any state of polarization into any others. The particle swarm optimization is introduced as a control algorithm in the process of either searching or endless tracking. The tracking speed of the stabilizer is obtained up to 12.6 krad/s by using hardware we have in the laboratory, which means that we can achieve a higher speed practical polarization stabilizer if we have faster hardware. (classical areas of phenomenology)

  11. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  12. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  13. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  14. Unambiguous modification of nonorthogonal single- and two-photon polarization states

    International Nuclear Information System (INIS)

    Torres-Ruiz, F. A.; Aguirre, J.; Delgado, A.; Lima, G.; Neves, L.; Roa, L.; Saavedra, C.; Padua, S.

    2009-01-01

    In this paper we propose a probabilistic method which allows an unambiguous modification of two nonorthogonal quantum states. We experimentally implement this protocol by using two-photon polarization states generated in the process of spontaneous parametric down conversion. In the experiment, for codifying initial quantum states, we consider single-photon states and heralded detection. We show that the application of this protocol to entangled states allows a fine control of the amount of entanglement of the initial state.

  15. Coherence for vectorial waves and majorization

    OpenAIRE

    Luis, Alfredo

    2016-01-01

    We show that majorization provides a powerful approach to the coherence conveyed by partially polarized transversal electromagnetic waves. Here we present the formalism, provide some examples and compare with standard measures of polarization and coherence of vectorial waves.

  16. Investigation of the polarization state of dual APPLE-II undulators

    International Nuclear Information System (INIS)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S.; Sawhney, Kawal

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used

  17. Investigation of the polarization state of dual APPLE-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Matthew; Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Dhesi, Sarnjeet S.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  18. Quantum dual signature scheme based on coherent states with entanglement swapping

    International Nuclear Information System (INIS)

    Liu Jia-Li; Shi Rong-Hua; Shi Jin-Jing; Lv Ge-Li; Guo Ying

    2016-01-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. (paper)

  19. Effect of decoherence on fidelity in teleportation using entangled coherent states

    International Nuclear Information System (INIS)

    Prakash, H; Chandra, N; Prakash, R; Shivani

    2007-01-01

    A scheme of teleporting a superposition of coherent states (α) and ( - α) using a beam splitter and two phase shifters was proposed by van Enk and Hirota (2001 Phys. Rev. A 64 022313). The authors concluded that the probability for successful teleportation is 1/2. In this paper, it is shown that the authors' scheme can be altered slightly so as to obtain an almost perfect teleportation for an appreciable value of (α) 2 . For (α) 2 = 5, the minimum of average fidelity, which is the minimum of the sum of the product of probability of occurrence of any case, and the corresponding fidelity is less than 1 by a quantity ∼10 -4 . We also discuss the effect of decoherence on teleportation fidelity. We find that if no photons are counted in both final outputs, the minimum assured fidelity is still non-zero except when there is no decoherence and the information is an even coherent state. For non-zero photon counts, minimum assured fidelity decreases with an increase in (α) 2 for low noise. For high noise, however, it increases, attains a maximum value and then decreases with (α) 2 . The average fidelity depends appreciably on the information for low values of (α) 2 only

  20. Quantum dual signature scheme based on coherent states with entanglement swapping

    Science.gov (United States)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  1. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    Science.gov (United States)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  2. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    Science.gov (United States)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  3. Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.

    Science.gov (United States)

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-05-02

    The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.

  4. Momentum projection and relativistic boost of solitons: Coherent states and projection

    International Nuclear Information System (INIS)

    Luebeck, E.G.; Birse, M.C.; Henley, E.M.; Wilets, L.

    1986-01-01

    We present a method for calculating center-of-mass corrections to hadron properties in soliton models and we apply the method to the soliton bag model. A coherent state is used to provide a quantum wave function corresponding to the mean-field approximation. This state is projected onto a zero-momentum eigenstate. States of nonzero momentum can be constructed from this with a Lorentz boost operator. Hence center-of-mass corrections can be made in a properly relativistic way. The energy of the projected zero-momentum state is the hadron mass with spurious center-of-mass energy removed. We apply a variational principle to our projected state and use three ''virial theorems'' to test our approximate solution. We also study projection of general one-mode states. Projection reduces the nucleon energy by up to 25%. Variation after projection gives a further reduction of less than 20%. Somewhat larger reductions in the energy are found for meson states

  5. Polarization state of hydromagnetic fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Bavassano, B.; Dobrowolny, M.; Mariani, F.; Ness, N.F.

    1981-01-01

    From presently available observations one can infer that the Alfvenic turbulence measured in the solar wind, predominantly on trailing edges of high-speed streams, is a mixture of modes with two different polarizations, namely. Alfvenic modes and modes which are the incompressible limit of slow magnetosonic waves. Using Helios 2 magnetic data and a variance analysis, we have separated parallel (to the mean field) and perpendicular components of the fluctuations and studied the possible correlation between such components which would be predicted as a consequence of the imcompressible character of the turbulence. Correlations between eigenvalues of the variance matrix are also investigated and discussed

  6. Coherence and entanglement in the ground state of a bosonic Josephson junction: From macroscopic Schroedinger cat states to separable Fock states

    International Nuclear Information System (INIS)

    Mazzarella, G.; Toigo, F.; Salasnich, L.; Parola, A.

    2011-01-01

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibility α of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and α to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.

  7. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  8. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  9. New classes of nonlinear vector coherent states of generalized spin-orbit Hamiltonians

    International Nuclear Information System (INIS)

    Geloun, Joseph Ben; Norbert Hounkonnou, Mahouton

    2009-01-01

    This paper deals with an extension of our previous work (Ben Geloun and Hounkonnou 2007 J. Phys. A: Math. Theor. 40 F817) by considering an alternative construction of canonical and deformed vector coherent states (VCSs) of the Gazeau-Klauder type associated with generalized spin-orbit Hamiltonians. We define an annihilation operator which takes into account the finite-dimensional space of states induced by the k-photon transition processes of the two-level atom interacting with the single-mode radiation field. The class of nonlinear VCSs (NVCSs) corresponding to the action of the annihilation operator is deduced and expressed in terms of generalized displacement operators. Various NVCSs including their 'dual' counterparts are also discussed. Also, by using the Hilbert space structure, a new family of NVCSs parametrized by unit vectors of the S 3 sphere has been identified without making use of the annihilation operator.

  10. Coherent and Semiclassical States of a Charged Particle in Electromagnetic Fields

    Science.gov (United States)

    Pereira, A. S.

    2018-03-01

    In the present article, we extend our study (Bagrov et al., Braz. J. Phys. 45, 369, 2015) of generalized coherent states (GCS) of a one-dimensional particle considering such important physical system as a three-dimensional charged particle in electric and magnetic fields. Constructing GCS in a many-dimensional case, we meet technical complications that make the consideration nontrivial and instructive. The GCS of the system under consideration are constructed. We study the properties of this GCS such as completeness relations, minimization of uncertainty relations, and so on. We point out which family of the obtained GCS of a charged particle in a magnetic field is related to the CS constructed first by Malkin and Man'ko. We obtain conditions under which some of the GCS can be considered as semiclassical states (SS).

  11. Coherent and Semiclassical States of a Charged Particle in Electromagnetic Fields

    Science.gov (United States)

    Pereira, A. S.

    2018-06-01

    In the present article, we extend our study (Bagrov et al., Braz. J. Phys. 45, 369, 2015) of generalized coherent states (GCS) of a one-dimensional particle considering such important physical system as a three-dimensional charged particle in electric and magnetic fields. Constructing GCS in a many-dimensional case, we meet technical complications that make the consideration nontrivial and instructive. The GCS of the system under consideration are constructed. We study the properties of this GCS such as completeness relations, minimization of uncertainty relations, and so on. We point out which family of the obtained GCS of a charged particle in a magnetic field is related to the CS constructed first by Malkin and Man'ko. We obtain conditions under which some of the GCS can be considered as semiclassical states (SS).

  12. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states

    Science.gov (United States)

    de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry

    2018-05-01

    We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.

  13. Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

    Science.gov (United States)

    Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M

    2010-02-01

    In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

  14. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  15. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States

    Directory of Open Access Journals (Sweden)

    Mohammed Daoud

    2018-04-01

    Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

  16. Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2010-01-01

    Optimization of signal-to-noise ratio is an important aspect in the design of optical heterodyne detection systems such as a coherent Doppler lidar (CDL). In a CDL, optimal performance is achieved when the noise in the detector signal is dominated by local oscillator shot-noise. Most modern CDL...... systems are built using rugged and cost-efficient fiber optic components. Unfortunately, leakage signals such as residual reflections inherent within fiber components (e.g. circulator) can introduce phaseinduced intensity noise (PIIN) to the Doppler spectrum in a CDL. Such excess noise may be a few orders...

  17. Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol

    International Nuclear Information System (INIS)

    Chen, I-C; Hwang Tzonelih; Li C-M

    2008-01-01

    On the basis of the modified four-coherent-state post-selection quantum key distribution protocol (Namiki and Hirano 2006 Preprint quant-ph/0608144v1), two 1-out-of-2 quantum oblivious transfer (QOT 2 1 ) protocols are proposed. The first proposed protocol (called the receiver-based QOT 2 1 protocol) requires the coherent states to be prepared by the receiver, whereas the second protocol (called the sender-based QOT 2 1 protocol) allows the coherent states to be generated by the sender. The main advantages of the proposed protocols are that (i) no quantum bit commitment schemes and the assumption of quantum memory are needed; (ii) less communication cost between participants is required, i.e. the receiver-based QOT 2 1 protocol requires only one quantum communication and one classical communication and the sender-based QOT 2 1 protocol requires only one quantum communication between participants during protocol execution; and (iii) the utilization of quantum states is very efficient, wherein the receiver-based and the sender-based QOT 2 1 protocols use only two coherent pulses and one coherent pulse respectively for sending the sender's two messages

  18. Manipulating the ferroelectric polarization state of BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.; Rioult, M.; Stanescu, D.; Magnan, H.; Barbier, A., E-mail: antoine.barbier@cea.fr

    2016-05-31

    Controlling the ferroelectric polarization at macroscopic or microscopic levels is crucial in the framework of the development of ferroelectric materials used in yet challenging photo-electrochemical (PEC) cells and spintronic applications. We report here on polarization methods allowing to electrically polarize prototypical samples of BaTiO{sub 3} (001) films. Epitaxial single crystalline layers were grown up to a thickness of 25 nm by atomic oxygen assisted molecular beam epitaxy on 1 at.% Nb doped SrTiO{sub 3} (001) single crystals. The samples were both microscopically and macroscopically polarized using Piezoresponse Force Microscopy and electrochemical poling in an electrolyte respectively. In addition we demonstrate the possibility to retrieve a quasi-native mixed ferroelectric polarization state after annealing. These polarization methods may be applied to many other ferroelectric thin films. - Highlights: • Ferroelectricity of BaTiO{sub 3} layers can be micro- and macroscopically controlled. • Microscopic ferroelectric domains are defined with piezoresponse force microscopy. • Poling in a LiClO{sub 4} electrolyte is a macroscopic poling method. • Air annealing above the Curie temperature “resets” the polarization state.

  19. Measurement of top quark polarization in $t \\overline{t}$ lepton+jets final states

    CERN Document Server

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Aushev, Volodymyr; Aushev, Yegor; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brochmann, Michelle; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cuth, Jakub; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Anatoly V; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Franc, Jiri; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Gene Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schott, Matthias; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stefaniuk, Nazar; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2017-01-09

    We present a study of top quark polarization in $t \\overline{t}$ events produced in $p \\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV. Data correspond to 9.7 fb$^{-1}$ collected with the D0 detector at the Tevatron. We use final states containing a lepton and at least three jets. The polarization is measured using the distribution of leptons along the beam and helicity axes, and the axis normal to the production plane. This is the first measurement of top quark polarization at the Tevatron in $\\ell$+jets final states, and first measurement of transverse polarization in $t \\overline{t}$ production. The observed distributions are consistent with the standard model.

  20. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  1. The C1Σ+ state of KLi studied by polarization labelling spectroscopy technique

    International Nuclear Information System (INIS)

    Grochola, A.; Kowalczyk, P.; Jastrzebski, W.; Crozet, P.; Ross, A.J.

    2002-01-01

    The polarization labelling spectroscopy method is applied to study the C 1 Σ + - X 1 Σ + band system of the KLi molecule. Rotationally resolved polarization spectra are observed in the spectral range 17150 - 20350 cm -1 . A set of Dunham coefficients describes the C 1 Σ + state to 95% of its potential well depth, and the potential curve is constructed by the Rydberg-Klein-Rees procedure. The molecular parameters deduced from this work are compared with theoretical calculations. (author)

  2. Measurement of top quark polarization in top-antitop lepton+jets final states at DØ

    Energy Technology Data Exchange (ETDEWEB)

    Augsten, Kamil [Czech Technical Univ., Prague (Czech Republic)

    2017-01-01

    This thesis presents a measurement of the top quark polarization in the $t\\overline{t}$ events produced in $p\\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The final states used in the measurement contain one lepton and at least three jets. The polarization is measured using the angular distribution of leptons along three different axes: the beam axis, the helicity axis, and the transverse axis normal to the $t\\overline{t}$ production plane. This is the first measurement of top quark polarization at the Tevatron Collider in lepton+jets final states, and the first measurement of transverse polarization in $t\\overline{t}$ production. The polarization along the beam axis is combined with the previous result in the dilepton final states by the D0 experiment. The observed distributions are consistent with the Standard Model of nearly no polarization and no indication for beyond Standard Model physics is observed. The measurement offers legacy result from unique Tevatron Collider data and provides more information about the top quark production and decays, about the properties of the heaviest elementary particle.

  3. Control the polarization state of light with symmetry-broken metallic metastructures

    International Nuclear Information System (INIS)

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu

    2015-01-01

    Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics

  4. Cartesian coupled coherent states simulations: Ne(n)Br2 dissociation as a test case.

    Science.gov (United States)

    Reed, Stewart K; González-Martínez, Maykel L; Rubayo-Soneira, Jesús; Shalashilin, Dmitrii V

    2011-02-07

    In this article, we describe coupled coherent states (CCS) simulations of vibrational predissociation of weakly bounded complexes. The CCS method is implemented in the Cartesian frame in a manner that is similar to classical molecular dynamics. The calculated lifetimes of the vibrationally excited Ne-Br(2)(ν) complexes agree with experiment and previous calculations. Although the CCS method is, in principle, a fully quantum approach, in practice it typically becomes a semiclassical technique at long times. This is especially true following dissociation events. Consequently, it is very difficult to converge the quantum calculations of the final Br(2) vibrational distributions after predissociation and of the autocorrelation functions. However, the main advantage of the method is that it can be applied with relative ease to determine the lifetimes of larger complexes and, in order to demonstrate this, preliminary results for tetra- and penta-atomic clusters are reported.

  5. 2016 CIRM conference : Coherent States and their Applications : A Contemporary Panorama

    CERN Document Server

    Bagarello, Fabio; Gazeau, Jean-Pierre

    2018-01-01

    Coherent states (CS) were originally introduced in 1926 by Schrödinger and rediscovered in the early 1960s in the context of laser physics. Since then, they have evolved into an extremely rich domain that pervades virtually every corner of physics, and have also given rise to a range of research topics in mathematics. The purpose of the 2016 CIRM conference was to bring together leading experts in the field with scientists interested in related topics, to jointly investigate their applications in physics, their various mathematical properties, and their generalizations in many directions. Instead of traditional proceedings, this book presents sixteen longer review-type contributions, which are the outcome of a collaborative effort by many conference participants, subsequently reviewed by independent experts. The book aptly illustrates the diversity of CS aspects, from purely mathematical topics to physical applications, including quantum gravity.

  6. Photon statistical properties of photon-added two-mode squeezed coherent states

    International Nuclear Information System (INIS)

    Xu Xue-Fen; Wang Shuai; Tang Bin

    2014-01-01

    We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    Science.gov (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  8. Hong–Ou–Mandel interference with two independent weak coherent states

    International Nuclear Information System (INIS)

    Chen Hua; An Xue-Bi; Wu Juan; Yin Zhen-Qiang; Wang Shuang; Chen Wei; Han Zhen-Fu

    2016-01-01

    Recently, the Hong–Ou–Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is ≤ 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection. (paper)

  9. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier

    International Nuclear Information System (INIS)

    Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong

    2014-01-01

    By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced

  10. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    Science.gov (United States)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  11. New SUSYQM coherent states for Pöschl–Teller potentials: a detailed mathematical analysis

    International Nuclear Information System (INIS)

    Bergeron, H; Siegl, P; Youssef, A

    2012-01-01

    In a recent short note (Bergeron et al 2010 Europhys. Lett. 92 60003), we have presented the good properties of a new family of semi-classical states for Pöschl–Teller potentials. These states are built from a supersymmetric quantum mechanics (SUSYQM) approach and the parameters of these ‘coherent’ states are points in the classical phase space. In this paper, we develop all the mathematical aspects that have been left out of the previous paper (proof of the resolution of unity, detailed calculations of the quantized version of classical observables and mathematical study of the resulting operators: problems of domains, self-adjointness or self-adjoint extensions). Some additional questions such as asymptotic behavior are also studied. Moreover, the framework is extended to a larger class of Pöschl–Teller potentials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  12. Non-equilibrium coherent vortex states and subharmonic giant Shapiro steps in Josephson junction arrays

    International Nuclear Information System (INIS)

    Dominguez, D.; Jose, J.V.; Northeastern Univ., Boston, MA

    1994-01-01

    This is a review of recent work on the dynamic response of Josephson junction arrays driven by dc and ac currents. The arrays are modeled by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, including self-induced magnetic fields as well as disorder. The relevance of the self-induced fields is measured as a function of a parameter κ = λ L /a, with λ L the London penetration depth of the arrays, and a the lattice spacing. The transition from Type II (κ > 1) to Type I (κ < 1) behavior is studied in detail. The authors compare the results for models with self, self + nearest-neighbor, and full inductance matrices. In the κ = ∞ limit, they find that when the initial state has at least one vortex-antivortex pair, after a characteristic transient time these vortices unbind and radiate other vortices. These radiated vortices settle into a parity-broken, time-periodic, axisymmetric coherent vortex state (ACVS), characterized by alternate rows of positive and negative vortices lying along a tilted axis. The ACVS produces subharmonic steps in the current voltage (IV) characteristics, typical of giant Shapiro steps. For finite κ they find that the IV's show subharmonic giant Shapiro steps, even at zero external magnetic field. They find that these subharmonic steps are produced by a whole family of coherent vortex oscillating patterns, with their structure changing as a function of κ. In general, they find that these patterns are due to a breakdown of translational invariance produced, for example, by disorder of antisymmetric edge-fields. The zero field case results are in good qualitative agreement with experiments in Nb-Au-Nb arrays

  13. Observation of nonadditive mixed-state phases with polarized neutrons.

    Science.gov (United States)

    Klepp, Jürgen; Sponar, Stephan; Filipp, Stefan; Lettner, Matthias; Badurek, Gerald; Hasegawa, Yuji

    2008-10-10

    In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

  14. Comparing the effects of exercise program and low-level laser therapy with exercise program and polarized polychromatic non-coherent light (bioptron light) on the treatment of lateral elbow tendinopathy.

    Science.gov (United States)

    Stasinopoulos, Dimitrios; Stasinopoulos, Ioannis; Pantelis, Manias; Stasinopoulou, Kalliopi

    2009-06-01

    The use of low-level laser therapy (LLLT) and polarized polychromatic non-coherent light as supplements to an exercise program has been recommended for the management of lateral elbow tendinopathy (LET). To investigate whether an exercise program supplemented with LLLT is more successful than an exercise program supplemented with polarized polychromatic non-coherent light in treating LET. Patients with unilateral LET for at least 4 wk were sequentially allocated to receive either an exercise program with LLLT or an exercise program with polarized polychromatic non-coherent light. The exercise program consisted of eccentric and static stretching exercises of wrist extensors. In the LLLT group a 904-nm Ga-As laser was used in continuous mode, and the power density was 130 mW/cm(2), and the dose was 0.585 J/point. In the group receiving polarized polychromatic non-coherent light the Bioptron 2 was used to administer the dose perpendicularly to the lateral epicondyle at three points at an operating distance of 5-10 cm for 6 min at each position. The outcome measures were pain and function and were evaluated at baseline, at the end of the treatment (week 4), and 3 mo after the end of treatment (week 16). Fifty patients met the inclusion criteria. At the end of treatment there was a decline in pain and a rise in function in both groups compared with baseline (p 0.0005 on the independent t-test). The results suggest that the combination of an exercise program with LLLT or polarized polychromatic non-coherent light is an adequate treatment for patients with LET. Further research to establish the relative and absolute effectiveness of such a treatment approach is needed.

  15. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Miao

    2017-02-01

    Full Text Available Macrophages are vital regulators of the host defense in organisms. In response to different local microenvironments, resting macrophages (M0 can be polarized into different phenotypes, pro-inflammatory (M1 or anti-inflammatory (M2, and perform different roles in different physiological or pathological conditions. Polarized macrophages can also be further reprogrammed by reversing their phenotype according to the changed milieu. Macrophage polarization and reprogramming play essential roles in maintaining the steady state of the immune system and are involved in the processes of many diseases. As foreign substances, nanoparticles (NPs mainly target macrophages after entering the body. NPs can perturb the polarization and reprogramming of macrophages, affect their immunological function and, therefore, affect the pathological process of disease. Optimally-designed NPs for the modulation of macrophage polarization and reprogramming might provide new solutions for treating diseases. Systematically investigating how NPs affect macrophage polarization is crucial for understanding the regulatory effects of NPs on immune cells in vivo. In this review, macrophage polarization by NPs is summarized and discussed.

  16. Ultrafast optical generation of squeezed magnon states and long lifetime coherent LO phonons

    Science.gov (United States)

    Zhao, Jimin

    2005-12-01

    Ultrafast optical pulses have been used to generate, probe, and control low-energy elementary excitations in crystals. In particular, we report the first experimental demonstration of the generation of quantum squeezed states of magnons (collective spin-wave excitations) in a magnetic material, and new progress in experimental investigation of anharmonic interactions in a semiconductor. The mechanism for the magnon squeezing is two-magnon impulsive stimulated Raman scattering (ISRS). Femtosecond laser pulses have been used to coherently correlate degenerate counter-propagating magnons in the antiferromagnetic insulator MnF2. In the squeezed state, fluctuations of the magnetization of a crystallographic unit cell vary periodically in time and are reduced below that of the ground-state quantum noise. Similar experiments were also performed in another antiferromagnetic insulator, FeF2, for which the squeezing effect is one order of magnitude larger. We have also investigated the anharmonic interaction of the low-frequency E2 phonon in ZnO through ISRS. Temperature dependence of the linewidth and frequency indicates that the two-phonon up-conversion process is the dominant decay channel and isotopic disorder may be the main limit on the lifetime at low temperature. We have observed the longest lifetime of an optical phonon mode in a solid (211 ps at 5 K). And we have found that pump-probe experiments, compared with spontaneous Raman spectroscopy, have extremely high accuracy in determining the frequency of a low-lying excitation.

  17. Photoisomerization around a fulvene double bond: coherent population transfer to the electronic ground state?

    Science.gov (United States)

    Ioffe, Ilya; Dobryakov, Alexander L; Granovsky, Alexander A; Ernsting, Nikolaus P; Lustres, J Luis Pérez

    2011-07-11

    Photoisomerization around a central fulvene-type double bond is known to proceed through a conical intersection at the perpendicular geometry. The process is studied with an indenylidene-dihydropyridine model compound, allowing the use of visible excitation pulses. Transient absorption shows that 1) stimulated emission shifts to the red and loses oscillator strength on a 50 fs timescale, and 2) bleach recovery is highly nonexponential and not affected by solvent viscosity or methyl substitution at the dihydropyridine ring. Quantum-chemical calculations are used to explain point 1 as a result of initial elongation of the central C=C bond with mixing of S(2) and S(1) states. From point 2 it is concluded that internal conversion of S(1)→S(0) does not require torsional motion to the fully perpendicular state. The S(1) population appears to encounter a sink on the torsional coordinate before the conical intersection is reached. Rate equations cannot model the observed ground-state recovery adequately. Instead the dynamics are best described with a strongly damped oscillatory contribution, which could indicate coherent S(1)-S(0) population transfer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  19. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  20. Polarization spectrometry diagnostic of cervical pathological states of endometriosis

    Science.gov (United States)

    Yermolenko, S. B.; Peresunko, O. P.; Burkovets, D. N.

    2018-01-01

    The purpose of the study was to determine the histochemical and laser criteria for diagnosis of background, precancerous and endometrial cancer by the state of the cervical canal wall. The given data on the state of connective tissue in the endocervix can distinguish three differential prognostic possibilities: - prediction of the condition of the connective tissue of the endocervix of the normal endometrium without the possibility of differentiating the phases of the ovarian cycle; - prediction of the endocervix endotracheal connective tissue state of the endometrium as a separate process; - prediction for the condition of the connective tissue of the endocervix of the processes of expressed proliferation of the typical (glandular hyperplasia and glandular polyps) or atypical (adenocarcinoma) glandular first endometrial epithelial differentiation without the possibility of these processes among them. The stroke-scrape of the epithelium of the cervical canal (endocervix) allows the condition of the connective tissue to diagnose the processes of pronounced proliferation of the typical (hyperplasia, polyp) and atypical (adenocarcinoma) epithelium of the endometrium without the possibility of differentiating these processes among themselves.

  1. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2014-01-15

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step.

  2. Photophysics of Curcumin excited state in toluene-polar solvent mixtures: Role of H-bonding properties of the polar solvent

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2014-01-01

    Excited state dynamics of Curcumin in binary solvent mixtures of toluene and polar H-bonding solvents were compared by using an instrument endowed with 40 ps time resolution. The solvation time constant of Curcumin increases significantly (and can therefore be measured) in polar solvents which have, either, both H-bond donating and accepting ability, or, only H-bond donating ability. These results suggest that the rate limiting step in the excited state dynamics of the pigment might be the formation and reorganization of the intermolecular H-bonding between the keto group of the pigment and the H-bond donating moieties of the polar solvent. -- Highlights: • Excited state dynamics of Curcumin in a binary solvent mixture of toluene and three polar H-bonding solvents were compared. • The solvation time constant increases significantly with polar solvents having, H-bond donating and accepting, or, H-bond donating ability. • Observed results suggest that H-bonding property of polar solvent plays an important role in the excited state dynamics. • Intermolecular H-bonding between the keto group of the pigment and polar solvent may be the rate limiting step

  3. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    International Nuclear Information System (INIS)

    Yeh, L.

    1992-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena

  4. Instantaneous coherent destruction of tunneling and fast quantum state preparation for strongly pulsed spin qubits in diamond

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2010-01-01

    Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....

  5. Spin-polarized ground state and exact quantization at ν=5/2

    Science.gov (United States)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  6. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Zhang, Guo-Feng, E-mail: gf1978zhang@buaa.edu.cn [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Software Development Environment, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 (China)

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  7. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  8. Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.

    Science.gov (United States)

    Petrova-Mayor, Anna; Knudsen, Sarah

    2017-05-20

    The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.

  9. Relationship between weak central coherence and mental states understanding in children with Autism and in children with ADHD.

    Directory of Open Access Journals (Sweden)

    Pina Filippello

    2013-05-01

    Full Text Available The central coherence involves the processes of perceptual coding and attention mechanisms, highly deficient in children with ADHD (Booth & Happé, 2010. According to this theory, also children with autism are overly focused on details to the expense of a global perspective, and this negatively affects their ability to integrate environmental stimuli into a coherent whole (Happé, Booth, Charlton, Hughes, 2006. The aim of this study was to determine differences in central coherence of children with high functioning autism (ASD; n=10, children with attention-deficit hyperactivity disorder (ADHD; n=10 and typically developing peers (n=10. Individuals with ADHD exhibit significant deficits in perceptual skills and problem solving, failing also in mental states understanding tasks. While the children with autism spectrum disorder show impairments in making pragmatic inferences. Future research should therefore concentrate on the investigation of the cognitive and psychological mechanisms underlying these effects.

  10. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  11. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    CSIR Research Space (South Africa)

    Milione, G

    2015-02-01

    Full Text Available , using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inhomogeneous states of polarization were experimentally measured using Stokes polarimetry as they propagated through two...

  12. Educational and Community Outreach Efforts by the United States Polar Rock Repository during the International Polar Year

    Science.gov (United States)

    Grunow, A.; Codispoti, J. E.

    2010-12-01

    The US Polar Rock Repository (USPRR) houses more than 19,000 rock samples from polar regions and these samples are made available to the scientific, educational and museum community. The USPRR has been active in promoting polar earth science to educational and community groups. During the past year, outreach efforts reached over 12,000 people. The USPRR outreach involve tours of the facility, school presentations, online laboratory exercises, working with the Columbus Metro Parks, teaching at summer camps, teaching special geology field assignments at the middle school level, as well as offering an ‘Antarctic Rock Box’ that contains representative samples of the three types of rocks, minerals, fossils, and books and activities about geology and Antarctica. The rock box activities have been designed and reviewed by educators and scientists to use as an educational supplement to the Earth Science course of study. The activities have been designed around the Academic Content Standards: k-12 Science manual published by the Ohio Department of Education to ensure that the activities and topics are focused on those mandated by the state of Ohio. The USPRR website has a Virtual Web Antarctic Expedition with many activities for Middle to High School age students. The students learn about how to plan a field season, safety techniques, how to make a remote field camp, identify what equipment is needed, learn about the different transportation choices, weather issues, understanding GPS, etc. Educational and community networks have been built in part, by directly contacting individuals at an institution and partnering with them on educational outreach. The institutions have been very interested in doing this because it brings scientists to the classroom and to the public. This type of outreach has also served as an opening for children to consider possible career choices in science that they may not have considered before. In many of the presentations, a female geologist

  13. Coherent state path integral and super-symmetry for condensates composed of bosonic and fermionic atoms

    International Nuclear Information System (INIS)

    Mieck, B.

    2007-01-01

    A super-symmetric coherent state path integral on the Keldysh time contour is considered for bosonic and fermionic atoms which interact among each other with a common short-ranged two-body potential. We investigate the symmetries of Bose-Einstein condensation for the equivalent bosonic and fermionic constituents with the same interaction potential so that a super-symmetry results between the bosonic and fermionic components of super-fields. Apart from the super-unitary invariance U(L vertical stroke S) of the density terms, we specialize on the examination of super-symmetries for pair condensate terms. Effective equations are derived for anomalous terms which are related to the molecular- and BCS- condensate pairs. A Hubbard-Stratonovich transformation from 'Nambu'-doubled super-fields leads to a generating function with super-matrices for the self-energy whose manifold is given by the orthosympletic super-group Osp(S,S vertical stroke 2L). A nonlinear sigma model follows from the spontaneous breaking of the ortho-symplectic super-group Osp(S,S vertical stroke 2L) to the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S). The invariant subgroup U(L vertical stroke S) for the vacuum or background fields is represented by the density terms in the self-energy whereas the super-matrices on the coset space Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) describe the anomalous molecular and BCS-pair condensate terms. A change of integration measure is performed for the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S), including a separation of density and anomalous parts of the self-energy with a gradient expansion for the Goldstone modes. The independent anomalous fields in the actions can be transformed by the inverse square root G Osp backslash U -1/2 of the metric tensor of Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) so that

  14. Coherent state path integral and super-symmetry for condensates composed of bosonic and fermionic atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mieck, B. [Department of Physics in Duisburg, University Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)

    2007-09-15

    A super-symmetric coherent state path integral on the Keldysh time contour is considered for bosonic and fermionic atoms which interact among each other with a common short-ranged two-body potential. We investigate the symmetries of Bose-Einstein condensation for the equivalent bosonic and fermionic constituents with the same interaction potential so that a super-symmetry results between the bosonic and fermionic components of super-fields. Apart from the super-unitary invariance U(L vertical stroke S) of the density terms, we specialize on the examination of super-symmetries for pair condensate terms. Effective equations are derived for anomalous terms which are related to the molecular- and BCS- condensate pairs. A Hubbard-Stratonovich transformation from 'Nambu'-doubled super-fields leads to a generating function with super-matrices for the self-energy whose manifold is given by the orthosympletic super-group Osp(S,S vertical stroke 2L). A nonlinear sigma model follows from the spontaneous breaking of the ortho-symplectic super-group Osp(S,S vertical stroke 2L) to the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S). The invariant subgroup U(L vertical stroke S) for the vacuum or background fields is represented by the density terms in the self-energy whereas the super-matrices on the coset space Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) describe the anomalous molecular and BCS-pair condensate terms. A change of integration measure is performed for the coset decomposition Osp(S,S vertical stroke 2L) backslash U(L vertical stroke S) x U(L vertical stroke S), including a separation of density and anomalous parts of the self-energy with a gradient expansion for the Goldstone modes. The independent anomalous fields in the actions can be transformed by the inverse square root G{sub Osp} {sub backslash} {sub U}{sup -1/2} of the metric tensor of Osp(S,S vertical stroke 2L) backslash U

  15. Determining the Effect of Calculus, Hypocalcification, and Stain on Using Optical Coherence Tomography and Polarized Raman Spectroscopy for Detecting White Spot Lesions

    Directory of Open Access Journals (Sweden)

    Amanda Huminicki

    2010-01-01

    Full Text Available Optical coherence tomography (OCT and polarized Raman spectroscopy (PRS have been shown as useful methods for distinguishing sound enamel from carious lesions ex vivo. However, factors in the oral environment such as calculus, hypocalcification, and stain could lead to false-positive results. OCT and PRS were used to investigate extracted human teeth clinically examined for sound enamel, white spot lesion (WSL, calculus, hypocalcification, and stain to determine whether these factors would confound WSL detection with these optical methods. Results indicate that OCT allowed differentiating caries from sound enamel, hypocalcification, and stain, with calculus deposits recognizable on OCT images. ANOVA and post-hoc unequal N HSD analyses to compare the mean Raman depolarization ratios from the various groups showed that the mean values were statistically significant at P<.05, except for several comparison pairs. With the current PRS analysis method, the mean depolarization ratios of stained enamel and caries are not significantly different due to the sloping background in the stained enamel spectra. Overall, calculus and hypocalcification are not confounding factors affecting WSL detection using OCT and PRS. Stain does not influence WSL detection with OCT. Improved PRS analysis methods are needed to differentiate carious from stained enamel.

  16. In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Bagnaninchi, P O; Yang, Y; Maffulli, G; El Haj, A; Maffulli, N; Bonesi, M; Meglinski, I; Phelan, C

    2010-01-01

    The objective of this study was to develop a method based on polarization-sensitive optical coherent tomography (PSOCT) for the imaging and quantification of degenerative changes associated with Achilles tendon rupture. Ex vivo PSOCT examinations were performed in 24 patients. The study involved samples from 14 ruptured Achilles tendons, 4 tendinopathic Achilles tendons and 6 patellar tendons (collected during total knee replacement) as non-ruptured controls. The samples were imaged in both intensity and phase retardation modes within 24 h after surgery, and birefringence was quantified. The samples were fixed and processed for histology immediately after imaging. Slides were assessed twice in a blind manner to provide a semi-quantitative histological score of degeneration. In-depth micro structural imaging was demonstrated. Collagen disorganization and high cellularity were observable by PSOCT as the main markers associated with pathological features. Quantitative assessment of birefringence and penetration depth found significant differences between non-ruptured and ruptured tendons. Microstructure abnormalities were observed in the microstructure of two out of four tendinopathic samples. PSOCT has the potential to explore in situ and in-depth pathological change associated with Achilles tendon rupture, and could help to delineate abnormalities in tendinopathic samples in vivo.

  17. In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density

    Science.gov (United States)

    Jaspers, Mariëlle E. H.; Feroldi, Fabio; Vlig, Marcel; de Boer, Johannes F.; van Zuijlen, Paul P. M.

    2017-12-01

    Obtaining adequate information on scar characteristics is important for monitoring their evolution and the effectiveness of clinical treatment. The aberrant type of collagen in scars may give rise to specific birefringent properties, which can be determined using polarization-sensitive optical coherence tomography (PS-OCT). The aim of this pilot study was to evaluate a method to quantify the birefringence of the scanned volume and correlate it with the collagen density as measured from histological slides. Five human burn scars were measured in vivo using a handheld probe and custom-made PS-OCT system. The local retardation caused by the tissue birefringence was extracted using the Jones formalism. To compare the samples, histograms of birefringence values of each volume were produced. After imaging, punch biopsies were harvested from the scar area of interest and sent in for histological evaluation using Herovici polychrome staining. Two-dimensional en face maps showed higher birefringence in scars compared to healthy skin. The Pearson's correlation coefficient for the collagen density as measured by histology versus the measured birefringence was calculated at r=0.80 (p=0.105). In conclusion, the custom-made PS-OCT system was capable of in vivo imaging and quantifying the birefringence of human burn scars, and a nonsignificant correlation between PS-OCT birefringence and histological collagen density was found.

  18. The use of polarized polychromatic non-coherent light as therapy for acute tennis elbow/lateral epicondylalgia: a pilot study.

    Science.gov (United States)

    Stasinopoulos, Dimitrios

    2005-02-01

    The aim of this study was to assess the efficacy of polarized, polychromatic, non-coherent, low energy light (Bioptron 2, Bioptron AG, Switzerland) in the treatment of acute tennis elbow. Tennis elbow, or lateral epicondylitis, is one of the most common lesions affecting the arm. A plethora of treatment regimes have been described for this condition, but no specific therapy has emerged as a gold standard. A pilot study was carried out with 25 patients who had acute tennis elbow. Bioptron 2 device was applied over lateral epicondyle three times per week for 4 weeks. Pain on VAS, function on VAS, and painfree grip strength were measured at the beginning (week 0) and at the end of the study (week 4). The pain on VAS was reduced at the end of treatment (t(24) = 3.84, p = 0.001). Function on VAS was increased at the end of treatment (t(24) = 4.23, p Bioptron 2 could reduce patients' symptoms with acute tennis elbow, future controlled studies are needed to establish the relative and absolute effectiveness of Bioptron 2.

  19. Perturbed stationary-state description of the polarization effect in innershell ionization

    International Nuclear Information System (INIS)

    Basbas, G.; Land, D.J.

    1983-01-01

    A one-parameter trial initial-state wavefunction correlated to a projectile (polarized) is described and used to calculate innershell ionization cross sections for collisions with heavy charged particles. The variational principle is used to determine the parameter. The minimized energy gives the binding effect as a function of projectile position. Existing codes can be readily adapted to incorporate the trial wavefunction. Comparison with the previous theory of the polarization effect is made. Results for K-shell ionization of titanium by protons in the 0.3 to 2.4 MeV energy range agree with measured values

  20. Liquid-State 13C Polarization of 30% through Photoinduced Nonpersistent Radicals

    DEFF Research Database (Denmark)

    Capozzi, Andrea; Karlsson, Magnus; Petersen, Jan Raagaard

    2018-01-01

    of the nuclear spin polarizationtogether with the constraint of having to polarize the spins nearthe MRI magnet. As recently demonstrated, the employment of UV-inducednonpersistent radicals represents an elegant solution to tacklingthese drawbacks. Nevertheless, since its introduction, the spreadof the technique......-radical technique. Under optimal conditions,it was possible to produce up to 60 mM radical in less than 5 minand reach maximum DNP enhancement with a buildup time constant ofapproximately 25 min at 6.7 T and 1 K, resulting in 30% 13C liquid-state polarization....